
Portland State University Portland State University 

PDXScholar PDXScholar 

Systems Science Friday Noon Seminar Series Systems Science 

4-8-2011 

Higher-level Application of Adaptive Dynamic Higher-level Application of Adaptive Dynamic 

Programming/reinforcement Learning – A Next Programming/reinforcement Learning – A Next 

phase for Controls and System Identification? phase for Controls and System Identification? 

George G. Lendaris 
Portland State University, lendaris@sysc.pdx.edu 

Follow this and additional works at: https://pdxscholar.library.pdx.edu/systems_science_seminar_series 

 Part of the Theory and Algorithms Commons 

Let us know how access to this document benefits you. 

Recommended Citation Recommended Citation 
Lendaris, George G., "Higher-level Application of Adaptive Dynamic Programming/reinforcement Learning 
– A Next phase for Controls and System Identification?" (2011). Systems Science Friday Noon Seminar 
Series. 53. 
https://pdxscholar.library.pdx.edu/systems_science_seminar_series/53 

This Book is brought to you for free and open access. It has been accepted for inclusion in Systems Science Friday 
Noon Seminar Series by an authorized administrator of PDXScholar. For more information, please contact 
pdxscholar@pdx.edu. 

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/systems_science_seminar_series
https://pdxscholar.library.pdx.edu/sysc
https://pdxscholar.library.pdx.edu/systems_science_seminar_series?utm_source=pdxscholar.library.pdx.edu%2Fsystems_science_seminar_series%2F53&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=pdxscholar.library.pdx.edu%2Fsystems_science_seminar_series%2F53&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/
https://pdxscholar.library.pdx.edu/systems_science_seminar_series/53?utm_source=pdxscholar.library.pdx.edu%2Fsystems_science_seminar_series%2F53&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:pdxscholar@pdx.edu


NW Computational Intelligence Laboratory

1

Higher-Level Application of Adaptive Dynamic 
Programming/Reinforcement Learning –

a Next Phase for 
Controls and System Identification?

Keynote Talk at
2011 IEEE Symposium on Adaptive Dynamic Programming and 

Reinforcement Learning
Paris, April 12, 2011

George G. Lendaris  ©
NW Computational Intelligence Laboratory

Systems Science Graduate Program
Portland State University, Portland, OR



NW Computational Intelligence Laboratory

2

Order of presentation in this talk:

1. Controls
2. Adaptive Critic type of Reinforcement Learning
3. Dynamic Programming
4. Adaptive Dynamic Programming
5. Higher-Level Application of ADP (to controls)
6. to System Identification
7. Examples
8.   Concluding comments
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Order of presentation in this talk:

1. Controls    [  Human-like Controls ]
2. Adaptive Critic type of Reinforcement Learning
3. Dynamic Programming
4. Adaptive Dynamic Programming
5. Higher-Level Application of ADP (to controls)
6. to System Identification
7. Examples
8.   Concluding comments
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Basic Control Scenario:

Controller Plant

Problem statement: For a given plant in a given 
environment, design a controller to achieve 
stated design objectives / success criteria.

In context of this Symposium:                                      
Design of the controller is via Adaptive Dynamic 
Programming / Reinforcement Learning methods
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Consider task of Driving a Car:
Example to provide basic idea hooks for rest of talk:

(Assume experienced car driver)

I. Car attributes: 
1) driving own car;  2) driving friend’s car.

II. Environment: clear afternoon with 
1) dry pavement;     2) icy pavement. 

III. Performance criteria (wrt Task/Objectives):
1) Road race:   minimize time.
2) Elderly relative on excursion:   maximize comfort.

 Driver uses same base set of driving skills, but when  
change from #1 to #2, makes adjustments to “control 
law” and/or “decision logic”, from a collection 
previously acquired via EXPERIENCE.

[CONTEXT comprises I, II, & III.]
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Basic Control Scenario, cont.:

1 2 n1 2 mk1 2

1 2 3 p
Controller Repository

Plant 
(car)

Environment 
(road)

Criterion Function
(time vs. comfort)

Designer of controller needs following:
• Problem domain specifications, including all available a priori and current 

information about Plant and Environment
• Design objectives / Criteria for “success”  (Criterion Function)
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Basic Control Scenario, cont.:

1 2 n1 2 m

Criterion FunctionPlant Environment

k1 2

1 2 3 p
Controller Repository

Context

Designer of controller needs following:
• Problem domain specifications, including all available a priori and current 

information about Plant and Environment
• Design objectives / Criteria for “success”  (Criterion Function)
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Basic Control Scenario, cont.:

Designer of controller needs following:
• Problem domain specifications, including all available a priori and current 

information about Plant and Environment
• Design objectives / Criteria for “success”  (Criterion Function)

1 2 n1 2 m

Criterion FunctionPlant Environment

k1 2

1 2 3 p
Controller Repository

Context

Experience
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Human-Like Control
Imagine two different scenarios:

1) Reaching down to do a gentle hand-shake with a little girl.
2) Putting out your hand to protect your fall just after stumbling 

going up a stairway.

