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Glutamate receptors play a crucial role in the central nervous system and are
implicated in different brain disorders. They play a significant role in the pathogenesis
of neurodegenerative diseases (NDDs) such as Alzheimer’s disease, Parkinson’s
disease, and amyotrophic lateral sclerosis. Although many studies on NDDs have been
conducted, their exact pathophysiological characteristics are still not fully understood. In
in vivo and in vitro models of neurotoxic-induced NDDs, neurotoxic agents are used to
induce several neuronal injuries for the purpose of correlating them with the pathological
characteristics of NDDs. Moreover, therapeutic drugs might be discovered based on
the studies employing these models. In NDD models, different neurotoxic agents,
namely, kainic acid, domoic acid, glutamate, β-N-Methylamino-L-alanine, amyloid beta,
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, 1-methyl-4-phenylpyridinium, rotenone,
3-Nitropropionic acid and methamphetamine can potently impair both ionotropic
and metabotropic glutamate receptors, leading to the progression of toxicity. Many
other neurotoxic agents mainly affect the functions of ionotropic glutamate receptors.
We discuss particular neurotoxic agents that can act upon glutamate receptors so
as to effectively mimic NDDs. The correlation of neurotoxic agent-induced disease
characteristics with glutamate receptors would aid the discovery and development of
therapeutic drugs for NDDs.
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Abbreviations: α-Syn, alpha-synuclein; 6-OHDA, 6-Hydroxydopamine; AD, Alzheimer’s disease; AMPARs, α-amino-
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KARs, kainate receptors; LTP, long term potentiation; mGluRs, metabotropic glutamate receptors; MPTP, 1-methyl-
4-phenyl-1,2,3,6-tetrahydropyridine; MTEP, 3-[(2-methyl-1,3-thiazol-4-yl) ethynyl]pyridine; Mn, manganese; METH,
methamphetamine; NDDs, neurodegenerative diseases; NMDARs, N-methyl-D-aspartate receptors; NaN3, sodium azide;
PD, Parkinson’s disease; PTZ, pentylenetetrazol
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BACKGROUND

Glutamate receptors are the most abundant type of excitatory
neurotransmitter receptors, and they are involved in mediating
common excitatory synaptic transmissions in the brain and
spinal cord (Jensen, 2009; Byrne et al., 2014). These receptors
are very complex in nature and more than 20 different
glutamate receptors have been recognized in the mammalian
central nervous system (Altevogt et al., 2011). Glutamate
receptors are categorized into two groups: ionotropic and
metabotropic. iGluRs are voltage-sensitive, whereas mGluRs
are ligand-sensitive (Altevogt et al., 2011). The subtypes of
iGluRs are named for the chemical agonists that selectively
bind to these subfamily members: NMDARs, AMPARs, and
KARs (Conn and Pin, 1997). These subtypes have different
subunits: the NMDAR subunits are GluN1, GluN2A, GluN2B,
GluN2C, GluN2D, GluN3A, and GluN3B; the AMPAR subunits
are GluA1, GluA2, GluA3, and GluA4; and the KAR subunits are
GluK1, GluK2, GluK3, GluK4, and GluK5 (Tang et al., 2004).
According to their pharmacological and signal transduction
properties, mGluRs are divided into three broad groups that
comprise eight subtypes (Jia et al., 2014). Group I and
II mGluRs have two subunits: mGluR1 and mGluR5, and
mGluR2 and mGluR3, respectively. Group III mGluRs have four
subunits: mGluR4, mGluR6, mGluR7, and mGluR8 (Wong et al.,
2005).

Glutamate receptors are best known for their mediation
of glutamate in learning and memory through plasticity, that
is the modification of channel properties; enhanced glutamate
neurotransmission; and gene expression (Barco et al., 2006). They
are involved in the pathogenesis of a variety of neurological
disorders, including anxiety, schizophrenia, and epilepsy. (Rubio
et al., 2012; Barker-Haliski and White, 2015; De Filippis et al.,
2015). In addition to these disorders, various studies have
reported that iGluRs and mGluRs play crucial roles in the
pathogenesis of NDDs, such as AD, PD, Huntington’s disease
(HD), amyotrophic lateral sclerosis (ALS), multiple sclerosis,
and spinocerebellar ataxia (Geurts et al., 2003; Jin and Smith,
2007; O’Neill and Witkin, 2007; Fernandes and Raymond, 2009;
André et al., 2010; Fallarino et al., 2010; Kwak et al., 2010; Ahmed
et al., 2011; Spalloni et al., 2013; Titulaer et al., 2014; van Beugen
et al., 2014; Iizuka et al., 2015; Guntupalli et al., 2016; Ishibashi
et al., 2016; Zhang Y. et al., 2016; Ribeiro et al., 2017).

Based on the complexity of the mechanistic progression
of NDDs, elucidating the proper disease pathophysiology and
therapeutics of NDDs remains a major challenge. Recently, many
neurotoxic agents have been employed in experiments in order to
explore cellular functions and dysfunctions (Kumar and Kumar,
2010; van der Star et al., 2012; Abbasi et al., 2013; Jiang et al.,
2015; Parekh, 2015; Ahmad et al., 2017; Kim et al., 2017). Their
correlation with pathological characteristics of diseases via the
utilization of neurotoxic agent-induced models is a helpful way
to screen and discover potential therapeutic drugs for NDDs.
Prior studies have also documented the actions of common
neurotoxic agents that cause injury in NDD models (Schober,
2004; Bové et al., 2005; Hisahara and Shimohama, 2011; More
et al., 2016). With respect to diverse neuronal functions, we

focus on glutamate receptors as a target in neurotoxic agent-
induced injury that may aid in the discovery of therapeutic drugs
specifically for NDDs.

GLUTAMATE RECEPTORS AS
POTENTIAL TARGETS IN NEUROTOXIC
AGENT-INDUCED NDD MODELS

Agents That Act on iGluRs and mGluRs
Glutamate, Kainic Acid, and Domoic Acid
Glutamate, a major excitatory neurotransmitter in the central
nervous system, plays a vital role in neuronal cell differentiation,
migration, and survival in the developing brain, basically via
facilitating the entry of Ca2+ (Llorente-Folch et al., 2016).
Kainic acid (KA), an agonist for the iGluR subtype which is
known as a non-degradable analog of the excitotoxin, glutamate,
offers a well-characterized model for the study of NDDs (Wang
et al., 2005; Zhang et al., 2010; Zheng et al., 2010). DomA, a
naturally occurring marine neurotoxin produced by members of
the diatom genus, Pseudo-nitzschia, is a structural relative of KA
(Lu et al., 2013).

