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A B S T R A C T   

Carpet and rugs currently represent about half of the United States flooring market and offer many benefits as a 
flooring type. How carpets influence our exposure to both microorganisms and chemicals in indoor environments 
has important health implications but is not well understood. The goal of this manuscript is to consolidate what is 
known about how carpet impacts indoor chemistry and microbiology, as well as to identify the important 
research gaps that remain. After describing the current use of carpet indoors, questions focus on five specific 
areas: 1) indoor chemistry, 2) indoor microbiology, 3) resuspension and exposure, 4) current practices and future 
needs, and 5) sustainability. Overall, it is clear that carpet can influence our exposures to particles and volatile 
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compounds in the indoor environment by acting as a direct source, as a reservoir of environmental contaminants, 
and as a surface supporting chemical and biological transformations. However, the health implications of these 
processes are not well known, nor how cleaning practices could be optimized to minimize potential negative 
impacts. Current standards and recommendations focus largely on carpets as a primary source of chemicals and 
on limiting moisture that would support microbial growth. Future research should consider enhancing knowl-
edge related to the impact of carpet in the indoor environment and how we might improve the design and 
maintenance of this common material to reduce our exposure to harmful contaminants while retaining the 
benefits to consumers.   

1. Introduction 

Carpet constitutes about half of flooring in the United States and is 
thus prevalent in the indoor environment [1]. Carpet can benefit an 
indoor space through sound reduction, aesthetics, comfort (both soft-
ness and temperature under foot), and injury prevention. It has also 
received higher comfort ratings compared to solid floors like concrete 
[2], and in occupational settings, workers who spend 10% of their time 
standing on hard surface floors compared to soft floors have a 30% 
increased risk of developing plantar fasciitis [3]. At the same time, use of 
this material influences indoor environmental quality through impacts 
on gas-phase air pollutants and particulate matter, including microbio-
logical and chemical components. For example, the mass loading of dust 
is generally greater in carpets than a comparable area of hardwood 
floors [4]. The resuspension of particles containing microbes following 
the physical disturbance of carpets is an important source of human 
exposure to indoor particles [5,6]. The prevalence of this flooring ma-
terial dictates the need to better understand the implications of its use in 
the indoor environment and on sustainability. In this manuscript, we 
explore questions about the use of carpet related to five general topics: 
(1) chemistry, (2) microbiology, (3) resuspension and exposure, (4) 
standards and guidelines, and (5) sustainability (Fig. 1). This report is 
the result of the workshop “Implications of Carpets on Indoor Chemistry 
and Microbiology” held on July 30–31, 2019, at The Ohio State 
University. 

2. Ten questions 

2.1. Q1: What materials are used to make carpets, why are carpets used, 
and what is carpet’s share of the flooring market? 

Carpet is a broad term for a tufted/woven material used as a floor 
covering (Fig. 2). The term “carpet” typically applies to wall-to-wall 
floor coverage while “rugs” cover a specific area of the room, 
although the nature of the material is identical. Current manufacturing 
practices produce carpets of diverse composition. Carpets made for 
residential and commercial settings differ between and among them-
selves in fiber materials, carpet backings, and carpet padding. Of all 
carpet, over 95% is made of synthetic fibers, including nylon, polyester 
and olefin [7–10], and the remainder include natural fibers such as 
wool. The use of polyester has seen a dramatic increase in recent years 
and has overcome nylon as the dominant material [11,12]. Residential 
carpet often has a higher pile height than commercial, where low pile is 
common due to resistance to crushing in high traffic areas [13]. The 
tufted/woven loops can remain looped (so-called loop pile), or they can 
be cut to create vertical strands (so-called cut pile, as in Fig. 2). Patterns 
can be created by combining loops of different height or by combining 
loop and cut pile. Carpet density can also be manipulated by changing 
how closely the different fibers are tufted into the carpet backing. 
Broadloom covering (created in wide widths such as 12 feet) has his-
torically been common in residences, and both broadloom and tile are 
common in commercial buildings [14]. Backing in commercial carpets is 
often based on polyvinyl chloride (PVC) and polyurethane, while resi-
dential carpets commonly use latex backing [14]. Carpet padding may 
be made of fiber, sponge rubber, or urethane foam. Fiber carpet padding, 

which has a firm feel, could be natural (e.g., animal hair, jute), synthetic 
(e.g., nylon, olefin), or resonated recycled textile fiber. Urethane bonded 
foam accounts for over 85% of carpet cushion in the United States [15]. 
The use of carpet pad underlayment is typical of residential installations, 
while the use of adhesives for installation predominates in commercial 
settings. 

Common factors for selecting carpet as a flooring material may 
include sound dampening, comfort under foot (including softness and 
thermal response), injury prevention, aesthetic preferences, stain resis-
tance, strength, durability, and cost. Within the United States, carpet 
and rugs make up about 54% of the flooring market [16], which is down 
from 66.9% a decade ago [17]. This downward trend is often attributed 
to the growing hard surface flooring market, though rug sales have 
grown with an increase in popularity of hard surface flooring [17]. 

2.2. Q2: How does carpet influence indoor chemistry? 

Carpets can influence indoor chemistry through several mechanisms: 
as a primary source of chemical emissions, as a reservoir for the uptake 
and re-emission of chemicals (sorption/desorption), and as a medium 
that supports transformations among indoor chemicals, such as oxida-
tion, hydrolysis, and acid-base reactions. 

2.2.1. Carpets as sources of chemicals in the indoor environment 
Carpets act as a primary source of volatile organic compounds 

(VOCs) to the indoor environment [18]. The term primary refers to 
chemicals that are present in the material when installed and are then 
released indoors, and thus primary emissions are present from most 
building materials. Many studies have contributed to our understanding 
that hundreds of VOCs and semi-volatile organic compounds (SVOCs) 
are emitted from carpet, underlayment, and adhesives [19–25]. Some 
identified VOCs include 4-phenylcyclohexene (4-PCH, the source of new 
carpet smell), aromatic compounds (styrene, benzene, toluene, xylenes), 
and formaldehyde [24,26]. Primary emissions from carpet can impact 
overall indoor VOC levels [27], and can contribute adversely to sensory 
evaluations of indoor spaces compared to other indoor building mate-
rials [28]. Studies of carpets report emission factors or concentrations of 
specific or total VOCs (TVOC) resulting from carpet pile or backings and 
adhesives that range over several orders of magnitude; various studies 
report emission factor ranges that span 10–10000 μg m� 2 h� 1 [24,29]. 

Numerous SVOCs are (or have been) used in the manufacture of 
carpets. For example, some compounds include fluorinated soil re-
tardants such as per- and polyfluoroalkyl substances (PFAS) [30,31], 
antimicrobials such as triclosan [32], and phthalate plasticizers, which 
may either be in the dust or could result from PVC used as backing in 
commercial applications [14,33]. Organohalogen and organophos-
phorus flame retardants are present, as contaminants, in bonded carpet 
padding made of recycled polyurethane furniture foam [34]. Of these 
SVOCs, PFAS are perhaps the most studied, and correlations have been 
observed between the presence or amount of carpet in buildings and 
concentrations of PFAS in dust [35] and on interior surfaces [36]. PFAS 
are currently being phased out of construction of new carpets, but 
turnover of installed carpet and stock of carpet in stores can take years, if 
not decades. 

In addition to chemicals that are part of the carpet material, after- 
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market application of products can introduce chemicals into the indoor 
environment through the carpet matrix. For example, carpet cleaning 
and pest control practices result in the application of chemicals to car-
pet. In one noteworthy example, frequent application of after-market 
stain-protector by a family was shown to lead to elevated concentra-
tions of perfluorohexane sulfonate (PFHxS) in carpet, dust, and blood 
serum of the residents [37]. 

