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Abstract: This paper proposes an improved estimation approach for modelling RF power amplifiers (PAs) using the Saleh
behavioural model. The proposed approach is appropriate for solid-state PA technologies. The 1-dB compression point of the
PA is included in the estimation approach to improve the estimation of the Saleh coefficients. Thus, expressions are derived to
describe the relationship between the parameters of the Saleh model and the manufacturing specifications of PAs: gain (G),
third-order intercept point (IP3) and 1-dB compression point (P1dB). This method is a simple estimation of a memoryless
amplitude-to-amplitude (AM/AM) nonlinearity to benefit RF designers evaluating the PA distortion using the PA parameters:
P1dB, G, and IP3, before conducting experimental validation. The linearisation method using digital predistortion (DPD) is
derived as a function of G, IP3, and P1dB, for mitigating the AM/AM nonlinear distortion. Finally, the modelling and DPD
techniques are both evaluated using the experimental results of the GaAs PA.

1 Introduction
Behavioural modelling for power amplifiers (PAs) has become
popular in modern wireless communications (i.e. 4G/5G wireless
communications), as the PA circuit design and circuit modelling
have become very complicated [1–3]. In addition, PAs’ circuit
elements exhibit significant circuit parasitic effects, which are
affected by the specifications of wireless signals, such as wide
bandwidth and high signal amplitude. Therefore, operating PAs on
a wide bandwidth and with high peak-to-average power ratio
signals can increase distortion effects in communications [1, 2]. PA
behavioural models extensively vary in the aspect of modelling
accuracy and computational complexity. A trade-off between
modelling accuracy and complexity has become a topic of interest
in state-of-the-art model evaluation. In particular, improving the
estimation accuracy and reducing the model complexity have
become more important in modelling and implementing an
efficient digital predistortion. Thus, high accuracy in modelling
PAs often results in a better linearisation approach and a lower
implementation complexity in digital signal processing.

A model's number of coefficients and mathematical structure
are two main consideration aspects for controlling the trade-off
between the model accuracy and complexity. For instance, the
Taylor model is a simple mathematical function, but it consists of a
large number of coefficients and polynomial terms, resulting in a
high computational cost. The other empirical models, such as Cann
and Rapp models consist of fewer coefficients, but the
mathematical functions of these models are more complicated than
the Taylor model. The Saleh model is a popular behavioural
approach widely used for predicting nonlinear distortion and
modelling DPDs in wireless communications [4–11].

A least-squares (LS) method is the commonly used approach
for extracting the Saleh parameters. This paper proposes a new
approach for estimating the Saleh model using the technical design
parameters of solid-state PAs.

Manufacturing datasheets typically provide detailed technical
specifications for PAs, such as third-order intercept point (IP3) and
1-dB compression point (P1dB). An estimation approach of the
Saleh amplitude-to-amplitude (AM/AM) model using the
parameter IP3 was proposed in [12]; however, only the third-order
intermodulation distortion was considered in the model estimation
approach, which exhibits a lower model accuracy. Thus, this paper
proposes an accuracy improvement in calculating the Saleh

behavioural model by using the PA P1dB parameter in the
estimation method. Expressions are derived for calculating the
Saleh model's parameters using the design specifications of the PA:
gain (G), IP3, and P1dB. The proposed approach increases the
model accuracy and reduces the estimation complexity when
compared to the traditional LS method, which typically requires
inverting large size matrices. In addition, the LS method requires a
large data measurement of input and output signals. A simplified
linearisation model is also derived using a two-parameter DPD.
The parameters of the DPD model in this work are directly
calculated from the PA design specifications. This paper is
arranged as follows. Section 1 presents the estimation approach of
the PA using the Saleh behavioural model. Section 2 describes the
modelling approach of DPD. Section 3 discusses the experimental
set-up and modelling results. Finally, conclusions are outlined in
Section 4.

