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Background: Most cardiovascular (CV)/stroke risk calculators using the integration of carotid ultrasound 
image-based phenotypes (CUSIP) with conventional risk factors (CRF) have shown improved risk 
stratification compared with either method. However such approaches have not yet leveraged the potential 
of machine learning (ML). Most intelligent ML strategies use follow-ups for the endpoints but are costly 
and time-intensive. We introduce an integrated ML system using stenosis as an endpoint for training and 
determine whether such a system can lead to superior performance compared with the conventional ML 
system.
Methods: The ML-based algorithm consists of an offline and online system. The offline system extracts 
47 features which comprised of 13 CRF and 34 CUSIP. Principal component analysis (PCA) was used to 
select the most significant features. These offline features were then trained using the event-equivalent gold 
standard (consisting of percentage stenosis) using a random forest (RF) classifier framework to generate 
training coefficients. The online system then transforms the PCA-based test features using offline trained 
coefficients to predict the risk labels on test subjects. The above ML system determines the area under the 
curve (AUC) using a 10-fold cross-validation paradigm. The above system so-called “AtheroRisk-Integrated” 
was compared against “AtheroRisk-Conventional”, where only 13 CRF were considered in a feature set.
Results: Left and right common carotid arteries of 202 Japanese patients (Toho University, Japan) were 
retrospectively examined to obtain 395 ultrasound scans. AtheroRisk-Integrated system [AUC =0.80, 
P<0.0001, 95% confidence interval (CI): 0.77 to 0.84] showed an improvement of ~18% against AtheroRisk-
Conventional ML (AUC =0.68, P<0.0001, 95% CI: 0.64 to 0.72).
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Introduction

Annually, about 17.7 million people are affected by 
cardiovascular (CV) diseases including heart attack and 
stroke events (1). Atherosclerosis is the major contributor 
to such CV/stroke events (2). One way of predicting the 
occurrence of these events is by performing risk assessment 
using conventional risk factors (CRF) that are responsible 
for the growth of atherosclerosis (3). However, CRF alone 
does not explain the elevated risk of CV/stroke events (4).  
This is because of the morphological variations in the 
atherosclerotic plaque that cannot be captured using CRF 
alone but which can easily be assessed using imaging 
modalities (5,6). Thus, there is a need to look beyond the 
scope of CRF and search for preventive healthcare solutions 
that can provide an accurate routine risk assessment at an 
affordable cost.

Imaging plays a vital role in developing a comprehensive 
preventive strategy to combat stroke and heart disease. 
Ultrasound and in particular carotid ultrasound (CUS) 
screening can easily be adapted in routine clinical practice 
compared to its other non-invasive counterparts such as 
computed tomography and magnetic resonance imaging 
(4,5). Even in the low-resolution images, CUS can capture 
the image-based phenotypes that reflect morphological 
variations in atherosclerotic plaque (4). Furthermore, the 
carotid ultrasound image-based phenotypes (CUSIP) such 
as carotid intima-media thickness (cIMT), carotid plaque 
(CP), and carotid artery stenosis are considered the most 
significant biomarkers of CV/stroke events (7-10). Thus, 
integrating these CUSIP with CRF can convey a larger 
power of risk assessment (11-13). Such risk assessment 
systems are affordable but do not incorporate the full 
capabilities of deep learning algorithms which are now 
emerging as powerful and novel tools in healthcare. 

Advancements in artificial intelligence (AI) are gaining 
popularity due to its ability to provide more accurate risk 
assessment in routine clinical practice (4). Specifically, 

machine learning (ML) algorithms have shown promising 
results in atherosclerotic plaque characterization and CV/
stroke risk stratification (4). Use of ML algorithms for 
accurate risk prediction requires the primary endpoints 
(CV events or cerebrovascular events) obtained from 
longitudinal trials which are expensive and require a large 
sample size (3,14,15). Furthermore, such kinds of trials are 
not feasible for all routine CV/stroke risk assessment. Thus, 
there is a need to find a low-cost alternative to the primary 
endpoints without compromising the accuracy of risk 
prediction (3,14,15). 

Percentage stenosis is a clinically well-established 
biomarker which if left untreated may lead to CV/stroke 
events (10,16). Furthermore, percentage stenosis detected 
using CUS can assist physicians in making a judgment about 
stroke management practices such as endarterectomy or 
stenting (16-18). Thus, in this study, carotid artery stenosis 
was used as an event-equivalence gold standard (EEGS). 
The proposed low-cost EEGS can be used as an alternative 
to the primary endpoints for retrospective studies. The 
rationale for using stenosis as EEGS is discussed in the next 
section.