2.2.2. Carpets as sorptive/desorptive surfaces 
Carpets have substantial surface area that can increase chemical 

surface reactivity. Carpets may cover an entire building floor area, and 
the presence of fleecy, porous mats comprised of small diameter textile 
fibers greatly increases material surface area compared to that of esti-
mates via aerial projections of the material. Estimates of indoor surface 
area to volume ratio are approximately 300 times greater surface area 
per unit volume in indoor than outdoor environments [38]. Note these 
estimates do not consider the complex geometry of materials like car-
pets; indoor surface area to volume ratios that included carpet fiber and 
pore area would be substantially greater than estimates that consider 

only floor area. 
Carpet surfaces impact indoor chemistry through reactive uptake, 

sorption/desorption, and particle deposition processes. Sorption and 
desorption of VOCs and SVOCs can alter indoor air chemistry by 1) 
attenuating peak concentrations of an emission event that emits air 
pollution into the indoor space and 2) prolonging exposure to the event 
through subsequent exposure after re-emission [39–41]. 

The relative importance of the attenuation vs. re-emission phases of 
these sorption/desorption processes depend on the specific sorbent/ 
sorbate interaction and the environmental conditions. At equilibrium, 
the sorption capacity of carpets appears to be inversely correlated to the 
VOC vapor pressure [39,42,43], and for some carpet-VOC combinations, 
sorptive processes may be relatively unimportant. However, in resi-
dential buildings where the outdoor air ventilation rate is often low, the 
VOC removal rate from sorption to carpets can be comparable in 
magnitude to the removal rate from ventilation [41,44,45] and can be 
relatively higher than removal rates from other building materials and 
furnishings [46–48] due to its greater normalized surface area [49,50]. 
In one study comparing wool carpet, nylon carpet and polyvinyl chloride 

Fig. 2. Structure of an example cut pile carpet.  

Fig. 1. Carpet has important implications for indoor microbiology, indoor chemistry, human exposure from dust resuspension, guidelines/standards, and envi-
ronmental sustainability. The question(s) that discuss each of these topics are indicated on the figure. 
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(PVC) coverings, adsorption of α-pinene was higher in both carpet types 
than the PVC coverings [46]. Carpet padding tends to contribute more to 
sorptive interactions with VOCs than other components of the carpet 
system [39]. Several models have been developed to simulate the 
sorption process of VOCs to carpet [43,45,48,51–54]. A wide range of 
SVOCs sorb effectively to clothing textiles, and by extension, to carpet 
textiles [55,56]. Carpets are known to be a strong sink for low volatility 
compounds such as nicotine and phenanthrene [47,57], organophos-
phorus flame retardants [57], as well as phthalates and adipates [58]. 
These SVOCs may then be slowly re-emitted from carpets to the indoor 
space over periods of years or more, perhaps for the remaining life of the 
carpet. 

In addition to specific sorbent/sorbate interactions, environmental 
conditions also affect the sorption/desorption processes. Indoor relative 
humidity (RH) can significantly influence the degree of sorption for 
soluble VOCs due to absorption into the condensed water within the 
porous carpet fiber media [39]. Also, at elevated relative humidities 
(>80%), elevated concentrations of common indoor gases, such as CO2 
and NH3, can influence the VOC sorption capacity of carpet [59]. Along 
with RH, temperature can affect the extent of VOC sorption to carpet. 
Temperature is expected to affect the gas-carpet equilibrium partition-
ing in a manner analogous to its effect on gas-particle partitioning [49]. 
The change of room temperature can lead to the redistribution of 
organic vapor between the bulk air and indoor surfaces, such as carpets. 

2.2.3. Carpets as surfaces for chemical transformations 
Carpets interact with oxidants in indoor spaces, through reactive 

uptake processes [60] where carpet materials or compounds stored in 
the carpet are oxidized by reactive indoor air pollutants. Most exten-
sively studied to date is the interaction of carpet with ozone. The 
removal effect of carpet on indoor ozone can be substantial: a 
wall-to-wall carpeted room provides an ozone scavenging effect equiv-
alent to ~0.4 air changes per hour (ACH) of airflow through an efficient 
ozone-scavenging filter [50]. Hard floors are generally much less reac-
tive with ozone, though unglazed tile floors can have comparable uptake 
of ozone to that of carpet [61]. For comparison, a similar scaling 
calculation to that performed by Morrison and Nazaroff [50], using 
ozone deposition velocities for two types of bamboo flooring (0.04, 0.11 
m/h), ceramic tiles (0.14 m/h), and linoleum (0.25 m/h) [62,63], show 
that these hard flooring materials provide ozone scavenging equivalent 
to ~0.01–0.1 ACH. While the greater ozone removal effect to carpet 
serves to reduce indoor oxidant levels, ozone reactions with carpets also 
contributes to the production of secondary byproducts [64,65]. An early 
study of carpets, ozone, and VOCs [64], found that ozone-carpet in-
teractions resulted in the formation of carbonyl compounds, including 
formaldehyde, acetaldehyde, and C5-10 aldehydes. Spinning oil residue 
on carpet fibers may be responsible for these secondary oxidation 
products for new carpet [65]. Since this study, the sink effect of ozone 
for carpets and the resulting byproduct formation has been extensively 
studied. Carpet remains an efficient ozone scavenger and producer of 
carbonyls under varying carpet type, temperatures, relative humidities, 
and airflow conditions [50,65–70]. Over time, reactive coatings on 
carpet may become depleted, thus reducing ozone uptake rates and 
secondary emission rates [71]. 

2.3. Q3: What more should we know about how carpet influences indoor 
chemistry? 

We need to continue to refine our understanding of chemical emis-
sions from carpets into the indoor environment, especially for emerging 
contaminants. We also need to better understand the chemical reactions 
occurring on the carpet, including aqueous reactions in water films on 
porous indoor surfaces. Additionally, work measuring VOC emissions 
from carpet to characterize new materials and manufacturing processes 
as they are introduced into the market will continue to be important. 

The mechanisms and extent of transfer of PFAS and other SVOCs 

from carpets to indoor air and dust are not well defined. Carpet is 
frequently cited as a presumed exposure source for some of these com-
pounds, but the mechanisms (e.g. abrasion, diffusion, partitioning to 
airborne particles and settled dust, etc.) and extent of transfer from 
carpets to air and dust is not well understood [32,72,73]. Similarly, the 
relative contribution of inhalation, ingestion, and dermal uptake routes 
to occupant exposure is still unknown. 

Studies investigating the mechanisms and impacts of carpet-oxidant 
interactions beyond ozone are needed. The importance of heterogeneous 
chemistry in impacting levels of reactive nitrogen species in outdoor 
atmospheres [74] compels further investigation of carpet as a high 
surface area material that may impact levels of reactive nitrogen species 
indoors. Several studies report nitrogen dioxide (NO2) deposition rates 
to carpets and show evidence for the formation of nitrous acid (HONO) 
due to the interaction of NO2 and surface-sorbed water on carpet [63, 
74–76]. The studies note that the ability of a surface to sorb water may 
drive longer-term HONO release after an NO2 injection event. A recent 
field study in a residence appears to confirm this, indicating indoor 
HONO levels are driven by gas-surface equilibrium [77]; though 
flooring type was not indicated, carpets are a porous material that can 
absorb water during high air humidity conditions. A recent study also 
points to the potential for HONO production from indoor surfaces to be 
impacted by the presence of cleaning products [78]. Given that indoor 
nitrous acid is both a direct health concern and an important source of 
the hydroxyl radical (�OH) indoors [79], further study into the role of 
carpets in influencing indoor HONO and reactive nitrogen species is 
warranted. 

