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ABSTRACT

Perennial stock-outs of essential medicines are commonplace in the pharmaceutical supply chains of developing
countries. Stock-outs are mainly attributed to a general lack of collective information sharing in pharmaceutical
supply chains. In this paper, a computerised agent-based simulation model concept demonstrator is
proposed and demonstrated hypothetically as part of a larger drive to establish the value of leveraging
information sharing in pharmaceutical supply chains with a view to enhance decision-making. The objective of
this paper is to outline the prerequisite research inputs, design requirements and hypothetical implementation
of the aforementioned demonstrator. The work reported on in this paper remains a work in progress.

" The author is enrolled for an M Eng (Industrial) degree in the Department of Industrial Engineering, University

of Stellenbosch
2 The author is a professor in Operations Research at the Department of Industrial Engineering, University of

Stellenbosch
3 The author is a senior lecturer at the Department of Industrial Engineering, University of Stellenbosch

*Corresponding author

3633-1
473


https://core.ac.uk/display/287817717?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Steering the
2 4"INDUSTRIAL
¥/ REVOLUTION

29th SAIIE ANNUAL CONFERENCE

SAIIE29 Proceedings, 24th - 26th of October 2018, Spier, Stellenbosch, South Africa © 2018 SAIIE

1. INTRODUCTION:

Developing nations carry a considerable burden in terms of life-threatening diseases while the treatment of
these diseases is significantly complicated by stock-outs and shortages of critical medicines. Stock-outs are
preventable, but to successfully thwart medicine stock-outs and their damaging consequences demands a major
overhaul in the management of traditional pharmaceutical supply chains of developing countries.

Recent statistics underline the scale of the global medicine stock-outs dilemma. The Global AIDS Response
Progress Reporting programme [1], for example, reported that 38 of 108 low- and middle-income countries
experienced stock-outs of antiretroviral medicines in 2013. In South Africa, a survey conducted in 2015 by the
Stop Stock-outs Project consortium [2] revealed that approximately one in four health care facilities suffered
from stock-outs of either antiretroviral or tuberculosis medicines during the three-month period preceding the
survey. Furthermore, 70% of these stock-outs lasted longer than one month, underlining the supply chain’s failure
to resolve the root causes of stock-outs rapidly.

The consequences of medicine stock-outs are pervasive and are the most severe on the subsequently untreated
patients. Increased drug resistance, aggravation of, or transmission of, disease and even death are some of the
harrowing consequences associated with treatment failures [2,3,4]. The impact of stock-outs is particularly harsh
on impoverished communities in rural areas which depend solely on public health care services. These poor
patients are forced to pay frequent, and costly, visits to their local health care facilities. Regrettably, if they
are confronted with stock-outs at these facilities they are turned away and compelled to visit even farther
facilities, with no guarantee of medicine availability at these facilities either [5].

The prevailing reasons for pharmaceutical supply chain under-performance in public health sectors include
fragmented accountability amongst stakeholders [6], superfluous supply chain complexity [6,7], funding
complexities and inadequacies [6,8,9], as well as insufficient inventory management in the face of information
shortages and incompetent distribution systems [9,10]. A lack of data capturing and data sharing is, however,
attributed as one of the predominant obstacles toward pharmaceutical supply chain improvement in developing
nations [6].

Developing countries may not have access to the resources required to implement proper information technology
systems in their pharmaceutical supply chains, but the irrefutable advantages of information sharing are plain
to see. Sharing supply chain information, such as demand forecasts and inventory levels, across an entire supply
network allows organisations to proactively plan for disruptive events, instead of reacting (belatedly) to these
events [11]. As a result, supply chains are able to better balance supply and demand, improve stakeholder
accountability and ameliorate overall supply chain performance at a reduced cost [6,12,13]. It may be argued
that information sharing is a suitable starting point for supply chain reform, because it allows organisations to
collaborate to their mutual benefit.

Initiatives utilising the benefits of information sharing in pharmaceutical supply chains have successfully been
introduced in some African countries in recent years. A study conducted in 2011 disclosed that at least 60% of
stock-outs in the Senegalese contraceptive supply chain occurred at warehouses and health care facilities,
despite stock availability at a national level. These problems sprouted from dismal inventory management and
poor distribution practices. Upon the implementation of a new system according to which dedicated logisticians
actively utilise stock data to manage inventory and curb stock-outs, these stock-outs declined to less than 2%
across 140 health care facilities during the first six months [14].

The SMS for Life programme, established in 2009, is a web-based reporting system that allows health facility
workers to report stock levels on a weekly basis by means of simple SMS messages. This practice of stock level
reporting has subsequently alleviated the stock-out predicaments in Kenya and Tanzania and the system is
geared for roll-out in more African countries [15,16].