The objective and novelty of this retrospective study is 
to provide an accurate and low-cost ML-based system with 
stenosis as EEGS that can be employed for the routine 
CV/stroke risk assessment of patients (Figure 1). Another 
novelty is to investigate the effect of integrated risk factors (a 
combination of CUSIP and CRF) against CRF standalone 
for CV/stroke risk assessment. 

Since the CUSIP have the potential to reflect variations 
in atherosclerotic plaque compared to CRF, we hypothesize 
that the proposed low-cost ML system developed using 
integrated risk factors (so-called “AtheroRisk-Integrated”) 
with EEGS can perform better compared with the ML 
system developed using CRF alone (so-called “AtheroRisk-
Conventional”). The proposed integrated ML-based risk 
stratification system is the first of its kind that evaluates 

Conclusions: ML-based integrated model with the event-equivalent gold standard as percentage stenosis 
is powerful and offers low cost and high performance CV/stroke risk assessment.
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the risk of cardiovascular disease (CVD)/stroke using 
percentage stenosis as an EEGS.

EEGS 

Primary gold standards or endpoints such as CV or 
cerebrovascular events require longitudinal trials which 
are expensive and time-consuming (3,14,15). Thus, it is 
important to look for surrogate markers that can mimic 
the characteristics of the primary endpoints at minimal 
cost (14,15). Such types of surrogate markers of CV/
stroke events are also termed as EEGS. The EEGS needs 
to be evaluated using a small sample size, with lower-
cost, and for short duration (14,15). According to Boissel  
et al. (19), surrogate markers should be (I) reproducible and 
convenient to compare with primary endpoints, (II) they 
must have a clear link with primary endpoints, and (III) 
they should provide clinically relevant benefits. Carotid 
artery stenosis is a well-established atherosclerosis-driven 
CV/stroke biomarker (10,16). It is generally accepted that 
the higher the luminal stenosis, the higher the risk of CV/
stroke events (17,20). The annual risk of stroke increases to 
1–2% in patients with asymptomatic yet significant (>50%) 
carotid artery stenosis (17,20). The risk of stroke events 
is moderate if the stenosis ranges between 30% and 69%, 
and more significant if the stenosis ranges between 70% 
and 99% (18). In clinical practice, knowing the accurate 

percentage of carotid artery stenosis aids physicians to 
decide the management of stroke events either by using 
carotid endarterectomy or by using the appropriate  
medications (18). Thus, carotid stenosis is an important 
surrogate indicator of CV/stroke events and can be 
considered as EEGS. 

Methods 

Study population and image acquisition

A cohort of 202 patients was recruited for this retrospective 
study and an ultrasound examination was conducted 
between July 2009 and December 2010. The patients 
were approved by the institutional review board of Toho 
University, Japan and written consent was obtained from all 
the study participants. Both left and right carotid arteries 
were examined using B-mode ultrasonography scanner 
(Aplio XG, Xario, Aplio XV, Toshiba Inc., Tokyo, Japan) 
and a total of 404 CUS scans (202 patients ×2 CUS scans) 
were obtained. Nine CUS scans were excluded from this 
study due to its non-suitability. Thus, a total of 395 CUS 
scans were used to test the hypothesis of this study. Section 
A of the Figure 1 indicates this source of 395 CUS scans. 
Mean pixel resolution was 0.0529 mm-per-pixel. Two 
operators (with 15 years of experience) analyzed the scans. 
We used the CUS image acquisition protocol presented 
before (11,12,21,22). The analytical approach and study 

Figure 1 The generalized framework for risk stratification of patients using a ML system. EEGS, event-equivalence gold standard; ML, 
machine learning. 
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design for this manuscript are unique with respect to 
previously published reports using this cohort (11,12,21,22).

