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Alterations in ALK/ROS1/NTRK/MET drive a
group of infantile hemispheric gliomas
Ana S. Guerreiro Stucklin et al.#

Infant gliomas have paradoxical clinical behavior compared to those in children and adults:

low-grade tumors have a higher mortality rate, while high-grade tumors have a better out-

come. However, we have little understanding of their biology and therefore cannot explain

this behavior nor what constitutes optimal clinical management. Here we report a compre-

hensive genetic analysis of an international cohort of clinically annotated infant gliomas,

revealing 3 clinical subgroups. Group 1 tumors arise in the cerebral hemispheres and harbor

alterations in the receptor tyrosine kinases ALK, ROS1, NTRK and MET. These are typically

single-events and confer an intermediate outcome. Groups 2 and 3 gliomas harbor RAS/

MAPK pathway mutations and arise in the hemispheres and midline, respectively. Group 2

tumors have excellent long-term survival, while group 3 tumors progress rapidly and do not

respond well to chemoradiation. We conclude that infant gliomas comprise 3 subgroups,

justifying the need for specialized therapeutic strategies.
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G liomas are the most common primary central nervous
system (CNS) neoplasm and result in the highest tumor-
associated morbidity and mortality in children and

adults1,2. Traditionally, gliomas are divided into low grade (LGG,
WHO grades I–II) and high grade (HGG, WHO grades III–IV)
based on their histological characteristics3. Molecularly, adult
lower grade gliomas commonly harbor alterations in IDH1/2 in
association with TP53 and ATRX mutations or TERT mutations
and 1p/19q co-deletions4. In comparison, most childhood LGG
are driven by RAS/MAPK activation—predominantly in the form
of fusions or mutations involving the BRAF gene—and rarely
undergo malignant transformation5–7. In contrast, adult LGG
rarely contain RAS/MAPK alterations8 and invariably transform
to HGG over time9. Pediatric HGG are usually not the result of
transformation from LGG and, in contrast to adult HGG, most
commonly harbor recurrent mutations in the genes encoding
histone H3.3 and H3.110,11.

In contrast to the abundance of genetic and clinical informa-
tion now available for pediatric glioma, far less is known about
the infant demographic (under 1 year of age), despite the inci-
dence of CNS tumors being highest in this group1. Although
steady improvements in the overall outcome of childhood cancer
have been observed globally, infants with brain tumors remain at
high risk for early death after diagnosis, are less likely to be
enrolled in clinical trials and are critically under-studied12. Fur-
ther, the association between tumor grade and outcome is less
predictable in infants; infant LGG (iLGG) show a more aggressive
course13–15, while infant HGG (iHGG) have a better outcome16,17

when compared with older children and adolescents. As such, the
classic treatment approaches for pediatric LGG (low dose che-
motherapy) and HGG (surgery, radiation and alkylator-based
chemotherapy) are often either ineffective or excessive, respec-
tively. Therefore, clinicians caring for infants with gliomas are
faced with the challenging task of treating an exceptionally vul-
nerable population of patients where the best treatment options
remain ambiguous and data are scarce.

To address the lack of knowledge regarding the genetic
underpinnings of infant gliomas, we assemble a multi-institu-
tional, international collaborative taskforce to comprehensively
characterize a large, clinically well-annotated cohort with follow-
up data spanning three decades. We find that infant gliomas
comprise three main subgroups: (1) hemispheric receptor tyr-
osine kinase (RTK)-driven tumors, including ALK, ROS1, NTRK,
and MET fusions, which are enriched for HGG and have an
intermediate clinical outcome, (2) hemispheric RAS/MAPK-dri-
ven tumors, which show excellent long-term survival with
minimal clinical intervention post-surgery, and (3) midline RAS/
MAPK-driven tumors, which are enriched for LGG with BRAF
alterations and have a relatively poor outcome even after con-
ventional chemotherapeutic approaches. Together the clinical and
molecular features of each subgroup indicate age-specific
mechanisms underlying tumor initiation. This suggests that
updated clinical approaches are required to modernize treatment
and improve the outcome of these infants.

Results
Infantile gliomas have paradoxical survival profiles. We
assembled a multi-institutional infant cohort consisting of
171 samples from 150 patients diagnosed between 1986 and 2017.
Histological review confirmed the diagnosis in 142/150 (94.7%)
patients, of which 104 (73.2%) and 33 (23.2%) were LGG or
HGG, respectively. Five cases (3.5%) displayed intermixed LGG
and HGG features (Supplementary Fig. 1a, Supplementary
Table 1). Young children with LGG have a worse survival when
compared with older children13,18,19 and to clarify whether this

effect can be ascribed to the demographic <1 year of age, we
compared the survival of our cohort with a cohort of older
children (1–18 years, SickKids LGG cohort). iLGG had a sig-
nificantly worse overall survival (OS) than pediatric LGG (pLGG)
(10-year OS of 71.4% (60.8–83.3%) versus 91.6% (88.5–94.8) for
iLGG vs pLGG, respectively; p < 0.001, log-rank test Supple-
mentary Fig. 1b). In contrast, reports have suggested better sur-
vival of iHGG as compared with older children16. iHGG showed a
significantly better overall survival as compared with children
diagnosed between the ages of 1–18 years (SickKids HGG cohort,
pHGG) with a 5-year OS of 54.5% (40.0–74.2%), vs 6.6%
(2.4–18.5%), respectively (p < 0.001, log rank test, Supplementary
Fig. 1c).

