
Task Allocation in Clusters of Cognitive Nodes: a
Remuneration-aided Approach

Talha Faizur Rahman, Virginia Pilloni, Luigi Atzori
Department of Electrical and Electronic Engineering - University of Cagliari - Italy

National Telecommunication Inter University Consortium - Research Unit of Cagliari - Italy
Email: {talha.rahman, virginia.pilloni, l.atzori}@diee.unica.it

Abstract—In this work, we propose a remuneration-aided
Game theoretical solution for task allocation in cognitive radio
(CR) enabled Internet of things (IoT) scenarios, where cognitive
nodes (CNs) in close proximity and with similar sensing capa-
bilities are clustered around a cluster head (CH). We consider
a framework in which task allocation in the system is driven
by CNs with spectrum sensing capabilities. In the proposed
approach, the CH assigns a remuneration to CNs for their
contribution in spectrum sensing prior to initiating the task
allocation procedure. Such remunerations can be used by CNs
in proposing the bids to win the task in the Game. Hence a
non-cooperative Game approach modelled as an auction process
is proposed. We show that the proposed framework is able to
exploit cognitive behaviour efficiently in conditions suitable for
cognitive radios (low spectrum occupancy), and under the same
conditions the overall system utility increases by 29% w.r.t the
case when licensed users (LUs) occupy the band 70% of the time.
Additionally, the framework allows the system to reap benefits
of energy efficiency while experimenting cognitivity.

Index Terms—IoT, Game theory, Cognitive Radio

I. INTRODUCTION

The Internet of things (IoT) consists of objects that are
characterised by limited resources such as sensors, personal
electronics and smart vehicles. Hence, the performance of IoT
objects is severely affected by the utilisation of resources.
Inefficient resource management can cause undue depletion of
available resources. This puts emphasis on a feasible solution
of task allocation to available objects in IoT scenarios, so that
resources can be shared in a collaborative manner to achieve
a common objective, i.e., executing an IoT application [1].

In this regard, objects of similar capabilities can collaborate
by forming clusters to provide services or improve data
accuracy. Each cluster has a cluster head (CH) that acts as
a gateway between the remote entities (e.g e-NodeB, eNB)
and the local objects. When objects are located in vicinity
of each other, they can establish device-to-device (D2D)
communications to provide Proximity Services (ProSe), which
can be managed by CH and require no intervention from eNB.

It is of great concern for spectrum regulatory authorities
that IoT traffic is rapidly increasing, therefore it is necessary
to regulate technologies like cognitive radio (CR), in order
to ensure timely service delivery without leaving any radio
footprints. It is estimated that, by 2020, more than 21 billion
IoT objects will be in public-use, thus, demanding access
to spectrum through existing network infrastructure [2]. CR
is expected to reduce the spectrum congestion issues with

licensed users (LUs) significantly by exploiting the spectrum
white spaces in licensed spectrum.

In this work we consider a scenario where CR-enabled
objects opportunistically take part in clusters and coordinate
with other objects within the cluster for the provisioning
of services to applications running on top of IoT. The CR
technology helps the objects to locate spectrum white spaces in
order to establish D2D links with the CH. The paper provides
the following contributions:

• We propose a remuneration-aided Game theoretical
framework to find the suitable executor of tasks;

• We show that the remuneration factor computed by CH
for every CN can be used to win tasks by computing bid
values as a result of Nash Equilibrium;

• We evaluate the performance of our proposed system in
terms of energy consumption.

The paper is structured as follows: Section II discusses the
related work. In section III we define the considered scenario.
Section IV provides details about system modelling and pro-
posed strategy, whereas section V presents the remunerations
and Nash Equilibrium derivation. Section VI provides details
about simulation setup and results. Finally, paper conclusion
is drawn in section VII.

II. RELATED WORK

Allocating the task to a suitable executor among several
available executors is a critical issue that has been addressed
extensively in Wireless Sensor Networks (WSN). The author
in [3] studied resource allocation in WSN in order to prolong
battery lifetime. A centralised algorithm for task allocation is
proposed in [4], where a single/central node maintains a report
on the devices’ status in the network with the aim to reduce
overall energy consumption in heterogeneous WSN.