Data partitioning for ML algorithm 

Section B of the Figure 1 indicates the data partitioning 
used in this study. In general, any data partitioning protocol 
divides the input dataset into two parts: (I) training dataset 
(section C of the Figure 1) and (II) testing dataset (section 
G of the Figure 1). The proposed study uses a 10-fold 
data partitioning (or cross-validation) protocol (23-25), 
where the input image dataset set is divided into ten equal 
independent parts. The 10-fold cross-validation protocol is 
also termed as K10 protocol where 10 indicate the number 
of total partitions designed during ML-based training 
model (typically using 90% of the dataset for training). Out 
of 10 parts, at any time, nine parts were used for training the 
ML-based system while the remaining one part was used 
for validating the predictions of the system. Section B of the 
Figure 1 indicates the data partitioning using K10 protocol. 
All our previous ML-based studies (23-25) reported a better 
performance while using K10 protocol compared to all the 
other data partitioning protocols, we have thus used K10 
protocol in our proposed study.

Feature extraction: image-based phenotypes and CRF

A total of 47 risk factors were used to define the risk profile 
of the patients, of which, 34 were image-based phenotypes 
and 13 CRF, obtained from the combination of patients’ 
demographics, blood biomarkers, along with a unity 
intercept term. Section D of Figure 1 shows the feature 
extraction from both the CRF and CUSIP during the 
training phase of the ML system. Similarly, section H of 
Figure 1 feature extraction from both the CRF and CUSIP 
during the testing phase of the ML system. These features 
were then fed into the feature selection module to optimize 
the ML paradigm. 

CUSIP
The 34 CUSIP were derived using six steps: (I) Initially 
six current image-based phenotypes such as average cIMT 
(cIMTave), maximum cIMT (cIMTmax), minimum cIMT 
(cIMTmin), variability of cIMT (cIMTV), morphological 
CP area (also called as total plaque area or TPA), and 
normalized TPA (nTPA) were measured using an 
AtheroEdge (AtheroPoint, Roseville, USA) (22,26-28). 
(II) In the second step, six integrated 10-year image-based 

phenotypes also called as CUSIP10yr such as cIMTave10yr, 
cIMTmax10yr, cIMTmin10yr, cIMTV10yr, TPA10yr, and 
nTPA10yr were computed using the mathematical formulation 
provided in our previous study (12). The subscript “10 year” 
indicated the 10-year measurement. (III) CUS image-based 
AtheroEdge Composite Risk Scores were then computed 
for both (i) six current and (ii) six 10-year integrated 
phenotypes (13). Thus, in total 14 image-based phenotypes 
were measured which comprised of seven current CUSIP 
(CUSIPcurr) and seven 10-year CUSIP (CUSIP10yr). (IV) 
The fourth step was to compute the 14 squared harmonics 
terms for the corresponding seven CUSIPcurr and seven 
CUSIP10yr. (V) Five risk factors were derived from the age-
adjusted grayscale median (AAGSM) which is a recently 
proposed biomarker that indicates the symptomatic and 
asymptomatic nature of the CP (29). (VI) Finally, a carotid 
plaque score (PS) (30) was also added as an image-based 
feature, thus totaling feature set of 34 risk factors. All the 
listed CUSIP indicated the wall variability and morphology 
of the atherosclerotic plaque. 

CRF
In addition to CUSIP, 13 CRF were also obtained from 
patients’ demographics and blood serum. The CRF 
consisted of age, sex, glycated hemoglobin (HbA1c), fasting 
blood sugar (FBS), low-density lipoprotein cholesterol 
(LDL-C), high-density lipoprotein cholesterol (HDL-C), 
total cholesterol (TC), a ratio of TC and HDL-C*, 
hypertension (HT), smoking, family history (FH), and 
triglyceride (TG). 

Feature selection

A feature selection technique called principal component 
analysis (PCA) was used to select the dominant features 
from (I) a pool of 13 risk factors for the design of 
conventional ML system (AtheroRisk-Conventional) and 
(II) 47 risk factors for the design of integrated ML system 
(AtheroRisk-Integrated). The polling-based strategy of PCA 
(Supplementary file 1) was used to decide the best cutoff 
point for PCA algorithm to maximize the risk stratification 
accuracy (31,32) by finding the best combination of CRF 
and CUSIP. Out of 13 CRF, the PCA-based polling 
strategy selected 9 dominant features (age, LDL-C, FH, 
HbA1c, HT, smoking, TG, FBS, and TC/HDL ratio) 
which were then applied to AtheroRisk-Conventional 
ML system. Similarly, out of 47 integrated features, the 
PCA-based polling strategy selected 18 dominant features 
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(HbA1c, PS, cIMTave, age, LDL-C, FBS, HT, TG, 
TC/HDL ratio, smoking, square harmonic of cIMTave, 
HDL-C, FH, TC, cIMTave10yr, cIMTV10yr, difference 
between average lumen diameter and cIMTmax, and total 
plaque pixels) which were then applied to AtheroRisk-
Integrated ML system.

