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Abstract: The ADAMTS5 metzincin, a secreted zinc-dependent metalloproteinase, modulates the
extracellular matrix (ECM) during limb morphogenesis and other developmental processes. Here, the
role of ADAMTS5 was investigated by knockdown of zebrafish adamts5 during embryogenesis.
This revealed impaired Sonic Hedgehog (Shh) signaling during somite patterning and early
myogenesis. Notably, synergistic regulation of myod expression by ADAMTS5 and Shh during
somite differentiation was observed. These roles were not dependent upon the catalytic activity of
ADAMTS5. These data identify a non-enzymatic function for ADAMTS5 in regulating an important
cell signaling pathway that impacts on muscle development, with implications for musculoskeletal
diseases in which ADAMTS5 and Shh have been associated.
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1. Introduction

The A Disintegrin-like and Metalloproteinase domain with Thrombospondin-1 motifs (ADAMTS)
metalloproteinases have important functions during developmental morphogenesis and are also
implicated in chronic disease. The proteoglycanase subfamily of ADAMTS1, 4, 5, 8, 9, 15 and
20 have broad functions, many attributed to their ability to remodel extracellular matrix (ECM)
components, such as the chondroitin sulphate proteoglycans versican and aggrecan. For example,
Adamts20 deficient bt/bt mice have defects in melanoblast survival [1] and Adamts9 haplo-insufficient
mice on an Adamts20 deficient (bt/bt) background present with a secondary cleft palate [2], in each
case associated with reduced versican proteolysis. Furthermore, ADAMTS1 has been implicated in
promoting atherosclerosis [3] and ADAMTS15 acts as a tumor suppressor in breast carcinoma [4],
potentially through proteoglycan proteolysis. However, non-enzymatic roles for several ADAMTS
family members have been described [5–7].

ADAMTS5 has been implicated in classic morphogenesis during development as well as in
chronic diseases such as arthritis and atherosclerosis. For example, combinatorial knockout of Adamts5,
Adamts9 and Adamts20 in mice prevented generation of bioactive fragments of versican that are
necessary for interdigital tissue apoptosis during development [8,9]. Adamts5 knockout mice also
developed myxomatous heart valves [10]. Furthermore, ADAMTS5 is considered one of the most
important aggrecan-degrading enzymes in arthritis [11,12] and may also promote lipoprotein binding
in atherosclerosis [13].
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ECM remodeling is crucial to many developmental and disease processes, in part due to its role
in controlling cell signaling. Heparan sulphate proteoglycans bind fibroblast growth factors (FGFs),
thereby regulating their bioavailability to their receptors (FGFRs) [14] during developmental processes
such as myogenesis [15], as well as acting as co-receptors for Sonic Hedgehog (Shh) signaling [16].
A recent study identified Adamts9 as necessary for umbilical cord vascular development due, at least
in part, on its facilitation of Shh signaling [17]. Furthermore, levels of Hedgehog (Hh) signaling
correlate with the severity of osteoarthritis, which is potentially mediated by a pathway involving
ADAMTS5 [18]. Combined, these studies are suggestive of a complex interplay between the ECM and
crucial cell signaling pathways that involves ADAMTS proteoglycanases.

This study identifies a role for ADAMTS5 during zebrafish embryogenesis. Abrogation of adamts5
expression disrupted Shh signaling during somite differentiation and reduced the expression of
the myogenic regulator myod. Importantly, somite differentiation was synergistically dependent
upon Shh and ADAMTS5. Moreover, these functions of ADAMTS5 were independent of catalytic
function. These data indicate that ADAMTS5 plays an important non-enzymatic role in regulating the
Shh pathway during embryogenesis that impacts on muscle development. This may be relevant in
conditions where ADAMTS proteins interact with the Shh signaling pathway, such as osteoarthritis and
umbilical cord vascular complications, as well as disorders where the myogenic program is disrupted,
such as muscular dystrophies.

