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Excessive inflammation is a hallmark of muscle myopathies, including Duchenne muscular dystrophy (DMD). There is interest in
characterising novel genes that regulate inflammation due to their potential to modify disease progression. Gene polymorphisms in
Selenoprotein S (Seps1) are associated with elevated proinflammatory cytokines, and in vitro SEPS1 is protective against
inflammatory stress. Given that SEPS1 is highly expressed in skeletal muscle, we investigated whether the genetic reduction of
Seps1 exacerbated inflammation in the mdx mouse. F1 male mdx mice with a heterozygous Seps1 deletion (mdx:Seps1−/+) were
generated. The mdx:Seps1−/+ mice had a 50% reduction in SEPS1 protein expression in hindlimb muscles. In the extensor
digitorum longus (EDL) muscles, mRNA expression of monocyte chemoattractant protein 1 (Mcp-1) (P = 0 034), macrophage
marker F4/80 (P = 0 030), and transforming growth factor-β1 (Tgf-β1) (P = 0 056) were increased in mdx:Seps1−/+ mice. This
was associated with a reduction in muscle fibre size; however, ex vivo EDL muscle strength and endurance were unaltered. In
dystrophic slow twitch soleus muscles, SEPS1 reduction had no effect on the inflammatory profile nor function. In conclusion,
the genetic reduction of Seps1 appears to specifically exacerbate the inflammatory profile of fast-twitch muscle fibres, which are
typically more vulnerable to degeneration in dystrophy.
1. Introduction

Skeletal muscle repair is a highly coordinated process in
which inflammation plays a vital role. Immediately following
muscle damage, neutrophils infiltrate the damaged area
where they release cytokines to promote inflammation and
reactive oxygen species break down cellular constituents
[1]. Secondly, monocytes infiltrate the muscle, mature into
macrophages, and engulf the cellular debris [1]. This is a
highly organised process that prepares the damaged tissue
for repair. Macrophages, like neutrophils, release cytokines
that either contribute to (proinflammatory) or control
inflammation (anti-inflammatory). The release of cytokines,
such as interleukin 6 (IL-6) [2] and tumour necrosis factor
alpha (TNFα) [3], stimulates satellite cell activation and com-
mitment to myogenesis. If the damage is chronic, or if
inflammation is excessive and persists, this repair process
fails and with time leads to muscle tissue loss and fibrosis
[4], as is seen in Duchenne muscular dystrophy (DMD).

DMD is a fatal hereditary disease that affects approxi-
mately 1 in 3500 live male births [5]. The majority of boys
with DMD are wheelchair bound in their teens and suc-
cumb to the disease by their early thirties from respiratory
or cardiac failure [6]. Due to mutations in the dystrophin
gene, dystrophic muscles are vulnerable to contraction-
induced injury. This leads to constant muscle damage and
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degeneration, with persistent infiltration of neutrophils and
macrophages and high levels of inflammatory cytokines
within the muscle microenvironment and in circulation. Spe-
cifically, elevated levels of the proinflammatory cytokines
TGF-β [7–9], TNFα [10], MCP-1 [11], and IL-6 [12] have
been observed in skeletal muscle biopsies and serum samples
from patients with DMD. The mdx mouse is the dystrophic
murine model of DMD, whose pathology is also charac-
terised by increased inflammation. Similar to the human dis-
ease, TGF-β [13] and TNFα [14] levels are increased in mdx
skeletal muscles and are associated with inflammatory cell
infiltration [15]. An excessive and dysregulated inflamma-
tory profile further exacerbates degeneration and impairs
regeneration in both human DMD and the mdx mouse [16].