Take mental note of differences in:
a) SPEED of hand movement
b) FORCE of hand contact
c) ANGLES of elbow, wrist, palm, and fingers
d) Path of motions

All selected “optimally” – in some sense.
HOW DO WE DO IT?    
HOW ROOTED IN EXPERIENCE?
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OBSERVATION 1:
In the case of humans, the more knowledge / 

experience attained, the more improvement in 
effectiveness of performing new related tasks, and 
with enhanced speed of execution.

OBSERVATION 2:
In the case of AI rule-based systems, the more 

knowledge attained, the slower the processing.

CONCLUSION:
Need a different way to store and access 

experiential knowledge to approach human-level 
control capabilities.
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• Reinforcement Learning:
A type of learning by an agent where the environment 
provides qualitative feedback about its actions, and the 
agent’s next actions strive to maximize some type of long-
term “reward” [“reinforcement”, utility function].

• Adaptive Critic type of Reinforcement Learning:
A methodology for designing an (approximately) optimal 
controller for a given plant according to a stated criterion, via 
a reinforcement learning process.

• Implementation of Adaptive Critic method:
May be implemented using two learning agents (e.g., neural 
networks , Fuzzy systems):

---> one in role of controller, and
---> one in role of critic.
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Overview of Adaptive Critic approach:

13
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Order of presentation in this talk:

1. Controls  (including some historical aspects)
2. Adaptive Critic type of Reinforcement Learning
3. Dynamic Programming
4. Adaptive Dynamic Programming
5. Higher-Level Application of ADP (to controls)
6. to System Identification
7. Examples
8.   Concluding comments
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Dynamic Programming:

• User provides the Design Objectives / Criteria for “success”

through a Utility Function, U(R(t), u(t)) [local cost]

• Then, a new utility function is defined (Bellman Eqn.):

J(R(t), u(t)) = Σ   γk U(t + k)                   [cost-to-go]
k=0  ∞ 

• Objective is to minimize J(R(t), u(t))

Important side note:   J(t) = U(t) + γJ(t + 1)     [Bellman Recursion]

[value function]
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Order of presentation in this talk:

1. Controls  (including some historical aspects)
2. Adaptive Critic type of Reinforcement Learning
3. Dynamic Programming
4. Adaptive Dynamic Programming
5. Higher-Level Application of ADP (to controls)
6. to System Identification
7. Examples
8.   Concluding comments
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Revisit Overview of Adaptive Critic approach:

Information

Adaptation

Legend:

Plant

Critic

Controller Plant

Criterion Function for 
Plant Performance:
U(t) & J(t); objective:
minimize J(R(t),u(t))

Plant’s Environment

Plant

Employ DP 
formulation 
for Critic’s 
calculations.

Controller
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Controller
(Action)

Schematic for Adaptive Critic 
design of Controller:

Plant
Model

u(t) R(t+1)R(t)

Critic 
[at time (t)]

Critic
[at time (t+1)]

Utility
[U(t)]

Calculation A: Delta Weight 
for NN Controller training

Calculation B: “target” for 
NN Critic training

Dark Blue Boxes: analytic expressions.  Medium Blue Boxes: critical calculations.
White Boxes: learning agents (e.g., NN, Fuzzy, etc.). 
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Mathematical approach:
Perform gradient descent on a surface representing Bellman's 
J function constructed in NN controller’s weight space. 
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Employ Gradient Descent approach to develop “Delta Rule” for 
controller’s weights wij to minimize cost-to-go J.

Characterize Gradient Descent via               and employ the

chain rule of differentiation to evaluate it.