Research into HONO implies accumulation of chemicals in or on 
carpets may have broader impacts on indoor chemistry. This sink effect, 
where carpets accumulate VOCs, SVOCs, and particles [80,81], 
de-couples sorbed chemicals from air exchange, enabling longer indoor 
residence times and more opportunity for chemistry to occur. In other 
words, by holding greater amounts of dust and surface-sorbed com-
pounds compared to other flooring materials, carpets might serve as a 
facilitator of indoor chemistry by “storing” chemicals for future re-
actions. These chemicals stored in carpets may become available for 
interaction with short-lived indoor oxidants that are present only under 
specific or transient conditions [82]. The rate of reaction of oxidants 
with surface-sorbed chemicals has been shown to be hundreds of times 
greater than that of gas-phase chemistry [82–84], and reaction products 
and yields may differ between the two [85]. Reaction sites on carpets are 
also affected by acid-base chemistry [59]. 

Due to the presence of esters in carpet materials and adhesives, more 
attention should be given to the possibility of hydrolysis reactions. 
Humidity and the presence of an alkaline surface, such as concrete, can 
promote hydrolysis of esters, thereby generating smaller, more volatile 
species. Hydrolysis of di-2-ethylhexyl phthalate (DEHP) is thought to be 
a dominant source of 2-ethyl-1-hexanol (2 EH) indoors [86], which is an 
irritant even at relatively low concentrations. Emissions of 2 EH 
increased when carpet was attached to flooring with a high water con-
tent, using a phthalate containing adhesive [87]. The use of PVC (which 
contains the plasticizer DEHP) as a carpet adhesive is no longer com-
mon. However, DEHP originating from other sources may be present in 
carpet dust [88,89]. Apart from the well-known microbial and corrosion 
concerns associated with moisture, this emphasizes how crucial mois-
ture issues are in the built environment. 

2.4. Q4: How does carpet influence microbiology and the presence of 
other biological agents in the indoor environment? 

The main routes by which carpets influence indoor microbiology are 
by 1) accumulating microorganisms and microbial products as part of 
the dust milieu and 2) potentially creating an environment that is 
conducive for biological proliferation. Biological agents in house dust 
can be an important component of building-associated exposures that 
elicit both protective [90,91] and detrimental [92] health responses in 
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occupants. 
Biological components of dust are theoretically as diverse as the 

complex ecology of outdoor environments, and include microorganisms 
(bacteria, fungi, algae, protista) as well as pollen, dust mites, pet dander, 
and arthropods [93–97]. Most research on the biology of indoor envi-
ronments has focused on either allergens or microorganisms, predomi-
nantly fungi. Next-generation sequence-based technology applied to 
indoor environments has revealed that the fungal communities within 
carpet dust reservoirs are composed of a vast array of fungi, representing 
a much more diverse pool than previously estimated when using tradi-
tional exposure assessment methods [98–100]. Previously overlooked 
fungi include many yeast species, including Cryptococcus, and 
outdoor-derived fungi, such as plant-pathogenic rusts [98,100]. Because 
the mass of dust is greater per unit area of carpet than it is for hard, 
smooth surfaces [4][see Question 6], the presence of carpet increases 
the potential for our exposures to these biological agents. Additionally, 
the presence of carpet may alter the microbial concentration in dust on a 
per dust mass basis. Most studies have shown that concentrations of 
endotoxin and 1-3-beta-d-glucan per gram of dust are higher in carpet 
dust compared to dust from other flooring types [101–105], but one 
study observed the opposite result [106]. Culturable fungi were also 
found to be higher in dust from carpeted floors [107]. 

2.4.1. Moisture and microbial growth 
Additionally, carpets may create conditions hospitable to microbial 

growth and dust mites, mainly through increased moisture content [107, 
108]. Research done, typically in the context of dust mites, conveyed 
that carpets can show RHs higher than the surrounding environment 
[94,109,110]. The three-dimensional, fibrous nature of carpet laying on 
the ground can create thermodynamic conditions that promote the 
retention of water. For example, Cunningham et al. (1998) identified a 
gradient in RH that increased from the top of the carpet in contact with 
room air to the base of the carpet. This RH gradient is related to tem-
perature gradients in the carpet, while absolute humidity was the same 
in room air, on the top of the carpet and at the base of the carpet [110]. 
The carpet showed a dampened response to changing RH values 
compared to the room air. While the RH in the base of carpet hovered 
around 70%, the RH of the room air fluctuated between 50 and 75% RH. 
In addition to retaining moisture from the ambient air in the room, in 
buildings with defective design or construction elements, carpets can 
also encounter moisture due to leaks from waterproofing installation 
issues, plumbing or the ground below [111]. Water from the soil or 
cement foundation, for example, can migrate to the floor surface [112]. 
This water can moisten carpet surfaces, as is commonly observed in 
carpeted basements. 

Beyond the simple parameter of growth [113], the moisture condi-
tion in carpet has also been found to influence the type of microbial 
genes that are expressed. Chamber experiments of dust embedded in 
carpet and incubated at various water activities (aw) revealed systemic 
changes in fungal gene expression between fungi grown at a water ac-
tivity of either 0.85 or 0.5 and 1.0 aw. At 1.0 aw the up-regulation of 
many allergen-encoding genes, general pathogenicity pathways, myco-
toxins, and secondary metabolites occurred [114]. Mycotoxins are 
non-volatile secondary fungal metabolites capable of causing negative 
health effects [115], and are also influenced by the RH and aw at which 
microorganisms grow [116–118]. Some mycotoxins have been identi-
fied in carpet and indoor dust [119–121], but the related health effects 
of this exposure are still unclear. For example, the production of afla-
toxin, a type of mycotoxin, increased when Aspergillus flavus was grown 
at a water activity of 0.99 compared to 0.93 [116], and production of 
ochratoxin, another type of mycotoxin, increased in both Aspergillus 
carbonarius and Aspergillus niger at water activities of 0.95–0.98 
compared to a water activity of 0.92 [118]. The increase in mycotoxin 
production was accompanied by an increase in mycotoxin-related gene 
expression both in pure culture [116] and in a mixed culture of fungi 
isolated from house dust [114,116]. If the water activity of the dust in 

the carpet were to reach these high levels, we may see this type of gene 
expression or mycotoxin production. It should be noted however, that in 
a well-designed, constructed and operated building these levels of water 
activity typically would not be encountered. 

2.4.2. Carpet cleaning and decontamination 
Indoor house dust is a heterogeneous mixture that contains both 

inorganic and organic materials and varying particles sizes [122]. Vac-
uuming carpets does remove biological agents (as well as dust in gen-
eral), but the methods used in academic studies are likely much more 
rigorous than typically used in homes. In a laboratory-based study, dust 
was artificially embedded on different flooring types in order to test the 
removal efficiency of vacuum cleaners [123]. The results showed that 
most of the dust was collected during the first ten vacuuming cycles, 
where a vacuuming cycle was 5 min on a 0.63 m2 carpet. After 60 
vacuuming cycles, 90% of embedded dust was found in the vacuum 
cleaner bag when using the rotating brush on the bottom of the vacuum, 
whereas only 75% when using a plain nozzle in the vacuum cleaner. One 
study found about 50% of the fungi, dust mites and dust allergens were 
removed from carpet when vacuumed by 4 passes at a rate of 55 cm/s 
[124]. Vacuuming at a rate of 0.5–1 min/m2, depending on the floor 
type, resulted in a steady state quantity of dust removed after six 
cleanings [125]. Another study found that it took vacuuming 6–45 
min/m2 to remove deep dust loading from older carpets [126]. 