2 Saleh model estimation
The memoryless Saleh AM/AM model is an empirical
mathematical function as [13]

zS(r) = εr
1 + μr2 (1)

where r and zS denote the envelopes of the PA input and output
signals, respectively. The parameter ɛ is a small-signal gain, and
the parameter μ reflects the adjustment of the saturation and the
smoothness in the curvature of the Saleh AM/AM model. The
Taylor series of odd-order coefficients is considered in this
derivation, which is written as

zT(r) = a1r + a3r3 + a5r5 + ⋯ (2)

where r and zT are the envelopes of the PA input and output signals
respectively, and (a1, a3, a5, …) are the Taylor model coefficients.
For simplicity, a fifth-order truncated Taylor model is used in the
proposed approach. The same computation procedure can be
applied to the Taylor higher nonlinear order. However, the higher-
order intermodulation distortions are normally located away from
the fundamental frequency in the frequency domain, and they can
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be easily filtered out. The coefficients a1 and a3 are calculated,
respectively, as follows [14, 15]:

a1 = 10(G/20) (3)

a3 = −2
3 10(( − 2IP3 + 3G)/20) (4)

where G denotes the gain of the PA in dB, the IP3 is the output
third-order intercept point in dBW. The IP3 is defined as the output
power at which the amplitude of the third-order intermodulation
harmonic intercepts with the amplitude of the fundamental
frequency. The 1-dB compression point is an important measure of
the PA nonlinearity, which can specify the dynamic range of the
linear region (i.e. back-off region) in the AM/AM conversion. The
relationship between the fifth-order Taylor coefficients (a1, a3, a5)
and the PA amplitude at the 1-dB compression point r1dB  is given
by [16]

5
8

a5

a1
r1 dB

4 + 3
4

a3

a1
r1 dB

2 + 0.109 = 0 (5)

Equation (5) can be expressed as

a5 = −6a3

5r1 dB
2 − 0.174a1

r1 dB
4 (6)

The r1 dB
2  is calculated from the power parameter P1dB as

r1 dB
2 = 2R × 10(P1 dB/10) (7)

where R is the input resistance of the PA and P1dB is the input
power at the 1-dB compression point in dBW. Substituting (7) into
(6) for R = 1 results in

a5 = −3
5 a310( − P1 dB/10) − 0.043a110( − P1 dB/5) (8)

Substituting (3) and (4) into (8) results in the following expression
of the coefficient a5 as a function of G, IP3, and P1dB:

a5 = 0.4 × 10((3G/20) + ( − P1 dB/10) + ( − IP3/10)) − 0.043 × 10(G − 4P1 dB/20) (9)

PAs operate normally in the AM/AM conversion within the
amplitude (0, r1dB) to avoid high nonlinear effects and signal to
clip in the saturation region. Thus, the minimum squared errors
between the Saleh model and fifth-order Taylor model in the back-
off region is described as

minimising
(a1 a3 a5)

((zT(r) − zS(r))2)

subject to (0 ≤ r ≤ r1dB)
(10)

The variable r denotes the amplitude of the input signal, which is
specified from zero to the amplitude near the 1-dB compression
point as (0, 1/ 8μ) [12]. Therefore, the squared errors function
e2(r) is

e2(r) = a1r + a3r3 + a5r5 − εr
1 + μr2

r ∈ 0, 1/ 8μ

2

(11)

The sum of squared errors (SSE) represents the integral over the
defined amplitude range in (10). This can be written as

eT
2 = ∫

0

1/ 8μ
a1r + a3r3 + a5r5 − εr

1 + μr2

2

dr (12)

where eT
2  is the SSE. The integral computation of (12) is (see

(13)) . The minimum SSE is calculated such that the gradient of
(13) approaches zero

Min(eT
2 ) ⇒ ∇(eT

2 ) = 0 (14)

∇(eT
2 ) = ∂eT

2

∂a1
, ∂eT

2

∂a3
, ∂eT

2

∂a5
= (0, 0, 0) (15)

The following equations are obtained by substituting (13) into (15)
and calculating the gradient:

