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Abstract. Climate warming in the western United States is causing changes to the wildfire regime in
mixed-conifer forests. Rising temperatures, longer fire seasons, increased drought, as well as fire suppres-
sion and changes in land use, have led to greater and more severe wildfire activity, all contributing to
altered forest composition over the past century. To understand future interactions among climate, wild-
fire, and vegetation in a fire-prone landscape in the southern Blue Mountains of central Oregon, we used a
spatially explicit forest landscape model, LANDIS-II, to simulate forest and fire dynamics under current
management practices and two projected climate scenarios. The results suggest that wildfires will become
more frequent, more extensive, and more severe under projected climate than contemporary climate. Fur-
thermore, projected climate change generated a 20% increase in the number of extreme fire years (years
with at least 40,000 ha burned). This caused large shifts in tree species composition, characterized by a
decline in the sub-alpine species (Abies lasiocarpa, Picea engelmannii, Pinus albicaulis) and increases in lower-
elevation species (Pinus ponderosa, Abies grandis), resulting in forest homogenization across the elevational
gradient. This modeling study suggests that climate-driven increases in fire activity and severity will make
high-elevation species vulnerable to decline and will reduce landscape heterogeneity. These results under-
score the need for forest managers to actively consider climate change, altered fire regimes, and projected
declines in sub-alpine species in their long-term management plans.

Key words: central Oregon, USA; climate change; dry mixed-conifer forest; forest change; forest dynamics; forest
homogenization; ponderosa pine forest; species distributions; wildfire.
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INTRODUCTION

Climate change, land use, and land manage-
ment policy have altered the way fire interacts
with forests in the western United States. Ongo-
ing warming has increased the frequency and
size of wildfires (Westerling 2016, Keyser and
Westerling 2019). In addition to lengthening the

fire season, higher temperatures are responsible
for extensive fuel drying, making western
ecosystems more flammable during the fire sea-
son (Abatzoglou and Williams 2016). In dry for-
est types of the west, land use and fire
suppression policy have altered forest structure
and fuel loads, facilitating the spread of surface
fires into the canopy (Hagmann et al. 2014).
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Additional climate warming will likely lead to
increasing occurrence and size of wildfires in
western U.S. forests where adequate fuels exist
(Abatzoglou and Williams 2016), but there is
uncertainty around how climate-driven changes
in forest dynamics and wildfire activity will
affect future forest–wildfire relationships within
individual landscapes.

The effects of climate on forest dynamics and
wildfire have the potential to cause large shifts in
tree species distribution (Coops et al. 2005, Liang
et al. 2017, Mathys et al. 2017). Average tempera-
tures in the northwestern United States have
risen by about 1°C in the last century with
expected additional increases of 1.8–5.4°C by late
century (Mote et al. 2014). Projected changes in
precipitation are variable, but climate models
consistently project reduced summer precipita-
tion in the Pacific Northwest and a greater pro-
portion of winter precipitation falling as rain
instead of snow, leading to lower snowpack, ear-
lier snowmelt, and reduced summer streamflow
(Hamlet et al. 2007, Mote and Salath�e 2010, Mote
et al. 2014). These climatic factors influence indi-
vidual tree species growth, regeneration, compe-
tition, and mortality (Halofsky et al. 2013),
which influences the fuel–fire feedbacks on long-
term forest successional patterns (Hessburg et al.
2005).

Millions of hectares in the west were once cov-
ered by fire-adapted dry forests that experienced
low-severity, frequent (<35-yr return intervals)
fire regimes (Franklin and Johnson 2012).
Because of fire suppression and land use (e.g.,
forest and meadow conversion for cattle grazing
and agriculture, commercial timber harvest),
many dry forests have shifted from large-diame-
ter, widely spaced trees (interspersed with smal-
ler groups of dense, small-diameter trees) to
predominantly high-density forests composed of
small-diameter trees (Franklin and Johnson 2012,
Churchill et al. 2013, Merschel et al. 2014, John-
ston et al. 2018). This has increased the continu-
ity of horizontal and vertical fuels thereby
causing higher overstory mortality when wild-
fires do occur (Agee 1998, Agee and Skinner
2005). Fire suppression has also altered forest
composition by facilitating the establishment of
fire-intolerant tree species such as grand fir (Abies
grandis; Larson and Churchill 2012, Merschel
et al. 2014, Johnston et al. 2018).

Forest managers often focus on improving for-
est resilience by increasing structural and compo-
sitional heterogeneity. This is done by managing
for older/larger trees, reducing stand densities,
favoring tree species that are fire- and drought-
tolerant, and creating a patchy mosaic of forest
stands across the landscape (Agee and Skinner
2005, Franklin and Johnson 2012, Churchill et al.
2013). Yet, ongoing climate change adds uncer-
tainty to management decision making, which, if
ignored, may lead to undesirable management
outcomes. We sought to quantify the effects of
climate-driven changes in fire regimes and tree
species distributions under future climate–fire
conditions in the Southern Blue Mountains of
central Oregon. We hypothesized that projected
climate would increase fire probability, annual
area burned, and fire severity and that these
changes would influence the distribution of tree
species. Specifically, we hypothesized that spe-
cies sensitive to both fire and hotter/drier climate
conditions (e.g., Engelmann spruce, sub-alpine
fir) would be replaced over time by more fire
and climate-resilient species (e.g., ponderosa
pine).