2. Results

2.1. The Secreted Metalloproteinase ADAMTS5 Is Expressed in Zebrafish Embryos

We have previously elucidated a role for ADAMTS5 during myoblast fusion in post-natal
skeletal muscle from Adamts5−/− mice [19]. To investigate this further, zebrafish was employed
as a highly manipulable model of vertebrate development, which possesses a strongly conserved
adamts5 gene that is maternally inherited and then dynamically expressed in early-stage embryos [20].
To obtain a detailed understanding of ADAMTS5 protein expression in zebrafish, whole-mount
immunohistochemistry (IHC) was performed with a previously described anti-ADAMTS5 antibody
directed to its pro-domain [21], which is highly conserved in ADAMTS5 across vertebrates [20,22].
At 8 h post fertilization (hpf) (~80% epiboly), ADAMTS5 was strongly expressed in the dorsal
mesoendoderm at the animal pole with variable expression ventrally at the vegetal pole (Figure 1A).
At 18 and 24 hpf, after the commencement of somitogenesis, ADAMTS5 was expressed in the rostral
neural tube (floor plate) and bilaterally in the prosencephalon (Figure 1A).

2.2. Silencing of ADAMTS5 Expression

To explore adamts5 function, the gene was targeted using two independent morpholino antisense
oligonucleotides (MOs) that were directed to either the AUG translation start site (AUG-MO) or the
splice site at the exon 2/3 boundary (2/3-MO) (Figure 1B), since exon 3 encodes for the catalytic
domain of ADAMTS5 in human, mouse and zebrafish [22]. ADAMTS5 protein expression was found
to be reduced upon adamts5 AUG-MO injection as shown by IHC and immunoblotting (Figure 1C).
To confirm altered splicing of adamts5 transcripts after administration of the 2/3-MO, RT-PCR was
performed followed by sequencing analysis (Figure 1D). This indicated a 71% reduction of correctly
spliced adamts5 transcript and identified an alternate adamts5 transcript retaining the 569-bp intron
between exons 2 and 3 that results in inclusion of several premature stop codons (Figure 1D).
The AUG-MO was subsequently used throughout the study to ensure translation of the entire gene
was disrupted, as well as to guarantee the maternal transcripts for this gene [20] were also affected;
however, similar data was obtained with the adamts5 2/3-MO [23].
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Figure 1. Expression and silencing of adamts5 in zebrafish embryos. (A) ADAMTS5 expression in 8, 
18 and 24 hpf wild-type embryos. Note strong early expression in the dorsal mesoendoderm (8 hpf, 
arrows) and variable expression ventrally (8 hpf, arrowhead), with later expression in the floor plate 
of the neural tube (18 and 24 hpf, arrows) and bilaterally in the prosencephalon (24 hpf, arrowheads). 
Asterisks = prosencephalon in no primary antibody control. Scale bar = 250 μm; (B) Schematic 
representation of the adamts5 gene structure targeted with antisense morpholino oligonucleotides 
(MO), and its subsequent splicing, indicating the primers used for RT-PCR and the size of the 
resultant products; (C) Reduced ADAMTS5 expression is seen in adamts5 AUG-MO injected embryos 
(asterisk) versus control (arrow) by whole-mount antibody labelling (left-hand panel) and Western 
blot (right-hand panel) showing the 120 kDa ADAMTS5 species (asterisk) with a region of the 
Coomassie blue stained gel shown below, demonstrating even loading; (D) RT-PCR of adamts5 mRNA 
obtained from 24 hpf embryos following injection of the adamts5 2/3-MO at the 1-cell stage, showing 
amplicons a and b (asterisk). β-actin was used as a house-keeping gene. 

2.3. Notochord Morphology Is Perturbed in adamts5 Morphant Embryos 

Shh signaling from the notochord has been previously demonstrated to be important for adaxial 
and paraxial mesoderm formation and myod expression during myogenesis [24], while no tail (ntl) is 
an independent marker for axial mesoderm (notochord) [25]. Expression of shh and ntl remained 
unchanged in 12 hpf adamts5 morphants compared to controls [23]. However, at 18 hpf the pattern of 
shh (Figure 2A,D) and ntl (Figure 2B,E) staining was altered revealing disrupted notochord 
morphology.  