The value of mobile technology in respect of information sharing in pharmaceutical supply chains is also
underlined in South Africa’s Stock Visibility Solution (SVS) programme. The SVS is a mobile phone-based reporting
system that allows dispensing clinic staff to report stock levels at regular intervals [17]. The periodic capturing
of stock level data allows health care facilities to purposefully manage inventory in a drive to thwart stock-outs.
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This paper reports on work in progress that is aimed at, amongst others, the utilisation of information sharing in
pharmaceutical supply chains with a view to enhance decision-making.

2. PROBLEM DESCRIPTION AND RESEARCH METHODOLOGY

The problem considered in this research involves the performance of conventional pharmaceutical supply chains
in developing countries and how these may be improved by the adoption of demand-driven supply chain
management principles. In particular, the practice of supply chain information sharing is investigated in order
to establish its potential value in respect of effective inventory management. An agent-based simulation model
concept demonstrator is developed for use as a test bed to evaluate the efficacy of various inventory
replenishment policies within a pharmaceutical supply chain context. The simulation model also accommodates
the possibility of modelling user-specified demand scenarios in order to investigate their influence on the
effectiveness of inventory replenishment regimes.

The concept demonstrator embraces two modelling paradigms. The first is a descriptive paradigm where the
model is employed to evaluate the effectiveness of a pre-specified, traditional inventory management policy
explicitly embedded in the model. The second paradigm, on the other hand, follows a prescriptive approach.
According to this paradigm, the user does not select a pre-defined policy as in the case of the descriptive
paradigm. Instead, the simulation model is employed to discover effective inventory management protocols for
the simulated pharmaceutical supply chain network. In other words, an effective inventory management policy
is prescribed to the user.

The execution of research toward this paper is segmented into three distinct stages. The first stage comprises a
brief review of the academic literature relevant to this research project. Thereafter a conceptual framework
for capturing the structure of a pharmaceutical supply chain network in a format suitable for use in a simulation
modelling environment is established. Finally, a hypothetical example of applying the proposed simulation model
is proffered in the third and final stage.

3. LITERATURE REVIEW

The literature review in this section consists of four disparate parts, namely a review of the notion of demand-
driven supply chain management (in §3.1), a review of the various basic concepts in inventory management (in
§3.2), a brief overview of the concepts of self-organisation and emergence (in §3.3) and finally, a review of the
machine learning paradigm of reinforcement learning (in §3.4).

3.1 Demand-driven supply chain management

A common denominator in the traditional management of supply chains is an emphasis placed on the activities
involved with the downstream movement of commodities along a supply chain [18]. Organisations will, for
example, streamline their production processes and distribution operations in order to improve the efficiency
with which goods are moved downstream in a supply chain. Despite acknowledging the importance of these
downstream management activities, advocates of the so-called demand chain management (DCM) notion suggest
that the focus of this traditional approach is misplaced. DCM is a relatively new concept supporting the notion
that end user demand should drive the upstream processes (such as manufacturing and distribution) in a supply
chain [18]. As such, the end user is considered as the starting point in a supply chain as opposed to being viewed
as the final destination. This particular school of thought arises from the idea that a supply chain ultimately
serves to fulfil the needs of the end user. Although products flow downstream toward the end user in a supply
chain, it is the end user’s demand that should govern the nature of the upstream activities.

Fisher [19] proposed that any supply chain performs two distinct functions. The first is the physical function
which embodies the physical transformation of raw materials to finished products, and the movement of these
goods along a supply chain. The physical function determines a supply chain's efficiency. Manufacturing, delivery
and inventory storage outlays are classified as incurring physical costs since they are part of the physical
function. The second function is the market mediation function and its purpose is to ensure that customer
demand is successfully satisfied. Market mediation costs are incurred when supply exceeds demand, or the other
way around. In the case of oversupply, excessive stocks may be sold at a loss or even discarded in the case of
perishables. Undersupply of stock, on the other hand, reflects lost sales opportunities. In other words, the
market mediation function embodies the idea that neither a surplus nor a shortage of stock is desirable in a
supply chain.
3633-3
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Fisher furthermore suggested that organisations may prioritise one function at the expense of the other. An
organisation subject to predictable demand can, for example, deliberately plan to avoid both a surplus of stock
as well as a shortage of stock. Such a position enables a firm to devote its attention to enhancing supply chain
efficiency because the market mediation costs are not considered as significant. Organisations faced with
unpredictable demand, on the other hand, typically prioritise market mediation costs over physical costs,
because they prioritise customer satisfaction irrespective of their attained level of supply chain efficiency.