On the other hand, IoT is based on WSN but the IoT
scenario is different from most of WSN scenarios. This is
mainly due to the fact that in IoT the requester/owner has
complete control over objects, for instance the requester/owner
can switch off/on the objects (e.g. mobile phones, iPads)
depending on their personal needs. Also objects can be mobile,
which causes frequent network variations and unreliable con-
nections. For this reason, objects should be intelligent enough
to adapt to changes in network composition. In this regard,
[5] studies resource allocation for IoT applications where the
aim is to find and allocate the resources to optimise service



execution among objects. Nevertheless, there are only handful
of works in literature that address the problem of finding the
optimal resource allocation independently of the application
assigned to the network. For instance, Pilloni et al. in [6]
propose an IoT Prose framework for IoT applications in D2D
scenarios. A Game theoretical solution is derived around the
utility function that allows individual objects to maximise their
utility. The authors in [6] considered energy cost for repeated
tasks where devices perform tasks repeatedly while waiting
for the next task assignment from CH.

More recently, the CR technique has been considered for the
realisation of IoT services. In this regard, [7] comprehensively
studied the concept of CR technology in the perspective
of Machine to Machine (M2M) IoT. Moreover, the authors
conclude that cognitive M2M operations require an energy-
efficient, reliable, and internet-enabled protocol stack with
enabled intelligence from the physical layer to the transport
layer. In [2] the authors emphasised the fact that IoT objects
can be able to exploit spectrum resources effectively in a
spectrum constrained world. Without cognitivity the IoT traffic
will increase the load on the existing network infrastructure.

III. CONSIDERED SCENARIO

In this section, we first describe the considered scenario of
opportunistic task allocation in the IoT. We then provide an
overview of the adopted spectrum sensing technologies.

A. Opportunistic Task Allocation

The scenario considered in this paper is that of IoT objects
that collaborate opportunistically in the execution of sensing
tasks, to perform applications that rely on measured data,
independently from the IoT platform they belong to [8]. Such
an opportunistic behaviour among the objects allows their
sensors to perform tasks for someone else (the application used
by someone else) and report sensor data to remote databases on
a best-effort basis, whenever conditions are suitable. In such a
way, sensors functionalities can be hired by any application if
it is keen on collaborating with other IoT infrastructures; with
this approach there will be a direct welfare benefit for the
overall community. Accordingly, the different IoT platforms,
which may have a direct control of a varying number of
physical and virtual objects, may share the knowledge about
the physical world and allow the objects to share services with
other groups of external collaborative objects.

Within this setting, we consider a scenario where CNs
(either fixed or mobile) are sensor objects located in a ge-
ographical region; one of them is selected to act as CH
because of extra functionalities (i.e. internet connectivity and
computational resources) it possesses, as shown in Fig.1.

B. Usage of Spectrum Sensing

In the proposed system, cognitive radio is employed for the
exploitation of the spectrum white spaces in licensed band
for intra-cluster communication. Indeed, D2D operates in two
modes defined by the standard: the D2D-direct, where devices
communicate internally, and the eNB-assisted D2D, where
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Fig. 1. Considered scenario of opportunistic CN collaboration, where the CH
is the only object connected to external entities and coordinates the assignment
of tasks to all the CNs

devices communicate externally with the help of the eNB [9].
In our scenario, we assume that intra-cluster communication
(objects-CH) is D2D-direct, whereas inter-cluster communica-
tion (CH-CH) is eNB-assisted D2D. If LU activity is detected
in the band, the CN delays the scheduling process or looks
for other opportunities in other bands.

In this work, we consider the spectrum sensing based on
energy detection because of its low complexity and simple
implementation as it requires no prior information about LU
signals [10]. In the following we provide mathematical formu-
lation of the local probabilities of detection and false alarm as
needed for the successful collaborative task allocation.

