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Abstract

The Integrated Digital Image Correlation method (iDIC) is a simple and effec-

tive approach for residual stress measurement. iDIC differs from Digital Image

Correlation because it replaces the “generic” displacement functions used to

describe the displacement field around the measurement point with problem-

specific ones. By this simple modification, stress components become the un-

knowns of the problem, thus allowing a single-pass analysis. Advantages are sig-

nificant in terms of accuracy, robustness and ease of implementation. However,

the implementation of the Integral Method for estimation of depth-dependent

residual stress components is difficult.

This work suggests two alternative approaches to solve this problem; in

the former, the direct solution of the triangular linear system is employed to
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incrementally identify the stress distribution. In the latter, a global spatio-

temporal minimization involving all the acquired images is suggested.

Keywords Integrated Digital Image Correlation, Residual Stress, Integral

Method, Reverse Methods

1 Introduction

Most technological treatment induce in mechanical components a self balanced

stress field, known as residual stress, as a side effect of the process.

Recognizing the presence of residual stress inside a component is particularly

important because the field exists regardless of a load being applied to the

components. Thus, it adds to load-induced stress fields, potentially inducing

failure at load levels significantly lower than expected.

Various approaches to residual stress measurement have been proposed. The

most used is the hole drilling technique [1], a semi-destructive technique con-

sisting in drilling a small hole in the surface, to successively compute stress

components from the strain/displacement field observed on the surface.

The above-cited technical norm assumes that the strains field is sampled

using a strain gauge rosette, but various alternative measurement techniques,

mostly optical, have been proposed. Even though in the past years both holo-

graphic interferometry [2–4] and grating interferometry [5–7] have been used to

measure the displacement field around the hole, speckle interferometry is the

most used interferometric technique in the present days [8–13]. However, all

the interferometric techniques are highly sensitive to vibrations, thus making

difficult their use in an industrial environment. A potential alternative is the

Digital Image Correlation technique (DIC), a non-interferometric experimental

technique. DIC is generally more tolerant environmentally than its interfero-

metric counterparts, but it is also much less sensitive. Moreover, taking into
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account that the expected displacements for metallic materials are one pixel

or less, it requires large subsets and a specific control logic [14] to limit the

influence of outliers.

Integrated Digital Image Correlation (iDIC) is a non-interferometric optical

technique [15, 16] which has been recently proposed as an effective approach for

residual stress analysis both for isotropic [17] and orthotropic [18, 19] materials.

Differently from standard DIC approach, iDIC makes use of a single subset;

this is a significant advantage because the drilling process easily damages the

painted speckles (due to chips, oil drops, fingerprints, . . . ) thus, the analysis of

a small region of the image could result in completely wrong data (which have

to be detected and removed). This problem does not exist in iDIC, because a

small erroneous region does not significantly affect the computation.

The iDIC technique is a direct derivative of Digital Image Correlation [20]

and uses the same basic principle: given a pair of images acquired before and

after the event of interest, the intensity of each pixel (respectively fk and gk,

where k is the index of the pixel) remains the same, whatever the motion of the

object under study. From the theoretical point of view, this statement can be

written as f(xk, yk) = g(xk + uk, yk + vk), where the displacement components

u and v provide a simple approximation of the local behavior in DIC, whereas

they are selected in such a way to be able to describe globally the displacement

field related to the problem under analysis in iDIC.

The displacement mapping functions (e.g. u = p0 + p1ξ + p2η + . . . , v =

q0 + q1ξ + q2η + . . . in standard DIC, where ξ = x − x0, η = y − y0 and

(x0, y0) is the origin of the local reference system) are controlled by a set of

parameters (the pl and ql of the previous example) which are usually computed

by minimizing over the area of the current subset a suitable error function [21],
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e.g. the Parametric Sum of Squared Difference (PSSD)

χ2
PSSD =

∑
k

(a+ bfk − gk)2 (1)

where the coefficients a and b appearing in the χ2
PSSD error criterion account for

the offset and the scale change of the target system intensity and the summation

ranges over all the pixels of the area under inspection.

To obtain a solution—the set of pl and ql minimizing the error functional—a

Newton-Raphson approach is usually adopted: a linear approximation of either

f(x, y) or g(x, y, u, v) is computed by expanding the intensity function in Tay-

lor’s series truncated to the first order, then a solution system is computed by

setting to zero the derivatives of the error function with respect to the control

parameters pl, ql, a and b. The solution so obtained is not the correct one,

because the coefficients of the linear system have been computed in the wrong

location, thus, the algorithm is iterated and the sought solution is obtained by

cumulating a series of (progressively smaller) corrections.