METHODS

Study site
The study site is located in the southern part of

the Blue Mountains in central Oregon, USA
(Fig. 1), covering 938,786 ha, of which 71% is
forested, 4% is recently burned forest, and 25% is
grasslands and shrublands (LEMMA 2015). Ele-
vation ranges from 719–2744 m above sea level.
Climate in the Blue Mountains is continental

with cold, wet winters and hot, dry summers.
Mean January and June temperatures are �3°C
and 19.3°C, respectively (1981–2010; NOAA
2016, average of nine weather stations within the
study area) with average annual precipitation of
364 mm (1979–2014; Abatzoglou 2013), most of
which falls as snow (NOAA 2016). There is an
increase in average summer precipitation (47–
55 mm) and a corresponding decrease in average
summer temperatures (27–25°C) from the south-
west to the northeast of the study area (Fig. 2a).
Current forested communities (Fig. 2b) consist

primarily of ponderosa pine (Pinus ponderosa)
and dry mixed conifer, which is dominated by a
mix of ponderosa pine, Rocky Mountain
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Douglas-fir (Pseudotsuga menziesii var. glauca
hereafter referred to as Douglas-fir), grand fir
(Abies grandis), and western larch (Larix occiden-
talis; LEMMA 2015). Western juniper (Juniperus
occidentalis) is present in both forest types,
although it is not dominant. At higher elevations,
sub-alpine fir (Abies lasiocarpa), lodgepole pine
(Pinus contorta var. latifolia), and Engelmann
spruce (Picea engelmannii) are present, and both
whitebark pine (Pinus albicaulis) and western
white pine (Pinus monticola) are found in limited
populations. Riparian areas contain trembling
aspen (Populus tremuloides) as well as deciduous
shrub species (e.g., Vaccinium spp., Salix spp.).
Riparian areas also have encroaching young con-
ifers resulting from fire suppression, ungulate
browse, and a lowered water table (Dwire et al.
2017), as well as scattered relict conifers >120 yr
of age. Shrublands at both high and low eleva-
tions are dominated by sagebrush (Artemesia
spp.) and antelope bitterbrush (Purshia tridentata;
LEMMA 2015).

The historical fire regime was characterized
by mean fire return intervals ranging from 10.6

to 28.2 yr across both ponderosa pine-domi-
nated and moister mixed-conifer sites (Heyer-
dahl 1997, Johnston et al. 2016) with fire years
corresponding with hotter and drier than aver-
age years (Johnston et al. 2017). Dry summer
lightning storms are frequent and provide the
most common ignition source throughout the
southern Blue Mountains (D�ıaz-Avalos et al.
2001). Forest structure and demographics have
been shaped by a legacy of fire suppression and
commercial timber harvest (Heyerdahl and
Agee 1996) as well as current large-scale restora-
tion efforts and large wildfires (USDA FS 2015).
Active fire suppression continues on the land-
scape, limiting the number of wildfires. How-
ever, there continue to be an average of 1.6 fires
per year within the study area boundary and an
average of 9706 ha burned annually for the per-
iod 2000–2014 (MTBS 2016). To capture areas of
forest and the surrounding grass and shrub-
lands that provide continuous fuels for fire
spread, we set the geographic boundaries of the
study site to U.S. Highways 26 to the north and
20 to the south with a buffer to the east and

Fig. 1. The study site, indicated by a thick black line, is located in the region of the Malheur (green) and Wal-
lowa-Whitman (blue) National Forests in the southern Blue Mountains in Oregon, USA.
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west of the Malheur National Forest that ranges
from ~2–30 km. The boundary also encompasses
the southernmost portion of the Wallowa-Whit-
man National Forest that lies south of U.S.
Highway 26.

Overview of simulation model
We simulated changes in forest and fuel bed

characteristics over time with the forest land-
scape change model LANDIS-II (Scheller et al.
2007), which has been widely used to simulate

Fig. 2. Climate region (a) and forest type maps (b) of the study area. Five climate regions were determined by
a combination of summer (June, July, August) mean maximum daily temperature and mean precipitation. Pon-
derosa pine/dry mixed-conifer forest is dominated by ponderosa pine, moist mixed-conifer forest is dominated
by grand fir, and high-elevation forest is co-dominated by Engelmann spruce and sub-alpine fir.
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forest succession and interactions with fire, har-
vest, wind, and insects (Scheller et al. 2008,
Duveneck et al. 2014, Kretchun et al. 2016, Krof-
check et al. 2017, Loudermilk et al. 2017, Lucash
et al. 2017). LANDIS-II uses the life-history traits
of tree and shrub species, along with soil and cli-
mate data, to simulate succession and responses
to disturbances over time. Trees are simulated as
species-age cohorts, which represent all individ-
ual trees of each species as a single group within
an age range (e.g., for this study, trees were
grouped into 10-yr age cohorts). Each cell repre-
sents a 200 9 200 m (4 ha) site, in which all
forested vegetation and topographical conditions
are assumed to be homogeneous. Sites can be
inactive, such as in the case of open water or
rocky outcroppings. Some processes, such as
competition, growth, and mortality, are simu-
lated within a site, while others, like disturbance
and seed dispersal, are simulated both within
and between sites (Fig. 3). We used LANDIS-II
v6.2 with the Net Ecosystem Carbon and Nitro-
gen (NECN) succession extension v4.2 (Scheller
et al. 2011) to simulate forest growth and
dynamics. Net Ecosystem Carbon and Nitrogen
simulates aboveground and belowground C and
N pools and fluxes based on air temperature, soil
moisture, leaf area, and N availability at monthly
timesteps. Net Ecosystem Carbon and Nitrogen
derives daily weather from the Climate Library
(Scheller et al. 2011), including temperature, pre-
cipitation, wind speed, and wind direction. We
used the Biomass Output extension v.2.1 (Schel-
ler and Mladenoff 2004) to obtain total above-
ground biomass (AGB) and AGB of individual
species.

