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Abstract  

Natural convection and entropy generation of a power-law non-Newtonian fluid in a 

tilted triangular enclosure subjected to a magnetic field was investigated. A part of the 

enclosure’s right or left wall is at a high temperature while the top wall is cold. The 

remaining walls are insulated. The results indicate that when the hot wall is at the left 

wall and the Rayleigh number is increased from 103 to 105, the heat transfer rate of the 

shear-thinning fluid goes up 1.5 times and its entropy generation rate rises more than 2 

fold. For the Newtonian fluid, these changes mean an increase of 71% in heat transfer 

and a surge of 80% in entropy generation. With the increase of Rayleigh number, Bejan 

number diminishes. A higher Hartmann number results in a lower average Nusselt 

number and entropy generation rate and the rise in the Bejan number in the considered 

enclosure.  
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 Nomenclatures 
 

𝐵 magnetic field strength 𝑢 Velocity in x direction 

𝐵𝑒 Bejan number 𝑣 Velocity in y direction 

𝐶 Lattice speed 𝑥, 𝑦  Cartesian coordinates 

𝐶𝑝  Specific heat  Greek letters 

𝐹 Body forces 𝜎  Electrical conductivity 

𝑓 Density distribution functions 𝜙  Relaxation time 

𝑓𝑒𝑞 Equilibrium density distribution functions 𝜏  Shear stress 

𝑔 Internal energy distribution functions 𝜁  Discrete particle speeds 

𝑔𝑒𝑞 Equilibrium internal energy distribution functions 𝛥𝑥  Lattice spacing 

g Gravity acceleration 𝛥𝑡  Time increment 

H Non-dimensional length 𝛼  Thermal diffusivity 

𝐻𝑎 Hartmann number 𝜌  Density 

𝐾 Consistency coefficient 𝜇  Dynamic viscosity 

l length 𝜓  Stream function value 

𝐿1 Heat source length   

L Heat source non-dimensional length Subscripts  

𝑛 Power-law index Gen Generation 

𝑁𝑢 Nusselt number GenT Thermal Generation  

𝑃 Pressure 𝑎𝑣𝑒  Average 

𝑃𝑟 Prandtl number 𝐶  Cold 

𝑅𝑎 Rayleigh number 𝐻  Hot 

S entropy 𝑥, 𝑦 Cartesian coordinates 

𝑡 Time 𝛼  Node number 

𝑇 Temperature   

 

1. Introduction  

More research works have been conducted on enclosed cavities in recent years. By 

examining different geometries and designing various problems, researchers have 

investigated the subject of natural convection in different applications [1-10]. Owing to 
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the extensive use of enclosed cavities in various industries related to solar power, food, 

defense, aerospace and others, numerous researchers have employed different fluids to 

study the subjects of flow and temperature fields in enclosures. Non-Newtonian fluids 

are one type of fluid which has been used as working fluid by some researchers in their 

studies [11-20]. Many of the fluids utilized in various industries are Non-Newtonian; 

examples include different types of dyes, sauces, pastes, glues, and some oils [21-33]. In 

these fluids, the relationship between shear stress and strain rate cannot be defined by 

Newton’s stress formula. In this regard, equations such as the power-law model, 

Bingham, etc. can be used to express the relationship between stress and strain and to 

calculate the amount of shear stress. Alsabery et al. [34] employed the Finite Element 

Method to investigate the natural convective heat transfer in a power-law Non-

Newtonian fluid inside a trapezoidal cavity. Using a non-Newtonian nano-fluid, Kefayati 

et al. [35] explored the subject of natural convection in a square. They insulated the top 

and bottom and kept the sidewalls at constant high and low temperatures. They used the 

power-law model and a power-law index range of 0.6-1.0. Mishra et al. [36] studied an 

enclosure with two inner circular obstacles. For analyzing their Non-Newtonian fluid, 

they applied the power-law model and used a power-law index range of 0.2-2. 

In many applications for enclosed cavities, these enclosures are subjected to a magnetic 

field; which can be produced by applying an electric current. The magnetic field effect 

on devise containing non-Newtonian or Newtonian fluids has also been investigated by 

several researchers [37-41]. Kefayati [42] applied the Lattice Boltzmann Method (LBM) 

to study the horizontal magnetic field effect on the flow field of a non-Newtonian fluid 

in a square cavity. They varied the power-law index from 0.5 to 1.5 and found out that a 

higher Hartmann number results in a heat transfer reduction. Using the LBM, Kefayati 

and Tang [37] explored the natural convection in a power-law non-Newtonian fluid 
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within a square. They placed two circular sources in the middle of the enclosure and 

studied their effect. They also applied a magnetic field to the enclosure and realized that 

the presence of a magnetic field has an adverse effect on the rate of heat transfer. 