It is worth noting that the solution algorithm sketched above implies that a

unique intensity pattern exists for each location, thus the surface of the specimen

has to be textured either naturally or artificially (by spraying random speckles

on the surface); moreover, the algorithm requires comparison of the value of

the intensity at location g(xk + uk, yk + vk) with f(xk, yk) for each step of the

iteration and for all points k belonging to the current subset; thus, considering

that both u, and v are not ensured to be integers, n interpolations are required

for each step, where n is the number of pixels belonging to the area under

analysis (respectively the subset for the DIC technique and the active area of

the image in the iDIC case).

The displacement field around a hole related to residual stress is well known:
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ur = A (σx + σy) +B [(σx − σy) cos(2θ) + 2τxy sin(2θ)] (2a)

uθ = C [(σx − σy) sin(2θ)− 2τxy cos(2θ)] (2b)

uz = F (σx + σy) +G [(σx − σy) cos(2θ) + 2τxy sin(2θ)] (2c)

where the A, B, C, F and G coefficients depend on material and location and

are theoretically known1 in the hole through case [3], whereas they must be

estimated using Finite Element computations in the blind hole case [11].

By projecting the in-plane displacement components (2a) and (2b) in the x-y

reference system and taking into account the rigid body motion components u0

and v0, the residual-stress-specific iDIC shape functions can be computed:

u(x, y, σx, σy, τxy) = u0 + Pu(x, y)σx +Qu(x, y)σy + Tu(x, y)τxy (3a)

v(x, y, σx, σy, τxy) = v0 + P v(x, y)σx +Qv(x, y)σy + T v(x, y)τxy (3b)

where Pu, Qu and Tu (P v, Qv and T v) are calibration coefficients depending

on point location, material properties and hole geometry:

Pu = [A+ (B + C) cos(2θ)− C] cos(θ)

Qu = [A−B cos(2θ)] cos(θ) + C sin(2θ) sin(θ)

Tu = +2 [(B + C) cos(2θ) +B] sin(θ)

P v = [A+ (B + C) cos(2θ) + C] sin(θ)

Qv = [A− (B + C) cos(2θ)− C] sin(θ)

T v = −2 [(B + C) cos(2θ)−B] cos(θ)

(4)

Once the iDIC shape functions (3) are known, the solution path exactly

1Equation (2) assumes a plane stress state and an linear elastic behavior of the material.
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follows the standard Lucas and Kanade formulation [22]; the solution matrix A

and the known-terms vector b of the normal equation Ax = b can be estimated

respectively as A =
∑
k hkh

T
k and b = −

∑
k gkhk, with

hk =



−1

−fk
∂gk
∂ξ

∂gk
∂η

Pu|k
∂gk
∂ξ + Pv|k

∂gk
∂η

Qu|k
∂gk
∂ξ + Qv|k

∂gk
∂η

Ru|k
∂gk
∂ξ + Rv|k

∂gk
∂η



(5)

where the first and second row of (5) are related to the a and b coefficient of the

χ2
PSSD error function (1), the third and the fourth rows account for the rigid

body motion components (u0 and v0) and the last three are related to residual

stress components (σx, σy and τxy).

The solution matrix of iDIC is tiny (7 × 7 when using the above described

parameters, 8×8 if the in-plane rigid body rotation ω is included in the formula-

tion [17]) but the computation of each term of the matrix involves all the active

pixels of the image. Thus, the iDIC approach to residual stress measurement is

robust against noise [23, 24]. Moreover, it directly estimates the stress compo-

nents, whereas almost all the other solution algorithms (both strain gauge and

optical based) perform a two-step procedure: first the displacements (strains)

are measured in three (or more) points, then the residual stress components

are estimated by solving an inverse problem. However, the single-pass solution

becomes a problem when residual stress components depend on depth.

The standard approach to the identification of a residual stress field varying

with depth is the integral method suggested by Schajer [25] in 1988. The de-
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Figure 1: The Integral Method: schematic representation of the computation
steps.

pendence on depth is approximated with a stepwise distribution (Figure 1). For

each step, a hole increment is performed and the strain/displacement field on

the surface is acquired. To correlate the observed displacements with residual

stress, one has to consider that the displacement/strain field depends on the

newly released stress components and on all the previously released ones. This

leads to the linear system

Gσ = f (6)

where σ is the array of stress components, f is the vector of the strains /

displacements measured on the surface and G is the influence matrix. The

entry Gi,j of G conceptually is the component of deformation/displacement

observed on the surface after i hole increments due to a unitary stress at depth

j. As no influence is assumed on stress below the bottom of the hole, G is

lower triangular (i.e. Gi,j = 0 if j > i). Moreover, as a plane stress status is

described by three tensor components, at least three points of the surface have

to be sampled, thus, Gi,j actually is a sub-matrix (each row corresponding to a

different sampled point2).