De Treville et al. [20] subsequently defined a demand chain as a supply chain in which the market mediation
function predominates a supply chain’s function to optimise its physical efficiency (the physical function). The
adoption of a demand chain approach may seem suitable for a pharmaceutical supply chain because the need
to successfully fulfil patient demand is of paramount importance. Pharmaceutical supply chains are, in fact,
compelled to pursue a patient service level of 100% because failure to do so would signify the occurrence of
stock-outs [21]. Organisations in pharmaceutical supply chains may, however, pursue conflicting objectives.
Consider a primary health care facility, such as a clinic, which seeks to minimise medicine stock-outs so as to
fully satisfy patient demand. A drug manufacturer upstream, on the other hand, may solely pursue profit
maximisation with little regard for the downstream clinic’s service level target. This example illustrates that a
progression from a conventional pharmaceutical supply chain to a pharmaceutical demand chain which prioritises
market mediation may not be as simple as it would seem at first.

The practice of information sharing is a powerful enabler of demand-driven supply chain management because
it allows organisations to better understand customer demand and to collaborate effectively. The concept of
information sharing, also called supply chain visibility, refers to the degree according to which supply chain
organisations share information that is pivotal to their own activities and which they consider to be of mutual
benefit to themselves and other firms in the supply chain [22]. Inventory levels, demand forecasts, order tracking
and sales data are examples of information shared in supply chains in order to enhance their collective
performance [23]. In the case of a sudden disease outbreak, for example, patient demand for a particular drug
may increase considerably over a short period of time. If health care facilities do not carry enough stock to fulfil
this increased demand, they set off a reverberating chain of belated, large orders along the supply chain. If the
rapid demand increase is, however, made known to upstream facilities promptly through information sharing,
they can increase their operations accordingly in anticipation of larger orders.

3.2 Inventory replenishment

A significant trade-off faced by inventory managers during their decision-making processes is the trade-off
between supply chain responsiveness and efficiency [24]. Carrying large inventories and shortening lead times
generally make a supply chain more responsive. The increased responsiveness is, however, traded for significant
inventory holding costs and large transport costs, respectively [24].

Inventory replenishment policies are typically employed by inventory managers to determine reorder points and
reorder quantities. Simchi-Levi et al. [25] identified six supply chain variables that play a role in the formulation
of an inventory replenishment policy. Customer demand is arguably the most significant factor because
organisations ultimately strive to fulfil their customers’ demand. Secondly, ordering costs and inventory holding
costs are of obvious financial importance. And to ensure the timely receipt of ordered goods, the reorder point
should be informed by the replenishment lead time, which may not be deterministic. Furthermore, the order
quantity may be based on the current inventory level of the product in question. Additionally, the length of the
planning period shapes the scope and the nature of inventory management decisions. Finally, the service level
target may be a determinant of the reorder point and the reorder quantity.

The dynamic nature of supply chains suggests that the parameters of an inventory replenishment policy should
be informed by the current state of the supply chain environment with a view to making better decisions. In
other words, inventory replenishment protocols should not be too rigid, for otherwise they may fail in the face
of changes in the supply chain environment. Owing to the large degree of variability and uncertainty in a supply
chain, the inventory management process remains an intricately complex task.

3.3 Self-organisation and emergence

The concepts of self-organisation and emergence are reviewed in order to explore their potential application to
inventory management protocols in pharmaceutical supply chains.
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De Wolf and Holvoet [26] describe self-organisation as a continuous process in which coordinated organisation
manifests itself through the independent behaviour of systems, without any control instructions being imposed
from outside the system. ‘Organisation’ here refers to the presence of a so-called ‘structure’ that can be of a
spatial, temporal or functional nature. Although a self-organising process is void of external control, it does not
preclude data inputs from outside the system. A fundamental property of self-organising systems is that they
are considered extremely robust and adaptable because they can reproduce ‘organisation’ in the face of
environmental changes [26,27].

The presence of self-organisation may give rise to the related phenomenon of emergence. Emergence
materialises in a system when the local interactions between its individual constituents culminate at a higher
level in the development of a structure (called ‘coherent emergents’) that is not explicitly represented at a
lower level [26,28]. An example of self-organisation and emergence in nature is illustrated in Figure 1. When a
colony of ants arrive at a gap in their path, they often use their bodies to build a living bridge without any
external supervision or instructions. Each ant follows two simple rules. First, it slows down as it reaches the gap
and secondly, it freezes when it feels another ant walking over it. The ants continue in this fashion until they
have successfully bridged the gap. Through the ants’ self-organising behaviour, a living bridge emerges. The
bridge may be classified as an emergent because no individual ant is representative of the bridge. The bridge is
only formed at a higher level through the local interactions between the ants at a lower level.

Figure 1: A living bridge emerges from the self-organising behaviour of ants [29,30].