Molecular features of infantile glioma. For 118/142 (83.1%)
patients, sufficient tumor tissue was available for molecular
characterization. We utilized a tiered molecular profiling
approach combining targeted single nucleotide variant (SNV) and
fusion profiling, copy number arrays and transcriptome-wide
discovery strategies suitable for archival samples (Fig. 1a). RAS/
MAPK activating alterations were the most common events (56/
118, 47.5%) and primarily consisted of KIAA1549-BRAF fusions
(28/118, 23.7%) and BRAFV600E mutations (21/118, 17.8%)
(Fig. 1b). Additional RAS/MAPK pathway alterations, such as
FGFR1 fusions (FGFR1-TACC1, n= 3), FGFR1-tyrosine kinase
duplications ((TKD), n= 2), RAF1 fusion (PML-RAF1, n= 1),
and MYBL1 gain (n= 1) were also observed. Interestingly, RAS/
MAPK activating events were exclusively seen in LGG and
accounted for 73.6% (39/53) of alterations present in midline
gliomas versus only 26.1% (17/65) of hemispheric gliomas
(Fig. 1b, c). The second most common group of molecular events
involved alterations in the RTK oncogenes ALK, ROS1, NTRK, or
MET (30/118, 25.4%) (Fig. 1b). These events were almost exclu-
sively observed in hemispheric tumors (29/30, 96.7%) and HGG
(25/30, 83.3%) (Fig. 1b, c). ALK, ROS1, and NTRK1/2/3 altera-
tions led to the fusion of different 5′ binding partners with the 3′
end of the truncated RTK containing the tyrosine kinase domain
(Fig. 2a). Interestingly, PPP1CB-ALK fusions were detected in a
region of chromothripsis on chromosome 2p (Fig. 2b) and the
two most common RTK fusions—PPP1CB-ALK and CCDC88A-
ALK—were found in both LGG and HGG (Fig. 2c, d; Supple-
mentary Fig. 2). In contrast, NTRK1/2/3 and MET fusions were
exclusively seen in HGG (Fig. 2e, f). No IDH1R132H, H3K27M
or H3G34R mutations were detected in this cohort.

Activating ALK fusions are susceptible to targeted agents.
Truncation of the extracellular ligand-binding domain with
retention of the intracellular tyrosine kinase domain in the RTK-
fusions identified suggests these are activating events (Fig. 2a).
CCDC88A-ALK expressing immortalized normal human astro-
cytes (iNHA) (Supplementary Fig. 3a, b) showed increased pro-
liferation in vitro (p= 0.002, student’s t-test, Fig. 3a) and ERK1/2
activation (Fig. 3b). Cell viability was reduced in a dose-
dependent manner when treated with ALK-inhibitors currently
in pediatric clinical trials (Fig. 3c). iNHAs overexpressing
CCDC88A-ALK or PPP1CB-ALK were tumorigenic in vivo with
100% penetrance (Fig. 3d, e), forming glial tumors with a high
MIB-1 proliferative index, pseudopalisading necrosis, focal GFAP
expression, lack of synaptophysin expression and ALK over-
expression (Supplementary Fig. 3c, d).

Infantile gliomas comprise three subgroups. Analysis of
the clinical features associated with each class of molecular
alterations suggested that infant gliomas represent three
distinct clinical/molecular groups: (1) Hemispheric, RTK-driven,

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-12187-5

2 NATURE COMMUNICATIONS |         (2019) 10:4343 | https://doi.org/10.1038/s41467-019-12187-5 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


(2) Hemispheric, RAS/MAPK-driven, and (3) Midline, RAS/
MAPK-driven (Table 1).

Group 1: hemispheric RTK-driven. Group 1 tumors harbor
ALK/ROS1/NTRK/MET alterations (Figs. 1b, c; 2a), and are
enriched for HGG (82.8%, 24/29, p < 0.0001, Fisher exact test,
Fig. 4a), specifically glioblastomas (15/29), and younger infants
(Table 1, median age at diagnosis 2.8 months, range
0–12 months) (examples of congenital tumors in Fig. 2c–e). All
LGG within this group harbored ALK alterations (17.2%, 5/29)
while all ROS1/NTRK/MET alterations appeared exclusively in
HGG (Figs. 2c–e, 4a). The survival of ALK, ROS1, and NTRK
driven tumors was heterogeneous (Fig. 4b, c). Five-year OS was
53.8, 25.0, and 42.9% for ALK, ROS1, and NTRK fused tumors
respectively, although the numbers in each group were small (12,
8, 7, respectively). Interestingly, when compared with ALK-driven
HGG, low-grade ALK gliomas tended to be diagnosed at an older
age (median= 5.0 versus 1.6 months) and showed a better clin-
ical outcome; all patients with ALK-fused LGG (n= 5) were alive
at a median follow-up of 5 years (range, 1.4–7.2 years), whereas

42.9% (3/7) patients with ALK-fused HGG were deceased at a
median follow-up of 3 years (range 0.01–8.55 years). Interest-
ingly, in two patients with NTRK-fused HGG that underwent a
second resection post-chemotherapy, tumor from the second
resection had lower grade histology, suggesting that Group 1
tumors may comprise an LGG/HGG continuum and/or have the
potential to differentiate and slow their growth over time
(Fig. 4d).