630 2a5 + 6160 2a3μ + 63, 360 2a1μ2

−218, 330, 112 2εμ2 + 908, 328, 960εμ2tan−1 1/2 2
/ 454, 164, 480μ5 μ = 0

(16)

63, 360 2a5μ2 + 709, 632 2a3μ3 + 9, 461, 760 2a1μ4

−22, 7082, 240 2εμ4 + 908, 328, 960εμ4tan−1 1/2 2
/ 454, 164, 480μ5 μ = 0

(17)

6160 2a5μ + 63, 360 2a3μ2 + 709, 632 2a1μ3

+217, 620, 480 2εμ3 − 908, 328, 960εμ3tan−1 1/2 2
/ 454, 164, 480μ5 μ = 0

(18)

The Taylor coefficients (a1, a3, a5), in terms of the Saleh
parameters ɛ and μ, are calculated by solving (16)–(18) for a1, a3,
and a5 as follows:

a1 = 93, 093ε − 193698.75ε 2tan−1 1/2 2 ≃ 0.99ε (19)

a3 = − 3, 432, 912εμ

+7, 142, 940 2εμtan−1 1/2 2 ≃ − 0.99εμ
(20)

a5 = 24550310.4εμ2

−51, 082, 416 2εμ2tan−1 1/2 2 ≃ 0.82εμ2 (21)

Equations (19)–(21) are nonlinear in terms of ɛ and μ. Thus,
logarithmic functions are applied on (19)–(21) for linear
transformation and re-formulating the equations in a matrix form as

1 0
1
1

1
2

log(ε)

log(μ)
=

log(1.01a1)
log( − 1.01a3)

log(1.21a5)
(22)

Equation (22) represents a logarithmic transformation between the
Saleh parameters and fifth-order Taylor coefficients. Substituting
(3), (4), and (9) into (22), results in a matrix equation as

eT
2 = 315 2a5

2 + 6160 2a3a5μ + 31680 2 a3
2 + 2a1a5 μ2

−227082240 2μ2(a5 + μ(a1μ − a3))ε − 50462720 2μ4ε2

+709632 2μ2 a1a3μ − a5ε + 4730880 2μ2 a1
2μ2 + 2(a5 − a3μ)ε

+227082240μ2ε(4a5 + μ( − 4a3 + μ(4a1 + ε)))
tan−1 1/2 2 /(454164480μ(11/2))

(13)
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1 0

1

1

1

2

log(ε)

log(μ)

=

G
20 + 0.004

−IP3

10 + 3G
20 − 0.17

log[0.48 × 10((3G/20) + ( − IP3/10) + ( − P1 dB/10))

−0.048 × 10((G/20) + ( − P1 dB/5))

(23)

The matrix notation of (23) is

K ⋅ S = C (24)

The (2 × 1) column vector S is a logarithmic operation of the Saleh
coefficients, the (3 × 1) column vector C includes the parameters of
the PA: G, IP3, and P1dB. K is a (3 × 2) matrix consisting of
constants. Using linear algebra on (24) to separate the matrices in
the sense of the LS, results in

S = (KTK)−1KTC (25)

The pseudo-inverse of K can be easily calculated
(see (26)) 
(see (27)) 
Finally, the Saleh coefficients in (27) are calculated by

simplifying the matrices’ computation in (26).

3 DPD model
DPD models are popular linearisation techniques in wireless
communications. DPD models are implemented with high accuracy
in the digital signal domain prior to baseband up-conversion, as
illustrated in Fig. 1. DPD models perform typical gain expansion in
AM/AM conversion to compensate for the gain compression
characteristics in RF PAs. The modelling of a DPD involves
basically calculating the mathematical inverse function of the PA's
behavioural model [17–19]. Thus, the inverse function of the Saleh
model is depicted in (28), which is calculated by solving a
quadratic equation of the Saleh model.