2Depending on the formulation, the matrix Gi,j may be diagonal, thus allowing for solution
of three independent linear systems.
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It is worth noting that even though G is usually square (a residual stress

rosette contains three active elements), it is not always so: when using optical

methods, each of the n pixels of the acquired image potentially provides an

independent measurement, thus Gi,j may have up to n rows and consequently,

sizeof(f) = n ·m, where m is the number of material removals (i.e. hole depth

increments).

The overdetermined linear system—G results in (n · m) rows by (3 · m)

columns, n� m—can be solved by Singular Value Decomposition (SVD) or by

a Least Squares approach, i.e. by pre-multiplying both sides of equation (6) by

GT

GTGσ = GTf (7)

and solving the resulting (3 ·m)× (3 ·m) linear system by a standard method.

In principle, the integral method does not depend on the experimental ap-

proach, thus (6) should apply to the iDIC method. Actually, its use in combi-

nation with iDIC is difficult because displacements (strains) are never explicitly

computed, thus, the vector f appearing in (6) is not known. Indeed, in the

iDIC formulation the known terms are the pixel intensities estimated in the

displaced configuration. As displacements are a function of residual stress com-

ponents (i.e. of the unknowns), the direct use of (6) is not possible: the integral

approach has to be incorporated inside the solution algorithm.

This work focuses on the implementation of the above sketched idea and is

organized as follows: the next section is devoted to the development of a spatio-

temporal iDIC formulation to overcome the above noted limitation. Next, sta-

bility issues and algorithm variants are discussed (the integral method is well

known for producing ill-conditioned matrix). In the same section the identi-

fication of an initial stress profile, to be used as alternative initial guess, is

also discussed. The next section focuses on the validation of the proposed ap-
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proaches first by using synthetic images, then, by an experimental approach.

The performance of the various algorithms is compared and some critical points

are highlighted in the following section.

Appendix A discusses the numerical implementation of the algorithms, fo-

cusing on memory requirements and execution time.

2 A Spatio-Temporal Approach to Residual Stress

Measurement

The solution algorithm of the integral method searches for the best stress profile,

i.e. the stress distribution with the depth which minimizes the errors between

the computed displacements and the experimental measurements across the full

drilling history. Thus, the iDIC objective function (1) has to be extended in

such a way to depend on all m drilling increments at the same time:

χ2
iPSSD =

m∑
i=1

n∑
k=1

(ai + bifk − gi,k)2 (8)

where

gi,k = g (xk + ui,k, yk + vi,k)

and

ui,k = ui +

i∑
j=1

Pui,j,kσx,j +Qui,j,kσy,j + Tui,j,kτxy,j (9a)

vi,k = vi +

i∑
j=1

P vi,j,kσx,j +Qvi,j,kσy,j + T vi,j,kτxy,j (9b)

In the above equations, the i index refers to the drilling increment (i.e. to

the acquired image), the j counter addresses the loading step (thus, j ≤ i) and
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k identifies a specific location of the image (a pixel3).

The χ2
iPSSDab function (8) estimates the (cumulated) discrepancy between

the reference image and all the experimental images acquired during the material

removal history. To this aim, every pixel k corresponding to point (xk, yk) in the

reference image is located in each of the m images acquired during the material

removal procedure by adding a displacement vector (eq. 9) depending on all

stress components released up to image index i (i.e. all σx,j , σy,j , τxy,j , ∀j ≤

i). Thus, the optimization algorithm tries to minimize the difference between

what is observed experimentally and what should be acquired given the current

residual stress profile and the theoretical displacement model hardcoded inside

it (through the calibration coefficients). To obtain this objective, it adjusts all

the residual stress values and all rigid body motion components simultaneously,

thus performing both an optimization in space (the area around the hole) and

in time (through the entire drilling history) [26, 27].

A few final notes about the proposed algorithm:

• The ui and vi appearing in (9a) and (9b) are the rigid body motion com-

ponents related to material removal step i: indeed, depending on the ex-

perimental protocol, either the specimen or the camera may move between

the drilling steps4;

• in the same way, the lighting condition of each image may change, thus

we have to include a mean intensity and contrast coefficient (ai, bi) for

each drilling increment;

• the Pui,j,k, Qui,j,k, . . . , T vi,j,k are the equivalent of the Gi,j in the “standard”

3By selecting either a row-major or column-major ordering it is possible to use a single
index to uniquely identify a pixel of an image; to give an example, the pixel at row 3 and
column 2 can be indexed either as 3×w+ 2 (row-major) or 2× h+ 3 (column-major), where
w and h respectively are the width and the height of the image in pixels.