There is no cure for DMD, with glucocorticoids being the
only treatment demonstrating clinical efficacy [17]. The
mechanism of action of glucocorticoids is not fully under-
stood; however, an attenuation of inflammation is thought
to contribute to their effectiveness [18]. Glucocorticoids are
not without serious side effects, causing excessive weight
gain, behavioural abnormalities, and osteoporosis in boys
with DMD [19]. Depending on the underlying disease
pathology, glucocorticoids also alter protein metabolism
[20] and inhibit anabolism in healthy young adults [21]. An
abundance of dystrophy research is focused on therapeutic
agents and gene targets that control skeletal muscle inflam-
mation [22, 23]. Various preclinical studies inmdxmice have
attempted to attenuate inflammation in order to improve
muscle function [24, 25]. These include administration of
an antibody against TNFα (Remicade) [14], depletion of
macrophage populations [26], and inhibitory drugs targeting
inflammatory-mediated intracellular pathways such as
nuclear factor kappa-light-chain-enhancer of activated B
cells (NF-κB) [27]. Whilst many of these approaches have
been successful in ameliorating the dystrophic pathology of
mdxmice, their translation to human trials and clinical prac-
tice has been unsuccessful [28].

The natural history of DMD is quite heterogeneous, with
significant interpatient variability in regard to disease progres-
sion and skeletal, respiratory, and cardiac muscle function, as
well as responsiveness to treatment [29]. For example, poly-
morphisms in the glucocorticoid receptor increase long-
term sensitivity to glucocorticoid treatment in DMD patients
[28]. Similarly, polymorphisms in the osteopontin gene have
also been identified as an important geneticmodifier of disease
severity inDMD [29], whilst polymorphisms in TGF-β recep-
tor 2 are strong predictors of osteopontin mRNA levels,
highlighting a link between osteopontin, inflammation, and
TGF-β signalling in DMD [30]. As such, there is great interest
in identifying and characterising the multigenic polymor-
phisms that modulate DMD disease progression or respon-
siveness to treatment. Identifying these gene polymorphisms
could provide insights into the cellular mechanisms underly-
ing the link between inflammation, muscle degeneration,
and inadequate repair in DMD and may have implications
for improved design and outcomes ofDMDclinical trials [29].

Selenoprotein S (SEPS1) is an endoplasmic reticulum
(ER) resident transmembrane selenoprotein with a C termi-
nal selenocysteine residue that has antioxidant properties
and is protective against ER stress [31, 32]. More than 15
polymorphisms in the SEPS1 gene have been identified in
humans, ranging in frequencies from approximately 1% to
more than 32% [33]. The 105G→A polymorphism in the
SEPS1 promoter region has been particularly well charac-
terised. It is thought to reduce SEPS1 expression and is
associated with diseases characterised by heightened inflam-
mation and oxidative stress [33]. In vitro studies demonstrate
that reduced SEPS1 expression increases oxidative and ER
stress in various mammalian cell lines [34–36]. In vitro, Seps1
gene expression is increased by proinflammatory cytokines
[37], perhaps as a protective strategy, since gene knockdown
of Seps1 increases proinflammatory cytokine mRNA levels in
cultured RAW264.7 macrophages [31]. Using siRNA knock-
down strategies in a mouse model of lipopolysaccharide-
induced sepsis, He et al. [38] demonstrated a protective,
anti-inflammatory effect of SEPS1 in vivo. Recently, seleno-
protein N (SepN1) polymorphisms have been identified to
cause congenital muscular dystrophy [39]. Given that SEPS1
is highly expressed in skeletal muscle [40] and is associated
with inflammation, our aim was to investigate whether the
genetic reduction of Seps1 in mdx dystrophic mice would
exacerbate skeletal muscle inflammation and compromise
dystrophic hindlimb muscle structure and function. There-
fore, we tested whether SEPS1 is a novel disease modifying
gene in muscular dystrophy and myopathy.

2. Methods

2.1. Animals. C57BL/6 mice with a global Seps1 heterozygous
deletion were produced using the Cre/loxP system. The
floxed Seps1 gene was cleaved by a 3-phosphoglycerate kinase
(PGK) promoter-driven Cre. These mice were subsequently
crossed with female mdx mice on a C57BL/10 background
to generate F1 male mdx:Seps1−/+ mice, with a genetic
reduction of Seps1, and control mdx:Seps1+/+ littermates on
a mixed C57BL/10 and C57BL/6 background. Mice were
housed in standard laboratory conditions of temperature
(22± 2°C) and relative humidity (55± 8%), with a 12-hour
light/dark cycle. Animals had free access to water and were
fed a standard chow diet. All animal experiments were
conducted with the full approval of the Animal Ethics
Committee Geelong, Deakin University (G29/2014). All pro-
cedures were conducted in accordance with the Australian
Code of Practice for the Care and Use of Animals for Scien-
tific Purposes.