D[h] = ε − ε2 − 4μh2

2μh
(28)

where D[.] is the AM/AM model of the DPD, h is the DPD input
signal. ɛ and μ are the coefficients of the Saleh model. The DPD
output in (28) is real; therefore, the dynamic amplitude range of the
input signal is

0 < h < ε2

4μ
(29)

Finally, the proposed DPD model in (30) is calculated by
substituting the Saleh parameters from (27) into (28). The
presented DPD model in (30) based on the parameters of the PA
can achieve a lower estimation complexity and computational cost,
as compared to the mathematical inversion of the fifth-order Taylor
model (see (30)) .

The dynamic range of the proposed DPD input amplitude is
calculated by substituting the Saleh parameters from (27) into (29)
and simplifying the expression to obtain (see (31)) .

4 Experimental results
The experimental set-up for PA modelling and validation is shown
in Fig. 2. The measurement data was obtained using a GaAs PA
ZFL-1000LN from Mini-Circuit. The PA was excited by a two-
tone signal at a 900 MHz frequency with 50 kHz tone-spacing. The
two-tone signal was generated from a Keysight E4438C signal
generator. The output of the PA was acquired by a Tektronix RSA
6120A spectrum analyser.

Fig. 3 illustrates the PA intermodulation distortion using the
two-tone test. This test was used to calculate the IP3 of the PA [14,
15]. The measured parameters of the PA are G = 22.45 dB, IP3 = 
12.81 dBm, and output P1 dB = 2.25 dBm. Fig. 4 shows the results

log(ε)

log(μ)

=

5/6 −1/2

1/3 0

−1/6 1/2

T G
20 + 0.004

−IP3

10 + 3G
20 − 0.17

log 0.48 × 10((3G/20) + ( − IP3/10) + ( − P1 dB/10))

−0.048 × 10((G/20) + ( − P1 dB/5))

(26)

ε

μ

=
10((11G/120) + ( − 4/75)/( − IP3/30)) 0.48 × 10((3G/20) + ( − IP3/10) + ( − P1 dB/10)) − 0.048 × 10((G/20) + ( − P1 dB/5)) −1/6

10−(G + 0.008/40) 0.48 × 10((3G/20) + ( − IP3/10) + ( − P1 dB/10)) − 0.048 × 10((G/20) + ( − P1 dB/5)) 1/2 (27)

Fig. 1  Simplified block diagram of a wireless transmitter using DPD
 

D[h] =
1 − 1 − 4h2 × 10(( − 5G/24) + (IP3/15) + (157/1500)) 0.48 × 10((3G/20) + ( − IP3/10) + ( − P1 dB/10)) − 0.048 × 10((G/20) + ( − P1 dB/5)) 5/6

2h × 10(( − 7G/60) + (IP3/30) + (4/75)) 0.48 × 10((3G/20) + ( − IP3/10) + ( − P1 dB/10)) − 0.048 × 10((G/20) + ( − P1 dB/5)) 2/3 (30)

Fig. 2  Experimental architecture for model evaluation
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of the measured gain and 1-dB compression point for the PA as
obtained by sweeping the amplitude of the two-tone test. 

The amplitude conversion in the PA input and output of the
two-tone signal is illustrated in Fig. 5, as obtained from a two-tone
experiment. The estimated models of both the fifth-order Taylor
and Saleh models using the presented approach are also overlaid on
the same figure. This shows that the AM/AM conversions of the
Saleh model and fifth-order Taylor model match well with the
measurement results. The normalised mean-square error (NMSE)
and adjacent channel error power ratio (ACEPR) [20] were both
used for the PA model validation. The NMSE between the
measured and modelled output signals was calculated using

η = 10 × log10
∑n zmeas(n) − zmod(n) 2

∑n zmeas(n) 2 (32)

where η is NMSE in dB, zmeas(n) and zmod(n) are the measured and
modelled signals of the PA. The ACEPR is the model evaluation in
the frequency domain, which can be expressed as

ACEPR = 10 × log10
∫ f adj Zmeas( f ) − Zmod( f ) 2d f

∫ f chan Zmeas( f ) 2d f
(33)

where Zmeas( f ) and Zmod( f ) are the Fourier transform of the
measured and modelled signals, respectively. f adj and f chan are the
frequency bands of the adjacent channels and carrier channel,
respectively. Table 1 illustrates the model accuracy evaluation in
both the NMSE and ACEPR. 