ML algorithm for risk stratification 

The architecture of the ML system used in the current 
study is presented in Figure 1. The ML system is generally 
divided into two sub-types: (I) offline (training stage) and 
(II) online (testing stage) ML systems, respectively. Offline 
ML system extracts 47 novel features from the training 
CUS images, followed by dominant features selected using 
PCA algorithm (see Figure 1). Using these features and the 
EEGS, offline ML system learns to identify the risk profile 
of patient (i.e., high-risk or low-risk). This process is called 
training the ML system. Once the ML system is trained, 
the training coefficients can be used as input to transform 
the online test features yielding the ML-based risk. Such 
online ML systems can then be employed in routine clinical 

practice without any requirement of EEGS. A 10-fold 
cross-validation protocol was used for data-partitioning and 
offline training of the ML system. Since the focus of this 
study was to develop a cost-effective, efficient ML system, 
a random forest (RF) classifier (Supplementary file 2) was 
incorporated in the ML system for risk stratification of 
patients (33). Two types of ML systems were designed (28) 
based on RF classifier: one with 13 CRF-called AtheroRisk-
Conventional and a second with 47 integrated risk factors-
called AtheroRisk-Integrated. The objective of this study 
is to compare the performance of AtheroRisk-Integrated 
against AtheroRisk-Conventional.

Statistical analysis

SPSS23.0 was used to perform statistical analysis. The 
baseline characteristics (Table 1) are presented as mean ± 
standard deviation (SD) for the continuous variables and 
as a percentage for the categorical variables. Independent 
sample t-test was used for the continuous variables and 
the chi-squared test was for the categorical variables. 
Carotid artery stenosis measured using the North American 

Table 1 Baseline characteristics of the patients divided into low-risk and high-risk classes.

SN Parameters Overall High-risk
#

Low-risk
#

P value

R1 Total, n 202 12 190 –

R2 Male, n (%)
†

156 (77.23) 7 (4.49) 149 (95.51) 0.11

R3 Age (years)
†

68.97±10.96 76.33±9.27 68.50±10.91 0.02

R4 HbA1c (%) 6.28±1.11 6.38±0.84 6.27±1.13 0.73

R5 FBS (mg/dL) 121.21±34.81 137.58±53.15 120.18±33.26 0.09

R6 LDL-C (mg/dL) 100.75±31.48 99.75±36.91 100.81±31.22 0.91

R7 HDL-C (mg/dL) 50.49±14.97 45.92±18.09 50.77±14.76 0.28

R8 TC (mg/dL) 174.33±36.73 171.00±38.07 174.54±36.73 0.75

R9 TC/HDL 3.65±1.01 4.08±1.36 3.62±0.98 0.13

R10 HT, n (%)
†

147 (72.77) 8 (5.44) 139 (94.56) 0.63

R11 SBP (mmHg)
†

134.55±8.92 133.33±9.85 134.63±8.89 0.63

R12 DBP (mmHg)
†

87.28±4.46 86.67±4.92 87.32±4.44 0.63

R13 Smoking, n (%) 81 (40.10) 4 (4.94) 77 (95.06) 0.62

R14 FH, n (%)
†

24 (11.88) 0 (0.00) 24 (100.00) 0.19

R15 PS 9.09 (5.31) 14.75±6.47 8.74±5.04 <0.0001
†
, significant confounding factors; 

#
, stenosis

 
was used for risk stratification. SN, Serial number; HbA1c, glycated hemoglobin; LDL-C, 

low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol; TC, total cholesterol; SBP, systolic blood pressure; DBP, 
diastolic blood pressure; FH, family history; PS, plaque score.
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Symptomatic Carotid Endarterectomy Trial (NASCET) 
criteria (18) was used as EEGS for the training of the ML 
system, given the selected features using polling-based 
PCA. The validity of the recruited sample size was tested 
using power analysis. The resultant sample size with a 95% 
confidence interval (CI) and a 5% margin of error was 384 
samples. Thus, the recruited sample size (395 scans) in our 
study was about 3% higher compared with the required 
sample size of 384. 