2.2. Body Composition and Whole Body Metabolism.
Between six and 12 weeks of age, body composition was
determined by magnetic resonance imaging (MRI) (Body
Composition Analyser ESF-005, EchoMRI™). At 11 weeks
of age, oxygen consumption (VO₂; ml kgmin), carbon
dioxide production (VCO₂; ml kgmin), and respiratory
exchange ratio (RER) were measured over a 24-hour
period using a metabolic analyser (Accuscan Fusion v3.6;
Columbus Instruments International). During this 24-hour
period, total and ambulatory movement was assessed with
an Animal Activity Meter (Opto-Varimex-Mini; Columbus
Instruments International).
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2.3. Ex Vivo Analysis of Muscle Function. At 12 weeks of age,
mice were anaesthetised with an intraperitoneal injection of
medetomidine (0.6mg/kg), midazolam (5mg/kg), and fenta-
nyl (0.05mg/kg), such that they were unresponsive to tactile
stimuli. EDL and soleus muscles were dissected from the
proximal to distal tendon, and each tendon was tied off with
4-0 surgical grade sutures. Excised muscles were transferred
to the 1300A Whole Mouse Test System organ bath (Aurora
Scientific), submerged in Krebs Ringer solution (137mM
NaCl, 24 nM NaHCO3, 11mM D-glucose, 5mM KCl,
2mM CaCl2, 1mM NaH2PO4H20, 1mM MgSO4, and
0.025mM d-tubocurarine chloride), continuously perfused
with carbogen (5% CO2 in O2), and thermostatically main-
tained at 25°C. The distal tendon was attached to an immo-
bile pin and the proximal tendon to the lever arm of a dual
mode force transducer (300-CLR; Aurora Scientific). EDL
and soleus muscles were stimulated by supramaximal square
wave pulses, for a duration of 350msec and 1200msec, respec-
tively. Stimulation procedures and contractile responses
were controlled and measured using Dynamic Muscle
Control computer software (DMCv5.415), with on board
controller interfaced with transducer control/feedback hard-
ware (Aurora Scientific) [41].

All protocols were performed at optimal muscle length
(LO). Maximum isometric tetanic force (PO) production
was established from the plateau in the force frequency curve:
10, 30, 50, 60, 80, 100, and 120Hz for EDL and 10, 20, 30, 50,
60, 80, 100, and 120Hz for soleus. For determination of fati-
gability, muscles underwent a four-minute submaximal pro-
tocol, consisting of 60Hz stimulations, once every five
seconds. Recovery from fatigue was determined by 60Hz
stimulations, administered at two, five, and 10 minutes fol-
lowing the fatigue protocol [41, 42].

Optimum fibre length (Lf) was calculated by multiplying
LO by predetermined Lf/LO ratios, 0.44 for EDL and 0.71
for soleus [43, 44]. Cross-sectional area of muscle samples
was then determined by dividing muscle mass (mg) by the
product of Lf and 1.06mg.mm3, the density of mammalian
muscle [43]. PO values were normalised to muscle cross-
sectional area and expressed as specific force (sPO), to
account for variation in muscle size.

Following muscle function testing, EDL, soleus, and
tibialis anterior (TA) muscles were trimmed of tendons,
weighed, and snap frozen in liquid nitrogen. EDL and soleus
muscles excised from the contralateral hindlimb were
embedded in optimal cutting temperature compound
(TissueTek OCT Compound) and frozen in thawing isopen-
tane for histological analysis.