We used the Dynamic Fire and Fuels System
(DFFS) extension v4.0 (Sturtevant et al. 2009) to
simulate wildfire and interactions with climate
and fuels. This extension uses the same climate
and vegetation as NECN, which allows it to
dynamically change fuel beds based on vegeta-
tion (species and age cohorts) at the correspond-
ing timestep to direct fire spread and severity.
The Dynamic Fire and Fuels System integrates
landscape topography into fire behavior algo-
rithms via slope and aspect maps, and it outputs
fuel type and fire severity for each cell on the
landscape at each timestep. Fire ignitions are
attempted in randomly selected cells, and fire
occurrence is dependent on a probabilistic

function of the fuel categories present at ignition
sites. Fire event size is determined by wind speed
and direction on the day(s) of the fire event,
which, along with the fuel types in neighboring
cells, direct a fire’s spread. Fuel moisture condi-
tions, which are determined by fuel type, tem-
perature, and precipitation (and lagged weather
conditions for larger-than-fine fuels), affect the
fire’s rate of spread, which in turn affects fire
severity. Fire severity is a function of rate of
spread, the critical surface fire rate of spread (be-
yond which the fire travels to the crown), and
the fraction of the crown that is burned. Fraction
of crown burned is a function of crown base
height (user-defined for each fuel type) and fuel
moisture code (dependent on latitude/longitude,
elevation, and Julian date). Fire severity is mea-
sured as an index from 1 (low-severity surface
fire with 0% crown mortality) to 5 (high-severity
crown fire with 95% or greater crown mortality).
A fire event’s mortality is a result of the fire
severity, the user-defined species-specific fire tol-
erances, and the ages of the cohorts present at
the site. In multi-species and multi-cohort stands,
a greater proportion of less fire-tolerant species
cohorts and younger age cohorts are killed. More
information and equations for determining fire
ignition, spread, and severity can be found in the
extension’s user guide (Sturtevant et al. 2018).
To simulate forest management, we used the

Biomass Harvest extension v3.2 to harvest trees
(Gustafson et al. 2000). This extension allows
multiple prescriptions to be defined by tree spe-
cies-age cohorts and carried out on stands allo-
cated to management areas and prioritized by
economic or other criteria (e.g., fire sensitivity of
species present). Outputs include total and spe-
cies-level biomass harvested for each prescrip-
tion and in each management area at every
timestep.
Model inputs.—All model inputs are publicly

available at https://zenodo.org/badge/latestdoi/
105837630, and many parameters are found in
Appendix S1.
Landscape regions.—We used soil and weather

data to classify the landscape into 25 regions that
are assumed to each have homogeneous climate
and moisture conditions. We assigned soil avail-
able water to each cell using SSURGO soil data
(https://websoilsurvey.nrcs.usda.gov/) where they
were available; where they were not, we used
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SSURGO provisional data and Soil Resource
Inventory (SRI) data (J. Noller, C. Ringo, K. Ben-
nett, unpublished data) and reclassified cells into
five soil moisture classes using Natural (Jenks)
Breaks in ArcGIS 10.4.1. We obtained maximum
temperature and average precipitation for grow-
ing season months (June, July, and August) as 30-
yr normals (1980–2010; PRISM Climate Group
2015). We then classified five climate regions by

using Isocluster Unsupervised Classification
(ESRI 2018), within which we nested the soil
moisture regions to create the final regions. Cells
that share a region designation are not necessarily
contiguous.
Weather data.—For contemporary climate, we

used daily weather data retrieved from the USGS
Data Portal (https://cida.usgs.gov/gdp/) includ-
ing maximum and minimum temperatures (°C),

Fig. 3. Conceptual model and dynamic modeling design. Relationships among climate, forest structure, forest
composition and fuel beds, and fire regimes are complex, operating at multiple temporal and spatial scales and
with feedbacks. These inter-related factors are modeled in the LANDIS-II forest landscape model (FLM), which
integrates forest successional dynamics with management and disturbance events across space and time. Pro-
cesses occur within and across each 4-ha cell. The Net Ecosystem Carbon and Nitrogen Succession extension sim-
ulates complex biophysical above- and belowground processes.
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average precipitation (mm/d), daily average
wind speed (m/s; Maurer et al. 2002), and wind
direction (degrees clockwise from north; Abat-
zoglou 2013) for the period 1979–2010, using
area-weighted grid statistics for each of the five
climate regions.

For climate change scenarios, we used 1/8°
downscaled bias-corrected constructed analogs
V2 daily CMIP5 climate projections from ten cli-
mate models forced with representative concen-
tration pathway (RCP) 4.5 and ten climate
models forced with RCP 8.5 to represent the
range of climate projections for both moderate
and high emissions scenarios (USGS Geo Data
Portal https://cida.usgs.gov/gdp/; Blodgett et al.
2011). We selected the four climate models that
projected the least and most extreme change in
precipitation and maximum temperature from
2010 to 2100 (See Appendix S1: Fig. S1) for each
RCP and randomly selected an additional six cli-
mate models for each RCP to bracket the range
of potential future climate. By late century, these
projections include an increase in maximum
summer temperature of 2.12°C (RCP 4.5) to
5.25°C (RCP 8.5) and average summer precipita-
tion change ranging from �0.22 mm (RCP 4.5) to
+0.08 mm (RCP 8.5).