It may be argued that effective, externally coordinated inventory management in a pharmaceutical supply chain
is extremely difficult, or even impossible, given the myriad of supply chain variables that influence inventory
management decisions. Self-organisation (a process void of external control) is therefore explored as an
alternative means of coordinating inventory management. A self-organising supply chain, by implication, is void
of any form of centralised control and each facility manages its own inventory exclusively. In this research
project, we investigate the conjecture that local coordination between facilities may lead to the emergence of
a greater structure where the global supply chain functions as a coordinated system in respect of inventory
management.

Consider a simple example of a self-organising pharmaceutical supply chain in which each facility in the chain
‘organises’ itself with a view to prevent stock-outs locally. These facilities, in other words, are autonomous and
actively manage their own inventory in pursuit of an ‘organisation’ in which stock-outs are prevented.
Additionally, in an information sharing supply chain, these facilities may utilise the available information to
inform their inventory management decisions accordingly. There is, however, no explicit coordination between
the facilities in the supply chain. If a storage depot is, for example, perturbed by a drastic demand increase,
the facility may ‘reorganise’ itself by increasing its order quantities. Emergence may subsequently occur in the
supply chain as a set of management policies prescribing reorder points and reorder quantities in pursuit of
effective inventory management.

3.4 Reinforcement learning

Reinforcement learning is a branch of machine learning where a learning agent learns behaviour in an
environment through interaction with the environment [31]. The premise of reinforcement learning rests on the
idea that if a particular action yields desirable results, the inclination to repeat the same action is reinforced
[32]. This closely relates to the learning process followed by humans and animals. A new-born elephant, for
example, tries many strategies and fails often before it can stand upright. Over time, the baby elephant learns
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to avoid the actions that caused it to fall down and it hones the skills that proved more fruitful in pursuit of its
goal to stand upright.

A fundamental characteristic of reinforcement learning is that a learning agent can evaluate the desirability of
its actions according to a numerical reward signal, but it is not told which actions to take in order to improve
its performance [33,34]. The reward signal is expressed in terms of a pre-specified goal that is pursed by the
agent. Hence, a learning agent has to attempt many different strategies by itself in order to learn what behaviour
maximises its reward signal. This learning process can informally be described as learning through trial-and-
error. The new-born elephant, for example, is said to learn through trial-and-error which strategies prove to be
more successful.

The reinforcement learning approach is commonly described in terms of an agent and an environment [33,34].
The agent is the learning actor which interacts with its environment in order to learn about the environment. A
state describes the situation in the environment at any given time instant. At discrete time steps, the agent is
presented with an array of actions from which it can choose. The selected action influences the environment
and the environment provides feedback to the agent in the form of a reward signal and by transitioning into a
new state. The reward signal is employed to evaluate the immediate reward received for the selected action.
Notably, the agent’s objective in reinforcement learning is to maximise its cumulative reward and, occasionally,
these rewards may be significantly delayed [33,34]. The reinforcement learning cycle repeats itself many times
and, over time, the agent learns to map different situations to particular actions that yield desirable results. A
schematic of this learning paradigm is shown in Figure 2. The outcome of a reinforcement learning process may
be described as a look-up table [33]. This table maps all possible environment states to appropriate actions that
have proved to maximise the agent’s reward during the learning process.

Agent

State Action

Reward

A

Environment

Figure 2: The reinforcement learning cycle (adapted from [33]).

Reinforcement learning forms the cornerstone of the prescriptive paradigm of the proposed concept
demonstrator, as discussed in §81. Each facility type in a pharmaceutical supply chain (i.e. manufacturer,
warehouse, clinic, etc.), is trained as a reinforcement learner. A unique look-up table of state-action pairs is
subsequently generated for each facility type that can be utilised by the facility to inform decision-making on a
daily basis aimed at improving performance indicators aligned with various management objectives.

4. CONCEPTUAL INPUT FRAMEWORK FOR PHARMACEUTICAL SUPPLY CHAIN MODELLING

As discussed in §1, an agent-based pharmaceutical supply chain simulation model is put forward in this paper.
The simulation model follows a generic design so as to enhance its flexibility and potential value for decision
makers in pharmaceutical supply chains. According to this generic design, the simulation model receives a user-
specified supply chain structure as input. This input structure, called an input framework, should sufficiently
capture the level of abstraction required to model a pharmaceutical supply chain mathematically, as per the
purposes of this research. This section is devoted to a description of the conceptual design of such an input
framework. This framework is not, however, exhaustive, but simply serves as a point of departure for the
development of a comprehensive, well-rounded input framework.

The input framework should capture facility-specific information, product-specific information, as well as
inventory management parameters and product demand profiles. A list of attributes that captures the high-
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level, facility-specific information is shown in Table 1. This information set describes the size of the supply chain
network and its prevailing facility types.

