
UDC 512.543 + 512.542

Yu. A. Drozd  (Inst. Math. Nat. Acad. Sci. Ukraine, Kyiv),
R. V. Skuratovskii  (Kyiv. Nat. Taras Shevchenko Univ.)

GENERATORS AND RELATIONS FOR WREATH PRODUCTS

TVIRNI TA SPIVVIDNOÍENNQ DLQ VINCEVYX DOBUTKIV

Generators and defining relations for wreath products of groups are given.  Under a certain condition
(conormality of generators), they are minimal.

Navedeno tvirni ta vyznaçal\ni spivvidnoßennq dlq vincevyx dobutkiv.  Za deqko] umovy (konor-

mal\nist\ tvirnyx) vony [ minimal\nymy.

Let  G,  H   be two groups.  Denote by  HG  the group of all maps  f : G →  H   with
finite support, i.e., such that  f ( x ) = 1  for all but a finite set of elements of  G.  Recall
that their (restricted regular) wreath product  W = H � G   is defined as the semidirect

product  HG �  G  with the natural action of  G  on  H G  : f ag( )  →  f ( a g )  [1, p. 175].

We are going to find a set of generators and relations for  H � G   knowing those for  G

and  H.  Then we shall extend this result to the multiple wreath products  
  
�k

n
kG=1  =

= ( … ( ( G1 � G2 ) � G3 ) … ) � Gn .

If  x = { x1 , x2 , … , xn }  are generators for  G  and  R  = { R1 , R2 , … , Rm  }  are

defining relations for this set of generators, we write  G  : = 〈 x1 , x2 , … , xn | R1 , R2 , …

… , Rm 〉  or  G : = 〈 x | R 〉.  A presentation is called minimal if neither of the generators
x1 , x2 , … , xn  nor of the relations  R1 , R2 , … , Rm  can be excluded.  We call the set of

generators  x  conormal if neither element  x ∈ x  belongs to the normal subgroup  Nx

generated by all  y ∈ x \ { x }.  For instance, any minimal set of generators of a finite  p-
group  G  is conormal since their images are linear independent in the factorgroup
G / G 

p
 [ G, G ]  [1] (Theorem 5.48).

Theorem 1.  Let  G  : = 〈  x | R ( x ) 〉,  H  : = 〈  y | S ( y ) 〉  be presentations of  G  and

H.  Choose a subset  T  ⊆  G   such that  T  ∩  T – 1 = ∅  and   T  ∪  T – 1 = G \ { 1 },

where  T 
– 1 = { t– 1

 | t ∈  T }.  Then the wreath product  W = H � G   has a presentation
of the form

W  : =  〈  x, y | R ( x ), S ( y ), [ y, t– 1
 z t ]  = 1    for all  y, z ∈ y,  t ∈ T〉. (1)

If the given presentations of  G   and   H   are minimal and the set of generators   y
is conormal, the presentation (1) is minimal as well.

Theorem 2.  Let  Gi : = 〈  xi | Ri  ( xi ) 〉  be presentations of the groups  Gi  ,  1 ≤ i ≤

≤ m.  For  1 < i ≤ m  choose a subset  Ti ⊆  Gi  such that  T i ∩ Ti
−1 = ∅  and  Ti ∪

∪ Ti
−1 = Gi \ { 1 }.  Then the wreath product  W = �i

n
iG=1   has a presentation of the

form

W  : =  〈  xi , 1 ≤ i ≤ m | Ri  ( xi ), 1 ≤ i ≤ m, [ x, t– 1
 y t ]  = 1

for all  x, y ∈ 
 

xii j<∪ ,  t ∈ Tj〉. (2)

If all given presentations of  Gi  are minimal and the sets of generators  xi , 1 ≤ i < n,
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are conormal, the presentation (2) is minimal as well.
In what follows, we keep the notations of Theorem 1.  Note that  HG  = 

  
�a G H a∈ ( ) ,

where  H  ( a )  is a copy of the group  H;  the elements of  H ( a )  will be denoted by

h ( a ),  where  h  runs through  H.  Then  h ( a ) 
g = h ( a g )  and  HG  = 〈  y ( a ) | S ( y ( a ) ),

[ y ( a ), z ( b ) ]  = 1〉,  where  a, b ∈ G,  a ≠ b.
The following lemma is quite evident.