Results 

Baseline characteristics 

Table 1 indicates the baseline characteristics of the Japanese 
cohort. The cohort of 202 patients (156 were males and 
46 were females) was analyzed in this study. Similarly, 147 
patients suffered from HT, and 49 patients were diabetic. 
The criterion for HT was systolic blood pressure (SBP) 
≥130 mg/dL and diastolic blood pressure (DBP) ≥80 mg/dL 
or treatment with antihypertensive medications (34). The 
criterion for diabetes was HbA1c ≥6.5% or the treatment 
with hypoglycemic agents. The average age of the patients 
was 68.97±10.96 years (ranging between 29 and 88 years), 
HbA1c was 6.28%±1.11% (ranging between 4.80% and 
13%), FBS was 121.21±34.81 mg/dL (ranging between 
64 and 255 mg/dL), LDL-C was 100.75±31.48 mg/dL 
(ranging between 24 and 193 mg/dL), HDL-C was 50.49± 
14.97 mg/dL (ranging between 18 and 115 mg/dL), and 

TC was 174.33±36.73 mg/dL (ranging between 61 and  
255 mg/dL). PS was the strong significant risk factor. In 
order to risk stratify the patients into low-risk or high-
risk class, stenosis was used as an EEGS with a threshold 
value of 40%. The justification for the 40% threshold is 
presented in the “discussion” section. 

Effect of integrated risk factors on the performance of ML 
system

The performance of AtheroRisk-Integrated was evaluated 
against the AtheroRisk-Conventional using the area under 
the curve (AUC). Since AUC reflects the trade-off between 
sensitivity and specificity values, it was used as a primary 
performance evaluation metric. Comparative results between 
AtheroRisk-Integrated and AtheroRisk-Conventional ML 
systems using sensitivity, specificity, and risk stratification 
accuracy are presented in the Supplementary file 3 of this 
manuscript. The AUC value for AtheroRisk-Integrated 
(AUC =0.80, P<0.0001, 95% CI: 0.77 to 0.84) was ~18% 
higher compared with the AUC value for AtheroRisk-
Conventional system (AUC =0.68, P<0.0001, 95% CI: 0.64 
to 0.72). The results clearly validated our hypothesis that 
the integrated risk factors were more effective in CV/stroke 
risk stratification compared to CRF alone. Figure 2 indicates 
the receiver operating characteristic (ROC) plot for the 
two ML systems: AtheroRisk-Conventional (red color) and 
AtheroRisk-Integrated system (blue color). 

Visual depiction of patient’s carotid scans using 
AtheroRisk-Integrated

Using an integrated feature-based AtheroRisk-Integrated 
ML system, all the patients were risk stratified into two risk 
classes which were determined using a stenosis threshold 
value of 40%. Figure 3 indicates the outcome of the risk 
stratification process for two types of CUS scans using 
AtheroRisk-Integrated ML system. It should be noted 
that the baseline stenosis values for Figure 3A,B (input and 
output) and Figure 3C,D (input and output) were 10.50% 
and 69.87%, respectively. This indicated baseline low-
risk and high-risk nature for Figure 3A,B and Figure 3C,D, 
respectively is correctly captured by the ML-based system 
with integrated features (AtheroRisk-Integrated). 

Discussion 

In this  study,  we demonstrated a CV/stroke r isk 

Figure 2 ROCs for AtheroRisk-Integrated ML system benchmarked 
against AtheroRisk-Conventional. ROC, receiver operating 
characteristic; ML, machine learning; AUC, area under the curve.
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stratification approach that introduced the concept of a low-
cost system that incorporated carotid stenosis as EEGS 
in an ultrasound framework. It should be noted that the 
ML systems proposed in this study investigates the risk 
of CVD/stroke using a surrogate biomarker or EEGS. 
Second, the proposed study further showed the concept of 
the effect of integration of 13 CRF with 34 CUSIP features 
thereby performing a comparison between CRF alone and 
an integrated approach also taking into account plaque 
features. The third concept was to adapt a polling-based 
PCA model for the best combination of feature selection 
while performing the RF-based classification paradigm for 
risk prediction and stratification. Thus, the overall system 
can be characterized with three major contributions: (I) 
introduction of EEGS in a low-cost ML system design; 
(II) integration of CRF with image phenotypes and (III) 
incorporation of ML intelligence embedded with an efficient 
paradigm for feature selection using a PCA-based polling 
strategy. Using the above novel combination, AtheroRisk-
Integrated showed an improvement in AUC by 18% over 
AtheroRisk-Conventional for the Japanese diabetic cohort. 
The system was generalized with stable performance using 
cross-validation protocol, validating the hypothesis. Note 
that, even though, American College of Cardiology (ACC) 
recommended restricted measurement of cIMT within the 
10 mm region of CCA (35), our study used AtheroEdge 
(AtheroPoint, Roseville, USA) for the full-length CUSIP 

measurements (36) following the spirit for the usage of 
CUSIP for CV/stroke risk assessment (37,38). 