2.4. Skeletal Muscle Formation Is Disrupted in adamts5 Morphant Embryos 

Notochord perturbation is linked with defective somitic muscle formation and morphogenesis 
[24]. Therefore, the disrupted notochord morphology in the adamts5 morphants suggested that 
skeletal muscle development might be affected. This is also consistent with previous observations 
indicating a skeletal muscle developmental defect in Adamts5 knockout mice [19]. Reduced or absent 
paraxial mesodermal myod expression was also observed at 18 hpf (Figure 2C,F). To analyze potential 
myofiber defects, adamts5 AUG-MO was administered to double-transgenic embryos, in which 
myofiber thin filaments were labeled with Lifeact-GFP whereas the sarcolemma and t-tubules of the 
myofiber were marked with mCherryCaaX via the CaaX-tag [26]. In control injected 3 dpf double-
transgenic larvae, Lifeact-GFP revealed the typical striation of the highly organized myofibril and 
mCherryCaaX indicated regularly spaced t-tubules and ordered fiber membranes within chevron-
shaped somites (Figure 2Ga–a′′′). In contrast, the somites of adamts5 morphants were U-shaped, 
which resembled a phenotype previously reported in shh mutant embryos [27] (Figure 2G(b)), 
confirming shh availability as a potential cause. In addition, myofibril striation within myofibers of 

Figure 1. Expression and silencing of adamts5 in zebrafish embryos. (A) ADAMTS5 expression in 8,
18 and 24 hpf wild-type embryos. Note strong early expression in the dorsal mesoendoderm (8 hpf,
arrows) and variable expression ventrally (8 hpf, arrowhead), with later expression in the floor plate
of the neural tube (18 and 24 hpf, arrows) and bilaterally in the prosencephalon (24 hpf, arrowheads).
Asterisks = prosencephalon in no primary antibody control. Scale bar = 250 µm; (B) Schematic
representation of the adamts5 gene structure targeted with antisense morpholino oligonucleotides
(MO), and its subsequent splicing, indicating the primers used for RT-PCR and the size of the
resultant products; (C) Reduced ADAMTS5 expression is seen in adamts5 AUG-MO injected embryos
(asterisk) versus control (arrow) by whole-mount antibody labelling (left-hand panel) and Western blot
(right-hand panel) showing the 120 kDa ADAMTS5 species (asterisk) with a region of the Coomassie
blue stained gel shown below, demonstrating even loading; (D) RT-PCR of adamts5 mRNA obtained
from 24 hpf embryos following injection of the adamts5 2/3-MO at the 1-cell stage, showing amplicons
a and b (asterisk). β-actin was used as a house-keeping gene.

2.3. Notochord Morphology Is Perturbed in adamts5 Morphant Embryos

Shh signaling from the notochord has been previously demonstrated to be important for adaxial
and paraxial mesoderm formation and myod expression during myogenesis [24], while no tail (ntl)
is an independent marker for axial mesoderm (notochord) [25]. Expression of shh and ntl remained
unchanged in 12 hpf adamts5 morphants compared to controls [23]. However, at 18 hpf the pattern of
shh (Figure 2A,D) and ntl (Figure 2B,E) staining was altered revealing disrupted notochord morphology.