Group 2: hemispheric RAS/MAPK-driven. Group 2 tumors are
comprised solely of hemispheric LGG and represent 26.1% (17/
65) of hemispheric gliomas in infants. Group 2 tumors more
frequently had non-BRAF RAS/MAPK activating events when
compared with Group 3 tumors (35.3% vs 2.6%, respectively)
(Figs. 4a, 5b). Group 2 tumors have the best outcome of the three
subgroups with 10-year OS of 93.3% (81.5–100%) (Fig. 4b), were
more readily resected (52.9%, 9/17 gross-total resection (GTR))
versus midline (7.7%, 3/39), and were less likely to require a
second line of treatment (0% and 23.5% received radiation or
chemotherapy, respectively) (Table 1).
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Group 3: midline RAS/MAPK-driven. Three quarters (39/53) of
all midline infantile gliomas were RAS/MAPK driven, 97.4% of
which (38/39) harbored canonical BRAF alterations. Group 3
infantile gliomas were histologically LGG, primarily consisting of
pilocytic astrocytoma (69.2%, 27/39, Table 1). Survival of infant
patients with Group 3 tumors was significantly worse with 5-year
progression-free survival (PFS) of 23.4% (12.9–42.5%) compared
with 55.6% (38.5–80.3%) for infants with other LGGs (non-
midline) (p= 0.01030, log-rank test, Fig. 5a). Group 3 tumors
consisted primarily of optic pathway hypothalamic glioma
(OPHG) (31/39, 79.5%) and RAS/MAPK-activation was almost
exclusively due to BRAF alterations (Fig. 5b). Importantly, despite
half of all OPHGs in this study being driven by BRAFV600E, no
non-OPHG group 3 tumors harbored this mutation (Fig. 5b). No
difference in survival was observed between BRAF alterations in
Group 3 tumors (Fig. 5c). When compared with OPHG in older
patients, infants with OPHG had a poorer outcome with 10-year
OS of 57.7% (42.8–77.9%) compared with 87.1% (76.8–98.7%) in
infant vs SickKids OPHG 1–18 y cohort, respectively (p < 0.001,
log-rank test, Fig. 5d). Age at diagnosis (infant vs. non-infant)
was the only significant predictor of OS both on univariate (HR
= 12.839, p= 0.001) and in a multivariate analysis that included

sex, extent of resection, BRAF fusion and BRAFV600E status,
chemotherapy and radiation (HR= 27.084, p= 0.001, Supple-
mentary Table 2). The 5-year OS was 75.1% (56.6–99.7%) for
infant BRAF-fused OPHG and 72.5% (49.5–100%) for infant
BRAFV600E OPHG (Fig. 5e, f). This is in stark contrast to older
children where long-term survival of patients with BRAF-fused
OPHG is excellent (5-year OS 100%, p= 0.00114, log-rank test,
Fig. 5e). A similar trend was seen in BRAFV600E OPHG com-
pared between infants and older children, albeit not statistically
significant (p = 0.1410, log-rank test, Fig. 5f). Interestingly,
despite the striking differences in outcome, infant and pediatric
gliomas clustered more according to location rather than mole-
cular alteration or outcome on methylation analysis (Supple-
mentary Fig. 4).

Discussion
In this study we comprehensively characterize the landscape of
genetic drivers and their clinical impact, revealing 3 subgroups of
infant glioma (Fig. 6). Group 1 tumors are enriched for ALK/
ROS1/NTRK/MET fusions, alterations analogous to those detec-
ted in adult carcinomas such as non-small cell lung cancer20,21
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and colorectal cancer22. Despite similar conservation of the tyr-
osine kinase domain and region of breakpoints, for most cases the
binding partners identified in infant gliomas differ from those in
other malignancies. Interestingly, ETV6-NTRK3 can also be
detected in other congenital tumors (congenital mesoblastic
nephroma and congenital fibrosarcoma), suggesting a common
age-specific mechanism. With the exception of NTRK fusions,
which were previously shown to be enriched in non-brainstem
infant HGG23, these alterations have been rarely reported in
gliomas and this study provides a comprehensive explanation for
the isolated case reports of ALK24,25 and ROS126 fusions in