Every i-th CN is able to receive signal yi(n) as

yi(n) = si(n) + wi(n), n = 1, 2, · · · , N (1)

where si(n) is the LU signal at the i-th CN with variance
σ2
s,i, wi(n) is the additive white Gaussian noise (AWGN) with

zero-mean and σ2
n,i variance, and N is the time-bandwidth

component. We assume that all CNs in a cluster collect N
samples in order to perform spectrum sensing. Therefore, the
sensing signal-to-noise ratio (SNR) γi at i-th CN, in AWGN-
only environment, is γi = σ2

s,i/σ
2
n,i. The energy detector

calculates the metric ξi, a soft information, by accumulating
N samples,

ξi =
∑N

n=1 |yi(n)|
2 (2)

The CNs then communicate this soft information to CH that
evaluates the performance of each of the CNs by computing
the local probabilities of detection (Pd) and false alarm (Pfa)
in the operating channel environment (AWGN or fading chan-
nel) [10]. The Pd is about making a correct assumption about
occupied spectrum band. For the improvement of the overall
system, the aim of every CN is to detect the band activity
with increased Pd while minimizing Pfa that is considered
as liability in spectrum sensing topics. After estimating the
noise variance σn,i under AWGN channel conditions, the CH
calculates the probabilities for the i-th CN as [11]

P i
d = (ξi ≥ ζi|Λ1) = Q

(
ζi −Nσ2

n,i (γi + 1)
√
Nσ2

n,i (γi + 1)

)
, (3)



and

P i
fa = (ξi ≥ ζi|Λ0) = Q

(
ζi −Nσ2

n,i√
Nσ2

n,i

)
(4)

where Λ1 and Λ0 refer respectively to the presence and
absence of a LU in the spectrum band, Q(·) is the Q-function
[11] and ζi is the threshold set by the spectrum sensing. We
can clearly see in (3) and (4) that the performance of energy
detector on correct detection of LU is highly influenced by
sensing SNR γi. Because CNs are dispersed over geographical
locations, it is highly likely that each CN is experiencing
different sensing SNR values. With this assumption, the CH is
able to differentiate individual performance, and remunerations
are distributed.

One can deduce that at high γi the CN increases the chance
of detecting the LU activity with high P i

d while keeping the
threshold ζi fixed. The threshold ζi can be computed by fixing
the Pfa in (4) as

ζi = Nσ2
n,i

Q−1
(
P i
fa

)
√
N

+ 1

 (5)

The CH decides about the band, after collecting all the
information from CNs, with the help of AND/OR/Majority
rule, and computes global probability of detection PD and
false alarm rate PF .

IV. REMUNERATION-AIDED TASK ALLOCATION

In the considered scenario Nc is the number of CNs that
operate under a CH connected to the application server via
Internet, as illustrated in Fig 1. As can be seen in Fig 1, the CH
has multiple roles: firstly, it is an interface between the CNs
and the application server; and secondly, as a head of cluster
for distribution of the tasks among the CNs and providing
rewards against every service provided by the CNs. The
CNs perform spectrum sensing operations, and report them to
the CH via low-rate lossless dedicated control channels. We
consider that the CH takes the final decision about the band
with the help of AND-rule. After successfully detecting the
white space in spectrum, the CH initiates the task allocation
among the CNs taking into account their initial battery life of
Eβ before the k-th task. We consider a D2D communication
between CNs and the CH as there is no central entity respon-
sible for scheduling the radio resources. After successful task
execution, the CNs go back to idle mode where we assume
that energy consumption is negligible.

A. Proposed Strategy

Based on the system model described above, we assume
that an update-request, coming from an application server, is
to be considered as a separate task that a CN would have to
compete for to have it assigned.

The two main operations involved in the proposed frame-
work are spectrum sensing and task allocation. Moreover, the
CNs can increase their utility function by getting a:

• Remuneration factor ςk, as a result of sensing the spec-
trum with high certainty before competing for task k,

• Reward bk, as a result of performing task k, which is
assigned to a CN in the cluster.

