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ABSTRACT Marine mammals use sound for communication and echolocation within their ecosystems.
The detection of these sounds is an important aspect of signal processing, such that we can estimate the spatial
position and direction of arrival of these mammals, and have an understanding of their ecology. Passive
acoustic monitoring (PAM) is widely used to understand marine mammal movement and vocal repertoire.
In PAM, datasets are accumulated over days, months or years. Thus, it is impracticable to manually analyse
the datasets because it is very large. This motivated the development of automated sound detection techniques
for marine mammals, which most often varies depending on the vocal duration, frequency range and call
type. In this paper, continuous recordings of Bryde’s whale (Balaenoptera edeni edeni) short pulse calls
(< 3.1s long) were collected on a weekly basis from December 2018 to April 2019 on sighting of the
individual in a single site in the endmost South-West of South Africa. The sound, previously not documented
off South Africa, was observed on visual confirmation of the presence of inshore Brydes’s whale. In addition,
the paper develops and analyses two automated template-based detection algorithms for this short pulse call,
employing dynamic time warping (DTW) and linear predictive coding (LPC) techniques. These proposed
template-based detectors are novel, as they have not being previously used in Bryde’s whale sound detection
in the literature. When applied to the continuous recordings of the short pulse calls, the DTW-based and
LPC-based detection algorithms obtained a sensitivity of 96.04% and 97.14% respectively for high signal-to-
noise ratio (about 10dB above the ambient sound). Otherwise, for low SNR, the DTW-based and LPC-based
detection algorithms obtained a sensitivity of 94.98% and 96.00% respectively. These detection algorithms
exhibit low computational time complexity and can be modified to analyse the movement of obscure but
vocal marine species instead of manual identification.

INDEX TERMS Bryde’s whale, DTW, LPC, PAM, pulse call, sound detection.

I. INTRODUCTION
Over the years, increased human marine activities such as
fishery and shipping have threatened the ecosystems of
marine mammals [1]–[5]. As a result of these anthropogenic
impacts, it is difficult to make informative decisions about
the movement and spatial position of marine species [3].
Also, since marine mammals spend most of their time below
water, it is difficult to visually observe and monitor these
marine mammals. Therefore, passive acoustic monitoring
(PAM) provides a valuable modality for study of marine
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mammal movement and distribution because (1) animals are
very vocal, and (2) sound propagates much further in water.
Besides, PAM can be used to collect datasets in outlying
areas over days, months or years. More importantly, PAM
is used in unfavourable weather conditions and it is suitable
for the tracking of highly mobile marine mammals such as
cetaceans [3], [6].

Bryde’s whales, also referred to as Eden’s whales are
species of the order Cetacea. They are currently grouped
as a single species called Balaenoptera edeni (B. edeni),
where two subspecies have been suggested: Balaenoptera
edeni edeni (B. e. edeni) and Balaenoptera edeni brydei
(B. e. brydei). The B. e. edeni is the small, coastal form
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of the B. edeni while B. e. brydei refers to the large, off-
shore form [6]–[9]. Several studies have been recently car-
ried out on the existence of Bryde’s whales from different
geographic location, such as the Gulf of Mexico [9]–[11],
Gulf of California [12], [13], Hauraki Gulf, New Zealand
[3], [14], [15], Eastern Tropical Pacific [6], [16], and South-
ern Brazil [17]–[20]. While some of these literatures have
described the population, spatial distribution, genetic and
phylogenetic features, attributed nomenclature, a few have
described the potential vocal repertoire of this marine species.
In [10] and [12], the vocal repertoire of Bryde’s whales in
the Gulf of Mexico and Gulf of California respectively are
described. It is observed that the recorded Bryde’s whale
calls from this region ranges from 50Hz to 1200Hz. How-
ever, aside describing the Bryde’s whale vocal repertoire,
the authors in [10] and [12], do not identifymethod(s) to auto-
matically detect these established calls as proposed in this
paper.