pediatric glial tumors. Indeed, these alterations are recurrent and
define, together with NTRK, Group 1 hemispheric infant gliomas.
Examination of the clinical data in these cases reveals several
interesting facts: (1) their overall survival is good compared with
that of older children with HGG and if they survive past two
years, almost none progress further; (2) cases where a second
surgery was done post-chemotherapy show differentiation and
decreased proliferation of the tumor; and (3) cases with LGG
histology tend to occur in older infants. Taken together, these
observations suggest the capacity for differentiation over time in
Group 1 tumors, perhaps, as in other pediatric gliomas, through
oncogene induced senescence27–30. Alternatively, as seen in
neuroblastoma, a common infant tumor that harbors ALK
alterations, inherent maturation (also a part of normal develop-
ment) may explain the morphological and clinical “maturation”
of some iHGG into iLGG31–33. This has important implications
for our therapeutic approach as it suggests that if we can use non-
morbid treatment options, which may include targeted kinase
inhibitors, to get them through the rapid growth phase of their
tumor, their long-term outlook may be positive. Since infantile
gliomas are mostly single-driver tumors, unlike adult lung and
colorectal cancers, they are particularly suitable for precision-
medicine treatment approaches. Several ALK inhibitors have
either already shown efficacy or are in clinical trials for ALK-
driven tumors in children, including Crizotinib34 and Ceritinib,
and the newer generation inhibitors with enhanced blood-brain
barrier penetration Lorlatinib and Ensartinib. The NTRK inhi-
bitor Larotrectinib has also shown antitumor activity in pediatric
patients with NRTK-fused tumors regardless of age or histol-
ogy35–37. For example, in the NAVIGATE Phase 2 trial, Laro-
trectinib treatment resulted in a significant decrease in tumor
volume in a 35-year-old woman with glioblastoma38. In the
STARTRK1 trial, Drilon et al.39 report a pontine astrocytoma
harboring an NTRK fusion that showed tumor volume reduction
upon treatment with Entrectinib, a tyrosine kinase inhibitor
known to target NTRK, ALK and ROS1. These encouraging
results have led to a current phase I/Ib study being conducted in
pediatrics to evaluate Entrectinib in primary CNS tumors
(NCT02650401), which includes NTRK, ROS1, and ALK fused
tumors. Results thus far are promising40.

Group 2 hemispheric RAS/MAPK tumors have an excellent
long-term survival and often require only surgery, suggesting that
a safe resection and a careful “watch and wait” postsurgical
strategy is appropriate for these patients. Group 3 represents
midline LGG enriched for RAS/MAPK alterations. The lack of
HGG histology, such as that observed in the pons or thalami of
older children, and the lack of histone mutations in this age group
suggest distinct tumor- and/or host-related factors underlying
tumor development. In older children, BRAF fused-tumors tend
to have favorable outcome5,41,42 and a good response to con-
ventional therapy. Strikingly, most Group 3 tumors, especially
OPHG, progressed regardless of BRAF fusion or mutation status.
The poor outcome of BRAF-fused midline tumors in infants is
surprising and in stark contrast to the biological behavior of
similar tumors in older children. This disparity may be related to
age-specific genetic, tumor or microenvironment factors that are,
at this point, poorly understood. As such, there is little or no
room for “watch and wait” and a biopsy should be performed
upfront to ascertain BRAF status and systemic therapy initiated
readily thereafter. Given the multiple progressions typically
observed with conventional chemotherapy and the encouraging
results of targeted BRAF/MEK inhibitors in pLGG43,44, these
patients should be prioritized for targeted therapies early after
initial diagnosis.

Whereas future studies will certainly further characterize infant
gliomas, our study broadens our understanding of cancers early

Table 1 Summary of patient characteristics according to
infant glioma subtype

Characteristic Infant glioma subgroup

Group 1 Group 2 Group 3

Number 29 17 39
Histology
Low Grade 5 17 39
High Grade 21 0 0
Mixed 3 0 0
Pathology
Pilocytic/Pilomyxoid 0 4 27
Ganglioglioma 1 6 0
Diffuse Astrocytoma 2 1 3
Glioblastoma 15 0 0
Low-grade
glioma, NOS

2 2 8

High-grade
glioma, NOS

1 0 0

Other 4 4 1
Sex
Male 14 11 21
Female 15 6 18
Outcome
Alive 20 15 26
Deceased 9 1 12
Unknown 0 1 1
Progression
Progressed 14 10 33
Stable 14 5 5
Lost to follow-up 0 1 1
Unknown 1 1 0
Extent of surgery
None 1 0 1
Biopsy 5 3 13
Partial Resection 10 4 21
Gross Total
Resection

12 9 3

Unknown 1 1 1
Radiation
Yes 1 0 8
No 26 16 30
Unknown 2 1 1
Chemotherapy
Yes 18 4 27
No 10 12 10
Unknown 1 1 2
Age at diagnosis
Median (months) 2.8 (0.0–12.0) 8.3 (5.0–14.6) 7.5 (0.0–14.0)
Mean (months) 3.8 ± 3.7 9.0 ± 2.9 7.5 ± 3.4
Progression-free survival
Median (years) 1.1 (0.0–17.6) 1.2 (0.1–14.2) 1.1 (0.0–17.3)
Mean (years) 2.9 ± 4.0 3.0 ± 3.8 2.8 ± 3.8
Overall Survival
Median (years) 1.9 (0.0–17.7) 3.6 (0.1–16.0) 6.5 (0.1–28.5)
Mean (years) 4.4 ± 4.8 6.1 ± 5.5 7.7 ± 7.1
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in life and emphasizes the need for age-specific diagnostic and
treatment guidelines. Our data have immediate therapeutic
implications and provide a rationale for early molecular pathol-
ogy consultation, prospective collection of clinical information
and inclusion of infants in upfront clinical trials with targeted
inhibitors.

Methods
Patient samples. Tumor specimens and clinical information were collected with
informed or waived consent in accordance to protocols approved by the Research
Ethics Board at the Hospital for Sick Children (Toronto, ON.) and each of the
respective participating institutions. For patients diagnosed at the Hospital for Sick
Children (SickKids) and older than 18 years at the time of clinical data collection,
survival information was extracted from the Pediatric Oncology Group of Ontario
Network Information System (POGONIS)45. A central pathology review was
completed to ascertain tumor content and confirm the diagnosis of the specimen

where applicable. As only selected slides were available for central review from
participating institutions, histological grading rendered at the original institution
was used.