Because spectrum sensing is performed before every k-th task
allocation, the remunerations obtained as a result of spectrum
sensing plays an important role in setting up the bid values
for every CN. For that reason, we call the proposed strategy a
remunerations-aided strategy. The remuneration is a function
of the performance of spectrum sensing. During spectrum
sensing, after collecting the reports (information) from the
CNs, the CH decides (free or occupied) about the spectrum
through information fusion using AND-rule.

A bidding process among the CNs is followed to identify
the winner of assignment of the task advertised by the CH.
A rational bid value bk by each of the CNs to win the k-th
task are computed considering the amount of energy each CN
would need to perform the task and the remuneration ςk earned
in the spectrum sensing. The CN with the lowest bid value
wins the competition, and gets the reward after performing
the task. According to the reward and energy consumed, the
winner CN calculates its utility value. We formulate the CN’s
utility function based on the aforementioned considerations

H(bk,i) = Ψ(bk,i)

(
ςk,ibk,i − α

1

χk,i

)
(6)

where Ψ(bk,i) is the probability that CN i wins the competition
for task k by proposing bid bk,i, ςk,i is the remuneration factor
for CN i as a result of sensing the spectrum prior to task k, α
is the weighing factor associated with the residual energy cost
and 1/χk,i is the cost associated with the residual energy level
if CN i wins to perform task k. More explicitly, the cost 1/χk,i

is minimum for the CN with maximum residual energy after
executing task k. From (6) it can be learnt that, on average,
CN i is able to win task k if it proposes bid value bk,i having
obtained spectrum sensing remuneration ςk,i, provided that the
residual energy is χk,i.

The reliability of the CNs can be judged based on the their
performance in spectrum sensing, which eventually decides
the overall reward for the winning CN. For this reason, the
final reward, ςk,i · bk,i, to be given to CN i is considered in
(6). The process of computing the remuneration factor for the
CNs in spectrum sensing depends on how efficient the CNs
are at sensing the spectrum (increasing the reliability) [12].

The residual energy level χk,i is given as,

χk,i = Ei
β − (1− Pe)E

i
tx (7)

where Ei
tx is the energy required by the i-th CN to deliver

the service to the CH. The formulation of Ei
tx is inspired

by a water-filling approach studied in [13] where the energy
dissipated in circuitry Ec, and the energy required to cancel out
the fading attenuation are considered as Ei

tx = Ec +Enf/hi,
where hi is the exponentially distributed channel gain between
CN i and the CH, and Enf is the energy required by the CN
to transmit a single packet under no-fading condition. Pe is
the probability of detecting the spectrum erroneously in (7).
Pe can be computed as [14]

Pe = P0PF + P1(1− PD) (8)



where PF and PD are the global probability of false alarm
and detection respectively, computed by the CH after fusing
the spectrum sensing information shared by the CNs. The CH
then authorizes the winning CN by allowing it to carry out
task execution utilizing the detected spectrum white space with
probabilities PF and PD. The timeline of the process is shown
in Fig. 2. P0 is the probability that a LU is not present in
the spectrum band otherwise P1 = 1 − P0. The second term
in (7) explains the fact that if CNs are unable to detect the
spectrum correctly (i.e., Pe = 1), the CH would raise the red
flag by communicating the Pe with CNs, thus denying CN
from transmitting. In the upcoming section, we derive the Nash
Equilibrium Point (NEP) using (6) for our proposed scenario.

V. COGNITIVE NODE (CN) REMUNERATION AND THE
NASH EQUILIBRIUM POINT

In this section, we describe the methodology for computing
the remuneration factor for spectrum sensing activity. We,
then, derive the Nash Equilibrium Point in the non-cooperative
game in the context of proposed scenario.