2.4. Western Blotting to Confirm the Genetic Reduction of
Seps1. Approximately, 20mg of TAmuscle was homogenised
in 1x radioimmunoprecipitation assay (RIPA) lysis buffer
containing 1x protease inhibitor cocktail (Sigma-Aldrich)
and quantified by the BCA Protein Assay kit (Thermo
Scientific). Alternatively, 10μm thick EDL muscle cross
sections were placed into 50μl of 2x Laemmli sample buffer
and underwent two freeze thaw cycles at −80°C. Proteins
(7.5μg of unfractionated TA homogenates or 15μl of EDL
cryosection lysates) were separated on an Any kD™ Mini-
PROTEAN® TGX Stain-Free™ gel (BioRad). Gels were then
activated and imaged using the ChemiDoc MP System
(BioRad) as per manufacturer’s instructions and then trans-
ferred onto a PVDF membrane. These were blocked with
5% skim milk/TBST, incubated with an anti:SEPS1 antibody
(HPA010025; Sigma-Aldrich; diluted 1 : 200 in 1% skim
milk/TBST), and followed by a goat anti-rabbit horse radish
peroxidase (HRP) secondary antibody (Cell Signaling
Technologies: diluted 1 : 5000). SEPS1 bands were detected
with enhanced chemiluminescence and imaged using the
ChemiDoc MP System. The optical density of the SEPS1
bands and the protein bands on the TGX Stain-Free gels
were analysed using Image Lab™ software (Bio-Rad), and
SEPS1 protein levels were normalised to the total optical
density of all protein bands.

2.5. Real Time Quantitative PCR (qPCR) to Characterise the
Inflammatory Profile. As previously described [45], whole
soleus and EDL muscles were manually homogenised in
Tri-Reagent® solution (Ambion Inc.). Total cellular RNA
was extracted and purified using an RNeasy® Mini Kit
(Qiagen), and 1μg was reverse transcribed using a High
Capacity cDNA Reverse Transcription kit (Applied Biosys-
tems, Warrington, UK). Gene expression was measured
using Power SYBR® Green PCR Master Mix (Applied
Biosystems) and 300nM primers (See Supplementary Table
1 available online at https://doi.org/10.1155/2017/7043429).
Results were normalised to the housekeeping gene
glyceraldehyde-3-phosphate dehydrogenase (Gapdh) and
verified with β-actin, which was not significantly different
to the Gapdh results [46].

2.6. Histology and Immunohistochemistry. Eight μm of EDL
muscles were transversely sectioned using a cryostat main-
tained at −20°C (CM1860 Cryostat, Leica, North Ryde,
AUS) and placed on silane-coated slides (Star Frost micro-
scope slides, ProSciTech). Sections were stained with Mayer’s
haematoxylin solution (Sigma-Aldrich) and Eosin (Sigma-
Aldrich) and then imaged with a digital camera mounted
on a DM1000 microscope (Leica) at 100x magnification. To
determine fibre size, the minimum Feret’s diameter was mea-
sured [47] using Image-Pro Plus (Media Cybernetics, Rock-
ville, USA) (n = 10; >500 fibres per muscle). The percentage
of muscle fibres with centrally located nuclei was also
assessed (n = 6; >200 fibres per muscle).

To assess SEPS1 immunoreactivity, EDL muscle cross
sections were fixed in 4% paraformaldehyde (PFA) and
permeabilised in tris buffered saline (TBS) containing
0.5% Triton X-100. Sections were probed with the anti-
SEPS1 antibody (1 : 200 dilution) and followed by Alexa
Fluor 594 goat anti-rabbit 2° antibody (A11012; Invitrogen;
1 : 1500 dilution). Nuclei were counter stained with DAPI
containing mounting medium (Vectashield).

2.7. Statistical Analysis. All results are presented as mean
± standard error of the mean (SEM). Two-way repeated mea-
sures ANOVA with Šídák post hoc analysis and unpaired
Student’s t-test were performed using Prism 6 (GraphPad,
San Diego, CA), with a P < 0 05 used for significance.
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Figure 1: SEPS1 protein expression in fast-twitch hindlimb muscles. Protein expression of the 21 kDa SEPS1 protein in (a) TA and (b) EDL
muscles using TGX Stain-Free gel technology to control for even protein loading (n = 8 and 4, resp.). ∗P < 0 001 using Student’s t-test.
(c) Representative SEPS1 immunoreactivity in transverse EDL muscle cross sections shown SEPS1 expression by all skeletal muscle
fibres (n = 3).
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3. Results

3.1. Confirmation of the Genetic Reduction of Seps1. There
was an approximate 50% reduction in SEPS1 protein expres-
sion in TA and EDL hindlimb muscles from mdx:Seps1−/+

mice compared to mdx:Seps1+/+ littermates (Figures 1(a)
and 1(b), resp.). Using immunofluorescent staining, SEPS1
expression was confirmed in all EDL muscle fibres
(Figure 1(c)).