4In principle, adding linear terms to u and v may help correcting micro-rotations of the
camera. Actually this should be avoided because the residual stress displacement field is an
odd function, thus, as a close view of the area around the hole is usually acquired, the fitted
plane will never be horizontal, even when no correction is required.
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integral method and depend, apart from material parameters, on the loca-

tion (k), the stress layer (j) and the current geometry (i.e. drilling step i);

due to the blind hole configuration, they have to be computed by Finite

Element simulations, obviously using the same material removal sequence

of the current experiment;

• even though the construction of the solution matrix involves a large data

set (all the images acquired during the drilling process), the matrix itself

is not large: each drilling increment requires 7 degrees of freedom, thus,

the total matrix size is (7 ·m)× (7 ·m).

3 Algorithm Implementation and Stability Is-

sues

The integral method is known to be highly sensitive to noise; in mathematical

terms, the solution matrix is ill-conditioned. This is partially due to the solu-

tion algorithm (the least-squares method) but is mostly related to a physical

problem: the deeper the released stress, the smaller the displacements observed

on the surface, thus making a reliable measurement progressively harder.

By trying to reconstruct a variable stress profile, iDIC has to face the same

physical limitation and, in the same way as the integral method, its solution

matrix becomes ill-conditioned, thus making the solution of (8) unstable in

the presence of noise. The next subsections discusses algorithm initialization,

solution regularization and alternative solution algorithms aiming to improve

the stability of the algorithm.
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3.1 Stress-Profile Initialization

The above-described algorithm shares with “standard” iDIC the ability to con-

verge to the expected solution starting from a null stress field5. Even though

this behavior turns out to be useful, considering the iterative (i.e. nonlinear) na-

ture of the algorithm, one may wonder if a better final solution can be obtained

starting from a different initial distribution of the stress components.

Actually, considering that the matrix G is lower triangular, an initial es-

timate can be easily computed. In fact, equations 9a and 9b, expressing the

displacement (u, v) expected at point k of the surface at drilling increment i,

can be rearranged as

ui,k = ui +

i−1∑
j=1

Pui,j,kσx,j +Qui,j,kσy,j + Tui,j,kτxy,j


+ Pui,i,kσx,i +Qui,i,kσy,i + Tui,i,kτxy,i

vi,k = vi +

i−1∑
j=1

P vi,j,kσx,j +Qvi,j,kσy,j + T vi,j,kτxy,j


+ P vi,i,kσx,i +Qvi,i,kσy,i + T vi,i,kτxy,i

(10)

where we have singled out the last drilling increment.

If you assume to know the stress components for all drilling increments

up to the previous one (i.e. up to i − 1), equation 10 clearly shows that their

contribution to the current displacement is completely known, because it is esti-

mated by the terms in brackets (the summation), which depend on known stress

components and on the calibration coefficients related to the current geometric

configuration only.

5Note that displacements related to residual stress asymptotically tend to zero with dis-
tance from the center of the hole; thus, providing the rigid body motion is correctly estimated,
the area far from the hole is almost correct even when the contribution from residual stress is
not included.
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Thus, equation 10 actually reads as

ui,k = ui + upi,k + Pui,i,kσx,i +Qui,i,kσy,i + Tui,i,kτxy,i

vi,k = vi + vpi,k + P vi,i,kσx,i +Qvi,i,kσy,i + T vi,i,kτxy,i

(11)

where upi,k and vpi,k are the displacements due to the (known) previously released

residual stresses.

The algorithm to estimate an initial residual stress distribution is straight-

forward: at the beginning of the process up1,k and vp1,k are identically null, thus

the stress components can be computed using a “standard” iDIC algorithm.

At the second drilling increment, the residual stress components related to the

first step are known, thus the summations in the brackets can be evaluated

and their contribution added to the displacement field; the remaining quantities

only depend on stress components related to the second material layer, which

can be easily computed using the upi,k- vpi,k-augmented version of the iDIC al-

gorithm6. The solution process continues in the same way step-by-step; the full

process consisting of m executions of a “standard” iDIC algorithm intermixed

with m− 1 computations of the upi and vpi values at point k.

It is worth noting that the “initialization” algorithm described in this sec-

tion actually results in a complete description of the stress profile, thus, it can

be viewed as an alternative way of measurement (named the fast algorithm

from now on). It compares favorably with the previously described algorithm

(full algorithm) in terms of memory storage and computation requirements, but

presents two main drawbacks: its sequential approach makes it impossible to

use Tikhonov regularization (described in the following) and it propagate er-

rors: indeed, a misidentified stress level affect all the following steps. Indeed,

to compensate for an erroneous stress estimate at step i, the algorithm will

6The only modification is the inclusion of upi,k and vpi,k in the evaluation of the coordinate

in the target image.
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overcompensate the stress evaluation at step i+ 1, thus inducing an oscillatory

behavior around the correct solution.