Nucleic acid extraction. DNA was extracted from 3–5 10 µm thick scrolls
obtained from formalin-fixed paraffin embedded (FFPE) tissue either shaved from
the original block or scraped from unstained slides. The extraction was completed
with the QIAamp DNA FFPE Tissue Kit (Qiagen, Valencia, CA). If available,
10–20 mg of fresh frozen tissue rather than FFPE was used for extraction with the
DNeasy Blood and Tissue Kit (Qiagen, Valencia, CA). DNA was quantified with
the Qubit Fluorometer V2.0 using the dsDNA Broad Range Assay Kit (Thermo
Scientific, Waltham, MA). All assay kits and quantification methods were used
according to the manufacturer’s guidelines.

RNA was extracted from 3 to 5 10 µm thick scrolls obtained from FFPE either
shaved from the original block or scraped from unstained slides. Extraction was
completed using the ExpressArt FFPE Clear RNA extraction kit (Amsbio,
Cambridge, MA). If available, 10–20 mg of fresh frozen tissue rather than FFPE was
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Fig. 4 Characteristics of hemispheric glioma in infants. a Histological grade and molecular alterations in Group 1 Hemispheric RTK and Group 2
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used for extraction using the RNeasy Mini Kit (Qiagen, Valencia, CA). RNA was
quantified with the Qubit Fluorometer V2.0 using the RNA Broad Range Assay Kit
(Thermo Scientific, Waltham, MA). All assay kits and quantification methods were
used according to the manufacturer’s guidelines.

Droplet digital PCR. Droplet digital PCR was conducted according to manu-
facturer guidelines. Samples consisted of 1X ddPCR Supermix for probes (no
dUTP) (Bio-Rad, Hercules, CA), 900 nM of HPLC-purified forward and reverse
primers, 250 nM of target-specific mutant and wild type locked-nucleic acid (LNA)
probes, and 10–20 ng of genomic DNA in 20 µl of total volume. Each reaction was
mixed with 70 μl of Droplet Generation Oil (Bio-Rad, Hercules, CA) and parti-
tioned into a minimum of 10,000 droplets (range 10,000–15,000) on the QX200
droplet generator (Bio-Rad, Hercules, CA). 40 μl of the resultant droplets were
transferred to a 96-well plate and sealed prior to polymerase chain reaction (PCR)
amplification. PCRs were performed on a T1000 Thermal Cycler (Bio-Rad, Her-
cules, CA) and cycling conditions were as follows unless otherwise specified: 95 °C
for 10 min, 39 cycles of 94 °C for 30 s and 55 °C for 60 s (with a 2 °C s−1 ramp rate),
98 °C for 10 min, and held at 4 °C. Following amplification, fluorescent intensity
was measured with the QX200 Droplet Reader (Bio-Rad, Hercules, CA) and data
analysis performed with the QuantaSoft droplet reader software (Bio-Rad, Her-
cules, CA). Positive and negative droplet populations were detected on two-
dimensional graphs and the absolute transcript levels were computed as a percent
of the total gene copy. All samples were run in duplicate to ensure validity. Samples
were considered positive if a minimum 1% mutant allele frequency was detected in
both duplicate runs and a minimum threshold of 50 total droplets containing
fluorescent signal were detected. The following assay IDs were used (Bio-Rad,
Hercules, CA):

1. PrimePCR ddPCR mutation assay BRAF WT/V600E for p.V600E, Human
(unique assay ID: dHsaCP2000027/28).

2. PrimePCR ddPCR mutation assay H3F3A WT/K28M for p.K28M, Human
(unique assay ID: dHsaCP2500510/11).

3. PrimePCR ddPCR mutation assay H3F3A WT/G35R for p.G35R, Human
(unique assay ID: dHsaMDS720957813).

4. Prime PCR ddPCR copy number assay CDKN2A, Human unique assay ID:
dHsaCP1000581) and reference prime PCR ddPCR copy number assay
APB31 (unique assay ID: dHsaCP2500348). A known homozygous deleted
cell line was used as a zero-copy control, whereas an Ontario Population
Genomics Platform healthy control sample (ID: 85751) obtained from The
Center of Applied Genomics at SickKids was used as a two-copy control.
Samples that showed < 1.2 copy number value as calculated from the total
target and reference event number were considered deleted.

5. FGFR1 TKD is a custom assay design46, primers and probes were designed
by Integrated DNA Technologies (IDT) as follows: FGFR1 Exon 8 Forward:
5′-TTCCCTTGCTCTGCGTCTCT-3′, FGFR1 Exon 8 Reverse: 5′-TCCAT
CTCTTTGTCGGTGGTATT-3′, FGFR1 Exon 8 HEX-probe: 5′ HEX-TT
GCTTCCGTTGTCTCTTCTAGACTGCTGG-3′, FGFR1 Exon 16 Forward:
5′-CACTGCCCTGGGTAGAGGATT-3′, FGFR1 Exon 16 Reverse: 5′-
ACAGGAGCACCCCGAAAGA-3′, and FGFR1 Exon 16 FAM-probe: 5′
FAM-CTCTAACACCCTGTGGCTCTCCGCC-3′. PCR cycling conditions
were as follows: 95 °C for 10 min, 39 cycles of 94 °C for 30 s and 55 °C for 60
s (with a 2 °C s−1 ramp rate), 98 °C for 10 min, and a 15 °C hold. A ratio
value of 1.125 for exon 16 relative to exon 8 were called duplicated.