Glutamate is capable of binding to and activating both
iGluRs and mGluRs. In the brain, intracellular glutamate
concentrations are in the millimolar range, and extracellular
glutamate concentrations remain in the low micromolar range.
These concentrations are achieved through the action of
excitatory amino acid transporters that import glutamate and
aspartate into astrocytes and neurons. Excess extracellular
glutamate may lead to excitotoxicity in vitro and in vivo through
the overactivation of iGluRs (Lewerenz and Maher, 2015). In
general, glutamate triggers neuroinflammation while glutamate-
induced excitotoxicity may contribute to neuronal cell death
in NDDs (Lee et al., 2017). Glutamate-induced excitotoxicity
causes cell death, apoptosis, and autophagy in both hippocampal
cells (HT22) and primary cultured hippocampal neuron cells
with neurotoxicity in differentiated Y-79 cells, BV-2 cells, and
PC12 cells. Mitochondrial dysfunction, oxidative damage, and
neuroinflammation are also key toxic effects in the glutamate-
induced neurotoxicity model (Bak et al., 2016; Shinoda et al.,
2016; Wang K. et al., 2016; Xu et al., 2016; Chen Z.W.
et al., 2017). Numerous studies have described glutamate-
induced neurotoxicity through the action of glutamate receptors.
In human embryonic stem cell-derived neurons, glutamate
produces NMDAR-dependent excitotoxicity. On the other hand,
an NMDAR antagonist reduces glutamate-induced Ca2+ influx,
which leads to the reduction of excitotoxicity (Gupta et al., 2013).
In addition, berberine-induced mitochondria and NMDAR-
dependent toxicity sensitize neurons to glutamate injury.
Memantine (an NMDARs antagonist) and dizocilpine (MK-
801) (a non-competitive NMDARs antagonist) completely block
berberine-induced neurotoxicity (Kysenius et al., 2014). Another
study found that MK-801 and γ-D-glutamylaminomethyl
sulfonic acid (a KARs/AMPARs antagonist) wholly prevents
glutamate-induced impairment in hippocampal cells. An p38
MAPK inhibitor, SB203580, also prevents glutamate-induced
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cell damage, but an MEK1 inhibitor, PD98059, does not
alter glutamate-induced cell death in the intracellular signaling
pathways (Molz et al., 2008). According to the most recent
research on glutamate-induced toxicity in differentiated PC12
cells, the glutamate-induced dysfunction of Ca2+ homeostasis is
protected by FAM3A upregulation. This activity is accomplished
through the inhibition of mGluR1/5-dependent Ca2+ release by
the endoplasmic reticulum (ER) and attenuation of the stromal
interaction molecule-1 (STIM1)-Orai1 channel interactions that
modulate store-operated Ca2+ entry (Song et al., 2017). Further,
mGluR5 is expressed on astrocytes and through its activation,
aquaporin 4-mediated glutamate-induced neurotoxicity causes
partial mediation of astrocyte swelling. An mGluR5 agonist, (S)-
3,5-dihydroxyphenylglycine (DHPG), which activates mGluR5 in
cultured astrocytes, mimics the effect of glutamate. Incubation
of DHPG with fenobam (an mGluR5 antagonist) negates this,
and DL-threo-β-benzyloxyaspartic acid (DL-TBOA), a glutamate
transporter inhibitor, does not abolish this agonistic effect (Shi
et al., 2017).

The KA-induced neurotoxicity model is suitable for both
in vivo and in vitro studies using rodents and several cell
lines, such as BV-2 microglia, PC12 cells, and SH-SY5Y cells
(Zhang et al., 2010; Hsieh et al., 2011; Xie et al., 2011; Luo
et al., 2013; Nampoothiri et al., 2014; Nabeka et al., 2015). By
acting on KARs, KA causes neuroexcitotoxic and epileptogenic
properties. KA induces behavioral changes in rodents and causes
a variety of cellular events to take place, including the influx of
cellular Ca2+, neuroinflammation, production of reactive oxygen
species (ROS) and mitochondrial dysfunction. It eventually
leads to neuronal apoptosis and necrosis in many regions of
the brain, particularly in the hippocampal subregions, cornu
ammonis 1 (CA1), cornu ammonis 3 (CA3), and hilus of
dentate gyrus (Wang et al., 2005; Zhang et al., 2010; Xie et al.,
2011; Nabeka et al., 2015). Moreover, in cellular models, KA
produces effects similar to those seen in rodent models (Hsieh
et al., 2011; Nampoothiri et al., 2014). According to a recent
study involving KA-induced excitotoxic hippocampal neuronal
damage in rats, 2-Methyl-6-(phenylethynyl)-pyridine (a negative
allosteric modulator of mGluR5) and LY354740 (an agonist
of mGluR2) treatments ameliorate KA-induced neuronal cell
death. Based on these results, both KARs and mGluRs may be
involved in the KA-induced neuronal toxicity (Pershina et al.,
2017).

As a KAR agonist, DomA is considered a potent neurotoxin
and is used in experimental models to cause neurotoxicity.
DomA-induced neurotoxicity causes neuroinflammation,
mitochondrial dysfunction, oxidative stress, apoptosis, cognitive
impairment, and neuronal cell death (Ananth et al., 2003;
Chandrasekaran et al., 2004; Giordano et al., 2009; Lu et al.,
2013; Wang D. et al., 2016). It is also employed in order to
induce the symptoms of epilepsy in animal models (Buckmaster
et al., 2014). The modulation of iGluRs may play a part in
DomA-induced excitotoxicity (Qiu et al., 2005). In a neonatal
rat model, a very low dose of DomA was shown to elicit a
conditioned odor preference, and this was partly attributed to
NMDARs involvement (Tasker et al., 2005). According to another
investigation, AMPARs/KARs primarily regulate the neurotoxic

effects of DomA. NBQX (a AMPARs/KARs antagonist)
completely prevents DomA-induced toxic effects, whereas
the NMDARs antagonist, (2R)-amino-5-phosphonopentanoate
(APV), only partially blocks these effects (Hogberg and Bal-Price,
2011). The glutamate-, DomA-, and KA-induced progressions
of major neurotoxicity via glutamate receptors are depicted in
Figure 1.

1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine and
1-Methyl-4-phenylpyridinium
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is a
common neurotoxic agent used to induce PD in animal models.
MPTP yields large variations in nigral cell loss, striatal dopamine
(DA) loss, and behavioral deficits (Meredith and Rademacher,
2011). 1-methyl-4-phenylpyridinium (MPP+), a metabolite of
MPTP by monoamine oxidase-B, is also considered to be a
neurotoxic agent and is also commonly used in both in vitro and
in vivo PD models (Gasparini et al., 2013). MPTP activates the
NMDARs and increases glutamate release in the striatum, which
causes a large influx of Ca2+-induced neuronal excitotoxicity
(Wang et al., 2010). The modulation of glutamate receptors
by MPTP may be responsible for producing the associated
neurotoxic effects. In addition, certain iGluRs antagonists
have shown antiparkinsonian and anti-dyskinetic activities
(Gasparini et al., 2013). Moreover, MPTP upregulates mGluR5 in
monkey model. Chronic treatment with an mGluR5 antagonist,
(3-[(2-methyl-1,3-thiazol-4-yl) ethynyl] pyridine) (MTEP),
significantly protects dopaminergic and noradrenergic neurons
from MPTP-induced toxicity (Samadi et al., 2008; Masilamoni
et al., 2011). MPP+ interacts with NMDARs as a partial agonist
and may dysregulate receptor functioning. Concerning the
available research, NMDAR antagonists inhibit the actions of
MPP+, specifically by decreasing MPP+-induced mitochondrial
dysfunction (Camins et al., 1997). In a study, an mGluR8 agonist,
(S)-3,4-Dicarboxyphenylglycine, demonstrates neuroprotective
activity against MPP+-induced cell death in SH-SY5Y cells
(Jantas et al., 2014).