Lastly, carpets have demonstrated resistance to decontamination 
processes following an accidental or intentional release of spore-based 
biological agents such as Bacillus anthracis. The characteristics of car-
pet make it difficult to decontaminate using wipe methods due to the 
penetration of spores deep into the carpet matrix. Even immersion of 
carpet in pH-adjusted bleach (a mixture of household bleach, water, and 
acetic acid [vinegar]), a combination that has been shown to be highly 
effective in the sporicidal decontamination of biological threat agents 
like Bacillus anthracis, for up to 60 min, did not achieve the 6-Log 
reduction generally desired for biological decontamination [127]. 

2.5. Q5: What more should we know about how carpet influences indoor 
microbiology? 

We need more fundamental information on how the presence of 
carpet changes microbial communities, microbial function, and micro-
bial exposure in indoor environments – both in comparing carpets to 
other flooring types, and between different types of carpets. We then 
need to understand the implications of changes to microbial exposure on 
human health. 

First, we need to better understand the water availability to microbes 
in carpet. The mechanism that yields available water for microbes in 
carpet and other indoor surfaces – apart from super-saturated RH con-
ditions (e.g., a hot shower inducing condensation on bathroom walls) – 
remains unclear. It is also not well known how often elevated RH con-
ditions occur under realistic building scenarios. Cunningham et al. 
(2004) developed a model to predict equilibrium RH (ERH) at indoor 
surfaces, but this model does not describe the water that may be avail-
able for microbes on the surfaces, which is a key factor for their growth 
[128]. To our knowledge, the only published study that relates ERH and 
dust moisture content is a thesis document [129], which draws upon 
insights from the aerosol science community, where there have been 
considerable efforts to understand how ambient dust particles interact 
with atmospheric water [130,131]. Understanding the nature and in-
tensity of water uptake is critical for predictions of microbial growth, as 
it enables the linkage between indoor RH and the time-of-wetness model 
for carpet. Given the shift to newer polyester-based carpets, it is simi-
larly important to understand how different carpet materials behave 
when subjected to different moisture conditions. Additionally, we need 
to understand the efficacy of antimicrobial coatings and consider their 
use in a risk-benefit analysis. 

Likewise, we also need to understand whether and how the microbial 
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portion of dust is altered depending on the matrix in which it is found. 
For example, little is known about how the microbial components of 
dust on a non-porous, hard surface, such as hardwood floors, changes 
over time relative to dust embedded in a carpet; similarly, how the dust 
changes within carpet made of different materials is not known. 

Currently, there is a dearth of studies that have examined the asso-
ciation between allergy/asthma symptom reduction in homes with or 
without carpet. Some studies have indicated that carpet may contribute 
to adverse health effects for individuals with asthma and allergies [6, 
132–137]. Carpets can serve as a reservoir for inhalant allergens from 
not only fungi, but dust mites, pets, rodents, cockroaches and other 
plants and animals [138]. Carpet removal interventions have been 
shown to be effective at lowering asthma prevalence when combined 
with other allergen reduction measures [139,140]. Understanding the 
specific effect of carpet may be a fruitful area for further research. 

Certain studies have not been able to detect a significant difference in 
exposure to carpet and asthma symptom reduction [141,142], though 
the homes in the Morgan et al. inner city asthma study (ICAS) did have a 
low prevalence of carpet [143]. Another study found that fewer asthma 
symptoms were associated with carpet or rugs in bedrooms. However, 
this association most likely resulted from highly symptomatic asthmatic 
individuals previously removing the carpet in their bedrooms due to 
medical advice [144], which has also been demonstrated elsewhere 
[145]. An alternative speculative explanation for this association is that 
carpet in the bedrooms helps to prevent allergens from entering the bed 
by removing particles tracked-in on feet, such as cockroach allergen 
from kitchens, but this needs additional research [146]. 

Lastly, we need efforts to develop a robust definition of a “healthy” 
indoor microbiome [147]. This should include a definition of what 
species are present, but also how this impacts chemistry. Carpet 
microbiomes can interact with phthalates in carpet [148], but it is un-
clear what other chemical interactions can occur between the hundreds 
of chemicals and thousands of microbes present. Generally, studies have 
focused on fungal growth from carpets exposed to high moisture [113], 
but research exploring the slow growth processes by fungi (including 
yeasts) and bacteria tolerating lower water activities may offer further 
insights [149]. Additionally, we need to understand how different carpet 
types and dust loadings influence microbial communities [150]. We 
need to build upon existing knowledge of how carpet influences health 
[6] by studying how carpet, compared to other flooring types, affects 
human health through immunomodulatory stimulation, allergenic, 
toxicological and other combined synergistic and antagonistic effects. 

2.6. Q6: What do we know about resuspension and implications for 
exposure in relation to biological and chemical agents? 

Particle resuspension from flooring occurs due to human activity. For 
most published studies, resuspension of coarse-mode particles (particles 
with diameters > 2.5 μm) has been found to be higher from carpet 
compared to solid flooring [6,151]. The resuspension of dust from carpet 
has important implications for human exposure to microbes, chemicals, 
and allergens. 

2.6.1. Carpets are reservoirs that act as both a source and a sink for indoor 
dust 

Human-driven resuspension from carpets and hard flooring can be a 
significant indoor emission source of coarse-mode biological and abiotic 
particles in the indoor environment. An adult walking across the floor 
can resuspend 10–100 million particles per minute [152], many of 
which are likely to be of biological origin [153]. PM10 (all particles 
smaller than 10 μm) mass emission rates can exceed 10 mg per minute 
[154]. Walking-induced resuspension can be the dominant source of 
biological particles indoors, accounting for more than two-thirds of 
biological particle emissions [155,156]. Besides walking, vacuuming 
can induce the resuspension of PM10, including airborne allergens, from 
carpets and hard flooring [151,157,158]. For the vacuum cleaner tested, 

approximately half of the resuspended mass during vacuuming might be 
attributable to walking on carpet [158]. Thus, resuspension may 
contribute meaningfully to our inhalation exposures to the microbial 
and allergenic content of carpet dust and can be influenced by the style 
of human movement across the floor, with bacterial and fungal levels 8- 
to 21- fold higher for crawling infants than walking adults [159]. 

Most studies have found that carpets resuspend more particles than 
hard flooring during human walking under typical building conditions 
due to both a higher typical dust loading and a higher resuspension 
fraction. Carpets tend to have higher floor loading of particles, that is, 
the mass of particles per area of flooring is higher in carpets [4,160]. 
Also, carpets have a higher resuspension fraction (the fraction of parti-
cles on the surface that resuspend) compared to hard surfaces under a 
typical range of dust loadings, as demonstrated by nearly all studies that 
have compared resuspension fractions of carpets and hard flooring 
during walking, even when the floor loading of particles is the same 
[152,154,157,161,162]. One peer-reviewed study has found increased 
resuspension from hard flooring compared to carpet for 0.8–1.5 μm 
particles, with a relatively high dust loading of 18 g/m2, but larger 
particle sizes were not reported [163]. 

Dust loading can also impact the fraction of particles that are 
resuspended. Dust loading on typical flooring has been observed to 
range from <1 g/m2 to over 20 g/m2 based on sampled dust loads [164]. 
The change in resuspension fraction as a function of the amount of dust 
loading suggests that the architecture of deposits affects resuspension. 
At low loadings, the deposit is expected to be a sparse monolayer, in 
which particles are thinly deposited along a surface and are not in sig-
nificant contact with one another. High loadings are likely multilayer 
particle deposits, in which particles are deposited on top of one another 
and there is particle-to-particle adhesion and interaction. There are 
fundamental differences in the resuspension process between monolayer 
and multilayer deposits, with greater resuspension observed from 
multilayer deposits [165,166]. 