NanoString nCounter. Panel 1: Samples were tested for fusion gene expression
with the NanoString nCounter (NanoString, Seattle, WA) Low Grade Glioma Panel
147. In all, 200–500 ng of RNA was mixed with panel specific CodeSet (Low Grade
Glioma Panel 1) and allowed to hybridize overnight for 20 h. CodeSet/RNA
complexes were then purified and immobilized onto the nCounter cartridge system
(NanoString, Seattle, WA). The nCounter cartridge was then scanned at 555 fields
of view on the nCounter Digital Analyzer (NanoString, Seattle, WA) to identify the
unique fluorescent signatures (barcode) associated with each CodeSet probe. The
barcodes are counted and background adjusted with a Poisson correction based on
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the negative control spikes included in each run. This was followed by a technical
normalization using the four housekeeping transcripts included in each run
(ABCF1, ALAS1, CLTC, and HPRT1). Data is viewed using a box plot and the
extreme statistical outlier (3X the interquartile range (IQR)) method was used to
detect the presence of an expressed fusion.

Panel 2: To account for an evolving knowledge of fusions described in gliomas,
a second NanoString fusion panel was designed. The fusion targets included on this
panel are listed in Supplementary Table 3. In addition to fusion targets, three
reporter targeting systems were also included targeting ALK, ROS1, and NTRK2.
These reporter systems work by adding multiple sequence tags prior to and after
the exons of well-defined breakpoint hotspots. In the event of a breakpoint, the
reads from the nCounter appear significantly different between adjacent sequence
tags, allowing for the identification of a likely fusion event with an unknown
partner. Samples were tested for fusion gene expression with the NanoString
nCounter Low Grade Glioma Panel 2 as described above. CodeSet probe sequences
for Panel 1 and 2 are proprietary, but available from NanoString Technologies
(Seattle, WA) and the Hospital for Sick Children upon request.

Fluorescent in situ hybridization. Fluorescent in situ hybridization (FISH) ana-
lysis was performed on formalin fixed paraffin embedded 4-μm tumor sections
using a dual color breakapart probe for the ALK gene (Empire Genomics, Buffalo,
NY). Slides were baked overnight to fix the section to the slide and were pretreated
by using a paraffin pretreatment kit (Abbott, Chicago, IL). Sections were dehy-
drated before slide/probe co-denaturation on thermobrite (Intermedico, Markham,
ON). Denaturation conditions used for paraffin-embedded slides/probes were as
follows:

1. 83 °C for 7 min
2. 37 °C overnight

Slides were washed in 0.4x Saline-sodium citrate(SSC)/0.3% NP-40 at 65 °C for
30 s, followed by 2x SSC/0.1% NP-40 at room temperature for 30s. Slides were
counterstained with DAPI. Nuclei were analyzed by using an Axioplan2
epifluorescence microscope (Zeiss, Jena, Germany). Images were captured by an
Axiocam MRm Camera (Imaging Associates, Bicester, United Kingdom) and
analyzed by using an imaging system with Isis Software (Version 5.1.110;
MetaSystems, Boston, MA).

Copy number analysis. The OncoScan FFPE Assay Kit (Affymetrix, Santa Clara,
CA, USA) was used to assess copy number and loss of heterozygosity events in
selected samples that remained uncharacterized by the targeted methods described
above. Samples for this assay were sent to the Genome Quebec Innovation Centre
for completion of the analysis. The OncoScan FFPE Assay Kit (Affymetrix, Santa
Clara, CA, USA) was used according to manufacturer’s specifications and sample
preparation, including digestion, labelling, quality checks, hybridization, and
scanning was performed at the Genome Quebec Innovation Centre. Data was
analyzed using the Chromosome Analysis Suite (ChAS) (ThermoFisher Scientific,
CA, USA) and copy number calls based on normalized data.

Targeted RNA sequencing. TruSight Sequencing Panel: Samples with sufficient
RNA for sequencing had their total RNA constructed into RNA-sequencing
libraries using the Illumina TruSight RNA Pan-Cancer Panel Kit (Illumina, San
Diego, CA), following the manufacturer’s guidelines. cDNA generation was com-
pleted by random priming during first and second strand synthesis, followed by 3′
end adenylation. Sequencing adapters were then ligated to the fragments to allow
for amplification of the cDNA followed by a validation step to ensure proper
adapter ligation. Samples were then hybridized to specific target probes used to
enrich for cancer-associated genes outlined in the manufacturer’s documentation.
Paired-end RNA-sequencing was performed using the NextSeq 550 (Illumina, San
Diego, CA), sequencing platform. Raw sequencing data was converted to fastq files
and analyzed using the BaseSpace application (Illumina, San Diego, CA) with
RNA-Seq Alignment V.1.0.0. Variant calling was completed in BaseSpace using the
Isaac Variant Caller48 while structural rearrangements were identified using
Manta49 and TopHat50.