( )
( )ij

J t
w t
∂
∂

( 1) ( 1) ( 1) ( )
( 1) ( )ij ij

J t J t R t u t
w R t u t w

∂ + ∂ + ∂ + ∂
=

∂ ∂ + ∂ ∂

PLANT Critic
u(t) R(t+1)R(t) J(t+1)Controller

( )ijw

( 1)
( 1)

J t
R t
∂ +
∂ +

( 1)
( )

R t
u t

∂ +
∂

( )

ij

u t
w

∂
∂

Visualization aid:

Available to us: 
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Define Delta Rule for weights in controller NN (via Gradient Descent):

(1)

Invoke chain rule (2)

Invoke Bellman Recursion: J(t) = U(t) + γJ(t + 1) 
(3)

and (4)

Let              represent this term.

( )( )
( )i j

ij

J tw t lcoef
w t
∂

∆ = − ⋅
∂

1

( )( ) ( )
( ) ( )

a
k

ij k ijk

u tJ t J t
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( ) ( ) ( )k k k

J t U t J t
u t u t u t
∂ ∂ ∂ +

= +
∂ ∂ ∂

1
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Summarizing, it follows that Controller training is based on:

(5)

Similarly, Critic training is based on:

[Bellman Recursion & Chain Rule used in above.]
Plant model is needed to calculate partial derivatives for DHP …

1

( 1)( ) ( ) ( 1)
( ) ( ) ( 1) ( )

n
s

k k s ks

R tJ t U t J t
u t u t R t u t=

∂ +∂ ∂ ∂ +
= + ⋅

∂ ∂ ∂ + ∂∑

Via CRITIC Via Plant Model

1

( 1) ( 1) ( )( ) ( ) ( 1)
( ) ( ) ( 1) ( ) ( ) ( )

n
k k m

s s k s m sk m

R t R t u tJ t d Ut J t
R t d Rt R t R t u t R t=

 ∂ + ∂ + ∂∂ ∂ +
= + ⋅ + ⋅ ∂ ∂ + ∂ ∂ ∂ 

∑ ∑

Via Plant Model Via Controller
Via CRITIC
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Two train loops in Adaptive Critic method:

Controller training loop

Critic training loop

Adaptive Critic “innards”
Critic’s output

[To example ]
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Employ ADP for Design of Optimal Controller, an Example: 
Control Augmentation System for aircraft.
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Stick-x doublet: pilot’s stick signal vs. augmented signal
(the latter is sent to aircraft actuators)
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Augmentation commands for stick-y and pedal that the controller learned to
provide to make the induced a) pitch (stick-y) and b) yaw (pedal) responses
of LoFLYTE® match those of LoFLYTE®*
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Pilot stick-x doublet signal (arbitrary scale in the Figure), and roll-rate responses of 3 aircraft:
LoFLYTE® w/Unaugmented control, LoFLYTE® w/Augmented Control, and LoFLYTE®*.

(Note: Responses of latter two essentially coincide.)

Green:  Unaugmented Red: Augmented Control Blue: Reference 
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Roll-rate error (for above stick-x signal)
between LoFLYTE®* and LoFLYTE® w/Unaugmented Control, and 
between LoFLYTE®* and LoFLYTE® w/Augmented Control signals
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Pitch-rate error (for above stick-x signal) 
between LoFLYTE®* and LoFLYTE® w/Unaugmented Control, and 
between LoFLYTE®* and LoFLYTE® w/Augmented Control signals.
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Yaw-rate error (for above stick-x signal)
between LoFLYTE®* and LoFLYTE® w/Unaugmented Control, and
between LoFLYTE®* and LoFLYTE® w/Augmented Control signals.
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• Blue:  LoFLYTE® w/ Unaugmented control
• Red:   LoFLYTE® w/Augmented Control
• Black: LoFLYTE®* 

Roll
1
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Order of presentation in this talk:

1. Controls  (including some historical aspects)
2. Adaptive Critic type of Reinforcement Learning
3. Dynamic Programming
4. Adaptive Dynamic Programming
5. Higher-Level Application of ADP (to controls)
6. System Identification
7. Examples
8.   Concluding comments



NW Computational Intelligence Laboratory

Notion of “higher level”:
1. Entails augmenting our thinking about how we apply 

ADP in control applications.

2. We introduce into the process a meta-level observer 
(agent) to implement context monitoring.

3. Applies ADP to a different optimization problem: that of 
selecting a controller from the experience repository 
described earlier corresponding to discerned context. 

CONTEXT: Criterion FunctionEnvironmentPlant

34
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Notion of Higher Level, cont.