Rotenone
Rotenone is a commonly used pesticide and fish toxin that
impedes mitochondrial respiratory chain complex I (Zhang
et al., 2006). It a valuable tool for PD research and exposure
to rotenone causes the induction of parkinsonism in rodents.
Nowadays, rotenone is an extensively used toxin to induce
neurotoxicity in both in vitro and in vivo models of PD. It
causes aging-related SN dopaminergic neurodegeneration in
rats (Wang X. et al., 2015). Rotenone potently augmented
NMDA-evoked currents in rat DA neurons through a tyrosine
kinase-dependent mechanism. Further study showed that the
potentiation of NMDA currents by a tyrosine kinase-dependent
process attenuates the voltage-dependent Mg2+ block of NMDA-
gated channels (Wu and Johnson, 2009). In addition, rotenone
modulates mGluRs as it damages DNA through mGluR5.
The selective mGluR5 antagonist protects rotenone-induced
neurotoxicity by mitigating the oxidative stress-related damage to
DNA associated with 8-hydroxy-2′-deoxyguanosine production,
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FIGURE 1 | Glutamate receptor-mediated neurotoxic actions of glutamate, domoic acid, and kainic acid. Upon binding to glutamate receptors, all toxins produce an
agonistic reaction that lead to cell death. Glu: Glutamate; KA: Kainic acid; DomA: Domoic acid; COX: Cyclooxygenase; ROS: Reactive oxygen species; and RNS:
Reactive nitrogen species.

and also decreases the phosphorylation of extracellular-signal-
regulated kinase activity and thioredoxin-2 expression (Xia et al.,
2015).

Methamphetamine
As a sympathomimetic amine, METH belongs to the
phenethylamine and amphetamine classes of psychoactive drugs.
It is abused extensively for its euphoric, stimulant, empathogenic,
and hallucinogenic properties (Yu et al., 2015). As a neurotoxic
agent, METH can be used to induce neurotoxicity in a study
model, which may be helpful in the study of NDDs, particularly
in study of PD. METH-induced neurotoxicity is characterized
by a long-lasting depletion of striatal DA and serotonin as well
as by damage to striatal dopaminergic and serotonergic nerve
terminals (Kita et al., 2003). The principal neurotoxic effects
caused by METH are oxidative stress, neuroinflammation, and
apoptosis leading to neuronal cell death (Choi et al., 2002;
Raineri et al., 2012; Shin et al., 2012; Jayanthi et al., 2014;
Jumnongprakhon et al., 2014). Studies have reported that METH
downregulates the glutamate receptors. In the hippocampus,
METH induction decreases the permeability and/or functionality
of NMDARs and AMPARs, impairing spatial working memory
(Simoes et al., 2007). In the rat striatum and frontal cortex,
METH changes the NMDAR and AMPAR subunit levels (Simões
et al., 2008). Besides, the cortical iGluR antagonism protects
against METH-induced striatal neurotoxicity (Gross et al., 2011).
A few studies have correlated METH-induced neurotoxicity
with mGluRs. Antagonism of mGluR1 by its selective antagonist
JNJ16259685 [(3,4-dihydro-2H-pyrano-[2,3-b]quinolin-7-yl)-
(cis-4-methoxycyclohexyl) metha-none] attenuates cocaine-
and METH- treated behavioral effects in squirrel monkeys

(Achat-Mendes et al., 2012). In addition to mGluR1, mGluR5
receptors play an important role in METH reinforcement
and METH-seeking behavior. An mGluR5 antagonist, 2-
methyl-6-(phenylethynyl)-pyridine, dose-dependently reduces
the reinforcing effects of METH under a fixed-ratio 1 and a
progressive ratio schedule of reinforcement without altering
overall responding for food. It also dose-dependently prevents
the cue and drug-induced reinstatement of METH-seeking
behavior (Gass et al., 2009). Another study reported that mGluR5
plays a role in the maintenance of place preference memory and
that its negative allosteric modulators could be potentially used
in METH addiction therapy (Herrold et al., 2013).

Amyloid Beta
Amyloid beta (Aβ) acts as a neurotoxic agent by initiating
biochemical cascades that ultimately lead to synaptotoxicity
and neurodegeneration (Walsh and Selkoe, 2004). It can
interrupt excitatory synaptic transmission and plasticity in
the brain via the dysregulation of AMPARs and NMDARs
(Guntupalli et al., 2016). Recent research employing Aβ-induced
neurotoxicity models have shown that the altered activity of
NMDARs plays a major role in disease pathogenesis. Aβ

enhances the activation of extrasynaptic NMDARs by decreasing
neuronal glutamate uptake and inducing glutamate spillover
(Wang Z.-C. et al., 2013). It binds to hippocampal neuron
NMDAR subunits GluN1 and GluN2B (Lacor et al., 2004; Lacor
et al., 2007). The GluN2B subunit is involved in regulating
the action of Aβ oligomers by increasing intracellular Ca2+

in dendritic spines, resulting in the reduction of dendritic
spine and synaptic density, which leads to early synaptic
dysfunction (Shankar et al., 2007). In an Aβ-induced model,
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synaptic alterations were mitigated by blocking glutamate from
binding to NMDARs though the use of an NMDARs antagonist
(Birnbaum et al., 2015). Correspondingly, the stimulation of
GluN2B by Aβ oligomer triggers the activation of MAPK and
the subsequent downregulation of cAMP response element-
binding protein (CREB) (Li et al., 2011). Indeed, Aβ reduces
BDNF signaling by impairing axonal transport, which leads
to synaptic dysfunction (Poon et al., 2011). A recent report
showed that inhibition of NMDARs prevents the Aβ-induced
loss of BDNF function (Tanqueiro et al., 2018). In addition,
through in an α7-nicotinic acetylcholine receptor (α7-nAChR)-
dependent manner, Aβ oligomers induce the endocytosis of
NMDARs (Snyder et al., 2005). Likewise, α7-nAChRs are linked
to the deregulation of NMDA signaling pathways (Roselli
et al., 2005; Shankar et al., 2007). Interestingly, relatively
low doses of NMDA-antagonists have been shown to reverse
Aβ-induced synaptic disruption (Li et al., 2011; Rönicke et al.,
2011). Aβ downregulates the caspase-mediated loss of two
synaptic proteins, PSD-95 and synaptophysin. It suppresses
NR2A function and activates NR2B following the induction of
caspase-8 and caspase-3 activities. On the other hand, MK-801
and ifenprodil (an NR2B antagonist) prevent Aβ-induced toxicity
(Liu et al., 2010). In hippocampal neurons, Aβ oligomers disrupt
axonal transport initiated by NMDAR-dependent mechanisms,
and this is modulated by the enzyme glycogen synthase kinase-
3β (Decker et al., 2010). In another study, the activation of
Aβ-induced striatal-enriched protein tyrosine phosphatase was
shown to lead to the dephosphorylation of tyrosine residues on
NMDARs. Dephosphorylation of the GluN2B subunit correlates
with increased NMDARs endocytosis and suppression of its
synaptic function. On the other hand, reelin activates Src family
tyrosine kinases and enhances tyrosine phosphorylation of the
GluN2A and GluN2B subunits. Reelin signaling may prevent
Aβ-induced NMDARs endocytosis and Src family tyrosine
kinases activation (Durakoglugil et al., 2009). A proposed
mechanism of Aβ-induced impairment in major types of
signaling through NMDARs that leads to synaptic dysfunction is
presented in Figure 2.