CH CNs

Initialisation of Spectrum Sensing (SS)

Control Signal

SS Results

Remunerations
calculated based 

on SS results
Remuneration 
given to CNs

Initialisation of Bidding Process

Control Signal

CNs generate
Bids to win the 

task
Bids reported to CH

Selecting the 
CN with lowest 

Bid value
Authentication and Authorisation for Winner CN

Service Delivered by
Winner CN

Winner CN 
rewarded

Winner CN

Fig. 2. The timeline of messages exchanged between CH and CNs for the
considered scenario

A. Cognitive Node (CN) Remuneration

At first, the CH signals the CNs over control signalling
channel in the cluster to perform spectrum sensing in the
spectrum band chosen by CH prior to bidding for task. CNs
start the spectrum sensing operation using energy detection
and send the soft information ξ about the band to CH after
every spectrum sensing operation. CH computes the P i

d for
every reporting CN, and combines the information coming
from CNs with the help of adopted AND-rule fusion. Once
CH takes the decision about spectrum band, it then calculates
the global PD and PF , and gives the remunerations to CNs
together with PD and PF , as shown in Fig. 2. Similar to [12],

we define a metric based on reduction of uncertainty about
LU by sensing the spectrum band. The information about the
uncertainty of LU activity in spectrum band can be modelled
with the help of binary entropy function. The remuneration
factor ςi as a function of local Pd of i-th CN can be obtained
as before any task,

ςi = 1−
[
−P i

d log2
(
P i
d

)
−
(
1− P i

d

)
log2

(
1− P i

d

)]
(9)

Using (9) we obtain the plot depicted in Fig. 3 where we
define two regions: when LU is present, and when LU is
not present. Each of these regions can be hypothesized after
CH combines the information from CNs. If the final decision
rules in the favour of presence of LU in the band, the CH
communicates with CNs about the final decision and allows
them to sense other spectrum bands. Furthermore, the CNs
are getting remunerations if they detect the activity with high
Pd > 0.5. On the other hand, CNs get remunerations for
detecting the white spaces with Pd lower than 0.5 provided
that LU is legitimately absent in the band. It is worth noticing
in Fig. 3 that if CNs are observing the spectrum with Pd

= 0.5, the remunerations will be zero. This is because, the
uncertainty caused by the spectrum sensing is high at Pd =
0.5, thus making it almost impossible for CH to decide (free
or occupied) about the spectrum.

After each CN calculates the energy ξ using (2), the CNs
send soft information regarding the band to CH. With the help
of estimated noise, the CH calculates the γi for each of the
CNs followed by the calculations of Pd for every CN with the
help of Fig. 4. The CH takes the final decision by calculating
global PD and PF , and based on that decision remunerations
are given to CNs, as shown in Fig. 3.
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In case of successful detection of spectrum white space, CH
then proceeds with task allocation, in which a Game theory
approach is considered. Since the objective of every CN is to
maximize its own utility function, a Nash equilibrium point
(NEP) exists that we derived for every CN in the system
considering remuneration factor obtained in spectrum sensing.

B. The Nash Equilibrium Point
Before initializing the Game, each CN waits for the CH to

initiate the task allocation process. Recall that in this regard,
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every CN in the cluster generates a bid whenever a competition
is initiated by the CH for each task k. Since each CN behaves
as any other, we assume that the bids are all distributed
according to pdf f(·) and cdf F (·). Hence the probability for
CN i to win the Game for task k is given by:

Ψ(bk,i) = (1− F (bk,i))
N−1 (10)

To compute its utility function and generate the bid, each CN
needs to know the value of this probability. Accordingly, each
CN estimates f(·) dynamically, by computing the average
µ and variance σ from past observations. In this paper we
define the CN utility function for non-repeated task execution
in a cognitive IoT scenario. More precisely, the considered
approach is applicable to the energy-saving scenario where a
winner CN goes back to idle mode (low power mode) to save
energy after delivering the update to the application server. To
win the Game, each CN i tries to propose the lowest bid bk,i

bk,i = min {bk,1, bk,2, · · · , bk,N} (11)

The aim of proposed strategy is to find a rational bid value
for each CN so that the overall system utility is maximized.
Such a Game can be regarded as non-cooperative, where every
CN is interested to maximize its own utility function, and can
be modelled using a Nash Game [15]. The formulation of
Ψ(bk,i) in (6) can be characterized as

Ψ(bk,i) = P (bk,j > bk,i),∀j ̸= i (12)

Because every CN is calculating bids independently and in a
non-cooperative fashion, Ψ(bk,i) can be written as