Table 1: Facility-specific information provided as input.

Attribute Description

Facility name Common name used to identify the facility

Location Spatial information

Facility type The nature of a facility’s operations. For example: Manufacturer,
storage facility, hospital, clinic, etc.

Tier Specification of the relevant echelon in the supply chain

Storage capacity | The facility’s total storage capacity for the purposes of the simulation

The simulation model’s generic design allows for the inclusion of user-specified pharmaceutical products. The
product-specific information required extends only to the name of the product and its shelf life, as shown in
Table 2.

Table 2: Product-specific information provided as input.

Attribute Description
Product name Commonly used product name
Shelf life (if perishable) | Shelf life duration (from date of manufacture)

A traditional from-to matrix can be used to capture the connections between facilities in a supply chain. These
connections indicate the flow of goods between facilities. The matrix is of size n x n where n denotes the total
number of facilities in the supply chain. If product units flow from facility i to facility j, the (i, j)* entry in the
matrix adopts a value of 1, or a value of 0 otherwise. The facility names are obtained from Table 1. An example
of a from-to matrix for a supply chain comprising three facilities is shown in Table 3. Facility A, for example,
distributes goods to Facilities B and C. Facility B, on the other hand, distributes only to Facility C and Facility
C, in turn, does not distribute any inventory to other facilities.

Table 3: An example of a 3 x 3 from-to matrix provided as input.

Facility A | Facility B | Facility C
Facility A - 1 1
Facility B 0 - 1
Facility C 0 0 -

As discussed in §1, the descriptive paradigm of the concept demonstrator allows the user to evaluate the
performance of pre-specified inventory replenishment policies. In order to facilitate this paradigm, the user is
required to specify the parameters of these policies as part of the input framework. The relevant inventory
management parameters required to model the inventory management processes are presented in Table 4.
According to the table, the user can specify parameters for a continuous review policy, or for a periodic review
policy. Table 4 may, of course, be extended to include more inventory management policies.

Table 4: Inventory management parameters provided as input.

Attribute Description

Ordering facility Facility name from Table 1

Product Product name from Table 2

Starting inventory Product quantities available at the start of the simulation

Minimum order quantity | If applicable
Maximum order quantity | If applicable

Reorder point For a continuous review policy

Reorder quantity For a continuous review policy

Review interval For a periodic review policy

Order-up-to level For a periodic review policy

Lead time (days) As a function of order size, may be stochastic
3633-7
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In order to model the manufacturing operations of manufacturers in the supply chain, the production process
characteristics have to be captured in the format as shown in Table 5. This information is applicable to
manufacturers only.

Table 5: Manufacturing information provided as input.

Attribute Description
Manufacturer Facility name from Table 1
Product Product name from Table 2

Starting inventory Product quantities available at the start of the simulation
Production trigger | Signal that triggers the initiation of the production process
Production rate Expressed in number of batches per time unit

Batch size The number of units in a single batch

Finally, forecasted demand data and actual demand data for the simulation period can be provided as input.
Users may provide either synthesised data or actual data as input. The nature of the demand data required is
elucidated in Table 6.

Table 6: Demand data provided as input.

Attribute Description

Facility Name from Table 1

Product Product name from Table 2

Actual demand Daily demand for each simulated day
Forecasted demand Daily forecasted demand for each simulated day

A potential implementation of this input framework is demonstrated by means of a hypothetical example in the
following section.

5. HYPOTHETICAL EXAMPLE

The objective of this section is to integrate the salient elements of the literature review in §3 with the input
framework of §4 in order to demonstrate how it may be applied in practice by means of a small hypothetical
example.

Consider a simple pharmaceutical supply chain comprising a single manufacturer, a single warehouse and two
clinics. The supply chain facilitates the flow of Painstill drugs from the manufacturer to the clinics, via the
warehouse. Currently all four facilities in the supply chain employ traditional continuous review replenishment
policies.

The Painstill supply chain has suffered from large-scale stock-outs in recent months and it has been decided to
investigate avenues for improving its inventory management practices. In particular, the value of supply chain
information sharing is of interest and how it may inform effective inventory management in the supply chain
with a view to minimise stock-outs. The management team has turned to the simulation model proposed in this
paper to support their decision-making processes. After populating the input framework of §4, the management
team decides to employ both the descriptive and prescriptive modelling paradigms.