2.4. Skeletal Muscle Formation Is Disrupted in adamts5 Morphant Embryos

Notochord perturbation is linked with defective somitic muscle formation and morphogenesis [24].
Therefore, the disrupted notochord morphology in the adamts5 morphants suggested that skeletal
muscle development might be affected. This is also consistent with previous observations indicating
a skeletal muscle developmental defect in Adamts5 knockout mice [19]. Reduced or absent paraxial
mesodermal myod expression was also observed at 18 hpf (Figure 2C,F). To analyze potential myofiber
defects, adamts5 AUG-MO was administered to double-transgenic embryos, in which myofiber thin
filaments were labeled with Lifeact-GFP whereas the sarcolemma and t-tubules of the myofiber
were marked with mCherryCaaX via the CaaX-tag [26]. In control injected 3 dpf double-transgenic
larvae, Lifeact-GFP revealed the typical striation of the highly organized myofibril and mCherryCaaX
indicated regularly spaced t-tubules and ordered fiber membranes within chevron-shaped somites
(Figure 2Ga–a′ ′ ′). In contrast, the somites of adamts5 morphants were U-shaped, which resembled a
phenotype previously reported in shh mutant embryos [27] (Figure 2G(b)), confirming shh availability
as a potential cause. In addition, myofibril striation within myofibers of adamts5 morphants was
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partially lost and the sarcolemma appeared irregular, indicating disrupted muscle organization
(Figure 2Gb–b′ ′ ′).
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Figure 2. Notochord morphogenesis and muscle fiber formation is perturbed in adamts5 morphant
embryos. (A) Expression of shh in the notochord of 18 hpf control (a,a′, arrows) and adamts5 morphant
(b,b′, open arrowheads) embryos, with medio-lateral deviation in the adamts5 morphants (b,b′), with
anterior indicated (*); (B) Expression of ntl in the notochord of 18 hpf control (a,a′, arrows) and
adamts5 morphant (b,b′, open arrowheads) embryos, with medio-lateral deviation in the adamts5
morphants with anterior indicated (*); (C) Expression of myod in adaxial and paraxial mesoderm
of 18 hpf control embryos (a,a′) and its perturbation in adamts5 morphants (b,b′, open arrowheads)
with anterior indicated (*); (D) Quantitation of affected notochords in control and adamts5 morphant
embryos demarcated by shh in Figure 2A; (E) Quantitation of affected notochords in control and adamts5
morphant embryos demarcated by ntl in Figure 2B; (F) Quantitation of embryos with perturbed myod
expression in control and adamts5 morphant embryos demarcated in Figure 2C; (G) Double-transgenic
Tg(acta1:lifeact-GFP)/Tg(acta1:mCherryCaaX) embryos, in which thin filaments are marked green and
sarcolemma red, reveal loss of muscle integrity in 3 dpf adamts5 morphants. Muscle fibers of control
injected larvae feature the typical striation of the myofibril and regular myofibers within chevron-shape
somites, indicated by a dashed line (a). The boxed area in a is magnified in a′–a′′′. Myofibril striation
is partially lost within adamts5 morphants (arrowhead in b′) and the sarcolemma of the myofibers
disrupted (arrow in b′′). The boxed area in b is magnified in b′–b′′′. Scale bar = 50 µm.



Int. J. Mol. Sci. 2018, 19, 766 5 of 12

To further analyze myofiber differentiation, myod expression was examined. Reduced or absent
paraxial mesodermal myod expression was observed at 12 hpf (Figure 3A(a,b)), whereas expression of
adaxial mesodermal myod was largely unaffected (Figure 3A(a,b)). Similar observations were made
with the adamts5 2/3-MO (Supplementary Figure S1) or upon co-injection of a p53 morpholino with
the adamts5 AUG-MO (Supplementary Figure S2B). To ensure that the specificity of the phenotype was
due to reduced adamts5 expression, mRNA encoding either wild-type or catalytically-inactive (E411A)
ADAMTS5 were co-injected, with both able to partially rescue the reduced paraxial mesodermal myod
expression (Figure 3A(c,d), respectively, and Figure 3B). This indicated that the enzymatic function of
ADAMTS5 was not necessary to induce the reduced myod expression.
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We hypothesized that reduced ADAMTS5 could lead to an altered extracellular environment 
that might disrupt Shh signaling, and that since adaxial mesoderm is in closer proximity to the 
notochord it might be less disrupted compared to the paraxial mesoderm. Therefore, cyclopamine, 
an antagonist of Smoothened (Smo), a receptor in the Shh signaling pathway [28] was used to 
understand whether Shh signaling through Smo was impaired in adamts5 morphants. The presence 
of 5 μM cyclopamine did not affect adaxial myod expression at 12 hpf in wild-type embryos (Figure 
4A(g–I),B). However, treatment of adamts5 morphants with 5 μM cyclopamine severely affected 

Figure 3. Loss of paraxial mesodermal myod expression in adamts5 morphant embryos. (A) Expression
of adaxial and paraxial myod in 12 hpf embryos injected with control MO (a, arrowheads), with adamts5
morphant embryos showing substantial loss of paraxial expression (b, open arrowheads), as well as
mild loss of paraxial myod expression (b, open arrowheads). Rescue of paraxial myod expression in
adamts5 morphants co-injected with mRNA encoding wild-type (c, arrows) or catalytically-inactive
E411A (d, arrows) ADAMTS5. Control embryos injected with ADAMTS5 mRNA encoding wild-type
ADAMTS5 show unaffected myod expression in paraxial mesoderm (e, arrows). Scale bar = 100 µm;
(B) Quantitation of embryos showing present or absent myod patterning represented in (A).