The DPD model is typically evaluated in a frequency domain
using the adjacent channel power ratio (ACPR), which is defined
as

ACPR = 10 × log10
∫ f adj Z( f ) 2 d f
∫ f chan Z( f ) 2 d f

(34)

where Z( f ) is the Fourier transform of the PA baseband output
signal. The effects of the parameters IP3 and P1dB on the Saleh
parameters in (27) are illustrated in Fig. 6 and Fig. 7. The surface
plot in Fig. 6 shows a steady slope and increasing rate of the Saleh
parameter ɛ with respect to both IP3 and P1dB. The Saleh parameter
μ is very sensitive to the variation of both IP3 and P1dB, as shown
in Fig. 7, which illustrates a sharply increasing rate of the
computed surface versus the swept parameters IP3 and P1dB. This

is because the Saleh parameter μ normally adjusts the model's
nonlinear characteristics.

The estimation accuracy using this approach is illustrated in
Fig. 8 using the residual errors between the PA measured and
modelled amplitude in time domain. In addition, the model
evaluation in frequency domain using the power spectral density of
WCDMA signal is shown in Fig. 9. 

The DPD model used in the proposed approach was calculated
in MATLAB and evaluated using the same experiment based on
the WCDMA signal. Fig. 10 shows the output power spectral
density of the PA using two scenarios: PA without predistortion,
which shows spectrum regrowth due to the nonlinear
intermodulation distortion, and PA with predistortion, which shows
a spectrum improvement in the adjacent channels. Table 2

0 < h < 1
2

10((5G/48) + ( − IP3/30) + ( − 157/3000))

0.48 × 10((3G/20) + ( − IP3/10) + ( − P1 dB/10)) − 0.048 × 10((G/20) + ( − P1 dB/5)) 5/12 (31)

Fig. 3  Two-tone intermodulation distortion for the PA
 

Fig. 4  Measured gain compression curve for calculating the 1-dB
compression point

 

Fig. 5  Measured and modelled amplitude-to-amplitude results of the PA
 

Table 1 Accuracy evaluation in NMSE and ACEPR for the
Saleh estimation approaches
Estimation
approach

Model parameters NMSE, dB ACEPR, dB

scenario (1) G, IP3 −34.32 −42.52
scenario (2) G, IP3, P1 dB −35.85 −43.31
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illustrates the calculated ACPR for evaluating the linearisation
approach in the upper and lower adjacent channels. 

5 Conclusions
An approach for estimating the coefficients of the Saleh model was
presented in this paper. The calculated expressions define new
relationships between the parameters of the Saleh model and the
technical design parameters of RF PAs: gain, third-order intercept
point, and 1-dB compression point. The fifth-order Taylor model
was employed in this derivation to estimate the Saleh model by
minimising the objective squared error function between the two
behavioural models.

The accuracy of the proposed modelling approach was
evaluated using the NMSE and ACEPR figures-of-merit, between
the measured and modelled signals. An estimation approach of a
low-complexity DPD was also calculated in this paper as a
function of the PA's parameters. The DPD model was evaluated in
the frequency domain using ACPR. The DPD model achieved a
12.81/12.59 dBc improvement in the ACPR of the WCDMA
signal.
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Fig. 6  Computed the Saleh parameter ɛ versus the third-order intercept
point and 1-dB compression point

 

Fig. 7  Computed the Saleh parameter μ versus the third-order intercept
point and 1-dB compression point

 

Fig. 8  Absolute residual errors of the Saleh model and fifth-order Taylor
model, both with respect to the PA measured amplitude

 

Fig. 9  Measured and modelled output spectrum of the WCDMA signal for
the PA

 

Fig. 10  Power spectrum density for the PA, before and after DPD
 

Table 2 ACPR evaluation results for the PA
WCDMA signal Without linearisation,

dBc
With linearisation, dBc

upper band −18.42 −31.23
lower band −19.59 −32.12
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