3.2. Body Composition. Body composition was measured
fortnightly between six and 12 weeks of age. Over the six-
week measurement period, mdx:Seps1−/+ mice had smaller
gains in total body mass (Figure 2(a)) and lean mass
(Figure 2(b)) compared to those of the mdx littermates using
a 2-way repeated measures ANOVA (time*genotype interac-
tion, P = 0 037 and P = 0 013, resp.). Typical of the dystro-
phic phenotype [48], both genotypes demonstrated
significant and similar losses in fat mass (Figure 2(c))
between six and 12 weeks. The wet weight of excised EDL
and soleus muscles was measured and was not significantly
different between groups (Figure 2(d)).

3.3.Metabolic Profile.Whole bodymetabolism and spontane-
ous physical activity of themice were assessed usingmetabolic
cages and animal activity meters at 11 weeks of age [48]. Both
genotypes had higher VO₂, VCO₂, and RER values between
6pm and 6 am (night) during their active period, compared
to 6 am–6 pm (Figure 3(a) and 3(b)). No differences in VO₂,
VCO₂, or RER were detected between genotypes during the
day, and no differences in RER were detected between geno-
types at night (Figure 3(c)). However, a 2-way repeated mea-
sures ANOVA revealed that the mdx:Seps1−/+ mice had
higher VO₂ (P < 0 05) and VCO2 (P < 0 05) values between
6pm and 6 am. Post hoc analysis revealed that the
mdx:Seps1−/+ mice had a higher VO₂ during the first two
active hours at night (Figure 3(a)).

Analysis of total and ambulatory movement over the
same 24-hour period revealed no differences between geno-
types (Figure 3(d)).

3.4. Ex Vivo Skeletal Muscle Function. The EDL and soleus
muscles had no significant differences in specific force
(sPO) production, fatigability, and recovery from fatigue
between the mdx:Seps1−/+ mice and mdx littermate con-
trols (Figure 4 and Supplementary Figure 1, resp.). This
indicates that at 12 weeks of age, the genetic reduction
of Seps1 has no effect on dystrophic hindlimb muscle
function.

3.5. Inflammatory Profile of mdx Skeletal Muscle. To investi-
gate the inflammatory profile of mdx skeletal muscles
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Figure 2: Body composition between 6 and 12 weeks of age. (a) Body mass, (b) lean mass and (c) fat mass between 6 and 12 weeks of
age (n = 13), and (d) muscle wet weight of isolated EDL and soleus muscles (n = 11). ∗ indicates significant interaction (time∗genotype)
using 2-way repeated measures ANOVA (P < 0 05).
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following the genetic reduction of Seps1, key inflammatory
markers were examined using qPCR. In fast-twitch EDL
muscles,mdx:Seps1−/+ mice had a 2.8-fold increase in mRNA
expression of the inflammatory cytokine Mcp-1 (P = 0 034)
and a 2.0-fold increase in mRNA expression of the macro-
phage marker F4/80 (P = 0 029) compared tomdx littermates
(Figure 5(a) and 5(b)). A trend for increased mRNA tran-
script abundance was also observed for Tgf-β1 (P = 0 056)
and the macrophage markers Cd68 (P = 0 074) and
Cd163 (P = 0 068) in EDL muscles of mdx:Seps1−/+ mice
(Figure 5(c), 5(d), and 5(e)). There was no significant differ-
ence in iNos, amarker forM1 proinflammatorymacrophages,
or arginasemRNA, a marker for M2 anti-inflammatory mac-
rophages (Figure 5(f) and 5(g)), nor the iNos/Arginase ratio
that is indicative of macrophage polarity towards an M1/
M2 phenotype [49]. Similarly, there was no significant
difference in Tnfα or IL-1β mRNA between genotypes
(Figure 5(h) and 5(i)) nor in the neutrophil marker myelo-
peroxidase (Mpo) (Figure 5(j)). These data suggest that in
fast-twitch muscles, SEPS1 might have a greater effect on
macrophage infiltration, but not polarisation towards an
anti- or proinflammatory phenotype.