Vegetation.—To develop the initial vegetation
communities, we used vegetation data from the
Gradient Nearest Neighbor (GNN) maps devel-
oped by the Landscape Ecology, Modeling, Map-
ping and Analysis (LEMMA) group (forested
areas, Landsat imagery date 2012; https://le
mma.forestry.oregonstate.edu/; Ohmann and
Gregory 2002), and the GAP Analysis Program’s
Ecological Systems map (unforested areas, Land-
sat ETM+ imagery 1999–2001; https://gapanaly
sis.usgs.gov/gaplandcover/data/download/; USGS
2011). Of the 29 tree species in the GNN data, we
selected 11 species that were present on at least
0.4% of the study area (see Appendix S1:
Table S1). These tree species were grouped into
species-age cohorts in 10-yr bins. There were
4631 unique communities on the landscape, each
with up to 11 tree species in each 4-ha cell.

We assigned non-forest cells to 44 categories
from the GAPAnalysis Program’s Ecological Sys-
tems map and grouped them into five unique
non-forest categories based on similar vegetation
and fuel characteristics (Disturbed and Invaded
Grasslands; Perennial Grasslands; Sagebrush

Shrublands; Deciduous Shrublands [Not Flam-
mable]; and Deciduous Riparian Shrublands
[Flammable]) and one inactive category that was
not simulated (e.g., open water, bedrock, and
scree). Using NatureServe Explorer (NatureServe
2015), 45 shrub species that occur in the GAP-
identified ecosystem categories in the Blue
Mountain region were identified and reclassified
into functional groups based on whether they (1)
are nitrogen fixing, (2) resprout after fire, and (3)
are shade tolerant (see Appendix S1: Tables S2
and S3 for shrub types and shrub species). Non-
forested cells were assigned cohorts of these
shrub groups based on the combinations of indi-
vidual shrub species that occur in each non-forest
category. Shrubs were also included in forested
cells according to the GNN Understory inven-
tory data. Disturbed and Invaded Grasslands
and Perennial Grasslands were assigned invasive
and native grasses, respectively, in order to pro-
vide grass fuel types and allow fires to spread
through cells that do not contain either trees or
shrubs.

Model parameterization and validation
Forest succession.—We obtained model parame-

ters from the literature and available datasets
including the USDA Fire Effects Information Sys-
tem (Abrahamson; https://www.feis-crs.org/feis/),
USGS Vegetation Atlas of North America
(Thompson et al. 1999; https://pubs.usgs.gov/pp/
p1650-a/), the Northeastern Ecosystem Research
Cooperative’s Foliar Chemistry Database (NERC
2015; http://www.nercscience.org/), the National
Atmospheric Deposition Program (NADP 2015;
http://nadp.slh.wisc.edu/data/ntn/), the Oak
Ridge National Laboratory database (West 2014;
https://daac.ornl.gov/SOILS/guides/West_Soil_Carb
on.html), and from previous studies that utilized
LANDIS-II species parameterization (Louder-
milk et al. 2014, Lucash et al. 2014, Creutzburg
et al. 2016).
Net Ecosystem Carbon and Nitrogen v4.2

spins up to the start year of the simulation by
iterating succession at the number of timesteps
equal to the oldest cohort in each site allowing
comparison between simulated and observed
biomass. We validated growth and biomass by
comparing aboveground tree biomass after spin-
up with Forest Inventory Analysis (FIA) data
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(USDA FS 2013, Wilson et al. 2013). Simulated
total AGB ranged from 0 to 106 Mg/ha (median
of 60 Mg/ha, mean of 52 Mg/ha), while AGB esti-
mates from FIA data ranged from 0 to 236 Mg/
ha (median of 54 Mg/ha, mean of 53 Mg/ha)
showing that while the model did not simulate
the full range of variability in total biomass, it
sufficiently captured average biomass and ade-
quately reproduced tree growth. (See
Appendix S1: Fig. S2 for a boxplot comparison of
FIA and LANDIS-II total biomass.) We validated
each of the 11 modeled tree species by compar-
ing average species-level biomass, only in cells
where that species occurs, with GNN data for
that species. Out of the 11 tree species simulated,
nine achieved average biomass within 30% of
GNN (Fig. 4). Trembling aspen and mountain
mahogany (Cercocarpus ledifolius), which were
minor components of the landscape, were under-
estimated in our simulations.

Wildfire.—We developed fuel types to represent
15 unique combinations of tree species and ages,
as well as shrublands and grasslands, with indi-
vidual ignition probabilities and fire behavior
parameters. Fuel types and their type-specific
equations for fire rates of spread were modified
from the Canadian Fire Behavior and Prediction
System (Sturtevant et al. 2009). At each timestep,

LANDIS-II updates fuels to reflect changes in
forest composition and structure resulting from
previous disturbance (e.g., wildfires, manage-
ment) and from reproduction and age-related
mortality. We calibrated fire to annual area
burned (mean: 9706 ha, median: 615 ha, range:
0–81,010 ha, standard deviation: 24,481 ha) and
fire size (mean: 6933 ha with a range of 434–
56,484 ha) for the period 2000–2014 in the study
area (MTBS 2016, USDA Forest Service Blue
Mountains Fire History Polygons released 2016).
Multiple small fires with the same wildfire desig-
nation were considered one fire. We first cali-
brated fire sizes by limiting the maximum fire
size to achieve a distribution equivalent to the
recent historical period. We also reconstructed
fire duration, the time from ignition to the time
when the fire is completely out, as measured in
minutes. We then ran calibration simulations for
fire as duration-limited to allow for the possibil-
ity of larger than historical fires and greater
annual area burned, reflecting the influence of
dynamic vegetation and weather over time
(Sturtevant et al. 2009). The DFFS extension uses
log-normalized duration data to generate the dis-
tribution of fire durations, and this derived dura-
tion distribution was then used to calibrate
annual area burned, which also follows a log-
normal distribution. Three replicates of 50 yr
were run and averaged to validate the calibra-
tion, achieving a mean of 10,400 ha burned
annually with a range of 0–134,700 ha. (See
Appendix S1: Fig. S3 for fire duration-size cali-
bration.)