3.2 Use of the Singular Value Decomposition

SVD can be used in two different ways to help solve the ill-conditioning problem:

it can be employed either as a “recovery” tool, i.e. as an alternative way to solve

the normal equation, or it can be used to directly identify the best-fit solution

without assembling the matrix A. The former path requires assembling the

normal equation matrix in the standard way and then decomposing it via SVD,

i.e. writing A = UWVT, where U is a column-ortogonal matrix, W is a

diagonal matrix containing the (positive or null) singular values wj and V is an

orthogonal matrix. It can be shown that the decomposition is always possible,

thus, the inverse of A can always be computed as

A−1 = V [diag(1/wj)]U
T

Solving the normal equation via SVD leads to exactly the same results as

using LU decomposition when A is well- or mildly ill-conditioned, but allows for

removal of singular eigenvectors from the solution in critical situations. This can

be easily performed by replacing 1/wj with 0 when the ratio of wj to max(wj)

is below a given threshold7.

Note that the SVD decomposition of an nr×nc matrix requires c1n
2
rnc+c2n

3
c

operations, where c1 = 4 and c2 = 22 for the R-SVD algorithm [29]. This is

significantly more than the 2/3n3r required by LU; nevertheless, nr is so small

(nr = nc = 7m in the normal-equation case) that the SVD decomposition

requires negligible time.

7Selection of the threshold t is a critical point; in this work we assumed t =
(1/2) max(wj) ε

√
nr + nc + 1, where ε is the expected roundoff error [28].
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The least-squares problem can also be directly solved by SVD. It suffices

to decompose via SVD and successively invert the (n · m) × (7 · m) matrix

resulting from writing the n · m equations corresponding to each value of the

i and k indexes in (8) (obviously without squaring). Indeed, [28] shows that

in the case of an overdetermined system, SVD produces a solution that is the

best approximation in the least-squares sense. In principle, this is the most

suitable approach to the solution of least-squares problems, because computing

the normal equation squares the conditions number, however, in the iDIC case it

results to be highly numerically intensive because the solution matrix can easily

have a million (or more) rows (n, the number of active pixels of each image, is

O(105) and (8) involves all the images at the same time); moreover the iDIC

algorithm is iterative, thus, several solution steps may be required.

3.3 Tikhonov Regularization

Tikhonov regularization [30] enforces a smoother solution by applying a penalty

function to the solution. To this end, the solution matrix is augmented with an

extra term which penalizes a chosen derivative of the solution.

Using this approach, equation 7 becomes

(
GTG + λcTc

)
σ = GTf

where λ is the penalty coefficient and the matrix c implements (in discrete form)

the penalized function (in this case the curvature of the solution, i.e. the second
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derivative).

c =



0 0 0 0 . . . 0

−1 2 −1 0 . . . 0

0 −1 2 −1 . . . 0

...
. . .

0 0 . . . −1 2 −1

0 0 . . . 0 0 0


Our implementation strictly follows [31, 32] with the obvious modification

that c acts only on the rows of the matrix related to stress components (i.e. all

the rows of matrix c present the −1, 2,−1 sequence on the diagonal, except for

the first, the last and those related to the intensity parameters or to the rigid

body motion components which are identically null).

We implemented Tikhonov regularization in the context of the normal equa-

tion only. In principle the resulting matrix can be solved using SVD, but the

introduction of the penalizing term significantly improves the condition number,

thus making the use of SVD valueless.

3.4 Incremental Approach

Schajer and Rickert [33] have shown that a better condition number of matrix G

(equation 7) can be obtained by using an incremental approach. The basic idea

consists in “using incremental deformation data instead of the total deformation

data that are conventionally used.” In the same way as in the previously de-

scribed approaches, a direct mapping of this formulation to iDIC is not possible;

however, a spatio-temporal minimization based on this idea can be formulated.

To this aim, it suffices to replace the reference image f appearing in the χ2 error
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criterion (eq. 8) with the previously acquired image gi−1:

χ2 =

m∑
i=1

n∑
k=1

(ai + big(i−1),k − gi,k)2 (12)

and replace the Pui,j,k, . . . , T vi,j,k appearing in (9) with their incremental coun-

terparts P̃ui,j,k, . . . , T̃ vi,j,k , i.e.8:

ui,k = ui +

i∑
j=1

P̃ui,j,kσx,j + Q̃ui,j,kσy,j + T̃ui,j,kτxy,j

vi,k = vi +

i∑
j=1

P̃ vi,j,kσx,j + Q̃vi,j,kσy,j + T̃ vi,j,kτxy,j

It is worth noting that the same modifications can be performed to the

fast formulation described in sec. 3.1 (i.e. replace the Pu. . .T v coefficients

by P̃u. . . T̃ v and use gi−1 as reference image) thus providing a new solution

algorithm. Note that both the SVD solutions and the Tikhonov regularization

can be used in combination with (12).