Historically, in the extreme South-West of South Africa,
Olsen [21] described a new species of whale. He named them
Bryde’s whale after Mr. Johan Bryde who was at that time
the Norwegian consul to South Africa. Although, in Olsen
[21], the Bryde’s whales harvested off South Africa was
labelled B. brydei, it was later revealed in Best [22] that there
are two allopatric forms of Bryde’s whale off South Africa.
Subsequently, it was affirmed that the B. brydei described
by Olsen [21] include characteristics from the inshore and
offshore forms of B. edeni [23]–[25]. Much recently, dif-
ferent literature have described the genetic and phyloge-
netic features of Bryde’s whales off South Africa [26], [27].
However, no work has previously documented the Brdye’s
whales calls off South Africa. In this paper, we analyse a
continuous recording of inshore Bryde’s whale (B. e. edeni)
short pulse calls collected on sighting of the individual in
a single site in the endmost South-West of South Africa.
This observed pulse call is previously undocumented for B.
e. edeni off South Africa and it can serve as an important
contribution to the study of Bryde’s whales vocal repertoire
off South Africa. In addition, we present the characteristic
of the recorded short pulse call. Similar to other studies
[10], the call is identified by observation and matching the
spectral and temporal features described in closely related
studies such as in [12], which was conducted in the Gulf of
California.

The datasets containing the B. e. edeni short pulse calls
was accumulated over months. Therefore, it is impracticable
to manually analyse all the collected datasets. In this regard,
the paper develops two automated template-based detection
algorithms for the short pulse call, employing dynamic time
warping (DTW) [28] and linear predictive coding (LPC)
[29], [30] techniques. Template-based detectors automati-
cally recognise unknown sound signals only when a set of
the signal is manually identified by an expert. This detection
technique is widely used for sound detection in digital signal
processing. As such, it has generally been adapted in ani-
mal vocalisation detection [31]–[33]. However, we emphasise

that the template-based detection techniques have not been
used in Brdye’s whales sound detection in the literature.
Thus, these proposed template-based algorithms for the
observed Brydes’s whale short pulse call is innovative and it
produces good detection accuracy (sensitivity). As discussed
in Section VI, when the proposed template-based detectors
are applied to the continuous recordings of the Bryde’s whale
short pulse calls, the DTW and LPC template-based detectors
obtained a sensitivity of 96.04% and 97.14% respectively for
high signal-to-noise ratio (snr), depending on an empirically
determined reliability value (0). On the other hand, the accu-
racy of the DTW and LPC template-based detectors decrease
to 94.98% and 96.00% respectively as the background noise
increase (the background noise is mostly due to bad weather
conditions during recordings).

The rest of the paper is structured as follows. Section II
describes the recording location, PAM set-up and the datasets
preprocessing phase. In Section III, we explain the charac-
teristics of the B. e. edeni short pulse call with standard
parameters. Section IV briefly explains the two signal pro-
cessing techniques used in the detection algorithms. The
developed template-based detection algorithms are discussed
in Section V. Section VI analyses the results of the detec-
tion algorithms for some specified parameters. The paper is
concluded in Section VII.

II. RECORDINGS AND PREPROCESSING
From December 2018 to April 2019, recordings were col-
lected on a weekly basis to study B. e. edeni calls in an
area of approximately 13km2, close to Gordon’s bay harbour,
False bay (34◦08’47.3’’S 18◦48’10.4’’E), South-West, South
Africa, as shown in Fig. 1. In Fig. 1a, we show the region
where the recordings is carried out in South Africa, while
Fig. 1b shows the exact locationwhere the recording is carried
including the coordinates. The depth at the recording site was
less than 30 meters. During these recordings, standard proto-
cols were strictly adhered to as sanctioned by the Department
of Environmental Affairs, South Africa. For instance, we kept
the required minimum distance on sighting of the individual.
The individual was identified each time it was sighted based
on its features as discussed in [26]. Most times, recordings
were carried out when a single individual is sighted. The
individual was mature, but for all cases we could not identify
the sex, whether it is a male or female. Note, some times,
more than one individuals were sighted but no recording
were carried out in such situations. The recordings is carried
out using dipping hydrophones. In the set-up, a hydrophone
(Aquarian Audio H2A-XLR Hydrophone with sensitivity
−180dB re: 1V/µPa and frequency range from 10Hz to
100kHz) was connected to a ZoomH1N recorder, operating at
96ksps at 24 bit resolution. Dataset was saved as raw samples
(.wav format) in order to preserve the phase and ampli-
tude data as best as possible. The deployment was to
dip the hydrophone from a sail boat (8m long with
inboard engine), under varying conditions. That is, sail-
ing (2-4kts/h), dropping the sails (less than 1kt/h),
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FIGURE 1. Recording site in the South-West of South Africa (SA) (Map
produced using http://www.arcgis.com.).

heaving to (less than 2kts/h). Before recordings, the engine
of the boat is shut off. Also, recordings were done
when the B. e. edeni was the only species sighted.
Thus, the raw samples were filtered with a 3rd order But-
terworth bandpass filter in MATLAB, R2018b. The filter
eliminate frequencies under 10Hz and above 8000Hz in order
to reduce background noise and the DC component. Fig. 2
depicts a filtered sample of the short pulse call (note, we pre-
sented the time series and spectrogram representation of the
pulse call before filtering using Sonic Visualiser in Fig. 3,
as the spectrogram of pulse calls can be more clearly viewed
in Fig. 3 in comparison to Fig. 2b). Similarly, the resulting
signal was analysed using MATLAB, where different char-
acteristics explaining the main component of the pulse calls
were extracted as discussed in Section III.