4.  If the Agent discerns that context has changed
(in one or more of its components), then it 

a. Determines what the context changed to, and
b. Selects corresponding controller from its  

“experience repository”.
Agent’s activities are said to occur at a “higher level” 
(from the one normally employed in application of ADP).

5.  Entails meta-level analysis of problem domain to determine 
the context variables for the agent to monitor.

6.  Set up agent to measure or calculate values for these 
context variables (CVs).

35
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NN Controller is Designed via ADP with auxiliary CV variables.

First step toward “higher level” approach: 
Agent provides NN with CV values during training via ADP.

Recall the 
Standard Use 
of ADP:

u(t)

NN Controller is Designed/Trained via ADP

R(t) NN Controller 

Context Variable(s) 
[Provided by Agent]

NN Controller 
“Contextually Aware
Controller”

[Results in multiple embedded R(t)  u(t) controllers.]
[In operation, CV serves as SELECTOR for the different Controllers.]
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Notion of Higher Level, cont.
Previously developed examples of Agent providing NN with CV 

values during training via ADP :

1.) Steering controller for autonomous four wheel vehicle 
to change lanes.
Employ standard state variable inputs plus context variable
CV = calculated estimate of current coefficient of friction 
between tire and road. Deals with patch of ice on road.

2.)    Control Augmentation System for aircraft.
Employ standard state variable inputs plus context 
variable CV = calculated estimate of current location of 
center of gravity. Deals with sudden change of c.g.

[Continue the previous aircraft example:]

37
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http://www.allstar.fiu.edu/aero/flight43.htm

Notion of Higher Level, cont.
Center of gravity issue:



NW Computational Intelligence Laboratory

39

NN Controller is Designed via ADP with auxiliary CV variables.

First step toward “higher level” approach: 
Agent provides NN with CV values during training via ADP.

Recall the 
Standard Use 
of ADP:

u(t)

NN Controller is Designed/Trained via ADP

R(t) NN Controller 

“Contextually Aware
Controller”

[Results in multiple embedded R(t)  u(t) controllers.]
[In operation, CV serves as SELECTOR for the different Controllers.]

NN Controller 

CV = Calculated
c.g. location
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• Blue:  LoFLYTE® w/ Unaugmented control
• Red:   LoFLYTE® w/Augmented Control
• Black: LoFLYTE®* 

Pitch 
w/ 
cg 
Shift
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NEXT step toward “higher level” approach:
At NWCIL, an expanded approach to experience is 
being addressed

- via a notion of experience repository, and

- via a novel concept for applying 
Reinforcement Learning / Adaptive Critics
vis-à-vis the experience repository 

 Higher-Level Learning Algorithm (HLLA). 
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Higher Level Learning Algorithm
KEY IDEA of HLLA:

Re-purpose the Reinforcement Learning method
(to a “higher level”) such that

1) instead of using it to design an optimal controller for a 
given task (the “standard” way to use ADP)

2) An already achieved collection of such solutions for a 
variety of related contexts is provided (as an experience 
repository), and

3) HLLA creates a strategy for optimally selecting a solution 
from the repository. 

 [Note two different uses of term optimal.]
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Recall item #4 in earlier list related to Notion of Higher Level: 
4.  If the Agent discerns that context has changed

(in one or more of its components), then it 
a. Determines what the context changed to, and
b. Selects corresponding controller from its  

“experience repository”.

For REMAINDER OF TALK:
Assume that of three Context components, Plant is allowed to change 
but the Environment and CF portions remain fixed.

IMPLIED NEXT TASK:
After Agent determines Context has changed, do 4a above – i.e., 
Perform System Identification to determine what plant has changed to.

THE HLLA APPROACH IS APPLICABLE TO THIS TASK TOO!

43
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Order of presentation in this talk:

1. Controls  (including some historical aspects)
2. Adaptive Critic type of Reinforcement Learning
3. Dynamic Programming
4. Adaptive Dynamic Programming
5. Higher-Level Application of ADP (to controls)
6. to System Identification
7. Examples
8.   Concluding comments
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For next slide, recall this definition of

45

1 2 n1 2 m

Criterion FunctionPLANT Environment

k1 2

1 2 3 p
Controller Repository

Context
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All OK

Off 
Nominal

Off
Nominal

All OK
CONTROLLER PLANT Criterion Function

Assessor (CFA)

Criterion Function 
Assessor (CFA)

Perform
(EB) SID

EB
UPDATED

PLANT MODEL

Perform Controller 
SELECTION (EB)

EB-UPDATED
CONTROLLER

MODEL

Run Simulation Install
Updated
Controller
Design

EB-UPDATED
PLANT MODEL

Agent Performs
Context MonitoringStarting Condition:

Overview of “higher level” approach for case of plant changes:

EB = Experience Based
SID = System Identification
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Characterize as a Self-Adjustable Model.