4 Numerical Validation

In the previous sections we described the basic formulation and various modifi-

cations to the basic idea. The number of variants is significant because some of

the proposed “improvements” can be used at the same time. Thus, before per-

forming a real experiment, we opted for using numerically synthesized images

because in this way the expected results are completely known and the accuracy

of the various algorithms or algorithm combinations can be evaluated. However,

image synthesizing requires some care because we have to avoid interpolation

(it is well known that this procedure biases the data) and we cannot refer to

8The incremental coefficients P̃u
i,j,k, . . . , T̃ v

i,j,k can be computed starting from the absolute

ones by subtracting from each element at row i the corresponding value at row i− 1.
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Table 1: Assumed stress profile (and rigid body motion)

Depth σx σy τxy u0 v0
mm MPa MPa MPa pixel pixel
0.05 180 120 100. 0.0 0.0
0.10 195 125 105. 10.1 10.35
0.15 200 129 110. 9.7 8.2
0.20 190 132 115. -10.44 8.3
0.25 175 134 120. 5.55 -3.02
0.30 160 135 124.5 15.3 10.76
0.35 150 134 129. -7.1 -8.32
0.40 140 132 132.5 -12.56 -15.28
0.45 132 129 135. 18.11 13.3
0.50 126 125 136.5 -15.543 13.24
0.55 122 120 137. 10.02 -12.76
0.60 120 115 137. 5.98 5.9
0.65 118 109 137. -5.4 5.22

the hole-drilling theoretical solution (it assumes a through-hole configuration).

To solve this problem we assumed that each speckle of the reference picture

can be described as a bell-shaped function [34–37]:

b(r) =


s
[
1− (r/ζ)

2
]3

r ≤ ζ

0 elsewhere

where s is the scale factor and ζ is the radius of the speckle. Consequently, the

speckle field can be viewed as the superposition of several translated and scaled

bell functions, i.e. the resulting reference intensity field is continuous9. Thus, it

is possible to use whatever sampling rate when generating the displaced images;

this allows for satisfaction of the requirements of the Nyquist-Shannon sampling

theorem whatever the displacement field10.

The displacement field is still described by (9), but both the stress profile

9The parameters of the speckles are generated from user-defined statistical distributions
and stored for later use.

10Note that by using a large enough oversampling it is possible to avoid identification of
the reverse mapping function, thus, making image generation simpler.
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Figure 2: An example of synthetic image. Top right part: u displacement field
of the first drilling increment computed by a standard DIC code. Bottom left:
subtraction of first image and the reference one (note that a false-color palette
was employed to simplify visualization). Displacements can be recognized by
this technique because their maximum value is about one pixel. Nevertheless,
noise masks almost all the signal apart from the area near the hole.

and the rigid body displacements have to be completely known. Moreover,

the calibration coefficients Pui,j,k, . . . , T vi,j,k have to comply with the material

removal sequence at each increment both in terms of depth and geometrical

parameters.

Table 1 reports the prescribed stress components. During generation, a

3 mm hole diameter and a constant drilling increment (0.05 mm) have been

used. The image size is 1024 × 1024 pixel2, the intensity has been quantized

using 10 bit and up to 4 bit have been perturbed using uniform distributed

noise. Moreover, random rigid body motion components have been added for

each drilling increment (see columns 5 and 6 of Table 1). The assumed pixel

side was 10µm, thus the imaged area corresponds to about 10× 10 mm2.
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Figure 2 shows, in the top right part, the u displacement field computed by a

“standard” DIC code11, and the subtraction of the first image and the reference

one is shown in the bottom left area. To make recognizing the details easier,

a false-color palette was used in the latter case. Note that, as the assumed

Young’s modulus is 70 GPa, maximum displacement is quite small (less than 1

pixel).
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Figure 3: Synthetic images. Expected vs estimated results; integer rigid body
motion. The q in the (q : n) code refers to the number of bits used for quantizing
the intensity, whereas the number after the colon is the number of lower bits
affected by noise.

Figures 3 shows results of first test, i.e. the expected and the measured

residual stress estimated using the described algorithms. Given that all stress

components behave the same, Figure 4 and following show the σx stress compo-

nent only, to make it simpler reading results. To simplify the analysis, integer

rigid body motion displacement components have been assumed (i.e. the as-

11Analysis was performed using a global code employing triangular elements and an un-
structured mesh.
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Figure 4: Synthetic images. Expected vs estimated results; magnified view of
the σx stress component.

sumed rigid body motion components are bu0c, bv0c where u0 and v0 can be

found in Table 1). Indeed, by this assumption the influence of the ui and vi

terms appearing in (9) is minimized.

Looking at Figure 4 it is apparent that all the proposed algorithms give the

expected results when little or no noise is present (0 or 2 noise bits): results

of the fast and full algorithms are practically identical (all estimated stress

values differ for less than one MPa) and the use of the SVD solver gives no

advantage, because all singular values are significant. Results are quite smooth,

thus Tikhonov stabilization is not required.