III. FEATURES OF THE BRYDE’S WHALE
SHORT PULSE CALL
During the five months recordings, one day per week of
approximately two hours recordings, about fifteen different
dataset were collected. A single recurrence call was observed
which correspond to virtually all the vocalisation on sighting
of the individual. Aside sighting theB. e. edeniwhale physical
features which corresponds to the descriptions in Penry et al
[26], we are optimistic that this call is produced by the

FIGURE 2. Representation of the B. e. edeni pulse call.

B. e. edeni. Firstly, Bryde’s whales were historically sighted
in this region by Olsen [21]. Also during recordings,
no other whales or calves were cited within radius of the
recording site. That is, no other cetaceans were in a radius
of about 3 nautical miles. Besides, the call has been observed
when we visually confirmed the presence of inshore Bryde’s
whales (that is, the Bryde’s whale were in radius of 1NM
when the sounds were observed). To further verify the call,
we carried out comparative tests when Bryde’s whales were
not in the vicinity, and this ‘‘short pulse calls’’ were not
observed. We assume that this call is probably used by the
B. e. edeni for hunting or navigation since there are no
other calves present during recordings. The pulse call has
a small relative amplitude at the start, which increases to a
maximum of 0.36 or minimum of −0.39, and decays rapidly
as the call ends. The relative amplitude range of the Bryde’s
whale pulse calls is much larger than other major sources of
biological noise in bays such as the snapping shrimp sound
that can be misrepresented as the Bryde’s whale sound. Also,
in the frequency domain, the minimum frequencies of the
pulse calls range between 0.07 ± 0.02kHz, while its highest
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TABLE 1. Characteristics of B. e. edeni short pulse call recorded in the South-West of South Africa.

FIGURE 3. Time series and spectrogram representation of the B. e. edeni
pulse call.

frequencies range between 1.0±0.2kHz. Other characteristic
describing the main component of the call is summarised
in Table 1, where Fmin and Fmax are the minimum and max-
imum frequencies of the call respectively, Amin and Amax are
the minimum and maximum relative amplitude respectively,
and Cd is the call duration in seconds (s).

IV. DETECTION TECHNIQUES
A. DYNAMIC TIME WARPING
DTW introduced in Itakura [28] has been widely used in
speech recognition, gesture recognition, medicine, data min-
ing, and manufacturing [34]. Likewise, this technique have
been used in marine mammal sound detection and classifica-
tion [32], [35]. The DTW algorithm is used to find the best
possible alignment between two time sequences, utilising
the temporal distortions between the sequences. The time
sequences are efficiently warped in a non-linear manner to
match each other. For example, given two time series S1
and S2, of length i and j respectively, the DTW algorithm
align the two time series by constructing an i × j matrix
as [28]:

D = min

D[i− 1, j− 1]
D[i− 1, j]
D[i, j− 1]

+ |S1i − S1j |, (1)

where each element in D represent the similarities between
the two time series S1 and S2 at positions i and j respectively.
In this paper, we define the difference between any two time

series signal as Dith,jth . That is, the value of the element at
the ith and jth position of the difference matrix D. For more
information on the DTW technique, refer to [28], [34], [36].

B. LINEAR PREDICTIVE CODING
LPC, often referred to as inverse filtering have been suc-
cessfully used for speech coding, synthesis and recognition.
In addition, it has been used to analyse short length of marine
mammal vocal signals [37]. The concept of LPC is to cal-
culate an approximated value of the current speech sample
ĝ(φ) by a linear combination of the preceding regenerated θ th

samples as [29], [30], [38]:

ĝ(φ) = α1g(φ − 1)+ α2g(φ − 2)+ · · · + αβg(φ − θ )