Ultimately, carpets are a complex reservoir system that act as both a 
source and a sink for dust in the indoor environment. Deposition rates of 
particles into carpet are higher than solid floors (the “sink” effect) [167]. 
Airborne particles are deposited and stored in carpets, altering the bal-
ance and type of pollutants (including particle-bound SVOCs) present in 
the carpet over periods of years to decades [168]. Some industry reports 
emphasize the sink aspect of carpets, suggesting that carpets can reduce 
particle concentration in the air [169]. However, resuspension (the 
“source” effect) is also higher. Most studies have found that the fraction 
of settled dust that is resuspended during a resuspension event is higher 
for carpets than for hard flooring. Because of this storage and increased 
resuspension fraction, these combined factors generally result in higher 
particle concentrations in the air compared to hard flooring, especially 
under occupied conditions [5,155,167,170]. Thus, carpets are an 
important reservoir of indoor contaminants for exposure [6]. 

2.6.2. Resuspension is influenced by particle size, humidity, and carpet 
properties 

Particle resuspension is strongly size dependent, and the difference 
in resuspension fractions among floorings are more pronounced for 
coarse particles than for fine particles. For example, for the size range of 
0.4–10 μm, statistically significant differences based on carpet versus 
hard flooring were observed for particles >3 μm in diameter [161]. Tian 
et al. (2014), found no statistically significant differences between the 
resuspension fractions for carpet and hard flooring for particles sizes 
between 0.4 and 3 μm in diameter. In addition, multiple studies have 
demonstrated that within the particle size range of 0.4–10 μm, resus-
pension fractions and resuspension rates increase with particle size, 
consistent with theoretical predictions of size-resolved particle detach-
ment [152]. 

Important resuspension factors include surface roughness and RH. 
Surfaces with micro-roughness smaller than the particle diameter de-
creases the contact area and associated adhesive forces between the 
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particle and surface [171]. Humidity effects are complicated and depend 
on the composition of both the flooring and particles. For example, 
Salimifard et al. (2017) [172] found that the resuspension of hydrophilic 
biological particles decreased with increased RH, but RH did not affect 
the resuspension of hydrophobic particles. 

Carpet type and condition likely influence resuspension. The resus-
pension fraction from high-density level loop carpet was found to be 
intermediate between that of cut pile carpet and hard flooring [161], 
indicating that resuspension rates can be manipulated by carpet choice. 
Also, the surface chemistry of old/worn and new carpet can be quite 
different. The organic films built up on the carpet fiber over time might 
alter the surface chemistry, and therefore impact adhesion and resus-
pension. Rosati et al. (2008), reported that new carpet was associated 
with higher emission factors compared to older, worn carpet [173]. This 
was likely due to the fact that at higher RH conditions new carpets 
release more particles due to the dampening of static electricity, while 
older carpets become “sticky” at high RH and trap in particles. It may 
have also been attributed to difference in dust loading, surface chemistry 
and carpet fiber condition. These results suggest that the carpet condi-
tion, construction, nature of organic films and moisture should be taken 
into consideration in the discussion of resuspension. 

2.6.3. Exposure and exposure assessment from carpet dust 
Microbial and chemical exposures may occur via different exposure 

routes such as inhalation, ingestion, and dermal contact [174]. Inhala-
tion is likely the most common exposure route of microbes in house dust 
among adults, while inhalation, ingestion, and dermal contact are 
common among infants and children, due to hand-to-mouth and 
crawling behavior. Skin contact may be especially important in 
considering asthma development [175]. However, the health risks posed 
by these different exposure routes need to be better assessed. For mi-
crobes, some limited evidence in an animal study suggests that exposure 
via different routes may be additive [176]. 

Carpets serve as a reservoir for dust containing some key exposures, 
especially inhalant allergens [138]. The prevalence of allergic diseases 
has increased during the 20th century, with hay fever increasing earlier 
in the century and asthma increasing in the latter half of the century 
[177]. Asthma development and disease exacerbations can be caused by 
domestic environmental exposures [178]. In the 1980s, the confluence 
of the building of warmer and tighter homes and more carpets in the 
United Kingdom, New Zealand and Australia, where asthma has become 
common, led to the hypothesis that exposure to dust mites and their 
excreta could be one of the causes of the asthma epidemic in these 
communities [177]. Most notably, not only do carpets serve as a reser-
voir for dust mite allergens, but dust mites can live in carpets. In-
terventions to reduce asthma through dust mite reduction, including 
acaricide use in carpets, date back more than 30 years [179], yet to our 
knowledge, no studies have solely targeted carpets. Still, it is well 
established that carpets can serve as reservoirs for allergens that cause 
asthma exacerbations, including those from dust mites, cockroaches, 
mice and furry pets [6]. Homes with carpets have also been found to 
have higher levels of other chemicals that have been associated with 
asthma, including the phthalate DEHP, which was associated with 
asthma symptoms in a study in Sweden [180,181]. While it is clear that 
carpets can serve as reservoirs for exposures relevant to asthma [6], 
ongoing research is still investigating links between carpets and asthma, 
including a recent large study of children living in 7 cities in China 
where having a carpet in the home was one of the stronger risk factors 
identified with current asthma [182]. 

Exposure assessment in the indoor environment is complicated by a 
variety of factors, but research indicates that measuring dust from car-
pets and floors can be a better surrogate for long-term exposure than 
short-term air samples. Short-term air sampling and collecting vac-
uumed floor dust often yield different exposure assessment, likely 
because microbial communities in the air change rapidly with time and 
particle size distributions of the dust will vary [152,183,184]. For 

instance, in a study conducted in 176 homes in the Midwest region of the 
United States, endotoxin and β-glucan were sampled by using inhalable 
and PM1 (particulate matter smaller than 1 μm) aerosol samplers for 24 
h and by vacuuming floor dust. Correlations between the three sample 
collection methods were poor: the correlation in endotoxin concentra-
tion varied from 0.26 to 0.34 and for β-glucan concentration from 0.04 
to 0.18 [106]. In another study, 5-day air samples were compared with 
vacuum samples from floor and bed after analyzing the samples by ITS 
amplicon sequencing. The taxa in air samples clustered separately from 
bed and floor, whereas the two vacuumed samples had some overlap in 
taxa [185]. In one study, specific fungal taxa were well correlated be-
tween settled dust and indoor air, although the relationship was weaker 
for all fungi [186]. In another study, all the dust collection methods 
(settled and vacuumed dust) correlated with each other and did not have 
significant differences in concentrations or detected fungal species 
[187]. The ten most common fungal species were the same in all the dust 
sample types as well in inhalable air samples, collected for 48 h indoors. 
However, the proportions of the different taxa in indoor air samples 
were more similar to the simultaneously collected outdoor air samples. 
The results indicate that in addition to being a reservoir for dust resus-
pension, vacuumed floor dust can reflect long-term exposure and is less 
affected by the changes in the outdoor air concentrations. 

2.6.4. Fungal growth in dust and implications for exposure 
Microbial growth under elevated RH conditions in carpet has the 

potential to substantially impact human exposure through resuspension 
[113]. Resuspension of dust from the floor can contribute to about 83% 
of airborne bacteria and 66% of airborne fungi [188]. There is some 
limited toxicological data on the consequences of long-term respiratory 
exposures to fungi. An improved rodent model of nose-only exposure 
[189] has shown that common indoor fungi elicit varying pulmonary 
immune responses and target tissues include the larynx, lung, and 
bronchial lymph nodes. Mice repeatedly exposed to Aspergillus fumigatus 
resulted in allergic inflammation that was dependent on the viability of 
fungal conidia [189–192] whereas repeated subchronic exposure to 
Stachybotrys chartarum resulted in a mixed T-cell response that was 
dependent on the production of submicronic fragments [193]. The 
varying pulmonary immune responses are elicited based on the viability, 
metabolic activation, and type of particle inhaled. Interestingly, histo-
logical examination of lung tissue derived from mice exposed to fungal 
test articles revealed, for the first time, a continuum of pulmonary 
arteriole hyperplasia that could result in modulating downstream car-
diac endpoints and is the subject of continued research. Utilization of 
rodent models of repeated fungal exposure may provide further insight 
into the pulmonary immunological responses to various fungi identified 
in molecular analyses that may be aerosolized following abiotic or biotic 
disturbance to carpet dust reservoirs. 