Despite SEPS1 being associated with ER stress and apo-
ptosis [35], the mRNA transcripts of the ER stress marker
glucose-regulated protein 78 (Grp78) and the apoptosis
marker Caspase 3 (Figure 5(k) and 5(l)) were similar in
mdx:Seps1−/+ mice and mdx littermates.

Whilst the genetic reduction of Seps1 resulted in
moderate changes in the inflammatory profile of the
dystrophic fast-twitch EDL muscle, the inflammatory
profile of the slow-twitch soleus muscle was not changed
(Supplementary Figure 2).



6-
8

A
M

8-
10

A
M

10
-1

2
PM

12
-2

PM
2-

4
PM

4-
6

PM

6-
8

PM
8-

10
PM

10
-1

2
A

M
12

-2
A

M
2-

4
A

M
4-

6
A

M

0

40

50

60

70

80

V
O

2 
(m

l. k
g.

m
in

)

mdx:Seps1+/+

mdx:Seps1–/+

VO2

⁎⁎

⁎P< 0.05 (time⁎genotype)

6-
8

A
M

8-
10

A
M

10
-1

2
PM

12
-2

PM
2-

4
PM

4-
6

PM

6-
8

PM
8-

10
PM

10
-1

2
A

M
12

-2
A

M
2-

4
A

M
4-

6
A

M

V
CO

2 
(m

l. k
g.

m
in

)

0

40

50

60

70

80

mdx:Seps1+/+

mdx:Seps1–/+

VCO2

(time⁎genotype)⁎P< 0.05

(a) (b)

6-
8

A
M

8-
10

A
M

10
-1

2
PM

12
-2

PM
2-

4
PM

4-
6

PM

6-
8

PM
8-

10
PM

10
-1

2
A

M
12

-2
A

M
2-

4
A

M
4-

6
A

M

0.90
0.00

0.95

1.00

V
O

2/
V

C
O

2

mdx:Seps1+/+

mdx:Seps1–/+

Respiratory exchange ratio

Total movement Ambulatory movement
0

10000

20000

30000

40000

50000

M
ov

em
en

t(
co

un
t)

mdx:Seps1+/+

mdx:Seps1–/+

Locomotor activity

(c) (d)

Figure 3: Whole body metabolism and spontaneous physical activity. (a) Oxygen consumption (VO₂), (b) carbon dioxide production
(VCO₂), (c) respiratory exchange ratio (RER), and (d) locomotor activity at 11 to 12 weeks of age (n = 13). ∗∗Significant Šídák post hoc
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3.6. Skeletal Muscle Morphology of the EDL. Due to the
heightened inflammatory state of EDL muscles and the
smaller gain of lean mass observed in mdx:Seps1−/+ mice
compared to mdx littermates, morphological analysis of
H&E stained EDL cross sections was performed. A trend
for smaller muscle fibres was observed in mdx:Seps1−/+ mice
compared tomdx littermates (P = 0 068) (Figure 6(a)). When
results were further categorised according to cross-sectional
area [50], 2-way repeated measures ANOVA and post hoc
analysis revealed that mdx:Seps1−/+ mice had significantly
more small fibres (0–20μMmin Ferets diameter (P < 0 05)
and fewer large fibres (>50μmmin Ferets diameter;
(P < 0 05)) compared to mdx littermates (Figure 6(b)). To
assess whether this increase in small muscle fibres in
mdx:Seps1−/+ mice was due to increased regeneration, the
proportion of EDL fibres with centrally located nuclei, a
hallmark of a recently repaired muscle fibres [51], was
assessed. However, no differences were found, with approxi-
mately 75% of fibres possessing central nuclei across both
genotypes (data not shown).
4. Discussion

Here, we identified SEPS1 as a potential modifier of skeletal
muscle inflammation using a murine model of DMD, the
mdx mouse. For the first time, this study has shown that
reduced SEPS1 expression, via heterozygous global deletion
of Seps1, exacerbates the inflammatory profile in the fast-
twitch EDL muscle, but not the slower twitch soleus muscle.
This was associated with a reduction in total body mass and
lean mass gain between six and 12 weeks of age, a shift in
fibre size distribution towards a smaller cross-sectional area,
and an increase in whole body VO₂ consumption and VCO2
production. Despite these changes in growth, muscle fibre
size, inflammation, and metabolism, there were no changes
in strength and endurance of hindlimb muscles at 12 weeks
of age.