Ψ(bk,i) = P (bk,1 > bk,i)× · · · × P (bk,N > bk,i) (13)

Moreover,

Ψ(bk,i) = (1−P (bk,1 ≤ bk,i))× · · ·× (1−P (bk,N ≤ bk,i)) (14)

It is evident now that (14) is equivalent to (10). Substituting
(10) in (6) and we have

H(bk,i) = [(1− F (bk,i))
N−1]

[
ςk,ibk,i − α

1

χk,i

]
(15)

TABLE I
SIMULATION PARAMETERS

Parameter Value Parameter Value
Nc 10 # of scenarios 1000
Tasks 100 Pfa 0.01
P1 0.3 & 0.7 Fusion Rule AND-rule
α 5 λ 0.5
Enf , Joules 1 γ, dB [-30, 0]
Eβ , Joules [95, 100] Ec, Joules 5
Channel Gain,
h

exponentially
distributed r.v.

After some mathematical manipulation, (15) can be solved
and final result can be given as

(1−N)
∂
(
1− e−λbk,i

)
∂bk,i

(
ςk,ibk,i − α

1

χk,i

)
+(

1−
(
1− e−λbk,i

))
= 0 (16)

To further simplify (16) we get

(1−N)
(
λe−λbk,i

)(
ςk,ibk,i − α

1

χk,i

)
+ e−λbk,i = 0 (17)

Solving (17) we find the rational bid values for every CN in
such a way that NEP can be obtained in the game where no
CN can unilaterally deviate to maximize its own incentive.

VI. SIMULATION RESULTS

Extensive simulations have been performed in MATLAB.
Table I lists all the parameters that are considered in the
simulations. The energy parameters Ec and Enf are nor-
malized w.r.t Eβ [13]. We also consider that CH calculates
PD and PF using pre-defined fusion rule after collecting
all the information from CNs. Because some parameters are
initialized randomly, we averaged 1000 scenarios in order to
clear the randomness out of the system.

Since the system relies on cognitive radio, which helps
CNs to exploit licensed spectrum without causing harmful
interference to LU, we evaluate the performance in terms of
spectrum occupancy. We can see in Fig. 5 that when spectrum
band is free most of the time (P1 = 0.3), a stiff contest in Game
can be seen among the CNs by proposing low bid values (low
price) to win the task. Such a stiff contest increases the overall
system utility, justifiably shown in Fig. 6 where the system
utility is superior for spectrum band that is less occupied by
the LU. Moreover, energy cost is high when the spectrum
is highly occupied, i.e. P1 = 0.7, and hence, CNs seek high
rewards for the task with time as seen in Fig. 5 where bid
value reaches the maximum bid value of 2 for all the CNs
before the 100th task.

We can notice from Fig. 7 that with more spectrum occu-
pancy P1 = 0.7 the network dies out quickly. This is mainly
because when spectrum is occupied often by LU, the CN
have to sense the spectrum frequently before proceeding to
task allocation process. Until CNs have not finished the task,
they would not go back to idle mode. As network dies out
completely, system utility fails to increase any more from that
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point, as can be seen in Fig. 6 for P1 = 0.7. Hence the system
is able to perform better when the probability of LU occupying
the spectrum is low because spectrum band is easily available
for transmission and false decision probability is low as in (8).
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VII. CONCLUSION

In this paper, we propose a framework for task allocation
in cognitive IoT scenarios. We consider spectrum sensing to

be performed prior to task allocation, for which remuneration
factors are computed for every CN contributing in spectrum
sensing. Cooperative spectrum sensing is implemented for
such a scenario, whereas a non-cooperative Game is conceived
for task allocation. We show that Nash equilibrium exists
and CNs are able to optimize their system utility. Moreover,
the propose framework is able to exploit cognitive behaviour
under conditions that are conducive for cognitive radios (low
spectrum occupancy). We observe a stiff contest between CNs
for any given task-request from application server when LU
is occupying the spectrum 30% of the time. This allows
the increase in system utility by winning the rewards for
execution of task, and makes the system more energy efficient
as compared to the case when spectrum is 70% of the time
occupied by LU.
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