Quite interestingly, results of the incremental approach are worse than those

of the absolute one when little or no noise is present. This appears to conflict

with theory (using an incremental approach should give a better conditioned

matrix). However it should be noted that incremental displacements are signif-

icantly smaller than absolute ones, thus, when no other error source is present,
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the uncertainty of DIC-estimated displacements becomes significant.
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Figure 5: Synthetic images; expected vs estimated results. Fractional rigid body
motion. As results are significantly noisier, only the σx component is shown.

Figure 5 shows the estimated residual stress when the assumed rigid body

motion components are fractional. As results are significantly noisier, only the

σx component is shown (results related to σy and τxy are qualitatively the

same); in the same way, Tikhonov-related results have been postponed to the

next image.

Looking at Figure 5 the advantage of incremental formulation becomes ap-

parent: results still are somewhat oscillating, but differently from absolute anal-

ysis, no significant spike appears. It is work noting that results of the fast and

full algorithms are still mostly the same and that the use of the SVD solver

(both variants) gives no advantage.

Figure 6 analyzes the influence of Tikhonov stabilization. In principle, λ

should be selected using the Morozov criterion [31]; however, to show the in-

fluence of λ on the solution, various analyses have been performed using λ
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Figure 6: Synthetic images, expected vs estimated results; fractional rigid body
motion. Top: influence of Tikhonov regularization on the absolute formulation.
Bottom: same analysis, incremental formulation. Note that only the σx stress
component is shown.

values ranging from 10−6 up to 10−3. Figure 6-top shows results of the use

of Tikhonov regularization in combination with the absolute formulation while

Figure 6-bottom is related to the incremental algorithm. In both cases Tikhonov

regularization allows smoothing results. In the same way as the “standard” in-
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tegral method, the higher the value of λ, the smoother and the more biased the

results. It is worth noting that as the incremental algorithm is inherently more

stable, the same smoothing level can be obtained using a significantly lower value

of λ. Finally, it should be remembered that Tikhonov regularization cannot be

applied to the fast algorithm due to the incremental computation.

R

Figure 7: Left: sketch of the experimental setup. Right: actual setup.

5 Experimental Validation

To experimentally assess the proposed approach, we followed a procedure similar

to [32]: two specimens were cut from a 2000 × 1.85 × 40 mm aluminum alloy

plate (length× thickness×width) and the proposed experimental protocol was

applied on both, using a flat reference surface for the former and an assumed

curvature support for the latter. To this end, a 70×200×40 mm aluminum block

(width × length × min(thickness)) was machined, with a constant curvature

top surface (see Figure 7-left), thus imposing a linear stress profile inside the

24



specimen. A numerically controlled milling machine12 was used to drill the

specimens and the acquisition of the area around the hole before and after

milling13 was performed using an Allied Vision Pike F421 camera installed on

the milling head. Finally an artificial speckle field was painted on the surface

of the specimens.

Figure 8: Residual metallic chips after a 0.05 mm drilling increment. Left:
actual image; right: difference of the current image and the reference image.

Figure 8-left shows the surface of the specimen immediately after milling

(i.e. before removing chips by an air jet). Even though it is not easy to detect

them, a close look shows that several metallic micro-chips are present. Indeed,

to identify them it suffices to subtract the reference image from Figure 8-left,

thus obtaining Figure 8-right. Even though it is easy to blow most of them out,

nevertheless we opted for building the list of active pixels by computing the

absolute difference of the normalized image intensity and the reference one. In

more detail, for each pixel k of each image i we computed

∆i,k = |gi (xk + buic , yk + bvic)− f (xk, yk)| (13)

12Deckle Maho DMU 60 P hi-dyn.
13Milling was performed using a 1 mm diameter endmill (Sandvik-Coromant 1 P230-0100-

XA 1630) spinning at maximum speed allowed by the spindle (18000 RPM).
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As (13) accounts for integer rigid body motion components, ∆i,k is very

small unless a significant difference (a metallic chip, a grain of powder, a drop

of lubricant fluid, a defect of painted layer) is present. Thus, we disabled all

pixels k whenever ∆i,k ≥ c, where we assumed c = 25% during our analyses.
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Figure 9: Experimental results; the dashed lines are estimated using the full
algorithm with no modification, while the continuous lines with dots results
from using Tikhonov regularization (λ = 10−3]).

Figure 9 shows results of the experimental analysis for both the flat and the

curved supports: the dashed lines correspond to the use of the plain vanilla full

algorithm (i.e. using (8) with LU solver) and show significant oscillations14.

Using Tikhonov regularization smooths results; with the assumed λ = 1 · 10−3,

only a small, long period, residual oscillation remains, whereas smaller λ values

are unable to stabilize the algorithm. Note that all the analyses were performed

using the incremental formulation.