Descriptive paradigm

According to the descriptive paradigm, a pre-defined replenishment policy is selected for each facility from a
list of possible policies. The management team decides to continue with a continuous review policy for each
facility. Using the simulation model, the management team can now experiment with different parameter values
(reorder points and reorder quantities) for each facility in order to determine how they may improve the
effectiveness of the continuous review policies. The operation of the supply chain is now simulated according to
the specified parameters. The movement of Painstill units through the supply chain, and charts denoting
information such as inventory levels may be displayed during the simulation model execution. At the end of the
simulation run, a set of key performance indicator values are provided as output. Examples of suitable key
performance indicators may include attained service levels, the number of stock-outs per facility, the average
stock-out duration per facility, as well as the procurement costs and inventory holding costs incurred by each
facility. An example of a graphic denoting a facility’s stock level data and demand data are shown in Figure 3.
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Suppose that the sudden demand increase observed at day 111 is attributed to an unexpected disease outbreak.
It is evident from the stock level graph that the facility carried enough stock to fulfil the increased demand
initially. The stock level has, however, declined to a minimum of 140 units on day 122. The relevant decision-
makers may therefore infer that it is best to increase the facility’s order quantities in the face of a similar
demand increase in order to negate the possibility of stock-outs.
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Figure 3: A graph of a facility’s stock level over time (left) and the same facility’s corresponding demand
over time (right). A sudden demand increase is observed at day 111 due to a sudden disease outbreak.

Prescriptive paradigm

The prescriptive paradigm integrates the concepts of demand-driven supply chain management, self-
organisation and reinforcement learning as a means to prescribe effective replenishment policies for the
modelled supply chain network. The output of this paradigm is therefore a set of key performance indicator
values, as well as a set of policies prescribing reorder points and reorder quantities for each facility. ‘Self-
organisation’ in this context means that each facility makes its own inventory decisions, as alluded to in §3.3.
The prescriptive paradigm lends itself to a large degree of scalability because of the supply chain’s self-
organising property. The effects of the local interactions between facilities may ripple outward until a form of
organisation is achieved and maintained across the entire supply network. The size of the supply chain therefore
has little influence on the model complexity.

The user should explicitly define the level and degree of information that may be shared and used by other
facilities in order to facilitate their decision-making processes. The management team can, for example, explore
the effect of sharing both clinics’ stock level data with the warehouse. This level of visibility may presumably
allow the warehouse to increase its inventory proactively should the clinics’ stock levels start to decline rapidly
in response to a sudden demand increase. The management team can, however, also investigate the value of
sharing the clinics’ stock level data with both the warehouse and the manufacturer, provided that the
manufacturer also has visibility over the warehouse’s stock level data. Intuitively, it may be argued that the
increased level of supply chain visibility may be accompanied by improved overall supply chain performance.
Comparing these two scenarios at the hand of the simulation model may elucidate whether the larger investment
in information technology required for the second scenario is, in fact, justified in respect of the simulation
results. It may, for example, be that the increased level of information sharing of the second scenario does not
significantly improve on the effectiveness delivered in the first scenario. The simulation model may prove
extremely useful for similar comparison analyses.

Once the information sharing structure has been configured in the model, reinforcement learning may be applied
as a mechanism to discover self-organising replenishment heuristics. Since facilities of the same type share
common operational characteristics, all the instances of a particular type of facility can use the same look-up
table. Therefore, only one agent can represent each facility type, be trained and only generate one look-up
table per agent. For the Painstill supply chain, a manufacturer agent, a warehouse agent and a clinic agent have
to be trained as reinforcement learners, respectively. Notably, both clinics use the single look-up table
generated by the clinic agent. The learning process is expected to be computationally expensive, but this is an
offline process which is executed a priori.
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The respective reward functions of these agents may be specified by the user. A typical reward function should
reward desirable actions, such as the successful fulfilment of customer demand. For undesirable scenarios, such
as the occurrence of stock-outs, product expirations or large inventory carrying costs, agent punishment should
result in the form of a negative reward signal. Notably, the reward function need not be particular to one agent,
but rewards may be shared amongst agents. Rewards may be shared between a warehouse and a clinic (the
clinic orders from this warehouse), for example, in an attempt to enhance their collective performance.

A state should describe all the information that is visible to a learning agent at any given time instant during
the learning process. The state may include a number of dimensions, such as the agent’s current inventory level
and its forecasted demand. If, for example, the Painstill manufacturer has visibility over the warehouse’s stock
level, the manufacturer agent’s state space would include the warehouse’s stock level data. In other words, the
size of an agent’s state should be informed by the level and degree of information sharing. At discrete time
steps, each agent should decide whether to place a new order for Painstill drugs, or not. If the agent decides to
order, the order quantity should also be selected. The simulation model should replicate many possible scenarios
in the supply chain and the reinforcement learning algorithm should experiment with different order strategies
during the process. Over time, each agent learns which inventory management decisions (actions) yield the most
reward within a particular situation (state), and these are documented in a look-up table. In other words, each
agent learns when to place a new order and how much to order, given a certain state.