Forest management
The forested landscape of the study area is cur-

rently managed according to ownership. Harvest
on non-industrial private lands is focused on eco-
nomic returns, while harvest on publicly man-
aged lands, particularly those managed by the
U.S. Forest Service, is generally designed to meet
multiple objectives (e.g., to promote ecological
integrity, social well-being, and economic well-
being; USDA FS 2014). To reflect the current
management practices with forest dynamics and
fuel continuity on our landscape, we simulated
management, including commercial harvest, pre-
commercial thinning, and prescribed fire. (See
Appendix S1: Table S4 for descriptions of pre-
scriptions for each ownership and forest type.)

Fig. 4. Initial biomass (g/m2) at time zero compared
against Gradient Nearest Neighbor measures of bio-
mass (r2 = 0.97).
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We developed our treatment prescriptions
through a workshop with managers (USDA For-
est Service, Malheur National Forest Supervisor’s
Office) and expert consultation (Bureau of Land
Management, Oregon Department of Forestry) to
ensure that simulated management reflected on-
the-ground actions.

Scenarios
To isolate the effects of climate on vegetation

and fire, we held management constant for all
simulations. To quantify the effects of climate on
vegetation and fire, we simulated a 90-yr period
using contemporary and projected climate. For
the contemporary climate scenario, we assigned
each simulation year a random year of daily
weather data drawn from 1979 to 2010 from the
Gridded Observed Meteorological Data dataset
(Maurer et al. 2002). We replicated this process
ten times to create contemporary climate inputs
for ten replicate simulations. We also ran ten
replicate simulations using daily weather projec-
tions from the ten selected climate models for
both RCP 4.5 and 8.5 for a total of 30 simula-
tions.

Analysis
We compared annual area burned, fire sever-

ity, and AGB data among climate scenarios.
Annual area burned data followed a log-normal
distribution; therefore, we conducted analysis on
log-transformed data. Following Bartlett’s test for
homoscedasticity, we ran analysis of variance
(ANOVA) and Tukey’s honestly significant dif-
ference tests to differentiate means. To compare
changes in forest composition, we looked at bio-
mass density (Mg/ha of live biomass) and species
extent (proportion of the landscape) among sce-
narios. We calculated the change in biomass for
total biomass (all species) and for each individual
species between the start year and the end year
of simulations. We completed all model calibra-
tion and data analyses in RStudio 1.0.153 (RStu-
dio Team 2018) using R v3.4.1 (R Core Team
2016) and using the following packages: dplyr
(Wickham et al. 2011), ggplot2 (Wickham 2009),
plotrix (Lemon 2006), raster (Hijmans 2016),
rgdal (Bivand et al. 2017), and sqldf (Grothen-
dieck 2017). R scripts can be found on the online
repository (https://zenodo.org/badge/latestdoi/
105837630).

RESULTS

Wildfire
As expected, under current management prac-

tices, the probability of wildfire increased with
climate change. The mean probability that a sin-
gle cell would burn in any given year increased
from 0.007 under contemporary climate to 0.011
for RCP 4.5 and 0.012 for RCP 8.5. Higher proba-
bility of burning occurred in the northeastern
portion of the landscape in all scenarios, but
under both climate change scenarios, there was a
greater likelihood of fire across the landscape,
including the central and western portions
(Fig. 5).
Annual area burned also increased with increas-

ing temperatures, and as a result, the fire rota-
tion period decreased (contemporary = 150 yr,
RCP 4.5 = 94 yr, RCP 8.5 = 86 yr). Annual area
burned was significantly greater under the
higher emissions scenario than under contempo-
rary climate (P = 0.049; Fig. 6a), and although
temperature increases were greater under RCP
8.5, the warming associated with RCP 4.5 was
sufficient to cause a 59% increase in average
annual area burned. On average, 6272 ha burned
per year under contemporary conditions with a
range from 0 to 245,016 ha. Under projected cli-
mate, annual area burned averaged 9970 ha with
a range of 0 to 542,212 ha (RCP 4.5) and
10,873 ha with a range of 0 to 551,472 ha (RCP
8.5), more than double the most extreme extent
of wildfire in a single year under contemporary
climate. Additionally, 6% of simulated years
under both climate change scenarios were
extreme fire years, here defined as years with at
least 40,000-ha (100,000 acres) burned compared
with 3.9% of years under contemporary climate.
When considering the entire 90-yr simulation
period, cumulative area burned under climate
change was 59.0–73.3% greater than under con-
temporary climate (Fig. 6b).
Our hypothesis that fire severity would be

higher under projected climate than contempo-
rary climate was supported (P = 0.02), but sever-
ity did not differ between RCP 4.5 and 8.5. On
average under climate change, 20.4 (�7.4%)–
22.4% (�8.8%) of the forested landscape was
burned by a high-severity fire (severity of 4–5) at
least once over the simulation period, while
under contemporary climate, only 12.2% (�3.4%)
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was. Of the total area burned, the proportion that
burned at high severity was also greater under
climate change (Fig. 7). The highest severity fires
occurred most often in the northeastern portion
of the landscape in forests dominated by high-
elevation species (sub-alpine fir, whitebark pine,
Engelmann spruce).