Aβ-induced synaptic dysfunction has been attributed to
the synaptic removal of AMPARs. Aβ-induced change in the
subcellular distribution of Ca2+/calmodulin-dependent protein
kinase II may drive the removal of AMPARs from the synaptic
membrane by Aβ (Gu et al., 2009). Aβ initiates synaptic
and memory deficits by removing GluA3-containing AMPARs
from synapses (Reinders et al., 2016). It disrupts mitochondrial
trafficking, which may contribute to AMPAR removal as well as
trafficking defects that cause synaptic inhibition (Rui et al., 2010).
Furthermore, Aβ-induced dendritic spine loss and reductions
in pre- and post-synaptic protein levels in hippocampal slice
cultures can impair hippocampal LTP (Zhang et al., 2009; Wang
Z.-C. et al., 2013; Birnbaum et al., 2015).

Aβ-induced ectopic NMDA and mGluR-mediated signaling
coupled with caspase-3 activation may inhibit LTP and also
facilitate long-term depression (LTD) (Hu et al., 2012). Within
the synaptic space, membrane-bound Aβ oligomers accumulate
and via a lateral diffusion process, gradually aggregate in order
to form large non-mobile clusters. Aβ pathological clusters

form complexes with mGluR5 receptors, which decreases the
mobility of mGluR5 and causes its anomalous accumulation
at the postsynaptic membrane. This is followed by calcium
deregulation, synaptic disruption, and loss of NMDARs (Renner
et al., 2010). In a transgenic model study, Aβ oligomer-
cellular prion protein complexes activated mGluR5 at the
neuronal surface, which led to the disruption of neuronal
function (Um et al., 2013). The downregulation of mGluR and
desensitization of the frontal cortex in AD patients correlated
with AD-related neuropathological variations. Furthermore, the
chronic activation of mGluR5 increased NMDA-dependent
Aβ neurotoxicity, whereas mGluR5 antagonism exhibited
neuroprotective effects against Aβ excitotoxic processes and
prevented impairments in learning, memory and synaptic density
(Rammes et al., 2011; Um et al., 2013).

Homocysteine
Homocysteine (Hcy), a sulfur-containing amino acid derived
from the metabolism of methionine, is an independent risk factor
for AD (Ataie et al., 2010c; Li et al., 2016). As a known neurotoxic
agent, Hcy is used to induce neurotoxicity. In several animal
model studies, Hcy brought about synaptic dysfunction, oxidative
stress, neurochemical imbalance, and apoptosis, resulting in
cognitive impairment and neuronal cell death. Thus, an Hcy-
induced neurotoxicity model might be suitable for the study
of AD (Ataie et al., 2010a,b,c; Wei et al., 2014; Kamat et al.,
2016; Li T. et al., 2017). Hcy has been shown to modulate
glutamate receptors, which leads to various neurotoxic effects.
The activation of Hcy-NMDAR-mediated extracellular signal-
regulated kinase causes neuronal cell death. Further, it modulates
hippocampal glutamate and the NMDAR/AMPAR ratio in a rat
model of chronic unpredictable mild stress-induced depression
(Poddar and Paul, 2009; Liu et al., 2013; Moustafa et al., 2014;
Poddar et al., 2017). Moreover, Hcy modulates mGluRs. An
mGluR1 antagonist produces neuroprotective effect in the Hcy-
induced neurodegenerative model (Yeganeh et al., 2013).

β-N-methylamino-L-alanine
The non-proteinogenic amino acid β-N-methylamino-L-alanine
(BMAA), was first identified in the seeds of Cycas micronesica
in 1967 (McCarron et al., 2014), though a wide range of
cyanobacteria are now known to produce BMAA. Recently,
the most common group of algae (diatoms) was also found
to produce it (Delzor et al., 2014). BMAA is considered
one of the first environmental factors that contributes to the
etiologies of AD, PD, and ALS (Zhou et al., 2010). It is a
common neurotoxin utilized in the study of neurodegeneration
in cellular and animal models, specifically those for the
study of ALS/Parkinsonism-dementia complex. BMAA causes
neuroinflammation, oxidative stress, apoptosis and cognitive
impairment (Brownson et al., 2002; Lobner, 2009; Santucci
et al., 2009; Zhou et al., 2010; Muñoz-Saez et al., 2013; Al-
Sammak et al., 2015; Takser et al., 2016; Laugeray et al., 2017;
Petrozziello et al., 2017). It elicits neurotoxicity by acting as
an agonist for glutamate receptors such as AMPARs/KARs,
NMDARs, and mGluR5 (Lobner, 2009; Delzor et al., 2014).
BMAA causes a significant increase in Ca2+ influx and enhanced
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FIGURE 2 | Amyloid beta-induced synaptic dysfunction through NMDAR. Binding of Aβ to the NMDAR causes calcium overload in the synapse leading to
impairment in various signaling pathways. Finally, these impairments cause synaptic dysfunction. PSD-95: Postsynaptic density protein 95; MAPKs:
Mitogen-activated protein kinases; GSK-3β: Glycogen synthase kinase-3 beta; CREB: cAMP-response element binding protein; BDNF: Brain-derived neurotrophic
factor; CaMKII: Calcium/calmodulin-dependent protein kinase II

ROS production, while also disrupting mitochondrial activity in
rat olfactory ensheathing cells (Chiu et al., 2013). In addition, it
interferes with neurotransmission in human neuroblastoma cells.
BMAA alters alanine, aspartate, and glutamate metabolism and
also modifies numerous neurotransmitters/neuromodulators,
such as GABA and taurine (Engskog et al., 2017). However,
the mechanism of BMAA-induced neurotoxicity is not yet fully
understood, and its role as a glutamate receptor agonist may
in fact lead to excitotoxicity that hampers glutamate transport
systems (Zimmerman et al., 2016).

3-Nitropropionic Acid
3-Nitropropionic acid (3-NP) is a common neurotoxic
agent used to study HD and is an irreversible inhibitor
of mitochondrial complex-II. In the experimental animal
model, it caused mitochondrial dysfunction, oxidative stress,
biochemical imbalance, neuroinflammation, apoptosis, and
autophagy, leading to neuronal cell death (Binawade and
Jagtap, 2013; Solesio et al., 2013; Shetty et al., 2015; Jamwal
and Kumar, 2016; Thangarajan et al., 2016). 3-NP was
shown to produce neurotoxicity via the modulation of
glutamate receptors. One study has suggested that 3-NP
produces a neurotoxic effect through GluN2B-containing
NMDARs (Centonze et al., 2006). In addition, the glutamate

receptor antagonist, (2R)-amino-5-phosphonovaleric acid
(AP5), negates the 3-NP-induced NMDAR-mediated second
peak in ROS, mitochondrial fission, and cell death (Liot
et al., 2009). The cannabinoid agonist WIN55,212-2 has
been shown to produce a neuroprotective effect against
3-NP-induced striatal neurotoxicity via the induction of
NMDARs hypofunction (Maya-López et al., 2017). Moreover,
mGluR5 may be involved in 3-NP-induced neurotoxicity.
In a study, MTEP produced neuroprotective activity
in a 3-NP-induced neuronal injury model (Souza et al.,
2014).