The management team may use the results of both the descriptive and prescriptive paradigms to provide them
with decision support in pursuit of their drive to improve the efficiency of the Painstill supply chain. The
simulation results may, for example, provide insight as to which facilities suffer the most from stock-outs and
why under different demand scenarios. The management team can also identify those facilities at which product
expirations occur most frequently and subsequently learn which replenishment policies may prevent them.
Additionally, cost-related key performance indicators may provide an indication of the financial feasibility of a
particular policy. Finally, the prescriptive paradigm may elucidate which type of information should be shared,
and with whom, for the best outcome in respect of the management team’s various objectives.

6. CONCLUSION

The objective of this paper was fourfold. First, to establish the background context of this research project as
the inventory management methodologies of demand-driven pharmaceutical supply chains. Secondly, to provide
a brief overview of the relevant academic literature which serves as a basis for the work conducted in this
research. Thereafter, a preliminary, conceptual input framework for pharmaceutical supply chain modelling was
developed. Finally, the potential use of the planned proposed concept demonstrator was illustrated by means
of a hypothetical example. It is important to stress that the work described in this paper is not concluded. This
paper serves as a prelude to a larger research project in which the value of self-organisation and information
sharing in the pharmaceutical supply chains of developing countries is explored and quantified. It is
acknowledged that these concepts may not be readily compatible with existing supply chain infrastructure and
resources in these countries. This research, however, aims to elucidate whether self-organisation is a suitable
instrument for pharmaceutical supply chain reform.

REFERENCES

[1] World Health Organization. 2014. Global update on the health sector response to HIV, 2014, World Health
Organization.

[2] Doctors Without Borders (MSF), RuDASA, RHAP, TAC, SECTION27 and SAHIVSoc. 2016. 2015 Stock outs
National Survey: Third annual report - South Africa, Stop Stock Outs Project.

[3] Harries, A.D., Schouten, E.J., Makombe, S.D., Libamba, E., Neufville, H.N., Some, E., Kadewere, G.
and Lungu, D. 2007. Ensuring uninterrupted supplies of antiretroviral drugs in resource-poor settings: An
example from Malawi, Bulletin of the World Health Organization, 85(2), pp. 152-155.

[4] Nicholson, A., English, R.A., Guenther, R.S. and Claiborne, A.B. 2013. Developing and strengthening the
global supply chain for second-line drugs for multidrug-resistant tuberculosis, The National Academic
Press, Washington (DC).

[5] Hodes, R., Price, I., Bungane, N., Toska, E. and Cluver, L. 2017. How front-line healthcare workers
respond to stock-outs of essential medicines in the Eastern Cape Province of South Africa, South African
Medical Journal, 107(9), pp. 738-740.

3633-10

482



S/Tmmg 1he
2 4"INDUSTRIAL
¥/ REVOLUTION

29th SAIIE ANNUAL CONFERENCE

SAIIE29 Proceedings, 24th - 26th of October 2018, Spier, Stellenbosch, South Africa © 2018 SAIIE

[6] Yadav, P. 2015. Health product supply chains in developing countries: Diagnosis of the root causes of
underperformance and an agenda for reform, Health Systems & Reform, 1(2), pp. 142-154.

[7] Humphreys, G. 2011. Vaccination: Rattling the supply chain, Bulletin of the World Health Organization,
89(5), pp. 324-325.

[8] Cameron, A., Ewen, M., Ross-Degnan, D., Ball, D. and Laing, R. 2009. Medicine prices, availability, and
affordability in 36 developing and middle-income countries: A secondary analysis, The Lancet, 373(9659),
pp. 240-249.

[9] Kangwana, B.B., Njogu, J., Wasunna, B., Kedenge, S.V., Memusi, D.N., Goodman, C.A., Zurovac, D.
and Snow, R.W. 2009. Malaria drug shortages in Kenya: A major failure to provide access to effective
treatment, American Journal of Tropical Medicine and Hygiene, 80(5), pp. 737-738.

[10] Bateman, C. 2013. Drug stock-outs: Inept supply-chain management and corruption, South African Medical
Journal, 103(9), pp. 600-602.

[11] Griffin, P.M., Nembhard, H.B., DeFlitch, C.J., Bastian, N.D., Kang, H. and Munoz, D.A. 2016. Healthcare
systems engineering, John Wiley & Sons, Hoboken (NJ).

[12] Frohlich, M.T. and Westbrook, R. 2002. Demand chain management in manufacturing and services: Web-
based integration, drivers and performance, Journal of Operations Management, 20(6), pp. 729-745.

[13] Ripin, D.J., Jamieson, D., Meyers, A., Warty, U., Dain, M. and Khamsi, C. 2014. Antiretroviral
procurement and supply chain management, Antiviral Therapy, 19(3), pp. 79-89.