2.5. Receptor-Mediated Sonic Hedgehog Signaling Is Affected in adamts5 Morphants

We hypothesized that reduced ADAMTS5 could lead to an altered extracellular environment that
might disrupt Shh signaling, and that since adaxial mesoderm is in closer proximity to the notochord
it might be less disrupted compared to the paraxial mesoderm. Therefore, cyclopamine, an antagonist
of Smoothened (Smo), a receptor in the Shh signaling pathway [28] was used to understand whether
Shh signaling through Smo was impaired in adamts5 morphants. The presence of 5 µM cyclopamine
did not affect adaxial myod expression at 12 hpf in wild-type embryos (Figure 4A(g–I),B). However,



Int. J. Mol. Sci. 2018, 19, 766 6 of 12

treatment of adamts5 morphants with 5 µM cyclopamine severely affected adaxial expression of myod
(Figure 4A(j–l),B) compared to untreated adamts5 morphant embryos (Figure 4A(d–f),B). In a reciprocal
experiment, the Smo agonist, SAG, was used to confirm the dependency of Shh signaling on adamts5
expression. Administration of SAG on wild-type embryos disrupted paraxial myod expression in a
similar manner to adamts5 morphants (Figure 5A(d–I),B). However, the same concentration of SAG
partially rescued the loss of paraxial myod patterning in the adamts5 morphants (Figure 5A(g–l),B).
These experiments collectively suggest an interaction between ADAMTS5 and Shh, such that they act
synergistically to stimulate myod expression in adaxial mesoderm (Figure 6).
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Figure 4. Combinatorial inhibition of Shh signaling and adamts5 disrupt paraxial and adaxial myod
expression. (A) Adaxial and paraxial myod expression in 12 hpf embryos treated with vehicle control
(a–c, arrows denote paraxial myod expression), vehicle + adamts5-MO (d–f, arrows denote absent
paraxial myod expression), 5 µM cyclopamine (g–i, arrowheads represent similar paraxial myod staining
compared to control group) and 5 µM cyclopamine + adamts5-MO (j–l, open arrowheads represent
absent adaxial myod expression and arrowhead represents absent paraxial myod staining compared to
adamts5 MO group). Scale bar = 200 µm; (B) Quantitation of embryos showing present or absent myod
patterning represented in (A).
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Figure 5. Combinatorial activation of Shh signaling and inhibition of adamts5 rescues paraxial myod
expression. (A) Adaxial and paraxial myod expression in 12 hpf embryos treated with vehicle control
(a–c, arrows), 10 µM Smoothened agonist (Smo agon.) (d–f, arrow/open arrowhead represent
present/absent myod expression in paraxial mesoderm), vehicle + adamts5-MO (g–i, arrow/open
arrowhead represents present/absent myod expression in paraxial mesoderm) and 10 µM Smo agon.
+ adamts5-MO (j–l, arrows indicate myod expression present in paraxial mesoderm). Scale bar = 100 µm;
(B) Quantitation of embryos showing present or absent myod patterning represented in (A).
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3. Discussion

Zebrafish myogenesis is controlled by multiple pathways [29–31]. Signaling from the notochord
specifies slow-twitch muscle precursors in the adaxial mesoderm [24], which migrate laterally after
somite formation to the most lateral muscle layer [32]. Myotomes develop following elongation and
fusion of somitic cells and their attachment to the somite boundary, with the boundaries between
myotome forming the critical myotendenous junctions that are the primary sites of force generation [33].
ECM–cell adhesion has been shown to be essential for multiple steps in this process [34]. This study has
identified a novel non-catalytic function of the ECM protein ADAMTS5 in regulating Sonic Hedgehog
signaling that impacted on somite differentiation, with reduced expression of myod in the paraxial
mesoderm and disrupted myotome boundaries.