Cuprizone
Cuprizone is a common neurotoxic agent indicated to induce
neurotoxicity to study NDDs. It is particularly used to induce
multiple sclerosis-like syndromes. In the experimental animal
model, it has shown to cause demyelination, oxidative stress,
neuroinflammation, and apoptosis leading to neuronal cell death
(Gudi et al., 2014; Zimmermann et al., 2014; Slowik et al., 2015;
Sághy et al., 2016; Ragerdi Kashani et al., 2017; Sanadgol et al.,
2017). In the cuprizone model of demyelination, the NMDARs
specific antagonist MK-801 delays remyelination. NMDARs plays
a critical role in the regulation of oligodendrocyte precursor cell
differentiation in vitro and remyelination in cuprizone model,
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which may provide a potential target for the treatment of
demyelination disease (Li et al., 2013). Another study reported
that cuprizone treatment affected glutamate-receptors and -
transporters differently in the gray and white matter areas of
the brain, specifically, showed that it regulates the glutamate-
aspartate transporter (Slc1a3) and neutral amino acid transporter
A (Slc1a4) genes compared with other genes. Among the different
NMDAR subunits, GluN2A was upregulated in the demyelinated
corpus callosum (CC) and mGluR2 was downregulated in the
demyelinated gray matter (Tameh et al., 2013).

Doxorubicin
Doxorubicin (DOX) is a known neurotoxic agent suitable
for both in vivo and in vitro studies. In experimental
models, DOX induction of neurotoxicity causes mitochondrial
dysfunction, oxidative stress, neuroinflammation, apoptosis,
cognitive impairments, and neuronal cell death (Shokoohinia
et al., 2014; Siswanto et al., 2016; Cheruku et al., 2017). Several
molecular studies have shown that DOX impairs glutamate
receptors, leading to neuronal toxicity. In a DOX-induced
neurotoxicity study, memantine was shown to counter neuronal
cell death by blocking NMDARs (Jantas and Lason, 2009). In
addition, mGluR II and III activators produced neuroprotective
effects on DOX-induced cellular injury (Jantas et al., 2015).
Furthermore, LTP and AMPARs impairment has been shown in
DOX-treated animals. Compared to controls, the expression of
the AMPAR subunit, GluA1, was significantly decreased, whereas
the expression of the GluA2 subunit was significantly elevated
(Alhowail, 2014). Another study showed that NMDARs and
AMPAR might be involved in DOX-induced damage to DNA in
neurons (Manchon et al., 2016).

Glucocorticoid
The hormone, GC, rises in concentration response to stress,
which can cause neuronal loss (Kim et al., 2010). GC-induced
neurotoxicity might be an appropriate model for the study of
NDDs. It causes oxidative stress, memory impairment, neuronal
cell death, and apoptosis (De Quervain et al., 2003; Lu et al.,
2003; Roozendaal et al., 2003; You et al., 2009; Xu Y. et al., 2013)
the latter through iGluRs and mGluRs (Lu et al., 2003). The
stress-induced elevation of GC increases microglia proliferation
through the activation of NMDARs. MK-801 has been shown to
prevent the increase of microglia following the administration of
exogenous GC corticosterone (Nair and Bonneau, 2006).

Harmaline
Harmaline-induced neurotoxicity in animals also could be a
robust model for the study of NDDs (Iseri et al., 2011;
Dahmardeh et al., 2017). Harmaline modulates both iGluRs and
mGluRs (Kolasiewicz et al., 2009; Iseri et al., 2011). As an inverse
agonist of NMDARs, it produces tremors (Du et al., 1997). The
synchronous activation of the olivocerebellar pathway and release
of glutamate in the cerebellum (which acts on NMDARs and
AMPARs) is proposed to be main cause of harmaline-induced
tremors (Shourmasti et al., 2014). In addition, the agonistic
action of harmaline on mGluR1 produces motor disturbances
(Kolasiewicz et al., 2009). On the other hand, memantine

produces neuroprotective and anti-tremorgenic activities against
harmaline-induced tremors and neurodegeneration (Iseri et al.,
2011).

Pentylenetetrazol
The tetrazole derivative, PTZ, causes convulsions in mice, rats,
cats, and primates, likely by interfering with GABA-mediated
inhibition. PTZ is best known for its use in the screening of
antiepileptic drugs (Zhao, 2006). It causes neuroinflammation
and oxidative stress, which affects cognition. In addition, PTZ
has been observed to cause amnesia in animal models (Oscós-
Alvarado and de Muñoz, 1981; Pourmotabbed et al., 2011;
dos Santos Branco et al., 2013). It is also known to modulate
glutamate receptors. In a PTZ-induced kindling model of
epilepsy, NMDARs are upregulated in both the hippocampus
and cortex. KARs/AMPARs antagonists act as anticonvulsants
against the tonic hind limb component of PTZ-induced
seizures in developing rats (Velíšek et al., 1995; Ekonomou
and Angelatou, 1999; Rogawski, 2011). The group III mGluR
agonist CPPG [(RS)-α-cyclopropyl-4-phosphonophenylglycine]
has been shown to attenuate PTZ-induced seizures. Moreover, it
increases glutamate concentrations in the hippocampus of non-
kindled control rats (Maciejak et al., 2009). The effects of several
neurotoxic agents on both iGluRs and mGluRs are listed in
Table 1.

Agents That Act on iGluRs
Ethanol
Chronic exposure to ethanol has complex and long-lasting effects
on the function and expression of innumerable neuroreceptors
as well as their modulators (Lovinger, 1997). Ethanol-induced
neurotoxicity models have previously been used to study NDDs
(Naseer et al., 2014; Saito et al., 2016). In vivo and in vitro
studies have shown that chronic ethanol exposure elevates GluN1
and GluN2B gene expression and their polypeptide levels. In
animal models, ethanol-induced neurotoxicity has been shown
to cause oxidative stress, apoptosis, and neuroinflammation,
ultimately causing neurodegeneration (Ullah et al., 2012, 2013;
Naseer et al., 2014; Tajuddin et al., 2014; Ahmad et al., 2016;
Wang P. et al., 2017). Ethanol has been shown to produce
neurotoxicity in cellular studies on BV-2 microglia, PC12 cells,
and HT22 cells (Casañas-Sánchez et al., 2016; Zhang J. et al.,
2016; Huang et al., 2017). As a potent inhibitor of NMDARs,
it acts on glutamate receptors and impairs the functionality of
NMDARs and AMPARs. Moreover, ethanol inhibits glutamate
receptor-mediated synaptic plasticity such as NMDA-dependent
LTP (Wirkner et al., 1999; Möykkynen et al., 2003, 2009;
Hicklin et al., 2011; Möykkynen and Korpi, 2012; He et al.,
2013). The effect of alcohol and molecular changes within
the regulatory process that modulates NMDARs functions,
including factors that alter transcription, translation, post-
translational modifications, and protein expression along with
those that influence their interactions with different regulatory
proteins (downstream effectors) constantly increases at the
cellular level. Epigenetic dimension (i.e., histone modification-
induced chromatin remodeling and DNA methylation that
occurs in the process of alcohol-related neuroadaptation) is a key
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TABLE 1 | Major impairing effects of several neurotoxic agents on iGluRs and mGluRs.