Whole-transcriptome sequencing. Samples with sufficient RNA quality and
quantity were sent for whole transcriptome sequencing at The Center for Applied
Genomics (Hospital for Sick Children, Toronto, ON). Library preparation was
completed using the TruSeq RNA Library Prep Kit v2 (Illumina, San Diego, CA)
using the rRNA depletion kit RiboZero Gold (Illumina, San Diego, CA) according
to the manufacturer’s specifications. Paired-end sequencing was performed on the
Illumina HiSeq 2500 platform. STAR51 was used to align the raw sequencing data
to genome reference “Homo sapiens UCSC hg19”. Fusion events were called using
four fusion callers: defuse52, tophat50, ericscript53, and fusionmap54.

DNA methylation analysis. Methylation profiling was completed at the micro-
array centre at the Centre for Applied Genomics at the Hospital for Sick Children
(Toronto, Canada). Bisulphite conversion was completed using the EZ DNA
Methylation kit (Zymo Research) according to the manufacturerʼs guidelines.
Genome-wide DNA methylation patterns were analyzed using the

HumanMethylation450 BeadChip platform according to manufacturer specifica-
tions (Illumina, San Diego, CA). Raw data underwent quality control and pre-
processing using the R package “minifi”55 and normalized using the R package
“noob”56. Probes with a SNP at or near the CpG, plus those on the X and Y
chromosomes were removed. t-SNE plots were completed using the R package “t-
SNE”57. Raw.idat files are available at at the GEO wesbite under the ascension
code GSE135017.

Generation of preclinical models. In vitro: immortalized (TERT/E6/E7) normal
human astrocytes (iNHA) were a gift from Dr. Pieper58 and maintained in culture
in DMEM supplemented with 10% Fetal Calf Serum and 1% Penicillin/Strepto-
mycin. FLAG-tagged DNA sequences for the gene fusions CCDC88A-ALK and
PPP1CB-ALK were cloned into pLVX-IRES-mcherry by GenScript USA. Stable
lines were generated by lentiviral transduction and mcherry-positive cells selected
by FACS sorting (Supplementary Fig. 3). Proper integration was confirmed via
PCR analysis using the following primer sequences: CCDC88A-ALK forward: 5′-
TTGGCTGGGAACTGGAACAG-3′, CCDC88A-ALK reverse: 5′-CAGCAAA
GCAGTAGTTGGGG-3′, PPP1CB-ALK forward: 5′-GATTGTCACCAGACCT
GCA-3′, PPP1CB-ALK reverse: 5′-CGGAGCTTGCTCAGCTTGTA-3′ mCherry
forward: 5′-CGAGGAGGATAACATGGCCATC-3′, mCherry reverse: 5′-CATCA
CGCGCTCCCACTTGAAG-3′, RPPH1 forward 5′-TGTCACTAGGCGGGAAC
ACC-3′, and RPPH1 reverse: 5′-CTCCGCCCTATGGGAAAAAG-3′. Cell lines are
available upon request.

In vivo: all in vivo studies were reviewed and accepted by the Animal Care
Committee at The Centre for Phenogenomics (Toronto, ON), an affiliate of the
Hospital for Sick Children (Toronto, ON). For the intracranial orthotopic in vivo
model, 200,000 iNHA mcherry EV, CCDC88A-ALK or PPP1CB-ALK cells were
injected in the brain hemispheres of age (8–10 weeks) and sex-matched NOD/scid/
gamma (NSG) mice randomly assigned to either a control or experimental group.
Animals were independently monitored by a third party and euthanized at humane
endpoints when physiological signs of a brain tumor (hunched posture, scruffy
appearance, weight loss, etc.) were detected or at 6 months post injection for the
control group. CNS samples were collected at endpoint and evaluated histologically
for tumors by The Centre for Phenogenomics (Toronto, ON.) histology core.

In vitro proliferation assay. Cells were seeded at 10,000 cells/well in a 96-well
plate and allowed to adhere for 48 h. 20 µl of Alamar Blue (Thermo Fisher, CA.,
USA) was added to each well and the plates incubated at 37 °C and 5% CO2 for 4 h.
The fluorescence intensity was measured using a Spectramax Gemini plate reader
(Molecular Devices, San Jose, CA, USA) using an excitation wavelength of 530 nm
and an emission wavelength of 580 nm. Analysis was completed by normalizing
intensity values against wells containing media alone. Data was represented as the
mean of each condition. No detectable batch effect was observed.

In vitro drug dose assay. Ceritinib (LDK-378) and Crizotinib (PF-02341066)
were purchased from Selleckchem.com and prepared according to the manu-
facturer’s guidelines. Drugs were diluted in DMSO to the defined concentrations.
Cells were seeded at 5,000 cells/well in a 96-well plate and allowed to adhere for 24
h. After 24 h, the appropriate drug concentration was added to each well and the
plates incubated at 37 °C and 5% CO2 for 48 h. The fluorescence intensity was
measured using a Spectramax Gemini plate reader (Molecular Devices, San Jose,
CA, USA) using an excitation wavelength of 530 nm and an emission wavelength
of 580 nm. Analysis was completed by normalizing intensity values against wells
containing media alone. Data was represented as mean of each condition. No
detectable batch effect was observed.