The phenotypes induced by the adamts5 morphants were rescued with mRNA encoding both
wild-type and catalytically-inactive ADAMTS5. Although unexpected, there is some precedence
for ADAMTS family members demonstrating non-catalytic functions as reviewed recently [35].
For texample, ADAMTS1 has been shown to bind to VEGF through its C-terminal thrombospondin
repeats and spacer domain to block VEGFR2 activation [5]. Moreover, both wild-type and
catalytically-inactive (E363A) ADAMTS15 were able to reduce breast cancer cell migration on matrices
of fibronectin or laminin [6]. Furthermore, enzymatic activity was not required for enhancement
of neurite outgrowth by ADAMTS4, which was instead dependent upon MAP kinase cascade
activation [7]. ADAMTSL family members, which are structurally similar to ADAMTS family members
but lack the N-terminal propeptide and catalytic domain, may also offer some important insights into
non-catalytic functions of ADAMTS family members. Most notably, mutations of human ADAMTSL2
have been causally linked to the musculoskeletal disorder Geleophysic Dysplasia [36], where patients
present with severe short stature, joint immobility and cardiac valvular abnormalities. Collectively,
this suggests a role of ADAMTS5 in zebrafish muscle development is likely not related to its enzymatic
function. However, mouse studies have highlighted considerable redundancy amongst ADAMTS
members [35] suggesting that combinatorial targeting might be required to identify additional functions
that may be dependent on enzymatic activity.

Shh is an important regulator of musculoskeletal development, given its role in somite and neural
tube patterning. Duplication, and presumed overexpression, of Shh is associated with congenital
muscular hypertrophy in humans [37]. Shh also enables the formation of the cranial musculature [38]
and polarizes the limb during early morphogenesis [39,40]. Shh has also been demonstrated to mediate
the patterning of somites [41,42]. Shh has the ability to activate myogenesis in vitro and in vivo [43]
with expression and secretion of Shh from the notochord able to induce slow muscle fiber formation
in vivo via myod [24]. The adamts5 morphants displayed altered myod expression in the paraxial—but
not adaxial—mesoderm despite levels of shh expression in the notochord being unaffected. This might
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be explained by reduced bioavailability of Shh in the absence of ADAMTS5. Since the adaxial
myod-positive cells represent the slow muscle precursors that subsequently move through the fast
muscle region where they impact on fast muscle differentiation [44], it would be of interest to examine
the relative distribution of slow and fast twitch muscle fibers in the adamts5 morphants.

The results obtained using agonists and antagonists of the downstream Smo pathway suggest that
ADAMTS may work both upstream, as well as in parallel with Shh signals. Wnt/β-catenin signaling
has been shown to act in co-operation with Shh (and BMPs) in embryonic myogenesis [31]. This could
be mediated, at least partially, via ADAMTS5 since Wnt/β-catenin has been shown to act upstream
of ADAMTS5 in other developmental situations, such as chondrocyte maturation and function [45].
Similarly, defects in Delta/Notch can affect somite boundary formation [46], with this pathway also
shown to induce ADAMTS5 in joint cartilage, providing another potential upstream regulator of
ADAMTS5 during somite differentiation.

Defective notochords have been identified in mutants of ECM components, such as fibrillin [47],
collagen [48], the basement membrane proteins laminin alpha [49], beta and gamma [50], as well
cell-associated molecules such as integrins [46]. A number of these defects are due to disrupted
morphogenesis that results from perturbed ECM-cell interactions [49]. This suggests that altered
morphogenesis as well as disrupted patterning may contribute to the perturbed notochord in adamts5
morphants. In addition, U-shaped myotome boundaries have also been observed in mutants of ECM
components, such as fibronectin [51] and laminin [52], or the alternative ECM processing enzyme
MMP-11 [53], providing precedence for ADAMTS5 impacting on the myotome boundary.