Stenotic threshold selection for optimal EEGS design and 
its sensitivity analysis

The risk stratification threshold used for EEGS plays a 
major role while initiating the preventive measures for 
CV/stroke events. However, the choice of the threshold 
depends upon the types of risk factors (covariates or 
features) included in the risk stratification model and the 
patients’ baseline characteristics. The European Carotid 
Surgery Trial (ECST) and NASCET have reported the 
highest incidence of stroke events when the stenosis is 
≥70% (18,36). Studies have also indicated the use of 50% 
stenosis threshold for moderate risk of CV/stroke events 
(17,39). Since the prevalence of stenosis increases with  
age (17), such moderate-risk patients, if left untreated 
may lead to severe stenosis (i.e., ≥70%) and may further 
be qualified for carotid endarterectomy procedures. 
Furthermore, the risk of CV/stroke events increases if the 
patients have one or more risk factors (40). The Japanese 
cohort used in our current study has mean stenosis of 
21.15%±10.19% (ranging between 5% and 67%) which is, 
according to ECST trial (36), categorized into a moderate-
risk category. Thus, for this retrospective study, an 
equivalence stenotic threshold of 40% was selected for CV/

Figure 3 Risk stratification based on automated AtheroRisk-Integrated system. Row 1—patient 109L (low-risk): (A) original image; (B) 
processed image using AtheroEdge™ 2.0; stenosis: 10.5%. Row 2—patient 10L (high-risk): (C) original image; (D) processed image using 
AtheroEdge™ 2.0; stenosis: 69.87%.

A

C

B
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stroke risk stratification (17,39). A similar stenotic threshold 
of 40% was also used by Prati et al. (35) to investigate the 
stenotic and non-stenotic nature of the CP. The sensitivity 
of the selected threshold was also analyzed by varying 
the EEGS threshold by 1% in both directions. This has 
resulted in an overall change in AUC value by less than 5%. 
This has indicated a stable and reliable threshold for the 
stenosis for the ML design for our cohort.

Ranking of dominant features

The PCA-based polling strategy with a cutoff value of 0.99 
selected 18 dominant features out of 47 input risk factors 
to train the AtheroRisk-Integrated ML system. HbA1c was 
at first place followed by PS, cIMTave, and age. It should 
be noted that, in a pool of 202 patients, 49 were diabetic 
(HbA1c ≥ 6.5%) and 59 patients were pre-diabetic (HbA1c 
≥6% and HbA1c ≤6.4%). This may be the reason for 
HbA1c to be the first during the ranking of covariates. PS 
and cIMTave secured the second and third position in the 
ranking list, respectively. It means these two CUSIP are 
stronger compared to others and showed high contributions 
towards the risk of CV/stroke events compared to other 
CRF. These ranking results are in-line with the recently 
published study by Cuadrado-Godia et al. (41). 

Therapeutic implications of ML-based risk stratification

Risk stratification of patients assists the physicians in 
recommending either the surgical procedures or the use of 
medications for preventing the occurrence of CV/stroke 
events. Compared to statistical risk prediction models, 
ML-based risk assessment systems are becoming better 
in terms of risk prediction capability (4,42). Statins are 
generally used as a primary treatment to control lipids 
thereby lowering the risk of CV/stroke event (43). ML-
based risk assessment systems help the physicians in 
deciding the statin eligibility of patients. A recent study by 
Kakadiaris et al. (42) had recommended the use of statins to 
11.1% of their study population (AUC =0.92) using ML-
based risk stratification model. In contrast, the statistically 
derived ACC/AHA calculator recommended the use of 
statins to 46% (AUC =0.76) of the study population. This 
clearly indicates the influential role of ML-based system in 
the risk stratification of patients (4). Thus, in comparison to 
these conventional risk assessment tools, ML systems may 
be employed and preferred for routine risk assessment in 
clinical settings (4). 