Immunohistochemistry. ALK and FLAG immunostaining was performed using
10 μm-thick sections of the tumor samples post de-parafinization. Antigen retrieval
was performed in a citrate buffer (pH 6.0) for 5 min prior to peroxidase quenching
with 3% hydrogen peroxide (H2O2) in PBS for 10 min. The sections were then
washed in water and pre-blocked with a normal goat or horse serum for 1 h. Next,
the tissue sections were incubated overnight at 4 °C in primary antibody:

1:50 anti-ALK rabbit monoclonal primary antibody, Clone D5F3, Cell Signaling
Technology (Danvers, MA, USA).

1:50 anti- FLAG (Monoclonal anti-FLAG M2 antibody, F1804, Sigma-Aldrich
(St. Louis, MO, USA).

MIB-1, Synaptophysin and GFAP immunohistochemistry was performed on a
Benchmark Ventana Machine (Tucson, AZ) using the Optiview detection kit
(Tucson, AZ). CC1 was used for heat retrieval for 40 min. Tissue sections were
incubated with primary antibody for thirty-six minutes:

RTU anti-MIB-1 (mouse monoclonal primary antibody, GA626, ready-to-use,
Dako Omnis, Santa Clara, CA, USA).

RTU anti-Synaptophysin (mouse monoclonal primary antibody, GC202, ready-
to-use, Dako Omnis, Santa Clara, CA, USA).

RTU anti-GFAP (rabbit polyclonal primary antibody, GA524, ready-to-use,
Dako Omnis, Santa Clara, CA, USA).

After washing the sections with PBS, they were incubated with secondary
antibodies (1:100) for 1 h. The Mouse on Mouse Polymer IHC kit (Abcam,
Cambridge, UK) was used via the manufacturer guidelines prior to image
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acquisition to mitigate cross-reactivity and improve sensitivity for antibodies raised
in mice. Finally, the sections were developed with diaminobenzidine
tetrahydrochloride substrate for 10 min, and counterstained with hematoxylin.
Pictures were obtained using a Nikon E600 microscope (Nikon, Canada).

Western blotting. Total cellular proteins were extracted with 2X SDS lysis buffer
containing 1M tris (pH 7.4), 0.5 M EDTA, 10% SDS, and glycerol. The proteins
were separated on a sodium dodecylsulfate-polyacrylamide gel (Novex WedgeWell
4–20% Tris-Glycine Gel, Invitrogen) electrophoresis (SDS-PAGE), which were
then transferred onto nitrocellulose membranes. The nitrocellulose membranes
were incubated with the appropriate primary antibodies suspended in 5% albumin
blocking solution, followed by the secondary antibodies conjugated to horseradish
peroxidase. Antibody binding was detected with Pierce enhanced chemilumines-
cence reagent western blotting substrate (Thermo Scientific Rockford, USA).
Antibodies used were 1:5000 ALK (3633), 1:1000 p-ERK1/2 (9101), 1:5000 Total
ERK 42/44 (9102), and 1:10,000 tubulin (2144) purchased from Cell Signaling
Technology (Danvers, MA, USA). 1:5000 Anti-Flag (F1804) was purchased from
Sigma-Aldrich (St. Louis, MO, USA).

Immunocytochemistry. iNHA cells plated on coverslips were fixed with 4% PFA
for 10 min and permeabilized with 0.2% Triton-X for 15 min. Coverslips were
blocked (1% BSA, 2.5% Donkey serum, 0.05% Tween-20) for 1 h and probed
overnight for FLAG (Sigma, F1804, 1:100) and ALK (Cell Signaling Technology,
3633, 1:200). FLAG and ALK antibodies were subsequently labelled with FITC and
TRITC labelled antibodies and mounted (Vector Laboratories, Vectashield, H-
1200). Images were acquired using Di8 spinning disk confocal microscope (Leica
Microsystems) (40x objective lens) and Volocity software (Quorum Technologies).

Statistics. Statistical analyses were performed using R version 3.5.0 and R Com-
mander Version 2.4–4 with the plugins “Survival” (version 1.2–0), “KMggplot2”
(version 0.2–5) and “Plot by Group” (version 0.1-0). PFS was defined as the time
between diagnosis and tumor progression requiring a change in clinical manage-
ment. OS was defined as the time from diagnosis until death or last follow up for
the patients still alive. Estimations of survival were calculated using the Kaplan-
Meier method and log rank test, p values below 0.05 were considered significant. 5
and 10 year survival is reported as a percentage with 95% confidence intervals.
Univariate and multivariate analysis was performed using SPSS v25 (IBM Cor-
poration). This was done using a univariate or multivariate Cox proportional
hazards model and significance testing (α= 0.05) based on the Wald test.

Source data. Uncropped and unedited gels and blots are contained within Sup-
plementary File Source Data. Raw clinical features used for survival plots and
prognostic analysis are also included in this file.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The targeted and whole transcriptome sequencing data sets have been deposited in the
European-Genome-phenome Archive under accession code EGAS00001003714. The
methylation data is available from the GEO website under the accession code
GSE135017. All the other data supporting the findings of this study are available within
the article, its supplementary information files and from the corresponding author upon
reasonable request. A reporting summary for this article is available as a Supplementary
Information file.
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