In many disease states including muscular dystrophy,
fast-twitch fibres are lost first [52, 53]. Importantly, this study
shows that a genetic deletion of Seps1 leads to an increase in
muscle inflammation of the fast-twitch EDL muscles in the
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mdxmouse. Here, mRNA transcripts ofMcp-1, a chemokine
that attracts monocytes to the damaged area, were 2.8-fold
higher, and the macrophage marker F4/80 mRNA was 2-
fold higher in the mdx:Seps1−/+ EDL muscle compared
to mdx littermates. There was a trend for increased gene
expression of Tgf-β1 and macrophage markers Cd68 and
Cd163 with the genetic reduction of Seps1 in dystrophic
EDL muscles. Previous ex vivo studies on macrophages
and macrophage cell lines (RAW264.7) have consistently
found exacerbation of the inflammatory profile upon
SEPS1 knockdown [31, 54, 55]. This is interesting as it
was macrophage markers and Mcp-1 mRNA levels that
were elevated in our study. Given that fast-twitch fibres
are typically more susceptible to ER, oxidative, and inflam-
matory stress [56], there could be a greater need for the
protective effects of SEPS1, where excessive macrophage
infiltration exacerbates degeneration and fibrosis. Interest-
ingly, these changes in inflammatory gene expression did
not occur in dystrophic soleus muscles following the
genetic reduction of Seps1.

Fast-twitch muscles are generally more susceptible to
contraction-induced injury [57]. The mdx mouse hindlimb
muscles are predominantly fast-twitch with the exception
of the soleus that has approximately 60% slow-twitch
type-1 muscle [58], which could explain the lack of
increased inflammation with the genetic reduction of Seps1
in mdx soleus muscles (Supplementary Data). MCP-1 is a
potent chemotactic factor that recruits and activates
monocyte cells at the site of damage [5, 59], and this
may explain why Mcp-1 and the macrophage cell surface
marker F4/80 were elevated simultaneously. Though other
inflammatory markers measured were not significantly dif-
ferent between groups, all trended in the same positive
direction, suggesting that the inflammatory profile of dys-
trophic EDL muscles is exacerbated by the genetic reduc-
tion of Seps1. Whilst highly expressed in skeletal muscle
fibres, SEPS1 is ubiquitously expressed. Given the global
knockdown model used, reduction of SEPS1 in infiltrating
inflammatory cells and fibroblasts may have also contributed
to the exacerbated inflammatory profile observed in EDL
muscles of mdx:Seps1−/+ mice. Given chronic inflammation
reduces protein synthesis and can cause muscle atrophy [4],
the reduced muscle fibre size in the mdx:Seps1−/+ mice is
potentially explained by the increased inflammatory profile
in these muscles.