[14] Daff, B.M., Seck, C., Belkhayat, H. and Sutton, P. 2014. Informed push distribution of contraceptives in
Senegal reduces stockouts and improves quality of family planning services, Global Health: Science and
Practice, 2(2), pp. 245-252.

[15] Barrington, J., Wereko-Brobby, 0., Ward, P., Mwafongo, W. and Kungulwe, S. 2010. SMS for Life: A pilot
project to improve anti-malarial drug supply management in rural Tanzania using standard technology,
Malaria Journal, 9(1), pp. 1-9.

[16] Githinji, S., Kigen, S., Memusi, D., et al. 2013. Reducing stock-outs of life saving malaria commodities
using mobile phone text-messaging: SMS for Life study in Kenya, PLOS One, 8(1), pp. 1-8.

[17] Mezzanine. 2018. Stock Visibility Solution, [Online], [Cited June 2018], Available from:
https://www.mezzanineware.com/svs/.

[18] Langabeer, J.R. and Rose, J. 2002. Creating demand driven supply chains: How to profit from demand
chain management, Spiro Press, London.

[19] Fisher, M. 1997. What is the right supply chain for your product?, Harvard Business Review, 75(2), pp. 105-
116.

[20] De Treville, S., Shapiro, R.D. and Hameri, A.P. 2004. From supply chain to demand chain: The role of
lead time reduction in improving demand chain performance, Journal of Operations Management, 21(6),
pp. 613-627.

[21] Uthayakumar, R. and Priyan, S. 2013. Pharmaceutical supply chain and inventory management strategies:
Optimization for a pharmaceutical company and a hospital, Operations Research for Health Care, 2(3), pp.
52-64.

[22] Barratt, M. and Oke, A. 2007. Antecedents of supply chain visibility in retail supply chains: A resource-
based theory perspective, Journal of Operations Management, 25(6), pp. 1217-1233.

[23] Lee, H.L. and Whang, S. 2000. Information sharing in a supply chain, International Journal of
Manufacturing Technology and Management, 1(1), pp. 79-93.

[24] Chopra, S. and Meindl P. 2013. Supply chain management: Strategy, planning and operation, 5% Edition,
Pearson Education Limited, Essex.

[25] Simchi-Levi, D., Simchi-Levi, E. and Kaminsky P. 2000. Designing and managing the supply chain:
Concepts, strategies, and cases, McGraw-Hill, New York (NY).

[26] De Wolf, T. and Holvoet, T. 2005. Emergence versus self-organisation: Different concepts but promising
when combined, pp. 1-15 in Brueckner, S.A., Serugendo, G.D.M., Karageorgos, A. and Nagpal, R. (Eds).
Engineering self-organising systems: Methodologies and applications, Springer, Berlin.

[27] Heylighen, F. 2001. The science of self-organization and adaptativity, Encyclopedia of Life Support
Systems, 5(3), pp. 253-280.

[28] Odell, J. 2002. Agents and complex systems, Journal of Object Technology, 1(2), pp. 35-45.

[29] Hartnett, K. 2018. The simple algorithm that ants use to build bridges, [Online], [Cited June 2018],
Available from: https://www.quantamagazine.org/the-simple-algorithm-that-ants-use-to-build-bridges-
20180226/.

[30] Manohar, V. 2018. Unity is strength, [Online], [Cited June 2018], Available from:
https://www.shutterstock.com/image-photo/unity-strength1011406435?src=BbM2Y7v-2FfNGqgiTyr5TKw-
1-74.

3633-11

483



Steening e
2 4"INDUSTRIAL
¥/ REVOLUTION

29th SAIIE ANNUAL CONFERENCE

SAIIE29 Proceedings, 24th - 26th of October 2018, Spier, Stellenbosch, South Africa © 2018 SAIIE

[ ]
(=]

[31] Kaelbling, L.P., Littman, M.L. and Moore, A.W. 1996. Reinforcement learning: A survey, Journal of
Artificial Intelligence Research, 4, pp. 237-285.

[32] Sutton, R.S., Barto, A.G. and Williams, R.J. 1992. Reinforcement learning is direct adaptive optimal
control, IEEE Control Systems, 12(2), pp. 19-22.

[33] Marsland, S. 2009. Machine learning: An algorithmic perspective, CRC Press, Boca Raton (FL).

[34] Sutton, R.S. and Barto A.G. 1998. Reinforcement learning: An introduction, The MIT Press, Cambridge
(MA).

3633-12



	3633: A CONCEPT DEMONSTRATOR FOR SELF-ORGANISING DEMAND-DRIVEN INVENTORY MANAGEMENT IN PHARMACEUTICAL SUPPLY CHAINS