The Self-Adjustable Model monitors the 
input and output of the Plant to determine 
whether or not the Plant has changed and, 
if it has, what it has changed to.

The context discerner (CD) provides the 
parameter values p (‘selector input’) that 
instantiate a specific mapping in the 
parameterized-model box. After the CD has 
learned a family of mappings, it selects a 
specific mapping based on a measure of the 
difference between model’s output with that of 
the plant being observed. The CD is trained 
via an Adaptive-Critic-type of Approximate 
Dynamic Programming approach (not shown).

Overview of HLLA SysID process:

Repository
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Training the CDN to Discern Plant Status (SysID) Optimally:

Function On
Manifold At
Location CA

Function On
Manifold At
Location CD

CDN
(Context          

Discerning
Network)

D(t)=yA(t)-yD(t)

CD(t)

z-1

+
∆CD(t)

U(t)=(yA(t)-yD(t))2

Critic

CD(t)
λ(t)

Plant

Plant Model
REPOSITORY
(With Selection
Inputs CD)

u(t)

RA(t)
Discerning Metric

Utility

RD(t+1)

RA(t+1)
Used To 
Train Critic

(“Plant”)

Used To 
Train CDN

(“Controller”)

u(t)
RA(t)

ADP “Plant”: u(t) ∆CD(t)
R(t)            CD(t) 

R(t+1) = CD(t)+∆CD(t) 

ADP “template”
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Order of presentation in this talk:

1. Controls  (including some historical aspects)
2. Adaptive Critic type of Reinforcement Learning
3. Dynamic Programming
4. Adaptive Dynamic Programming
5. Higher-Level Application of ADP (to controls)
6. to System Identification
7. Examples
8.   Concluding comments
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HLLA Stage 1 (System Identification - SysID)
1. Experiment 1: Proof of Concept via Equation as Plant

a) Pole Cart Problem
b) CDN learned to discern mass and length from motion data

2. Experiment 2: Proof of Concept via NN as Plant
a) Multiple Context Variables
b) Demonstrated HLLA principle can work

3. Experiment 3: Refined Exploration via NN as Plant
a) Single adjustable parameter

i. Noise-Free & Perfect Model
ii. Noisy Measurement Data
iii. Imperfect Model

b) Two adjustable parameters
i. Noise-Free & Perfect Model
ii. Noisy Measurement Data

50



NW Computational Intelligence Laboratory

HLLA Stage 1 (System Identification - SysID)
Experiment 1: Proof of Concept via Equation as Plant

Assume:
1) A controller for nominal 

Pole-Cart is in operation.
2) Sudden change of pole 

mass and length.
3) For controller to “adapt”, needs to find present

condition of the Pole-Cart. 

4) CDN discerns mass and length of the pole directly
from motion data.

51
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HLLA Stage 1 (System Identification - SysID)
Experiment 1: Proof of Concept via Equation as Plant

Method:
1) Craft a “repository” of various versions of the Pole-

Cart plant.
2) Develop HLLA process to optimally select (with 

respect to efficiency and effectiveness of selection 
process) a model from the repository that matches 
current plant condition.

52
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HLLA Stage 1 (System Identification - SysID)
Experiment 1: Proof of Concept via Equation as Plant

Approach Taken
– Employed equations of motion of Pole-Cart plant to 

populate the “repository”. 
– Changes in plant are accomplished via changes in 

parameter values of the equations. 
– Only mass and length parameters are employed to 

index the plant models in the repository (for present 
experiments). 

53
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HLLA Stage 1 (System Identification - SysID)
Experiment 1: Proof of Concept via Equation as Plant

TOP: Context Discernment in response to context change (change in plant par. values) every 50th iteration.
BOTTOM:   Errors between pole-cart system state variable and models selected during discernment process.

54
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HLLA Stage 1 (System Identification - SysID)
Experiment 2: Proof of Concept via NN as Plant

Approach taken:
– Crafted a neural network of specified structure and 

element type to populate the “repository”. 
– Changes in plant accomplished via changes in 

selected weight values of NN.
– Weights of NN are here considered “parameters” of 

the plant.