In mdx skeletal muscle, Mcp-1 mRNA is already 15–36-
fold higher and macrophage infiltration is similarly elevated
[5]. Tgf-β1 mRNA is also chronically elevated in mdx mice
and is associated with impaired regeneration, atrophy, and
fibrosis [60]. Therefore, this model may somewhat mask
the effect of reduced SEPS1 in skeletal muscle, and an acute
trauma to skeletal muscle may elucidate a more clear role
for SEPS1 in skeletal muscle. To better elucidate the role of
SEPS1 in dystrophic muscles, the pathology of mdx mice
should be exacerbated in follow-up studies using acute and
chronic exercise to increase muscle damage and inflamma-
tion [61]. The role of SEPS1 in inflammation in otherwise
healthy, nondystrophic muscles following an acute injury
should also be investigated. In dystrophic muscles, injury
and inflammation occur in a very different cellular milieu
than acute injury and repair in nondystrophic muscles. These
differences are due to the chronic contraction-induced injury
occurring in dystrophic muscles and have been described as
“smoldering inflammation” [59] and as “asynchronously
regenerating microenvironments” [16]. This has implica-
tions for muscle inflammation and effective repair, as differ-
ent pathways may need to be targeted in dystrophic
compared to nondystrophic muscles. For example, in mdx
mice, inhibition of MCP-1 signalling via the CCR2 receptor
ameliorated inflammation and improved the pathology dys-
trophic muscles [5]. Whereas, in normal muscles, following
acute injury inhibition of CCR2 signalling reduces macro-
phage accumulation and impedes successful regeneration
[62]. This is interesting, as we observed increased mRNA
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Figure 5: Inflammatory, ER stress, and cell death gene markers in EDL muscles. (a) Monocyte chemoattractant protein 1 (Mcp-1), (b)
EGF-like module-containing mucin-like hormone receptor-like 1 (F4/80), (c) transforming growth factor β1 (Tgf-β1), (d) cluster of
differentiation 68 (Cd68), (e) cluster of differentiation 163 (Cd163), (f) inducible nitric oxide (iNos), (g) arginase, (h) tumour necrosis factor
α (Tnfα), (i) interleukin 1β (IL-1β), (j) myeloperoxidase (Mpo), (k) glucose-regulated protein 78 (Grp78), and (l) caspase 3 gene expression
in the EDL muscle at 12 weeks of age, represented as fold change± SEM (n = 11). ∗P < 0 05 using Student’s t-test.
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transcripts of Mcp-1, a CCR2 ligand, and the macrophage
marker F4-80 with the genetic reduction of Seps1.

Heightened inflammation and inflammatory pathologies,
including muscular dystrophy, are associated with higher
metabolic costs [63, 64]. Importantly, tissue metabolism
can be upregulated by increased infiltration of inflammatory
cells that can increase their oxygen demand by 50-fold
through the generation of ROS [63, 65]. In our study, reduced
SEPS1 expression increased inflammation, and this was
associated with increases in O2 consumption and CO2 pro-
duction, without shifting substrate utilisation (as estimated
by RER). This suggests that the SEPS1 reduction may
exacerbate muscle inflammation, driving up tissue metabo-
lism (for example, through the generation of ROS), and thus
leading to a reduction in protein accretion. Despite the
global knockout mouse model used, we would argue that
effects on whole body metabolism are predominantly skele-
tal muscle specific. When compared to wild-type mice, mdx
mice have increased whole body metabolism, including rest-
ing energy expenditure and protein turnover [48]. The
hypothesis of a more severe pathology in our SEPS1 model
is supported by the increased O2 consumption and CO2 pro-
duction, smaller muscle fibres, and reduced lean mass gain
in the mdx:Seps1−/+ mice.
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Despite the changes in the inflammatory profile and
muscle fibre size of the EDL muscles, at 12 weeks of age,
the genetic reduction of Seps1 did not impair mdx hindlimb
muscle function ex vivo, nor did it reduce spontaneous phys-
ical activity. Although mdx mice have reduced spontaneous
physical activity and show functional declines in muscle early
in life, the mdx pathology is less severe than that of their
human counterparts. Despite the ongoing degeneration,
regeneration, and elevated inflammation [66], adult mdx
mice may not display functional muscle impairment up to
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one year of age [61]. Therefore, differences in selenoprotein
levels up to 12 weeks may have been insufficient to elucidate
any perturbations in muscle function. A longer study dura-
tion should be considered to better elucidate the role of
SEPS1 in the pathology of dystrophic mdx muscles.

5. Conclusions

The present study identified SEPS1 as a novel modulator of
skeletal muscle inflammation in the fast-twitch muscles of
mdx mice. Specifically, the genetic reduction of Seps1 exac-
erbates inflammation in the fast-twitch EDL. Future
research is needed to determine if SEPS1 affects disease pro-
gression in muscular dystrophy and whether SEPS1 could
translate to other myopathies also significantly impacted
by inflammation.
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