Lemma 1.  Suppose a group  G  acting on a group  N .  Let  G  = 〈  x | R ( x ) 〉,  N  =

= 〈  y | S ( y ) 〉  be presentations of  G   and  N,  and  yx = wxy ( y )  for each  x ∈  x,  y ∈
∈ y.   Then their semidirect product  N � G  has a presentation

N � G  : =  〈  x, y | R ( x ), S ( y ), x– 1
 y x  = wxy ( y )    for all  x ∈ x,  y ∈ y〉.

Note that this presentation may not be minimal even if both presentations for  G
and  N  were so, since some elements of  y  may become superfluous.

Corollary 1.  The wreath product  W = H � G  has indeed a presentation (1).
Proof.  Lemma 1 gives a presentation

W  : =  〈  x, y ( a ) | R ( x ), S ( y ( a ) ), [ y ( a ), z ( b ) ]  = 1

x– 1
 y ( a ) x  = y ( a x )   for  x ∈ x,  y, z ∈ y,  a, b ∈ G,  a ≠ b〉.

Using the last relations, we can exclude all generators  y ( a )  for  a ≠ 1;  we only have

to replace  y ( a )  and  z ( b )  by  a– 1
 y ( 1 ) a  and  b– 1

 z ( 1 ) b.  So we shall write  h  instead
of  h ( 1 )  for  h ∈  H;  especially, the relations for  y ( a )  and  z  ( b )  are rewritten as

[ a– 1
 y a, b– 1

 z b ]  = 1.  The latter is equivalent to  [ y, t– 1
 z t ]  = 1,  where  t = b a– 1 ≠ 1.

Moreover, the relations  [ y, t– 1
 z t ]  = 1  and  [  z, t  y  t– 1

 ]  = 1  are also equivalent;
therefore we only need such relations for  t ∈ T.

The corollary is proved.
Lemma 2.  Suppose that  y  is a conormal set of generators of the group  H,  u ,

v ∈ y,  and consider the group  H u, v = ( H *  H ′ ) / Nu , v ,  where  *  denotes the free

product of groups,  H ′   is a copy of the group  H  whose elements are denoted by  h′
( h ∈  H ),   a n d    N u, v   is the normal subgroup of   H H* ′    generated by the

commutators  [ y, z′ ]  with  y, z ∈ y,  ( y, z ) ≠ ( u, v ).  Then  [ u, v′ ] ≠ 1  in  Hu, v .

Proof.  Let  C = H / Nu ,  C ′ = H′ / Nv′ ,  P = C * C ′,  u  = u  Nu ,  v = v′ Nv ′ .  Consider

the homomorphism  ϕ  of  H * H′  to  P  such that

ϕ ( y )  =  
1 if ,

if ,

y

u y u
u∈

=




y

ϕ ( z′ )  =  
  

1 if ,

if .

z

z

∈

′ =





yv

v v

Obviously,  ϕ  is well defined and  ϕ  ( [ y, z′ ] ) = 1  if  ( y, z ) ≠ ( u, v  ),  so it induces a

homomorphism  Hu, v → P.  Since  ϕ ( [ u, v′ ] ) =  [ ′]u, v  ≠ 1,  it accomplishes the proof.

Now fix elements  c ∈ T,  u, v ∈ y,  and let  Kc, u , v  be the group with a presentation

Kc, u , v  : =  〈  y ( a ),  a ∈ G | S ( y ( a ) ), [ y ( a ), z ( t a ) ]  = 1

for all  y, z ∈ y,  a ∈ G,  t ∈ T,  ( t, y, z ) ≠ ( c, u, v )〉.