The traditional paradigm of indoor fungal exposure has considered 
the inhalation of fungal propagules such as spores and conidia, but, as 
noted above, cellular fragments can also impact health. Fragmentation 
of fungal spores, chlamydospores, yeasts, and hyphae can also result 
from abiotic and biotic processes including fungal autolysis, mechanical 
severing of spore/hyphae cross walls or septa, grazing of fungi by other 
microorganisms, protozoans and micro arthropods as well as mechanical 
and vibration stresses [100,194]. These fragments of fungi have been 
termed non-gonomorphic particles due to the lack of morphologically 
discernible features [194]. In vitro chamber studies have shown that 
fungi frequently detected in indoor environments and carpet are capable 
of producing non-gonomorphic particles [195–198] and in some cases of 
abiotic or biotic disturbance, the concentration of these particles can be 
greater than spores [199]. The clinical relevance of non-gonomorphic 
particles has also been described in the peer reviewed literature and 
shown to be immunostimulatory as the particles contain cell wall 
components such as (1 → 3)-β-D-glucan [200], high molecular weight 
antigens [196], mycotoxins [201], and allergens [201,202]. 
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2.7. Q7: What more should we know about this resuspension of dust and 
implications for exposure to carpet? 

A number of experimental and modeling studies have been con-
ducted to characterize human-associated particle resuspension from 
indoor surfaces. Despite this, many fundamental research questions 
remain on identifying the important factors that influence dust resus-
pension from carpets, how to improve resuspension models, and un-
derstanding associated inhalation exposures. 

2.7.1. How particles and carpet influence resuspension 
We need to better understand how the biological and chemical 

content of settled dust and resuspended dust vary with particle size. 
Particle size strongly impacts the adhesion force, resuspension rate/ 
fraction, mass emission rate, inhalation exposure, and deposition in the 
human respiratory system. Size-dependent processes can influence the 
redistribution of microorganisms and particle-bound chemical contam-
inants within an indoor space. Little is known with regard to the factors 
that affect changes in the size distribution of carpet dust over time, such 
as deposition, agglomeration, dissolution, hygroscopic growth at 
elevated RH, and partitioning of SVOCs. Additionally, we need to 
consider the sources of indoor particles because different sources will 
contain varying microbial communities. We also need to learn how 
particle adhesion and resuspension vary among the vast diversity of 
microorganisms found in carpet dust. There exists very limited empirical 
data on adhesion forces and resuspension fractions for bacteria and 
fungi in contact with different types of carpets [152]. Intrinsic properties 
of bacteria and fungi are expected to influence their adhesive in-
teractions with carpet fibers. Such properties include: bulk geometry 
and aerodynamic diameter; shape (e.g. cocci bacteria, elongated fungal 
spores); surface morphological features (such as pili along bacterial cell 
surfaces); the nano-scale surface roughness of the microorganism; and 
surface hydrophobicity, which can be species dependent [203–205]. 

We also do not yet understand how resuspension and exposure are 
impacted by variability among carpets of different fiber types, backing 
types, and construction differences (cut pile vs. loop, stitch rate, density, 
denier [fiber thickness], etc.). A better understanding of the differences 
in resuspension between carpet types and between different carpet types 
and hard surfaces for the same dust loading would be helpful in directing 
improved future design and for making recommendations for different 
indoor settings. However, quality assurance in these studies is of utmost 
importance. For instance, a pair of industry-funded resuspension studies 
that were not peer-reviewed did not include a statistical analysis or 
quality assurance measures of particle seeding/loading, particle 
embedment, or reproducibility of resuspension. The high variability in 
the results and lack of statistical comparison precludes making a 
definitive statement about the flooring effect for the samples tested or 
generalizing the findings from these studies [206,207]. 

It is also unclear how electrostatic effects influence particle adhesion 
and resuspension from carpets under variable RH. Electrostatics and 
moisture are two factors that are dynamically related to one another. 
The relative importance of capillary and electrostatic adhesion forces 
varies with RH [204]. Both forces can be influenced by the hydropho-
bicity and wettability of the particles and carpet fiber, the charge carried 
by the particle and carpet fiber, and contact electrification due to the 
repeated contact and separation of feet with the carpet. If the particle 
and carpet fiber carry charge of the same polarity, the particle may 
experience an electrostatic repulsive force from the carpet, thereby 
making the particle easier to detach. Future research is needed to better 
characterize the impact of electrostatic effects on the resuspension of 
biological and abiotic particles from carpets. 

2.7.2. Improved modeling of resuspension 
We need further research on how to model particle resuspension 

from carpet fibers. Current models perform reasonably well for evalu-
ating resuspension from hard flooring due to human walking, but these 

models do not directly apply to carpets. Research into the complex 
airflow patterns across and within porous carpet fiber media during 
footfalls must accompany these modeling efforts. Specifically, new 
experimental data on the friction velocity across the carpet fiber surface 
is needed to model aerodynamic lift and drag forces induced by different 
types of human-carpet contacts, such as infant crawling and adult 
walking. These models also need to consider the structure of dust de-
posits within carpets [173] and how the structure affects size-resolved 
resuspension fractions/rates and particle adhesion forces. 

It is also unclear how to link known resuspension mechanisms and 
models for individual particles to estimate resuspended particle size 
distributions in both the breathing zone of occupants and bulk air of the 
room. Also, in order to accurately estimate human exposure to resus-
pended dust from carpets, new research is needed to characterize the 
transport and dispersion of resuspended particles around the human 
body during different forms of locomotion, such as between crawling 
and walking [153]. Such research can be aided by computational fluid 
dynamics (CFD) simulations with Lagrangian particle tracking [208]. 

2.7.3. Research on the implications of resuspension for human exposure 
We need to better understand the contribution of carpet dust resus-

pension to daily-integrated inhalation exposures. It has yet to be 
determined what fraction of PM10 mass inhaled throughout the day can 
be directly attributed to floor dust resuspension. 

Finally, another important question is how the use of walk-off mats 
at the entrance of buildings affects particulate matter exposure. Gener-
ally, walk-off mats are used for aesthetic purposes to avoid visible soiling 
of other flooring materials, but there are some preliminary data that 
indicate that the enhanced deposition of carpet used in the entryway 
could help prevent contaminants from entering the remainder of the 
building [209]. Open questions include requirements for the length or 
material to effectively reduce contamination of the indoor environment. 
Shoe removal at the entrance of a home may also reduce the amount of 
soil and other materials tracked inside [126,210,211]. 

2.8. Q8: What standards, guidelines etc. currently exist for use of carpets 
in US buildings? 

Consensus standards are generally lacking on the recommended use 
of carpet indoors. The National Center for Healthy Housing, a national 
nonprofit organization in the US, produced a document in 2008 out-
lining facts about carpets and healthy homes [212]. Their recommen-
dations included: 1) avoid wall to wall carpet in rooms where 
individuals with asthma or allergies may be present; 2) avoid carpeting 
rooms that may be exposed to moisture; 3) air out the carpet before 
installation to limit exposure to VOCs; and 4) use a vacuum that has a 
High Efficiency Particulate Air (HEPA) filter and use it weekly or every 
other week [212]. The Institute of Medicine, in their 2000 report enti-
tled Clearing the Air, also recognizes carpet as a major reservoir for 
allergens [133]. A report compiled for the U.S. Environmental Protec-
tion Agency also recommends not installing wall-to-wall carpet close to 
toilets and bathing fixtures such as tubs and showers [213]. 