Study limitations, and future scope

We believe that the AtheroRisk-Integrated ML system 
is efficient, accurate, and affordable. Risk stratification 
performed using EEGS is the first step to prevent higher 
costs and simplicity in design (4,11,12,29,41). Although the 
proposed study has clearly met the pre-defined hypothesis, 
more modifications can be possible to improve the CV/
stroke risk assessment such as conducting a multicenter 
study. In addition, though we believe the evidence supports 
the use of carotid stenosis as a robust EEGS metric, 
we acknowledge that increasingly plaque composition 
determined by imaging, beyond the lumen stenosis 
measurements alone, will be important to incorporate in 
future ML-based studies using plaque phenotypes. Further, 
risk factors like inflammatory markers (i.e., erythrocyte 
sedimentation rate and high sensitivity C-reactive protein), 
renal disease markers (i.e., uric acid and estimated 
glomerular filtration rate), and arterial/vascular age (44,45) 
can also be integrated in the future to evaluate the ML 
system.

Conclusions

This study is focused on the design of a CV/stroke risk 
stratification keeping three concepts in mind: (I) low-cost by 
incorporating event-equivalent gold standard in ultrasound 
framework; (II) integration of 13 CRF with 34 image-based 
phenotypes; (III) usage of PCA with polling for feature 
selection followed by an intelligence-based paradigm by 
adapting simple and efficient classification framework such 
as RF. The system demonstrated an 18% improvement 
in integrated ML approach vs. the conventional ML 
approach. We incorporated image-phenotypes completely 
automatically from the CUS scans and believe that future 
studies are now warranted examining this integrated ML 
approach in larger cohorts to aid in improving our methods 
for the prevention of heart disease and stroke.
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Supplementary

Supplementary file 1: PCA-based feature 
selection

Feature selection techniques minimize the redundancy in 
the feature set and select only the dominant features which 
improves the efficiency of the ML algorithm. PCA is one 
of the most widely accepted and efficient feature section 
techniques. The individual application of PCA reduces the 
dimensionality of the feature space by altering the feature 
values. In order to preserve the feature values a polling-
based PCA strategy was recently presented (32) which 
extracts the indices of the dominant features. A detailed 
PCA polling strategy has been already discussed in our 
previous studies (25). 

Supplementary file 2: role of classifier and 
choice of RF

The role of ML-based classifier is to categorize the input 
data into predefined labels or classes. For example, in a 
CVD/stroke event prediction task, using the input features 
classifier predicts either “event” or “no-event” category. In 
this study, the ML-based classifier identifies one of the two 
risk profiles of the patients: (I) low-risk or (II) high-risk. 
Since the focus of this study was to develop a cost-effective, 
efficient ML system, a RF classifier was incorporated in the 
ML system for risk stratification of the patients (33). Our 
previously published studies reported a better performance 
while using RF for classification tasks (46,47). Furthermore, 
RF is a commonly used algorithm which reported higher 
predictive ability compared to other ML-based algorithms 
(48,49). Thus, RF classifier was selected in our proposed 
study to risk stratify the patients.

The term RF was first coined by Tin Kan Ho from Bell 
labs in 1995 (33). RF is a type of ensemble learning algorithm 
which is used in classification or regression applications (50). 
The term ensemble learning indicates a combination of several 
decision tree (DT) classifiers that provide a voting-based final 
decision to perform a classification or regression task. DT is a 
fundamental building block of RF classifier (51). As the name 
indicates, DT is a set of multiple decisions that are required 
to perform the classification and regression task (51). RF is a 
combination of multiple such DT classifiers. In our current 
study, RF was used for classifying Japanese patients into two 
risk categories: low-risk and high-risk. The main advantage 
of RF is that it is a better fit for the categorical data after 
obtaining the final solution in the majority voting system, 
where the result of each tree is judged. In this study, a total of 
the 400 trees were used in an RF algorithm.

Supplementary file 3: performance evaluation 
using RF

The performance of the two types of ML-based was further 

evaluated using the risk stratification accuracy, sensitivity, 
and specificity. Figures S1-S4 shows the bar charts for four 
performance evaluation metrics such as accuracy, AUC, 
sensitivity, and specificity. Bar charts were plotted for all 
the 10-trials. Each value of bar-chart is the mean of 10 
different combinations of 10-fold cross-validation. Note 
that here each trial contains 10 independent combinations 
of training and testing sets. The entire dataset gets shuffled 
from one trial to another trial. The legends in each bar 
chart represent the mean overall the 10 trials. All these four 
types of performance evaluation metrics were also tabulated 
in Table S1.