=

ψ∑
β,θ=1

αβg(φ − θ ), (2)

where αβ is the filter coefficients, ĝ(φ) is the approximated
value of g(φ), g(φ − θ ) is the preceding θ th samples, and
ψ = β th = θ th is the polynomial order or the number
of filter coefficients. These distinctive set of coefficients αβ
can be calculated by minimising the sum of the squared
differences between the linearly estimated samples and the
original samples as defined in (3) [29], [30], [38]:

ε(φ) = g(φ)− ĝ(φ) = g(φ)−
ψ∑

β,θ=1

αβg(φ − θ ), (3)

where ε(φ) is the error between g(φ) and ĝ(φ). The
coefficients αβ can be determined from (3) using the autocor-
relation method. Typically, the number of coefficients ranges
from 10-14. In this paper, we assume ψ = β th = θ th = 12.
This implies that the filter coefficients is a 12 order polyno-
mial defined as P(αβ ). See [29], [30] for more discussion on
the LPC technique.

V. TEMPLATE-BASED DETECTION ALGORITHMS
In developing the detectors, some of the short pulse calls were
manually identified from the datasets, recorded on different
days to form the templates. These short pulse calls are iden-
tified from a small section of the dataset while the remaining
section (the larger section) of the dataset is used to verify
the performance of the detector. Fig. 4 shows some of the
visually identified short pulse calls from two different days.
The identified short pulse calls from each day are termed
Template A (TA) and Template B (TB). Two templates were
chosen to verify the performance of the developed detection
algorithms for change in background noise. The recordings
where the samples in TA are identified has an average snr
of +3.84dB better in comparison to TB. Each of the tem-
plate contains k number of samples of l varying lengths.
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FIGURE 4. Signal waveform of B. e. edeni short pulse call.

From Table 1, observe that the short pulse call duration (Cd )
is between 1.2 − 3.1s. As such, the templates are specified
to contain samples of different length l in the range of the
Cd . Expressing each sample in the template as a row vector,
we define the template as:

TA||B =

[t1,1, t1,2, . . . t1,Cd ]
[t2,1, t2,2, . . . t1,Cd ]

...
...

...

[tk,1, tk,2, . . . tk,Cd ]

, (4)

where t is the sampling point, k is the number of sample
in a template. The value of k is chosen to be 18,
12 and 6 as shown in Section VI. The length of each
sample in the template varies depending on the value
of Cd . The template-based detectors is thus expatiated
as follows.

A. DTW-BASED
As mentioned, the DTW algorithm is used to find the simi-
larities between different time series waveform. Thus, in this
detection algorithm, the template TA||B with k number

of manually identified samples is warped with each other
using (1) to form a k × k dissimilarities template matrix
defined as:

T =


0 D1,2 . . . D1,k

D2,1 0 . . . D2,k
...

...
. . .

...

Dk,1 Dk,2 . . . 0

 , (5)

where each element in T is the Dith,jth similarities between
each sample in the template. Subsequently, the algorithm
finds the maximum entry of each column of T to form a 1×k
row vector defined as:

Tmax =
[
Tmax,1 Tmax,2 Tmax,3 . . . Tmax,k

]
. (6)

The detection process then starts by sliding through the
recordings RD with a defined window size (w) and overlap-
ping size (ov). Having known theCd ofmost of the short pulse
calls, we setw = 1s and ov = w/2. For each selected window,
the algorithm calculates a relative energy of the waveform as
defined as:

E =
Cd∑
1

(tCd )
2, (7)

where t is defined as above. Thus, a δ value is empirically set.
Matching the values of δ and E , any selected window with an
E lower than δ is not considered as the B. e. edeni pulse call.
This significantly reduces the computational time complexity
of the proposed detection algorithm. Onward, the similarities
between the window frame with E ≥ δ, and the k samples in
the template is computed using (1) to form a 1×k row vector
defined as:

Tw =
[
Tw1 Tw2 Tw3 . . . Twk

]
, (8)

where each element in Tw is the Dith,jth similarities between
the selected window frame and each sample in the template.
Thereafter, the algorithm finds a count score (γ ) by match-
ing (8) and (6). That is, γ is computed by counting the number
of times the value in each column of Tw is less or equal to
the value in the corresponding column of Tmax . The value
of γ is therefore compared with a predetermined reliability
value 0. This value of 0 determines the performance of the
proposed detector. A small value of0 increases the sensitivity
of the detector with the price of increased false positive rate
as is subsequently shown. With this in mind, a trade-off value
should be defined for 0 based on observations. Results are
presented in Section VI for different values of 0. Note, 0
ranges between 0 − 1. If γ ≥ b0 ∗ γ c, the window size w
is stored as the pulse call of the B. e. edeni whale.