This study has identified a new function for the metzincin ADAMTS5. By exploring the role of
ADAMTS5 in zebrafish, understanding has been gained of a potential non-catalytic function in the
regulation of muscle development and maintenance via interaction with the Sonic Hedgehog signaling
pathway. Since both ADAMTS5 and Shh have independent—as well as potential combinatorial—roles
during musculoskeletal development, the complex interplay between ADAMTS and Shh could be
relevant to the development of musculoskeletal diseases, such as muscular dystrophies and arthritis.
Further biochemical and functional characterization of potential interactions between ADAMTS5 and
Shh in such diseases may reveal new insights into the development and progression of these diseases.
Given that treatment options for these diseases are limited, this knowledge could then be applied to the
development of novel therapeutics that specifically modulate this interaction to slow the progression
of these debilitating conditions.

4. Materials and Methods

4.1. Zebrafish Lines and Maintenance

Wild-type and Tg(acta1:lifeact-GFP)/Tg(acta1:mCherryCaax) [26] zebrafish were maintained, raised
and staged according to standard protocols [54]. Embryos were obtained by mating trios or using a
mass embryo production system (MEPS) (Aquatic Habitats) and raised at 28.5 ◦C. Experiments were
approved by the Deakin University Animal Ethics Committees (G14/2013, 15/05/2013).

4.2. Embryo Microinjection and Other Treatments

Morpholino antisense oligonucleotides (MOs; Gene Tools) targeting the ATG start codon (5′-
atgctgtcgaaattacaggagtttggcgcgtat) and exon 2/3 splice site (5′-ctatcattgaggacgacggcctgcacgctg
ccttcactgtggctcatgagatc) of zebrafish adamts5 (GenBank: JF778846.1) were used to ablate the adamts5
gene. MOs were solubilized in 1× Danieau buffer and 1 nL injected at a concentration of
1 mg/mL into one-cell stage embryos, as previously described [55]. Alternatively-spliced adamts5
species were confirmed by Sanger sequencing (Australian Genome Research Facility, Melbourne,
Australia) of RT-PCR amplicons generated with flanking primers (5′-ggcggatgtaggaactgtgt and
5′-ttacgcacctcacactgctc). Capped RNA encoding full-length wild-type or catalytically-inactive (E411A)
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ADAMTS5 [21] were synthesized using the T7 mMessage mMachine kit (Thermofisher Scientific,
Scoresby, Victoria, Australia) and 40 pg was microinjected into one-cell stage embryos.

For other studies, injected embryos were treated with 5 µM cyclopamine (Sigma-Aldrich, St. Louis,
MO, USA) in DMSO or 10 µM Smoothened agonist SAG (CAS 364590-63-6) (Merck Millipore,
Darmstadt, Germany) in water, along with the corresponding vehicle control at 5.5 hpf and fixed at
12 hpf in 4% PFA/PBS.

4.3. Whole-Mount In Situ Hybridization and Immunofluorescence

Whole-mount in situ hybridization was performed as described [56]. The following antisense
digoxigenin-labelled mRNA probes were synthesized by in vitro transcription: shha and myod [57],
and no-tail (ntl) [58]. Immunofluorescence performed on whole embryos with polyclonal rabbit
anti-propeptide ADAMTS5 (Cat# ab39203-100, Abcam, Pak Shak Kok, New Territories, Hong Kong,
China) at 1:200 followed by anti-rabbit Alexa fluor 594 secondary antibody at 1:500 (Life Technologies,
Carlsbad, CA, USA). Histochemical methods were performed as previously described [59].

4.4. Western Blotting

Cell lysates were extracted from 24 hpf embryos and subjected to Western blotting as described
previously [60], using the polyclonal rabbit antibody against propeptide ADAMTS5 described above
at 1:5000 followed by an anti-rabbit HRP antibody (Cell Signaling Technologies, Danvers, MA, USA) at
1:10,000. Protein concentrations were measured using the Bradford assay and equal loading of protein
confirmed by Coomassie blue staining on duplicate SDS-PAGE gels.

4.5. Statistics

Two-tailed paired t-tests were performed between all treatment groups compared to the respective
control groups with scoring performed blind. Significance was achieved at a p-value ≤ 0.05, with
Gaussian distribution assumed in all cases.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/19/3/
766/s1.
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