Toxic agents Major modulating effects Reference

MPTP Upregulates mGluR5 and causes damages in dopaminergic
and noradrenergic neurons

Samadi et al., 2008;
Masilamoni et al., 2011

MPP+ Activates NMDARs and dysregulates mGluR8; causes
mitochondrial damage and neuronal cell death

Camins et al., 1997; Jantas et al., 2014

Rotenone Potentiates NMDA current; activates mGluR5; causes
excitotoxicity and DNA damage

Wu and Johnson, 2009; Xia et al., 2015

METH Impairs NMDARs, AMPARs, mGluR1, and mGluR5; causes
striatal neurotoxicity and behavioral dysfunction

Simões et al., 2008; Gass et al., 2009;
Gross et al., 2011;
Achat-Mendes et al., 2012

Homocysteine Activates NMDARs and mGluR1; causes neuronal cell
death

Poddar and Paul, 2009;
Yeganeh et al., 2013

BMAA Activates AMPARs/KARs, NMDA and mGluR5 receptors;
causes excitotoxic damage

Lobner, 2009; Delzor et al., 2014

3-NP Activates NMDARs and mGluR5; causes ROS elevation,
mitochondrial fission, and cell death

Liot et al., 2009; Souza et al., 2014

Cuprizone Activates NMDARs; causes demyelination; affects
glutamate-receptors and -transporters differently;
downregulates mGluR2

Li et al., 2013; Tameh et al., 2013

Doxorubicin Dysregulates NMDARs, AMPARs, and mGluR II and III;
causes neuronal injury

Jantas and Lason, 2009; Jantas et al.,
2015; Manchon et al., 2016

Glucocorticoid Activates NMDARs and mGluR III; causes microglia
proliferation and apoptosis

Lu et al., 2003; Nair and Bonneau,
2006

Harmaline Activates NMDARs, AMPARs, and mGluR1; produces
tremors

Kolasiewicz et al., 2009;
Shourmasti et al., 2014

PTZ Dysregulates NMDARs, AMPARs, and mGluR III; causes
seizures

Velíšek et al., 1995; Ekonomou and
Angelatou, 1999; Maciejak et al., 2009;
Rogawski, 2011

3-NP: 3-Nitropropionic Acid; BMAA: β-N-methylamino-L-alanine; MPTP: 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine; MPP+: 1-methyl-4-phenylpyridinium; METH:
Methamphetamine; and PTZ: Pentylenetetrazol.

molecular mechanism in alcohol-mediated NMDARs alteration
(Chandrasekar, 2013).

Ammonia
An ammonia-induced neurotoxicity model uncovered potential
therapeutic strategies (Hadjihambi et al., 2014). Elevated
ammonia levels damage motor neurons through numerous
means, including endoplasmic reticulum (ER) stress, cyclin-
dependent kinase 5 activation, macroautophagy-endolysosomal
pathway impairment, oxidative and nitrosative stress, neuronal
hyperexcitability, and neuroinflammation (Parekh, 2015).
In order to produce neurotoxicity, ammonia modulates
glutamate receptors and activates NMDARs which in turn
leads to the following: (i) adenosine triphosphate (ATP) is
depleted in the brain, causing glutamate release; (ii) calcineurin
and dephosphorylation are activated and Na+/K+-ATPase
is activated in the brain, increasing ATP consumption; (iii)
mitochondrial function and calcium homeostasis are impaired
at different levels, thus reducing ATP synthesis; (iv) calpain
activation degrades microtubule-associated protein-2, thus
altering the microtubular network; and (v) nitric oxide (NO)
formation rises, reducing the activity of glutamine synthetase,
thus decreasing the elimination of ammonia in the brain
(Monfort et al., 2002; Kosenko et al., 2004). In addition, through
an excitatory amino acid transporter, ammonia mediates METH-
induced increases in extracellular glutamate in order to cause

excitotoxicity (Halpin et al., 2014). Interestingly, NMDARs
and AMPARs antagonists prevent ammonia-induced toxicity
in experimental models (Monfort et al., 2002; Halpin and
Yamamoto, 2012).

Hydrogen Peroxide
Hydrogen peroxide (H2O2) is a common neurotoxic agent that
induces neurotoxicity in cellular models. Cell lines, including
BV-2 microglia, PC12 cells, and SH-SY5Y cells, are ideal for
studying H2O2-induced neurotoxicity. In experimental models,
H2O2-induced neurotoxicity causes mitochondrial dysfunction,
oxidative stress, cytotoxicity, apoptosis, and neuronal cell death
(Han et al., 2014; Morelli et al., 2014; Ismail et al., 2015; Mesbah-
Ardakani et al., 2016; Zhong et al., 2016; Masilamani et al., 2017;
Oh et al., 2017) while it also modulates glutamate receptors.
Exposure to H2O2 can activate normally silent NMDARs,
potentially via the inhibition of redox-sensitive glutamate uptake.
H2O2 affects synaptic transmission and oxidative stress through
the activation of NMDARs (Avshalumov and Rice, 2002). In
striatal medium spiny neurons, the generation of AMPAR-
dependent H2O2 is one source of retrograde signals that can
block the release of DA (Avshalumov et al., 2008).

Cisplatin
Cisplatin (cis-diaminodichloroplatinum) was developed in
the 1970s as the first platinum-based antineoplastic agent.
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Neurotoxicity, a common side effect of cisplatin leads to
chemotherapy-induced peripheral neuropathy. An accumulation
of cis-platinum in dorsal root ganglion neurons in the form of
platinum-DNA adducts is thought to be a key mechanism driving
such neurotoxicity (Zhu et al., 2016). In addition, as a known
neurotoxic agent, cisplatin is suitable for use in NDD models,
because it is known to cause memory and learning impairment
through oxidative stress and neuroinflammation (Moneim,
2014; Oz et al., 2015; Zhou et al., 2016; Chen C. et al., 2017).
Cisplatin modulates glutamate receptors and induces neural
activation through the central upregulation of AMPARs and
NMDARs (Holland et al., 2014). NMDARs antagonist protects
against cisplatin-induced depression (Lehmann and Kärrberg,
1996).

Lead
Lead (Pb) is a well-known neurotoxic agent that brings about
cognitive deficits in animal models. As a neurotoxic agent in
different study models, Pb caused oxidative stress, synaptic
and cholinergic dysfunction, neuroinflammation, autophagy,
apoptosis, cognitive deficits, and neuronal cell death (Phyu and
Tangpong, 2014; Ye et al., 2015; Chibowska et al., 2016; Meng
et al., 2016; Tang et al., 2017; Xue et al., 2017). Pb-induced
neurotoxicity may be based on the modulation of glutamate
receptors, especially iGluRs. During synaptogenesis, it inhibits
the functionality of NMDARs. Moreover, Pb exposure causes
a decrease in the expression of AMPAR subunits (GluA1,
GluA2, GluA3, and GluA4) with the observed decrease in GluA2
expression being particularly remarkable. Pb-induced neuronal
cell death was rescued by three glutamate receptor antagonists:
6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), MK-801, and 1-
naphthyl acetyl spermine (a specific Ca2+-permeable AMPARs
blocker) (Mußhoff et al., 1995; Neal et al., 2011; Ishida et al.,
2017).