Forest dynamics
Aboveground biomass increased over time

under all scenarios (Contemporary +23.3%, RCP

4.5 + 23.7%, RCP 8.5 + 23.5%), and there was no
difference in the change in total biomass among
scenarios (F = 0.016, P = 0.98; Fig. 8). However,
biomass and spatial distribution differed among
individual species and among contemporary and
projected climate scenarios. (See Appendix S1:
Fig. S4 and Table S5 for species-specific data.) Spe-
cies that tend to occupy warmer, drier sites (e.g.,
ponderosa pine and Douglas-fir) generally
increased in overall biomass, while species that
tend to occupy cooler, wetter sites (e.g., sub-alpine

Fig. 5. Maps of probability that each individual site will burn during any given year under contemporary
weather and climate change projections. Scale represents the probability of a grid cell burning over 90 yr and 10
replicates.

Fig. 6. Violin plot (a) shows annual area burned for the last 30 yr of simulations. Letters (a, b) indicate statisti-
cally significant groupings. Boxes encompass the 25th and 75th percentile, the horizontal line indicates the med-
ian, and whiskers extend to 1.5 times the interquartile range. Outliers are indicated by a circle. The width of the
violin indicates the proportion of years with annual area burned with values on the y-axis transformed by the
natural log. Annual area burned under the highest emissions scenarios was significantly higher than contempo-
rary simulations (P = 0.049) and was more variable across replicates. Panel (b) shows cumulative area burned
over time. The dark line indicates the mean across replicates, and the ribbon encompasses the 95% confidence
interval.
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fir and Engelmann spruce) generally decreased in
overall biomass. Landscape-level changes in bio-
mass over time were a function of two species-
specific responses to climate and wildfire: changes
in biomass density (Mg ha�1) in locations where
each species occurred at the start of simulations
(Fig. 9a) and changes in the spatial extent of a
species’ range across the landscape (Fig. 9b).
Changes in site-level biomass density were driven
by reproduction and wildfire mortality. Changes
in extent were largely driven by species-specific
establishment probabilities under projected cli-
mate. (See Appendix S1: Fig. S5 for species-speci-
fic establishment probabilities under each climate
scenario.)

Ponderosa pine responded favorably to climate
change and increased in both biomass density
(Fig. 9a) and extent (Fig. 9b) with the greatest
increases under projected climate. Grand fir bio-
mass density increased under projected climate
and extent under all scenarios, although its range
increase was greater under contemporary climate.
Douglas-fir’s overall increase in biomass was due
to an increase in extent, which was greatest under
contemporary climate; however, site-level density
declined under all scenarios. Conversely, western
juniper’s site-level density increased over time
while experiencing range contraction under all
scenarios, indicating that while some juniper

stands were removed by senescence and wildfire,
growth and reproduction in the stands that
remained outpaced mortality.
High-elevation species, including Engelmann

spruce, sub-alpine fir, and whitebark pine,
declined under all scenarios with the greatest
declines under RCP 8.5 for both spruce and fir.
Sub-alpine fir and Engelmann spruce density
declined by more than 75%. Under contempo-
rary climate and moderately hotter/drier condi-
tions, however, their range expanded slightly,
indicating that even though existing stands were
being replaced by other species or converted to
non-forest following senescence and disturbance,
seed dispersal and reproduction were still occur-
ring. Whitebark pine, which currently occupies
only a small portion of the landscape (0.4%),
declined in both site-level density and extent
under all scenarios. Density in stands where it
persisted decreased the least under projected cli-
mate’s warmer conditions, but its range con-
tracted to 0.03–0.07%, virtually disappearing
from the landscape.

DISCUSSION

This study illustrated the southern Blue Moun-
tain region’s vulnerability to projected changes in
climate and wildfire. Our forecasts of increased

Fig. 7. Proportion of mean area burned under each
fire severity class in forested areas under contempo-
rary weather and climate change, averaged across 10
replicates for each scenario.

Fig. 8. Average total biomass through time for each
climate scenario. Biomass is averaged across all vege-
tated 4-ha sites on the landscape. The dark line is the
mean biomass and the ribbon encompasses the 5th to
the 95th percentiles around the mean.
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Fig. 9. Mean percent change in biomass density averaged across sites where each species occurred (a) and
change in the proportion of the landscape where the species was present. (b) Boxplots show change from 2010 to
2100 for all modeled conifer species. Horizontal line indicates no change over the 90-yr simulation period. Boxes
represent the percent change within a species. The lower and upper hinges correspond to the 25th and 75th per-
centiles, whiskers extend to the largest value up to 1.5 times the interquartile range, and the horizontal line indi-
cates the median.
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wildfire frequency, extent, and severity indicate a
continuation of observed trends of increasing
wildfire activity in the western United States (Lit-
tell et al. 2009, Abatzoglou and Williams 2016,
Westerling 2016). Our results are also consistent
with previous studies that have predicted future
increased fire activity and severity (Spracklen
et al. 2009, Kitzberger et al. 2017) and increased
likelihood of large fires (Stavros et al. 2014) in
this region, notwithstanding the potential for
long-term fuel limitations (McKenzie and Littell
2017, Hurteau et al. 2019). Simulated vegetation
dynamics underscore the complexity of climate–
wildfire–forest relationships that will drive fuel
composition and structure as well as future forest
resilience to wildfires.