[Overall HLLA process is same as described previously.]

55
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HLLA Stage 1 (System Identification - SysID)
Experiment 2: Proof of Concept via NN as Plant

TOP: Context Discernment in response to context change (change in plant par. values) every 100th iteration.
BOTTOM:   Errors between pole-cart system state variable and models selected during discernment process.

56
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HLLA Stage 1 (System Identification - SysID)
Experiment 3: Refined Exploration via NN as Plant
Explore effects on process of training CDN and 
performance of CDN under conditions of:

1) Single Adjustable Parameter
a) Noise-Free & Perfect Model of Plant 
b) Noisy Measurement Data
c) Imperfect Plant Model

2) Two Adjustable Parameters
a) Noise-Free & Perfect Model
b) Noisy Measurement Data
RESULTS SUBMITTED TO IJCNN-2011 

57



NW Computational Intelligence Laboratory

HLLA Stage 1 (System Identification - SysID), cont.
I show just one slide from those results, because they
provide a nice demonstration of the CDN’s accomplishment.

The “NN as plant” test bed allows a nice representation of 
the operation of  the CDN:

The set of fixed weights and structure of the NN implement 
a family of mappings (surfaces); the NN’s variable weights
serve to “index” the different surfaces.

Under guidance of the ADP process, the CDN learned to
index and optimally select the appropriate mapping based
on a (relatively) small observation window.

58
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HLLA Stage 1 (System Identification - SysID)
Experiment 3: Part 1: NN with Single Adjustable Parameter

Noise-Free, Perfect Model: The three indicated surfaces correspond to 
three selected bias values (parameters p*) for a family of mappings with 
a particular instantiation of the fixed weights.

59
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HLLA Stage 1 (System Identification - SysID)
General Results: HLLA Stage 1 (SysID):rea
• Results indicate that the HLLA approach can be robust and adaptive 

when performing system identification tasks.
• Demonstrations so far have been on plants represented by low-

order differential equations and/or on small neural networks.
• Latest experiments include addition of measurement noise, and 

(slightly) imperfect models.
• Agents using this approach have achieved: 

a) high levels of performance, even with rather large amounts of 
noise, and

b) reasonable performance when employing imperfect models.

60



NW Computational Intelligence Laboratory

HLLA Stage 1 (System Identification - SysID)
Four insights gained from these experiments: 
1. training process adopted can significantly affect 

subsequent performance;
2. characteristics of the plant/system to be identified 

affects the CD’s ability to identify it; 
3. performance may still be satisfactory for even large 

amounts of noise; and 
4. performance may be satisfactory with an imperfect 

model.

* These all correspond well with our intuition about 
human learning.

61
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Order of presentation in this talk:

1. Controls  (including some historical aspects)
2. Adaptive Critic type of Reinforcement Learning
3. Dynamic Programming
4. Adaptive Dynamic Programming
5. Higher-Level Application of ADP (to controls)
6. to System Identification
7. Examples
8.   Concluding comments
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• What about the question implied in title of paper: 
Might HLLA be a basis for a new phase in evolution of 
the controls field?

• The Controls Field has a rich history – through various 
phases each associated with identifiable tools, ideas, 
ways of thinking.

• I suggest HLLA is a new way of thinking about 
application of the ADP methods.

• So, ????

64

Concluding Comments:
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Concluding Comments, cont.
I am phasing down my academic career and entering a
new era of my life after this school year.
I firmly believe there are tremendous possibilities for this
line of research, and I urge those of you early or mid career 
to consider entering it.
Key ideas:
• EXPERIENCE (as memory of solutions)
• Notion of CONTEXT, with three components
• Context Discernment via meta-level agent
• Maintain explicit memory of previous solutions for 

variety of context instantiations (in a searchable 
repository)

65
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• HLLA is a “point of view” – on part of 
researcher/developer/implementer.

• Optimization problem turns into one of how to best 
select controller from experience repository.

• “Think higher”, in sense of crafting the optimization 
task in a way performable by ADP methods.

• Study the human exemplar for hints on “human-like” 
control. 

• HLLA method is applicable to the SysID problem too.
I suspect the mathematics of geometric topology will turn
out being useful in this research (manifolds, etc.).

While the above comments focus on the HLLA approach to
designing selecting strategies, I  believe the “Contextually 
Aware Controller” approach also has substantial promise. 

Concluding Comments, cont.:
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Questions?
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