The thicker green line in Figure 9 corresponds to the difference of the bent

and the flat specimens, i.e. we assumed that residual stress far from the ends of

14Results of the fast algorithm (i.e. eq. 10) are not shown, but are practically the same.
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the extruded plate is substantially the same; finally the purple line corresponds

to the line interpolating the difference data, which substantially corresponds to

the expected results.

6 Discussion

This work discusses the implementation of the integral approach for residual

stress measurement in the iDIC framework. Two main alternative algorithms

are presented, the former based on a global minimization both in space and

in time, the latter consisting in a cascade of minimizations, each identifying

the parameters of the last drilling increment only, under the assumption that

previously estimated stress values are correct.

The two algorithms give substantially the same results but the fast algorithm

accesses image data and calibration coefficients sequentially, thus requiring sig-

nificantly less memory. However its sequential approach makes it impossible to

significantly improve it; in particular both SVD and Tikhonov regularization

cannot be used.

Regarding the stabilization options discussed in section 3, the SVD algorithm

is effective when the fitting model contains terms unrelated to the real behavior

but gives no advantage otherwise: thus, its use as a replacement of the LU solver

in the “standard” formulation is mostly useless; moreover, replacing the normal

equation approach with SVD results in a CPU and memory intensive algorithm

with no improvement, as shown by numerical tests.

The oscillating behavior of results can be somewhat mitigated by using an

incremental formulation, i.e. using the previous image instead of the first one

as reference; as shown by Schajer and Rickert [33], the resulting solution matrix

has a better condition number. However, incremental displacements are quite

small, thus introducing some noise due to the relatively lower accuracy of DIC
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when compared to interferometric approaches.

In conclusion, Tikhonov regularization appears to be mandatory to obtain

smooth results in real applications. It can be used either alone or in combination

with all other algorithm variants (both SVD and the incremental approach) even

though it is so effective that no extra “trick” is usually required. The Morozov

criterion can be used to select the λ parameter; alternatively, the solution time

is so small that a simple trial and error search can also be easily performed.
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a combined method of moiré interferometry and incremental hole drilling,

part i: theory. Journal of applied Mechanics, 65(4):837–843, 1998.

[7] R. C. Schwarz, L. M. Kutt, and J. M. Papazian. Measurement of residual
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[15] Julien Réthoré, Stéphane Roux, and François Hild. An extended and

integrated digital image correlation technique applied to the analysis of

fractured samples: The equilibrium gap method as a mechanical fil-

ter. European Journal of Computational Mechanics/Revue Européenne de
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A Notes on Numerical Implementation

The described algorithms require iterating the solution procedure, thus, an ef-

ficient implementation should cache the calibration coefficients. However, this

has to be done with care: Pu, Qu, . . . , T v depend on θ and on the A, B, . . . ,

G coefficients. These in turn depend on material properties and on the (nor-

malized) radius. Thus, it is possible either to cache the A, . . . , G coefficients

(the intermediate values) or the final set (Pu, . . . , T v). The former solution

corresponds to a minimal level of caching because the A, . . . , G coefficients

depend on material and normalized radius only, thus, they can be easily stored

either as a one-dimensional function of the radius (an interpolating function) or
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as a (small) list of values sampled at increasing radii. Using this solution, the

Pui,j , . . . , T vi,j coefficients have to be (re)computed every time they are required,

with a large computational overhead because each pixel k of the image has a

different polar coordinate with respect to the center of the hole15.

Instead, if the computed Pui,j , . . . , T vi,j , are stored in matrices, the above

described procedure has to be performed only once, with obvious improvements

in terms of CPU usage. However, this approach (full caching) requires a sig-

nificant memory storage: indeed, assuming to perform m drill increments, the

number of matrices is

6 (1 + 2 + 3 + · · ·+m) = 6
m(m+ 1)

2
= 3m(m+ 1)

where the six appearing in front of the summation accounts for the six terms

(Pu, Qu, . . . , T v) involved in (3).

To give some numbers, let assume that a 1 Mpixel camera is used to image

15 drilling increments; using these parameters, each of the Pu, . . . , T v matrices

requires 4 MiB (we are assuming that 32 bit floating point numbers are used to

store real values). Thus, to store all calibration coefficients in memory, you need

3 × 15 × (15 + 1) × 4 = 2880 MiB of storage16. Our empirical tests show that

full caching is not required because solving the problems shown in the article

requires a few seconds using an i7@3.4GHz processor and a minimal level of

caching.

15Looking at (4) it is apparent that the computation of each set of coefficients related
to given i and j values requires at least 6 · n function evaluations and 4 · n trigonometric
computations. However, as θ depends on pixel coordinates only, both sin(θ), cos(θ), sin(2θ)
and cos(2θ) can be pre-computed and stored in four matrices.

16This estimation moves to 7800 MiB using 25 drill increments and to 15 120 MiB for 35.
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