Carpet manufacturers and cleaners have also created voluntary 
standards. The Carpet and Rug Institute, the trade association for the 
North American carpet industry, developed the Green Label certification 
program in 1992, in which they tested and labeled carpets to let con-
sumers know which ones meet low emissions criteria [214]. This pro-
gram ended in 2009 and was replaced by the Green Label Plus™ (GLP) 
which includes testing requirements as outlined by the California 
Department of Public Health (California Section 01350 (version 1.1, 
followed by version 1.2 in 2017) [215]. To meet Green Label Plus™ 
Certification, the emission factors for various VOCs must be less than 
specified rates. For instance, formaldehyde emissions must be � 17 μg 
m� 2 h� 1 [216]. 

For cleaning, the Institute of Inspection Cleaning and Restoration 
Certification (IICRC) is a trade association of the cleaning industry. 
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Their ANSI/IICRC S100 is a standard for professional cleaning of textile 
floor coverings [217]. 

Indoor environmental quality standards are continuing to be devel-
oped and recognized for their importance. This is illustrated by ASHRAE 
Standard 62 on ventilation. This standard has addressed indoor air 
quality in all revisions since 1989 but was expanded in the 2019 revi-
sion, which greatly increases the level of detail on indoor environmental 
quality and, for the first time, considered a verification that the indoor 
air quality met the design intents. Standards related to sustainability 
concerns also exist and are described in Question 10. 

2.9. Q9: What might we consider when developing future standards/ 
guidelines/best practices etc.? 

Science-based policy, laws, and regulations are an integral aspect of 
improving and maintaining public health. These policies are based on 
evidence that helps to inform the balance between risks and benefits. 
Typically, we do not have a comprehensive understanding of risks and 
benefits of building materials prior to their introduction into commerce, 
construction, and housing rehabilitation. Both public health and hous-
ing affordability are important aspects of making recommendations for 
housing [218–220]. In some cases, additional knowledge of risks and 
benefits changed existing recommendations for building material use. 
For example, lead-based paint was permitted for decades as a material 
that promoted durability, a superior hiding and drying agent, and even 
improved sanitation. Additionally, formaldehyde was permitted in 
insulation and flooring as an agent that promoted greater durability and 
adhesion. These and other substances were studied and in some cases 
banned after the health risks were understood to outweigh any social 
and economic benefit [221,222]. 

Carpets are one aspect of an integrated building system that should 
be managed to encourage occupant health and safety. Therefore, new 
standards, guidance and best practices for carpet installation and 
maintenance should account for the variability of environments in 
which carpets exist and the multicomponent structure of carpet con-
sisting of the top layer of fiber, backing materials, and adhesives. Each 
component will have its own contribution to the chemistry and micro-
biology of the carpet system. Environments can include different 
building types, such as residential, school or office. Moisture manage-
ment is a fundamental part of all building design, construction, and 
operations, and may be particularly relevant for areas of carpet flooring. 

Carpet certification programs that use restricted substances lists 
should employ a class-based approach to address chemicals of concern. 
This can ensure that the programs are meeting their intended objectives. 
For instance, multiple existing standards restrict the presence of long 
chain perfluorinated chemicals, perfluorooctanoic acid (PFOA) and 
perfluorooctanesulfonic acid (PFOS), even though it was precursors to 
these chemicals that were used in carpet production. Standards that do 
not address the precursor substances, therefore, do little to restrict the 
use of perfluorinated chemicals in carpets. One solution to this problem 
is to restrict the broader class of PFAS. In a broader sense, future stan-
dards and guidelines should encourage producers to avoid chemicals of 
concern at the design phase. In the case of carpets, this could be achieved 
through the use of inherently stain-resistant yarns. 

Future evidence-based guidelines for flooring require that we un-
derstand the risks and benefits of using carpet under a variety of cir-
cumstances. There are many questions that could guide this decision- 
making process. Do the benefits of carpet (such as cushioning/preven-
tion of falls, comfort, aesthetics) outweigh the risks (such as exposure to 
chemicals and biological agents, resuspension of particles)? The answer 
to this question may differ depending on any given set of circumstances 
and the risks/benefits of alternative flooring materials. How do other 
housing systems, such as ventilation, moisture and pest control, and 
typical cleaning practices, interact with carpeted surfaces? What are the 
financial and health implications of increased use of carpets of varying 
types on building maintenance, capital improvements, and overall 

sustainability? Most importantly, how will improved knowledge affect 
both consumer behavior and corporate marketing strategies? Ulti-
mately, an improved understanding of the risks and benefits of different 
flooring materials will allow us to improve health, housing sustain-
ability, and overall societal and economic benefit. 

2.10. Q10: What types of sustainability practices are or may be 
implemented to reduce environmental impacts of the use of carpet in 
buildings? 

Sustainability encompasses economic, social and environmental 
concerns [223]. In the United States, over 4 billion pounds of carpet 
enter the solid water stream each year [224] with only 5% of carpet 
recycled in 2016 [225]. Enhancements to carpet sustainability practices 
could help to reduce the environmental impact of this material. Sus-
tainability of carpet should include consideration of proper mainte-
nance, such as vacuuming and use of cleaning agents, as well as disposal 
and replacement of the carpet due to normal wear or from damage by 
flood waters or smoke exposure. The broad nature of carpet types, 
building types and human sensitivity will require collaboration of gov-
ernment, industry and academia to formulate new standards, guidance 
and best practices for carpets that best integrate them into building 
system while allowing for proper maintenance and sustainability. 

2.10.1. Sustainability in industry 
Carpets can have implications not only to human health, but to the 

environment as a whole. One study found that the production of one 
0.09 m2 section of wool carpet requires 20.42 MJ of energy creating 
6.35 kg CO2-equivalents of emissions, while a nylon carpet uses 25.42 
MJ of energy and produces 4.80 kg CO2-e of emissions [10]. As such, all 
industries, including carpet manufacturers, are embracing 
sustainability-oriented innovation (SOI) as a way to achieve a long-term 
competitive advantage in the marketplace [226,227]. The discovery that 
environmental conservatism, resource efficiency, and organizational 
identity could be tied together to profitability has led companies to 
adopt green business models [223,228]. 

The business model of Interface Inc, a global market leader in the 
modular carpet tile business, has been used in case studies on sustain-
ability. This is to demonstrate that a firm which produced, per year, 10 
tons of solid waste, 605 million gallons of contaminated water, 704 tons 
of toxic gases, and 62,800 tons of CO2, could be radically changed with a 
“Mission Zero” strategy and still maintain market profitability [229]. 
This multi-year effort entailed revised processes, new nylon formula-
tions for ease in recycling, new material sourcing based on recycling of 
spent industrial fishing nets, an anaerobic digestion process from food 
waste to produce natural gas, and lease and recycling efforts [230–232]. 
Challenges remain in carpet recycling efforts [233]. 

Industry-, NGO-, and government-driven research, guidelines and 
standards related to indoor exposures and disposal of post-consumer 
waste can become a part of sustainability initiatives for carpet. This 
might include consideration of proper maintenance and cleaning (e.g., 
wet and dry vacuuming), as well as appropriate cleaning agents for 
existing materials, and development of advanced materials which pre-
clude the use of surface treatments, limit microbial growth under humid 
conditions, and avoid the introduction of chemicals with unintended 
adverse consequences. 

2.10.2. Recycling 
As carpet is made up of many different materials, some may be 

recovered, recycled, and used for new carpets or other applications 
[233,234]. Many manufacturers have carpet recycling programs. Carpet 
America Recovery Effort (CARE) is an organization that promotes and 
advances carpet recycling efforts [235,236]. 