Manganese
Manganese (Mn) can be employed in order to induce
neurotoxicity in studies on NDDs, especially PD. Mn-induced
neurotoxicity brings about mitochondrial dysfunction, oxidative
and nitrosative stress, neuroinflammation, and apoptosis, leading
to cell death in different animal and cellular models (Chtourou
et al., 2011; Moreno et al., 2011; da Silva Santos et al.,
2014; Chen et al., 2016; Li S.J. et al., 2017; Shibata et al.,
2017). It alters the functionality of glutamate receptors and
it has been reported that Mn inhibits the functionality of
NMDAR channels with an implication for psychiatric and
cognitive impairment (Guilarte and Chen, 2007). Furthermore,
by increasing extracellular glutamate levels and modifying the
expression of NMDAR subunits, Mn induces nerve cell damage
in mRNAs and proteins in rat striatum (Xu B. et al., 2010).
In addition to NMDARs, it may also modulate AMPARs.
Co-administration of the excitatory agonist, AMPA, with Mn
enhances Mn-enhanced magnetic resonance imaging signals.
However, this was attenuated by the co-administration of
either the Na+ channel blocker tetrodotoxin (TTX), or the
broad-spectrum Ca2+ channel blocker Ni2+ (Wang L. et al.,
2015).

Mercury
Mercury (Hg) is a naturally occurring heavy metal (Moneim,
2015), and a well-known neurotoxic agent for inducing
neurotoxicity. A Hg-induced neurotoxicity model is a powerful
tool in the study of neurodegeneration. Hg-induced neurotoxicity
in animals causes mitochondrial dysfunction, oxidative stress,
neuroinflammation, and apoptosis, overall resulting in cognitive
deficits and neuronal cell death (Kempuraj et al., 2010; Ayyathan
et al., 2015; Adedara et al., 2016). Hg-induced neuronal death
is dependent on glutamate-mediated excitotoxicity. Hg has been
found to affect NMDARs by increasing their expression and
enhancing their responsiveness. The overactivation of NMDA-
type glutamate receptors increases Ca2+ influx into neurons,
which leads to the activation of important pathways involved
in neuronal cell death. Furthermore, Ca2+ stimulates ROS
generation through the mitochondrial pathway as a result of Hg-
induced overactivation of NMDARs that take part in neuronal
cell death (Farina et al., 2011; Xu et al., 2012; Moneim, 2015;
Engin et al., 2017).

Melamine
Another powerful tool in the study of NDDs is melamine-
induced neurotoxicity. In studies involving animal models, it
has been shown to cause synaptic dysfunction and oxidative
stress, leading to cognitive impairment (An et al., 2011, 2012;
An and Zhang, 2014). In recent studies, it presynaptically altered
the glutamatergic transmission of the hippocampal CA3-CA1
synapses in vitro. This alteration is likely linked to a modification
to autophagy. Acute melamine exposure impaired spatial
memory consolidation by disrupting hippocampal NMDAR-
dependent LTD (Zhang H. et al., 2016; An and Sun, 2017).

Sodium Azide
NaN3 is a neurotoxic agent commonly used for neurotoxicity
in both in vivo and in vitro models. It causes mitochondrial
dysfunction, oxidative stress, neuroinflammation, apoptosis, and
autophagy, ultimately leading to neuronal cell death (Selvatici
et al., 2009; Zhang et al., 2011; Olajide et al., 2016; Shan
et al., 2017). Upon the glutamate receptors modulation by NaN3
produces neurotoxicity. Studies have found that MK-801 blocks
NaN3-induced cell death, signifying that NMDARs contributes to
mediated cell death (Grammatopoulos et al., 2002; Selvatici et al.,
2009).

Isoflurane
In experimental animal models, isoflurane brings about
mitochondrial dysfunction, neuroinflammation, and apoptosis,
leading to cognitive impairments and neuronal cell death
(Li et al., 2014; Hu X. et al., 2017; Liang et al., 2017; Su et al.,
2017; Wu et al., 2017; Xu et al., 2017). Furthermore, it has
been observed to modulate glutamate receptors. One study
has reported that NMDAR-mediated excitatory synaptic
transmission is more sensitive to isoflurane than non-NMDAR-
mediated excitatory synaptic transmission (Xu et al., 2017). In
addition, at minimum alveolar concentrations, isoflurane causes
GABAA receptor antagonism and increases NMDARs inhibition
(Nishikawa and MacIver, 2000).
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3-Acetylpyridine
As a potent neurotoxic agent, 3-acetylpyridine (3-AP) readily
induces neurodegeneration. 3-AP-induced neurotoxicity causes
degeneration in the nigrostriatal dopaminergic system within
experimental animal models. Furthermore, 3-AP-induced
neurotoxicity can be used for both PD and spinocerebellar ataxia
models (Deutch et al., 1989; Weller et al., 1992; Janahmadi et al.,
2009; Abbasi et al., 2013; Medina et al., 2015). 3-AP modulates
NMDARs and also yields neurotoxicity. Pre-exposure to subtoxic
concentrations of NMDA enhances 3-AP toxicity, but the
NMDARs antagonists, MK-801 or APV, as well as deprenyl,
mazindol, and tetrahydrofolic acid, have no effect on 3-AP
toxicity (Weller et al., 1992). Another study has suggested that
thyrotropin-releasing hormone receptor agonists ameliorate
3-AP-induced ataxia in rats via NMDARs (Kinoshita et al., 1998).

6-Hydroxydopamine
6-Hydroxydopamine (6-OHDA) is employed to induce PD
and study the mechanism of dopaminergic neuron cell death
in animal models. It is a selective agent for the nigrostriatal
pathway. As 6-OHDA shares certain structural similarities with
DA, it can enter dopaminergic neurons via DA transporters, and
consequently cause toxicity (Shi et al., 2011). It produces diverse
toxic effects, such as mitochondrial dysfunction and oxidative
stress, apoptosis, neuroinflammation, and dopaminergic cell
death (Chan et al., 2009; Liang et al., 2011; Shi et al., 2011;
Thornton and Vink, 2012; Guo et al., 2013; Pyo et al., 2013; Wang
J. Y. et al., 2013; Elyasi et al., 2014; Magalingam et al., 2014; Mu
et al., 2014; De Jesús-Cortés et al., 2015; Liu et al., 2015; Yan et al.,
2015; Zhang et al., 2015; Mirzaie et al., 2016). Disturbance of

the dopaminergic system may also cause glutamatergic NMDARs
imbalances in the brain (Hallett et al., 2006). In addition, 6-
OHDA dysregulates NMDAR functions. NMDARs antagonists
increase dopaminergic neuronal survival and prevent a levodopa-
induced abnormal motor response (Bibbiani et al., 2005; Yan
et al., 2014).