ISSN  1027-3190. Ukr. mat. Ωurn., 2008, t. 60, # 7



GENERATORS AND RELATIONS FOR WREATH PRODUCTS 999

Corollary 2.  Let the set of generators  y  be conormal.  Then  [ u ( 1 ), v  ( c ) ]  ≠ 1
in the group  Kc, u , v .

Proof.  There is a homomorphism  ψ : Kc, u , v →  Hu, v ,  where  Hu, v  is the group

from Lemma 2, mapping   u ( 1 )  �  u,  v ( c )   �  v′,  y ( a ) → 1  in all other cases.  Then

ψ ( [ u ( 1 ), v ( c ) ] ) = [ u, v′ ] ≠ 1,  so  [ u ( 1 ), v ( c ) ] ≠ 1  as well.
Corollary 3.  If the given presentations of    G    and   H    are minimal and the set

of generators  y  is conormal, the presentation (1) is minimal.
Proof.  Obviously, we can omit from (1) neither of generators  x ,  y   nor of the

relations  R  ( x ),  S  ( y ).  So we have to prove that neither relation  [ u, c– 1
 v c ] = 1

( u, v ∈ y, c ∈ T )  can be omitted as well.  Consider the group  K = Kc, u , v  of Corollary

2.  The group  G  acts on  K  by the rule:  h ( a ) 
g = h ( a g ).  Let  Q = K  �  G.  Then, just

as in the proof of Corollary 1, this group has a presentation

Q : = 〈  x, y | R ( x ), S ( y ), [ y, t– 1
 z t ]  = 1   for all    y, z ∈ y,  t ∈ T,  ( t, y, z ) ≠ ( c, u, v )〉,

where  y = y ( 1 )  for all  y ∈ y,  but  [ u, c– 1
 v c ] = [ u ( 1 ), v ( c ) ] ≠ 1.

The corollary is proved.
Now for an inductive proof of Theorem 2 we only need the following simple result.
Lemma 3.  If the sets of generators  x  of  G  and  y  of  H   are conormal, so is

the set of generators  x ∪ y  of  H � G.

Proof.  Since  G � (  H � G  ) / Ĥ ,  where  Ĥ   is the normal subgroup generated by

all  y ∈ y,  it is clear that neither  x ∈ x  belongs to the normal subgroup generated by

( x \ { x } ) ∪ y.  On the other hand, there is an epimorphism  H � G  →  C � G ,  where

C = H / Ny  for some  y ∈ y;  in particular,  C  ≠ { 1 }  and is generated by the image  y

of  y.  Since  C  is commutative, the map  C � G  →  C ,  (  f ( x ), g ) �  f x
x G

( )∈∏   is

also an epimorphism mapping  y   to itself.  The resulting homomorphism  H � G  →  C
maps all  x ∈ x  as well as all  z ∈ y \ { y }  to  1  and  y  to  y  ≠ 1,  which accomplishes
the proof.

Example 1.  The wreath product  Cn � Cm  ,  where  Cn  denotes the cyclic group of
order  n,  has a minimal presentation

Cn � Cm  : =  〈  x, y | xm
  = 1,  yn

  = 1,  [ y, x– k
 y xk

 ]  = 1    for  1 ≤ k ≤ m / 2〉.

(Possibly,  m = ∞  or  n = ∞,  then the relation  xm
  = 1  or, respectively,  yn

  = 1  should
be omitted.)

1. Rotman J. J.  An introduction to the theory of groups. – New York: Springer, 1995. – XV + 513 p.
2. Kaloujnine L. A.  Sur les  p-group de Sylow du groupe symétrique du degre  pm // C. r. Acad. sci.

Paris. – 1945. – 221. – P. 222 – 224.

Received 18.04.08

ISSN  1027-3190. Ukr. mat. Ωurn., 2008, t. 60, # 7