The sensitivity indicates the likelihood of detecting 
high-risk patients by an automated ML-based algorithm 
when EEGS also indicates the high-risk status for the 
same patient. Similarly, specificity indicates the likelihood 
of detecting the low-risk patients by the automated ML-
based algorithm when EEGS also indicates the low-risk 
status for the same patient. Ideally, both sensitivity and 
specificity should be 100%. This indicates that all the 
high-risk and low-risk patients, respectively, are correctly 
identified by the ML-based system. The area under the 
ROCs curve indicates the trade-off between sensitivity 
and specificity values. Figures S2,S4 represents mean 
sensitivity and mean specificity, respectively, for 10-fold 
cross-validation. It should be noted that the proposed ML-
based system was highly specific to non-high-risk patients 
(or low-risk patients). It is indicated by the higher values 
of specificity for both AtheroRisk-Conventional (96.46%) 
and AtheroRisk-Integrated systems (99.15%). At the same 
time, a low sensitivity was observed for both types of ML-
based systems. Low sensitivity indicates low predictive 
power for high-risk patients. This may be because of the 
sample number of high-risk patients (high-risk patients: 
12) available in the proposed study. Furthermore, the 
difference in mean sensitivities between AtheroRisk-
Conventional and integrated model is very low. This 
is primarily due to very low (~4%) high-risk samples. 
Typically, a good ML system behavior requires equal 
distribution of the risk classes. Due to imbalance, the noisy 
features are less likely to be in generalized pool for the risk 
stratification (23,46,52-54). 

The AUC is a tradeoff between both sensitivity and 
specificity. This was the reason for projecting the overall 
analysis using only AUC in our proposed study. As shown in 
Figure S1, the mean AUC over 10-trails and 10-fold cross-
validation were 0.68 for AtheroRisk-Conventional and 0.80 
for AtheroRisk-Integrated system. Similarly, the overall 
risk stratification accuracy was reported to be 92.77% for 
AtheroRisk-Conventional and 95.15% for AtheroRisk-
Integrated system.



Figure S1 Bar chart showing the risk stratification accuracy 
plotted against the 10 trails for both conventional and integrated 
ML systems. ML, machine learning; Acc, accuracy.

Figure S3 Bar chart showing the sensitivity against the 10 trails 
for both conventional and integrated ML systems. ML, machine 
learning.

Figure S2 Bar chart showing the AUC against the 10 trails for 
both conventional and integrated ML systems. ML, machine 
learning; AUC, area under the curve.

Figure S4 Bar chart showing the specificity against the 10 trails 
for both Conventional and integrated ML systems. ML, machine 
learning.
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Table S1 Performance evaluation metrics for AtheroRisk-Conventional and AtheroRisk-Integrated ML based system with RF classifier and K10 
protocol

Trial 
number

Accuracy (%) AUC Sensitivity (%) Specificity (%)

Conventional Integrated Conventional Integrated Conventional Integrated Conventional Integrated

1 92.67 94.94 0.66 0.82 10.00 5.00 96.30 98.95

2 92.94 94.44 0.72 0.83 10.00 0.00 96.56 98.68

3 92.42 95.20 0.66 0.75 10.00 5.00 96.03 99.20

4 92.65 95.19 0.67 0.74 10.00 5.00 96.29 99.20

5 92.94 94.94 0.72 0.78 15.00 5.00 96.57 98.95

6 93.42 95.70 0.71 0.80 10.00 10.00 97.11 99.47

7 92.95 94.69 0.71 0.82 10.00 0.00 96.57 98.93

8 92.67 95.71 0.72 0.82 10.00 10.00 96.32 99.74

9 92.40 95.20 0.66 0.81 0.00 10.00 96.55 98.94

10 92.65 95.46 0.67 0.79 10.00 5.00 96.28 99.47

Mean 92.77 95.15 0.69 0.80 9.50 5.50 96.46 99.15

SD 0.30 0.41 0.03 0.03 3.69 3.69 0.29 0.32

Each trial comprised of 10 independent combinations of training and testing datasets (K10 protocol). ML, machine learning; RF, random 
forest; AUC, area under the curve; SD, standard deviation.