From Table 1, the Cd ranges from 1.2-3.2s; thus, the algo-
rithm synchronises every stored w in the range of the Cd . The
algorithm achieves this by comparing the previously detected
pulse call with the current one as:

O = ewp − bwc , (9)
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where wp and wc is the previous and current detected pulse
call respectively, ewp is last sampling point of wp, and bwc
is the first sampling point of wc. If O 6= Nov − 1, wp is
not synchronised with wc (Nov is number of sampling points
in ov). Otherwise, it is synchronised as:

wc = wp + ov. (10)

The template-based DTW detector is hereby summarised in
algorithm 1.

Algorithm 1 DTW Detection Algorithm
Input: TA||B, k,RD, w, ov, δ, 0, wp = 0, ewp = 0
Output: wc as detected pulse call
1: build k × k T matrix based on (5)
2: find Tmax based on (6)
3: choose window size, w, ov: Slide throughRD
4: calculate E for each w
5: ∗ if E < δ

return to 3
6: else
7: compute Tw based on (8)
8: match Tmax and Tw to find γ
9:• if γ < b0*γ c

return to 3
10: else
11: store wc, and bwc
12: • end if
13:∗ end if
14: ◦ if ewp − bwc 6= Nov − 1
15: Detect wc
16: else
17: Detect wc = wp + ov
18: store wp = wc, ewp = bwc
19: ◦ end if

return to 3

Of note, in some cases, the duration of the manually iden-
tified calls and the automatic detected call differs in duration,
such that the automatically detected call is slightly longer.
In such situation, the automatic detected waveform duration
can be synchronised to approximately match the manually
identified waveform duration. The detected waveform can be
divided into smaller windows sw (sw � w). Subsequently,
(7) can be computed for these sw waveforms. The result can
be matched with a small δ (sδ) (sδ � δ), where sδ is deter-
mined empirically. Doing this, the two ends of the detected
waveform can be synchronised to fit an approximate of the
manually identified call duration.

B. LPC-BASED
The LPC-based detector is developed from the filter coeffi-
cients αβ produced using (3). The detector first find the roots
of the filter coefficient polynomial P(αβ ) to obtain a 1×ψ−1
row vector as:

R =
[
R1,R2,R3, . . . ,Rψ−1

]
, (11)

where the elements of R are often complex numbers. Note
that the roots of P(αβ ) can be derived using different math-
ematical methods as presented in Jia [39]. Therefore, R is
computed for the template TA||B to obtain a k×ψ−1 matrix
defined as:

RTA||B =


R1,1 R1,2 . . . R1,ψ−1
R2,1 R2,2 . . . R2,ψ−1
...

...
. . .

...

Rk,1 Rk,2 . . . Rk,ψ−1

 . (12)

Each entry inRTA||B is subsequently comparedwith a defined
complex reference point rp (rp = 0+ i0) to find the euclidean
distance. This forms a corresponding k × ψ − 1 distance
template matrix defined as:

T =


DR1,1 DR1,2 . . . DR1,ψ−1

DR2,1 DR2,2 . . . DR2,ψ−1
...

...
. . .

...

DRk,1 DRk,2 . . . DRk,ψ−1

 . (13)

Thus, the algorithm finds the maximum entry of each column
of T to form a 1×ψ-1 row vector defined as:

Tmax=
[
Tmax,1 Tmax,2 Tmax,3 . . . Tmax,ψ−1

]
. (14)

The detection process continues in a similar way as in the
DTW detector using the same set of parameters (w, ov, δ, 0).
However, (8) used in the DTW detector is computed in this
case by comparing the roots of the selected sample of window
w to rp. In this way, we obtain a 1 × ψ − 1 distance sample
row vector defined as:

Tw =
[
Tw1 Tw2 Tw3 . . . Twψ−1

]
. (15)

The template-based LPC detector is summarised in
Algorithm 2.

Algorithm 2 LPC Detection Algorithm
Input: TA||B, k,RD, w, ov, δ, 0, wp = 0, ewp = 0, rp, ψ
Output: wc as detected pulse call
1: computeR using (2), (3) and (11)
2: computeRTA||B
3: Build k × ψ − 1 T matrix based on rp
4: find Tmax based on (14)
5: similar process as in Algorithm 1, steps 3-18

VI. TEST RESULTS AND DISCUSSION
In this section, the proposed template-based detectors were
applied to recognise continuous recordings of the short pulse
calls. In the results presented, we verified the performance
of the detectors for different values of k . The reliability 0 is
also a factor we used in the result comparisons. In addition,
we evaluate the quality of detection algorithms by evaluating
the detection sensitivities S, false positive rates Fp and failure
rates F of both methods as defined in (16) [40]:

S =
η

η + ρ
, Fp =

τ

η + τ
and F = 1− S, (16)
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TABLE 2. Detectors performance as a function of k : TA, 0 =
4
6 .