Fire can act as a catalyst for vegetation change,
especially when accompanied by changing cli-
mate (Liang et al. 2017). In our simulations, area
burned increased under projected climate for
both emission scenarios, and more so than simu-
lations under contemporary climate (Fig. 6). Our
fire simulations do not explicitly include sup-
pression efforts and, as a result, show increasing
area burned for the first four decades of the sim-
ulation under contemporary climate. This result
is also in part influenced by the fire deficit on this
landscape (Heyerdahl et al. 2001, Parks et al.
2015, Johnston et al. 2017), which has increased
fuel buildup and continuity and allows fires to
readily spread.

The increased area burned in our simulations
created an opportunity for species movement
across the landscape, which favored species that
are more fire and drought tolerant, particularly
under climate change (Fig. 9b). Of the species
that experienced range expansion, the change in
biomass density was variable (Fig. 9a). Pon-
derosa pine’s fire-adapted characteristics and
legacy of dominance on the study landscape
gave it a competitive advantage both in persis-
tence and in regeneration in the model. Expan-
sion of ponderosa pine at high elevations was
facilitated by fire-related mortality of sub-alpine
species, which provided additional light for
establishment. Higher temperatures favored
ponderosa pine regeneration over the sub-alpine
species, a result in line with previous research
based on physiological modeling (Coops et al.
2005). Rocky Mountain Douglas-fir is less fire tol-
erant than ponderosa pine (Kalabokidis and

Wakimoto 1992), which our simulations reflect
through a small loss in site-level biomass density.
However, its ability to establish remained high
over time, even under the hottest/driest climate
scenario, which allowed it to expand its range.
These results are consistent with previous
research that has shown an increase in more fire-
and drought-tolerant forest types in central Ore-
gon under projected climate (Halofsky et al.
2013); however, pre-defined potential vegetation
types do not allow for the interaction between
disturbance, climate, and life-history characteris-
tics to govern species movement across the land-
scape.
Grand fir biomass increased under all scenar-

ios, with regeneration making up 3–25% of total
simulated grand fir biomass under the highest
emissions scenario. Grand fir expansion is
explained in part by its plentiful seed supply, as
grand fir is the second-most common species in
the study landscape after ponderosa pine. Fur-
thermore, grand fir is also the most drought-tol-
erant fir in the Pacific Northwest (Howard and
Aleksoff 2000), and it can establish and survive
on a range of sites from moist to warm and mod-
erately dry (Lillybridge et al. 1995). In the Blue
Mountains, as well as in the neighboring Ochoco
and Cascade Mountains to the west, infilling of
late-seral species (grand fir and, to a lesser extent,
Douglas-fir) in formerly ponderosa pine-domi-
nated sites has been demonstrated beginning
around the 1880s, likely as a result of widespread
fire suppression (Merschel et al. 2014, Johnston
et al. 2018). Grand fir is moderately fire resistant
once it reaches maturity (Howard and Aleksoff
2000) and generally only dominates in areas
where fire has been excluded (Habeck and
Mutch 1973). Unexpectedly, at higher elevations
where simulated wildfires became more fre-
quent, larger, and of higher severity over time,
grand fir persisted. This occurred because there
was a shift from primarily fire-susceptible (sub-
alpine fir, whitebark pine, Engelmann spruce) to
primarily fire-resistant (ponderosa pine) species,
which facilitated grand fir establishment in the
understory and survival in fire-free and low-
severity fire patches. However, grand fir was less
successful at establishing under higher emissions
scenarios, especially after 2060, when tempera-
ture and moisture conditions were less favorable
and wildfires were larger, more severe, and more
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frequent. In the lower-elevation grasslands and
shrublands, our simulations also showed grand
fir establishment over time, although to a lesser
extent than at mid- and high elevation. High
establishment rates in the understory following
ponderosa pine migration into grasslands and
shrublands may facilitate encroachment of grand
fir in these areas, although frequent fires in these
low-lying areas would suppress grand fir sur-
vival.

Our study projected a decline in high-elevation
tree species concurrent with expansion of more
drought-tolerant species. These projections are
consistent with other modeling studies that pro-
jected losses in sub-alpine forests in eastern Ore-
gon under a range of climate change models
(Halofsky et al. 2013). Species distribution
research (Mathys et al. 2017) has also found
range constriction and increased water and tem-
perature stress under climate change for white-
bark pine, sub-alpine fir, and lodgepole pine.
While the latter study did not account for wild-
fire, they found that lodgepole pine distribution
is limited by both high summer temperatures
and soil water deficit from insufficient snowmelt.
This is consistent with our simulated reduction
of lodgepole pine biomass density and extent
under the higher temperatures and lower annual
precipitation of the high emission scenario (RCP
8.5). In some ecosystems, the increase in high-
severity wildfire under projected climate could
lead to successful post-fire lodgepole pine regen-
eration from seed stored in serotinous cones
(Anderson 2003). However, most lodgepole pines
in the study area produce non-serotinous cones
(Crowe and Clausnitzer 1997; thus, we simulated
non-serotinous lodgepole pine) and do not gain a
competitive advantage from the increased wild-
fire activity.

Whitebark pine establishment was historically
supported by stand-replacement patches within
mixed-severity fires and low-to-moderate-
severity fires that reduced competition from co-
occurring species (Perkins et al. 2016). However,
whitebark pine has already been largely replaced
by later-successional species following wide-
spread mortality from white pine blister rust
(USDA FS 2014) as well as decades of fire sup-
pression. Our simulations found whitebark pine
had a smaller reduction in site-level biomass
density relative to the other sub-alpine species

(Fig. 9a), reflecting its higher drought tolerance
and regeneration advantage as a pioneer species
following wildfire (Lillybridge et al. 1995). We
found little change in the proportion of the study
area occupied by whitebark pine due to its lim-
ited distribution at the start of the simulations
(Fig. 9b). In contrast, sub-alpine fir and Engel-
mann spruce had difficulty establishing under
the hottest/driest conditions of the RCP 8.5 sce-
nario, leading to decreased extent. Both species
lost site-level biomass density due to high mor-
tality during fire events and an inability to re-
establish following fire.