The movement of carpet material through a recycling system is a 
labor-intensive process and usually requires activities be carried out 
manually [237]. Fibers can be reprocessed from carpet waste, but once 
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the fiber is removed from the backing, the remaining carpet waste is 
usually sent to a landfill [233]. Carpet disposed of in an incinerator may 
emit emissions such as per- and polyfluoroalkyl substances from 
stain-resistant coatings, though one study found only trace levels of PFCs 
from emissions due to the combustion of carpet [238]. 

Plastics can also be reprocessed separately from fibers and used for 
more carpets or molded to new plastics, though the resulting engineered 
plastics have poor mechanical properties [233]. Different polymers and 
fillers recycled from carpet have also been tested as feedstock materials 
for inclusion within structural composites for load-bearing applications, 
such as concrete [233,234]. Sustainable recycling of carpet will require 
screening and product design that prevents the reintroduction of 
harmful chemicals into the marketplace. Carpet design should eliminate 
these compounds that inhibit recycling efforts, such as phthalates [239]. 
In addition, the potential presence of PFAS, either in the carpet itself or 
subsequently applied to the carpet as a stain resistant coating, may affect 
the ability to recycle a given carpet [238]. 

2.10.3. Sustainable carpet materials 
Wool carpet fiber is biodegradable, although the carpet backing may 

not be [240]. A biodegradable carpet backing made of lignin-based 
adhesive was created to replace the normal latex backings [241]. 
Using wool carpet with the lignin-based backing in the future could 
allow the carpet to be completely biodegradable and limit waste. Mul-
tiple carpet manufacturers have also created carpet utilized from recy-
cled materials. For example, Mohawk Industries and Shaw Floors have 
each created carpets made of polyethylene terephthalate (PET) taken 
from recycled plastic bottles [242,243]. Several companies have also 
created a recycled carpet backing. Tarkett created a carpet tile backing, 
DESSO EcoBase, made of at least 75% recycled content which can be 
removed from the carpet and recycled at the end of its lifetime [244]. 

2.10.4. Sustainability standards 
In the first decade of this century, rating systems for sustainable 

buildings included an Indoor Air Quality (IAQ) component but were 
mostly known only to designers and owners of commercial buildings. In 
the past decade, multiple programs that address the impacts of IAQ have 
been created to provide information about products, their contents and 
components. Manufacturers and retailers are more often expected to 
provide such information to consumers. Some programs list forbidden 
materials, while other programs also estimate exposure under specified 
conditions. Transparency is increasingly becoming an expected feature 
of products used in the indoor environment. 

Heightened interest in green buildings and indoor environmental 
quality have led to the creation of several carpet sustainability standards 
that go beyond the VOC emissions requirement of CRI’s Green Label 
Plus™ program [214]. Products that comply with these standards tend 
to be more expensive.  

● NSF/ANSI 140 - 2015: Sustainability Assessment for Carpet. This 
commercial carpet standard was developed by a multi-stakeholder 
process and is employed by government agencies interested in 
environmentally preferable procurement. It incorporates the VOC 
emissions requirements of Green Label Plus™, requires ingredient 
disclosure down to 1%, prohibits persistent, bioaccumulative, and 
toxic (PBT) substances greater than 0.1% as well as long-chain PFAS, 
and provides additional credits for further minimizing total VOCs, 
carcinogenic VOCs, formaldehyde, and PBTs. The standard does not 
address carpet adhesives or padding [245,246]. 

● Cradle-to-Cradle Certified (C2C). C2C is a product certification stan-
dard that addresses multiple attributes of sustainability, including 
“Material Health.” Products that obtain the C2C Silver level must not 
contain greater than 1000 ppm of substances on the certifier’s 
restricted substances list, which includes heavy metals, flame re-
tardants, phthalates, two long-chain PFAS and other chemicals of 

concern. Carcinogens, mutagens, and reproductive toxicants are also 
prohibited above 100 ppm [247].  

● Oeko-Tex 100. The Oeko-Tex 100 standard bans or restricts certain 
chemicals in textiles, including carpet fibers. The list of restricted 
substances includes heavy metals, flame retardants, phthalates, 
certain long-chain PFAS and numerous other chemicals of concern 
[248]. 

● Living Building Challenge. LBC is a green building certification stan-
dard that requires products used in construction of a building to 
avoid certain chemicals. Like C2C and Oeko-Tex 100, LBC’s 
restricted substances list includes heavy metals and a number of 
SVOCs [249]. 

3. Discussion 

Carpet type, installation, and manufacturing has changed over the 
years, largely in response to consumer demands. Some chemicals have 
been removed from the manufacturing process through various pro-
grams (ex: Green Label Plus™), installation is moving towards modular 
products rather than large rolls, and the preferred fiber has changed 
from nylon to polyester carpet due to style preferences and cost. Sus-
tainability concerns have led to efforts to promote carpet recycling and 
more sustainable carpet materials. However, manufacturers have not 
seen a large interest from residential consumers to create recyclable 
carpet products, and consumer education may be required on this issue. 

Carpet maintenance should continue to be an important consider-
ation prior to any carpet installation given the impact of carpet dust on 
human exposure highlighted here. There is a need for proper cleaning 
practices to be more thoroughly described to consumers on both a res-
idential and commercial level. For example, it would be helpful to 
specify frequency and duration of carpet vacuuming required in order to 
meet a specific threshold of dust loading and/or resuspension from 
walking. These cleaning recommendations may differ widely under 
various circumstances due to variability including carpet type, traffic 
patterns, and commercial versus residential spaces. It is especially 
important to consider maintenance costs for low-income families [250], 
for whom high-quality vacuum cleaners may not be affordable [251, 
252]. Within the professional cleaning industry, proper personal pro-
tective equipment needs to be used following exposure guidelines, 
which is especially important for disaster situations or demolition 
events. 

3.1. The future of carpet 

Designing carpets that have the ability to improve indoor environ-
mental quality related to dust retention, resuspension, and microbial 
growth should be an environmental health goal. This goal also needs to 
involve consumer education on why these properties of carpet are 
important to the indoor environment and occupant health. Currently, 
consumers tend to assess the cleanliness of carpet through visual in-
spection, which may not be an accurate representation of cleanliness as 
some carpets are designed to appear clean even when they are not. 
Consumers need to understand the benefits of improvements in carpets 
for environmental health to warrant purchasing any products that may 
be developed. To provide this education, we also need a thorough un-
derstanding of how carpets impact indoor microbiology and indoor 
chemistry. 

Future carpet designs could conceivably utilize specific properties to 
reduce potentially harmful exposures. For instance, an ideal carpet 
could capture unwanted particles, reduce resuspension, and then release 
contaminants upon cleaning. Specific target values, such as a certain 
resuspension rate associated with health outcomes, could help in 
achieving these goals and could mimic the Green Label Plus™ program. 
Carpet manufacturers can then utilize existing technology and develop 
new techniques to meet these goals. 

While the flooring industry is changing in response to exposure 
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research, the extended lifetime of carpet makes it difficult to quickly 
enforce new guidelines. Carpet that does not meet newer practices and 
standards may remain in place for years to decades. Information must be 
accessible and understandable to consumers so that informed decisions 
can be made about sustainability and exposure issues. 

4. Conclusion 

Carpets are an integral part of our indoor environments. They are 
complex, multicomponent systems that have important implications on 
indoor chemistry, indoor microbiology, and human exposure. Eventu-
ally, we need to be able to use what we know about carpet to complete a 
risk/benefit analysis of carpet in a given circumstance, for instance by 
comparing the risk of increased microbial exposure from carpets versus 
the reduction of the risk of injury from falls. This risk/benefit analysis 
could also indicate situations where a carpet should be removed or 
cleaned. This analysis could potentially change with future development 
of carpets that promote environmental health by reducing resuspension 
and therefore occupant exposure. Ultimately, this information can lead 
to better carpet design and improved recommendations for flooring 
selection in the indoor environment to improve human health. 
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