Ketamine
Ketamine is considered to be a general anesthetic and is used
extensively in pediatric surgery. It is an NMDARs antagonist
and is increasingly employed in pre-clinical studies in order to
induce psychosis in experimental models (Malhotra et al., 1997;
Powers et al., 2015; Wang Q. et al., 2017). As a neurotoxic agent,
it is utilized in animal models to induce cognitive impairment.
This produces diverse toxic effects such as oxidative stress and
apoptosis, leading to cognitive impairment. Ketamine-induced
cognitive impairment models have long been employed to study
NDDs (Malhotra et al., 1997; Duan et al., 2014; Gazal et al.,
2014; Wang et al., 2014; Palsa et al., 2016; Wang Q. et al.,
2017). Ketamine-induced neurotoxicity causes a use-dependent
blockade of NMDARs. This excitatory synaptic blockade activity
possibly causes the loss of responsiveness linked to ketamine
anesthesia (Sleigh et al., 2014). Furthermore, in a rat model
of ketamine-induced neurotoxicity, extended ketamine exposure
produces an increase in the expression of NMDAR (GluN1)
(compensatory upregulation). This permits a higher toxic influx
of Ca2+ into neurons once ketamine is removed from the
system, increasing the generation of ROS and neuronal cell
death (Liu et al., 2012). In addition, ketamine modulates the
AMPARs. However, ketamine-induced inhibition of glycogen

TABLE 2 | iGluRs that modulate the actions of miscellaneous neurotoxic agents.

Toxic agents Major modulating effects Reference

Ethanol Inhibits NMDARs and AMPARs; impairs motor and memory
performance

Hicklin et al., 2011; Möykkynen and
Korpi, 2012

NH3 Activates NMDARs; reduces glutamine synthetase activity;
decreases the elimination of NH3 in the brain.

Monfort et al., 2002;
Kosenko et al., 2004

H2O2 Activates NMDARs and affects synaptic transmission and
oxidative stress

Avshalumov and Rice, 2002

Cisplatin Upregulates AMPARs and NMDARs; causes neuronal
damage

Holland et al., 2014

Pb Dysregulates AMPARs; causes synaptic dysfunctions and
cell death

Mußhoff et al., 1995; Neal et al., 2011;
Ishida et al., 2017

Mn Inhibits NMDARs and AMPARs; causes psychiatric and
cognitive impairment

Guilarte and Chen, 2007;
Wang L. et al., 2015

Hg Over activates NMDARs; increases Ca2+ influx into neurons Moneim, 2015

Melamine Disrupts hippocampal NMDAR-dependent LTD Zhang H. et al., 2016;
An and Sun, 2017

NaN3 Activates NMDARs; causes cell death Grammatopoulos et al., 2002;
Selvatici et al., 2009

3-AP Activates NMDARs; causes ataxia Kinoshita et al., 1998

6-OHDA Activates and dysregulates NMDAR function; causes motor
complications and neuronal damage

Bibbiani et al., 2005; Yan et al., 2014

BPA Alters NMDARs and AMPARs Xu X. et al., 2010, 2013;
Xu X.H. et al., 2010

6-OHDA: 6-Hydroxydopamine; AMPARs: α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors; LTD: Long-term depression; Mn: Manganese; NMDARs:
N-methyl-D-aspartate receptors; NH3: Ammonia; NaN3: Sodium Azide; Hg: Mercury; and H2O2: Hydrogen Peroxide.
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synthase kinase-3 contributes to the increase in AMPAR signaling
that leads to ketamine antidepressant activity (Beurel et al.,
2016). Recently, ketamine-induced impairment of the AMPARs
potentiator, PF-04958242, has been shown to affect the verbal
learning and memories of healthy volunteers (Ranganathan et al.,
2017). In addition, an updated study was carried out with primary
cultured cortical neurons and PC12 cells using a ketamine-
induced neurotoxicity model (Liu et al., 2011).

Colchicine
Colchicine is a plant alkaloid that is regarded as a potent inhibitor
of physiological processes. It specifically binds to a receptor site
on tubulin and blocks mitosis (Karami et al., 2013). It is one of
the major neurotoxins used in the study of AD (Mohamed et al.,
2015; Sil et al., 2016b). Colchicine-induced neurotoxicity might
be caused by glutamate receptor modulation. Colchicine-induced
neuroinflammation leading to neurodegeneration in rats might
be linked to NMDARs and therapy with memantine mitigates
that toxicity (Sil et al., 2016a).

Bisphenol-A
As a neurotoxic agent, BPA mainly affects hippocampal
neurogenesis and causes cognitive impairment in animal models
(Castro et al., 2013; Tiwari et al., 2016; El Tabaa et al.,
2017). Various studies have reported that BPA affects glutamate
receptors (NMDARs and AMPARs) and produces neurotoxicity
(Xu X. et al., 2010; Xu X.H. et al., 2010; Xu X. et al., 2013).
According to a recent study, GluN2A and GluA1 (LTP-related
glutamate receptors) were significantly downregulated in BPA-
exposed rats (Hu F. et al., 2017). iGluRs that modulate the
actions of miscellaneous neurotoxic agents are summarized in
Table 2.

CONCLUDING REMARKS

Apart from the transgenic model of NDDs, animal and cellular
models that make use of neurotoxic agent-induced neurotoxicity
are very popular in the study of disease progression and potential
therapeutic drugs. However, numerous pharmaceutical research
projects have so far failed to discover therapeutic drugs for NDDs
using these toxic agent-induced models.

Currently, the use of receptors for targeting drug discovery
is an efficient approach. Diversity in the class and structural
features of glutamate receptors plays a large role in the
pathogenesis of NDDs and serves as a target for drugs for
treating neurological disorders. We discussed here numerous
neurotoxic agents that are capable of producing neuronal toxicity
by altering the functionality of glutamate receptors. Several
covered neurotoxic agents produced neuronal toxicity mainly
by activating receptors where both ionotropic and metabotropic
receptors are important for inducing neurotoxicity. As iGluRs
are non-selective cation channels, upon binding to an agonist,
they permit the passage of Na+ and K+, and in certain cases,
limited quantities of Ca2+. Hence, excitotoxicity that induces
neuronal damage might be one of the principal mechanisms

of neurotoxic agents. On the other hand, upon an agonist
binding to mGluRs, a post-synaptic membrane-bound G-protein
is activated. This triggers a second messenger system that
opens an ion channel for the mediation of signals. G-protein
activation also triggers functional changes within the cytoplasm,
culminating in gene expression and protein synthesis and
specifically, the activation of diverse signaling systems. The
mechanic progression of neuronal damage exerted by neurotoxic
agents might be complex because the agents act on metabotropic
receptors.

Many studies that use neurotoxic agent-induced models
reveal the receptors modulating effects, but do not correlate
with associated molecular signaling pathways. Despite knowing
the mechanism involving glutamate receptors and neurotoxic
agents, future studies focusing on glutamate receptors should
still be designed. First, considering the pathological actions
of currently available neurotoxic agents, the development of
new natural, semi-synthetic, and synthetic neurotoxic agents is
recommended. Second, more studies using the potent neurotoxic
agents discussed here should be conducted. Third, molecular
docking should be performed in order to identify receptor-
neurotoxic agent interaction at the molecular level based on
updated structural features. Finally, laboratory-based in vitro
studies in which neuronal cell lines are used should be designed.
In addition, in vivo studies on model organisms to identify
molecular signals that impair by neurotoxic agents should be
designed and conducted. By understanding the neurotoxic agent-
induced neurotoxicity model, screening of agonist, antagonist
and allosteric modulators might be of value for NDD therapy.
In summary, by targeting glutamate receptors and their
associated signals, a neurotoxic agent-induced neurotoxicity
model has the potential to correlate a neurotoxic agent with
disease pathophysiology. By considering that pathophysiology,
the design and discovery of new and modified therapeutic
molecules may be a feasible treatment strategy for NDD
therapy.
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