TABLE 3. Detectors performance as a function of k : TB , 0 =
4
6 .

TABLE 4. Detectors performance as a function of k : TA, 0 =
3
6 .

where η is the number of times the manually detected short
pulse call matches the output of the automatic detectors, ρ
is the number of times the proposed detectors missed the
manually detected pulse calls, and τ is the number of times
the proposed detectors wrongly recognised a signal as the
pulse call. In all cases, a high value of S is desirable to
rate the accuracy of any sound detection technique. This in
turns indicate a small value of F as shown in (16). More
so, the smaller the value of Fp, the more dependable is the
detection algorithm.

As earlier mentioned, we verified the performance of
the detectors for varying weather conditions (background
noise). Template A (TA) comprises of less noisy samples
while TA contain samples with more background noise.
Table 2-7, shows the performance of the detectors as a
function of k for different empirically selected values of 0.
In Table 2 and 3, a 0 = 4

6 was used in both detection
algorithms. Firstly, as k increases, the performance of the
detectors improve linearly. The performance of the detectors
for the two templates differ with TA (Table 2) obtaining a
superior performance in comparison to TB (Table 3). This
implies that the lower the noise in the identified samples
used in the template, the better the performance of the detec-
tors. Filtering can be a better way of reducing the noise as
done during preprocessing but it cannot eliminate all noise
components. Moreover, as shown in Table 2 and 3, the LPC-
based detectors is amore robust recogniser as compared to the
DTW-based detector as it offers better performance in terms
of S, Fp and F .

In Table 4 and 5, the value of 0 (0 = 3
6 ) was reduced

in both detection algorithms. As shown, the S of the algo-
rithms increase with corresponding reduction inF . However,
Fp increase with a reduction in the value of 0. Likewise
in Table 6 and 7, as0 (0 = 2

6 ) reduces further, theS increases
while Fp also increase in both algorithms. An increase

TABLE 5. Detectors performance as a function of k : TB , 0 =
3
6 .

TABLE 6. Detectors performance as a function of k : TA, 0 =
2
6 .

TABLE 7. Detectors performance as a function of k : TB , 0 =
2
6 .

in Fp implies that the value of τ will increase as a result of
a decrease in 0 (that is, 0 ∝ 1

τ
). Although η also increase

as the value of 0 decreases, this increase is not as significant
in comparison to the increase in the false positive (τ ) calls
detected. In real time, the false positive rate Fp of the detector
must be as low as possible while maintaining a high level
of detection accuracy (sensitivity). This means that there is
a trade-off between S and Fp in empirically determining
the value of 0. Thus, in real time, 0 should be chosen
depending on application requirements. Summarily, irrespec-
tive of the value of 0, TA (Table 2, 4 and 6) performs better
than TB (Table 3, 5 and 7) respectively, and the LPC-based
detector offered superior performance in comparison to the
DTW-based detector. Both detection algorithms exhibit low
computational time complexity of order O(RD) and can be
used in real time to analyse the movement of obscure but
vocal marine species instead of using traditional methods.
In addition, the developed detectors can bemodified to recog-
nise different marinemammal sounds, where parameters such
as w, ov, δ, and 0 can be selected based on observation of the
sound waveforms and application requirements.

VII. CONCLUSION
The paper identified a short pulse call of a B. e. edeni
whale off South-West South Africa. The behavioural patterns
of the B. e. edeni whale is quite difficult to obtain. Thus,
the recognition of this call is a noteworthy contribution to the
knowledge of this species off South Africa and the world at
large. In addition, two template-based detection algorithms
were developed for this identified short pulse call, employing
DTW and LPC techniques. Both algorithms were shown to
demonstrate high sensitivity with reduced false positive rate.
But, the LPC-based detector is a more robust recogniser as
compared to the DTW-based detector. Besides, the developed
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detection algorithms can be used in real time vocalisation
detection because they both offer low computational time
complexity. Moreover, the algorithms can be modified to
analyse the movement of different obscure but vocal marine
species instead of manual identification.
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