Forest homogenization
The decline of sub-alpine species, coupled with

encroachment of more climate-resilient species at
both high and low elevation, characterizes an
increase in forest homogenization. This loss of
heterogeneity can have detrimental effects. Land-
scapes containing multiple species and forest
types are more resilient to disturbance through
functional redundancy (Oliver 2015, van der Plas
2016), variable response to a disturbance among
forest patches (Hessburg et al. 2019), and vari-
able responses to different disturbances (e.g.,
windthrow, insect infestations, disease; Folke
et al. 2004). They also provide a variety of wild-
life habitats, natural resources, and recreation
environments that produce a broad range of
ecosystem services. In terms of wildfire, homoge-
nization through infilling of small-diameter trees
of a single species (e.g., grand fir) leads to contin-
uous fuels that propagate larger, higher-severity
fires than in forests with diverse composition
and structure (Stine 2014). In our study, the areas
most affected by forest homogenization were the
high-elevation forests and low-elevation grass-
lands, which provide critical and unique habitats
and increase patch diversity on the landscape.
While forest homogenization toward ponderosa
pine-dominated forest may lead to increased
landscape-level resilience, or ability to remain in
the same state following wildfire (Carpenter
et al. 2001), this reduction in heterogeneity on
the landscape is a tradeoff that may have other
far-reaching ecological and social effects.

Management implications
Our results may be useful for land managers

and local communities as they plan long-term
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forest management activities. Feedbacks between
climate change-driven losses in sub-alpine tree
species, infilling of young cohorts of ponderosa
pine, Douglas-fir, and grand fir, and increasing
wildfire activity on forested landscapes illustrate
the need to proactively consider priorities
around restoration and fuel management. Our
simulations held current management practices
constant through time, and management did not
keep pace with biomass accumulation at the
landscape scale in both dry pine and mixed-coni-
fer sites. Historical (pre-1900) wildfires on this
landscape burned at similar frequency in grand
fir-dominated sites as in drier ponderosa pine-
dominated sites (Johnston et al. 2017). In light of
the projected grand fir expansion, we suggest
that reducing fuel continuity through accelerated
rates of thinning and prescribed burning, espe-
cially in sites with young fire-prone grand fir
cohorts, is likely needed to reduce the extent and
severity of future fires. Reducing density of
young cohorts has been found to provide the
added benefit of making remaining trees more
resilient to drought (Voelker et al. 2019).

In addition to reducing landscape-level wild-
fire spread and severity, management actions
may be designed to allow fire in areas where it is
ecologically desirable such as areas where fuel
loads are low enough to facilitate low-severity
fire or in high-elevation locations where mixed-
severity fires may create patch diversity. Man-
agement actions may also be taken to prolong
the survival of species of interest. For instance,
managers could prioritize the survival of white-
bark pine by removing other competing species,
using controlled wildfires to create open patches,
and planting white pine blister rust-resistant
seedlings in burned (or cleared) areas as pro-
posed by Keane et al. (2012). In grasslands and
shrublands, young cohorts of ponderosa pine,
Douglas-fir, western juniper, and grand fir could
be harvested to restore historical composition
and structure.

Limitations
In this study, we simulated forest succession

(seed dispersal, reproduction, growth, competi-
tion, age-related mortality), current harvest
practices (mechanical tree removal and pre-
scribed fire), and wildfire. We did not include
wind disturbance or insect damage. However,

these omissions would not likely influence our
results under contemporary climate because the
model was calibrated to include typical mortal-
ity rates, inclusive of these disturbances, using
empirical data and expert consultation (M. Jen-
nings, personal communication). If there was an
increased susceptibility to insects or other patho-
gens under warmer conditions (Kurz et al. 2008,
Sturrock et al. 2011), biomass projections would
likely be lower and more variable than projected
in this study (Scheller et al. 2018). We also did
not project future CO2 concentration or the
effects of CO2 fertilization on tree growth. The
increasing CO2 concentration associated with
the different emission scenarios may increase
water use efficiency (Keenan et al. 2013), which
could facilitate improved drought tolerance.
This has potential implications for short-term
growth stimulation, though it could be curtailed
over the long-term by nitrogen availability
(Johnson et al. 2006, Thornton et al. 2009, Norby
et al. 2010).

CONCLUSIONS

General circulation models consistently project
hotter temperatures, a greater proportion of pre-
cipitation falling as rain rather than snow, earlier
snowmelt, and longer fire seasons in the western
United States (Scholze et al. 2006, Littell et al.
2009). This study, which looked at the effects of
those changes on wildfire activity and forest
dynamics in the intermountain west, found that
even with uncertainty about the magnitude of
future climatic trends, wildfire frequency, extent,
and severity will be more extreme than what this
landscape has experienced in the recent past. We
found that changes in forest composition will be
driven by changes in the fire regime, which are
driven by fuel loads and composition as well as
fuel moisture conditions. The greatest impacts of
climate change on this landscape occurred at the
higher elevations where fire- and high-tempera-
ture-sensitive species were replaced by the
migration of tree species typically found at lower
elevations. These findings underscore the critical
need for forest managers to actively consider cli-
mate change, shifting fire regimes, and social
and ecological priorities around managing for
high-elevation species in their long-term man-
agement plans.
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