Applying the FDLBM, Aghakhani et al. [43] investigated the natural convection in a 

power-law non-Newtonian fluid within a C-shaped cavity. They exposed the enclosure 

to a magnetic field and evaluated the effects of Rayleigh number, Hartmann number, 

aspect ratio, and power-law index on heat transfer rate. They discovered that the rate of 

heat transfer diminishes by increasing the power-law index. The heat transfer rate also 

goes up with the rise of Rayleigh number and the reduction of Hartmann number. 

The increased utilization of energy by man, especially in recent years, and the dwindling 

fossil fuel resources have prompted the researchers to try to cut down on energy 

consumption by improving the efficiencies of various devices and equipment. The higher 

consumption of fossil fuels has caused a variety of environmental problems around the 

globe, including the global warming, climatic changes, melting of natural glaciers, air 

pollution, and many other calamities. In dealing with the issue of energy loss in various 

appliances, researchers have examined the amount of entropy generated in these devices. 

Based on the second law of thermodynamics, entropy shows the amount of irreversibility 

generated in a process; and by analyzing it, the energy loss of that process can be 

determined [44, 45]. So, many researchers have investigated the amount of entropy 

generation in various enclosures [46-55]. Siavashi et al. [56] studied the natural 

convection in a power-law non-Newtonian fluid inside an enclosure between two circles. 

They also examined the amount of entropy generation. Using the LBM, Kefayati [39] 

investigated the rate of natural convective heat transfer in non-Newtonian fluid. He 

applied a horizontal magnetic field to the considered enclosure and also analyzed the 

amount of entropy generation. He found out that both the heat transfer and entropy 
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generation go up with the increase of Rayleigh number. Raizah et al. [57] studied the 

natural convection heat transfer in a power-law non-Newtonian fluid. By tilting the 

enclosure at different angles, they evaluated the amount of heat transfer rate and entropy 

generation.  

Non-Newtonian fluids are utilized in a variety of industrial applications, and many of the 

fluids used in engineering processes are non-Newtonian. One of the models employed in 

determining the shear stress of non-Newtonian fluids is the power-law model. The use of 

non-Newtonian fluids in enclosures and cavities, because of its application in various 

industries such as food, military, etc., has become the subject of interest for many 

researchers. The magnetic field effect on the flow field within an enclosure is an 

important issue to investigate. It is also necessary to explore the amount of entropy 

generation in an enclosure in order to find out its efficiency and energy loss. Most of the 

enclosures studied by researchers have rectangular and square shapes, and cavities of 

other shapes have been investigated less frequently. The main reason for this is that it is 

rather difficult to apply a mesh to a non-rectangular enclosure. So in the present work, 

the natural convective heat transfer and the entropy generation of a non-Newtonian fluid 

within a triangular enclosure are studied. This enclosure is tilted with respect to the 

horizon and it is also subjected to a horizontal magnetic field. The power-law model is 

employed to model the non-Newtonian fluid’s shear stress. A portion of one of the 

enclosure walls is at a high temperature. The subject matter is studied by varying the size 

and location of this hot region. 

The main novelty of this work is to investigate the effect of the length of a heated wall 

located on two triangular chambers filled with a non-Newtonian fluid on the heat transfer 

and entropy generation behaviour of the fluid in the presence of a magnetic field. Also, 
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studying the effect of the chamber angle with the above-mentioned conditions can help 

to find better physical conditions to enhance the heat transfer. 

Finally, the effects of influential parameters such as Rayleigh number, Hartmann number, 

power-law index, hot wall length and enclosure tilt angle on heat transfer rate, entropy 

generation and Bejan number are investigated. 

 

2. Defining the problem        

The geometry of the problem includes a 2-D triangular enclosure of sides H, which is 

tilted at angle γ relative to the horizon. The top wall is at the temperature of Tc. A portion 

of the left wall (Case a) or the right wall (Case b) with length L is at temperature Th. The 

other sections of the walls have been insulated. A magnetic field of strength B0 is also 

applied to the enclosure in the horizontal direction. The enclosure has been filled with a 

non-Newtonian fluid. And the power-law model has been used to model the shear stress 

of the fluid.  

 

3. Governing equations 

The main equations governing the behavior of fluid flow, in non-dimensional form, are 

as follows. These equations have been written by assuming a constant laminar flow and 

an incompressible fluid. The Boussinesq approximation has been used to produce the 

buoyancy force in the enclosure and the loss of viscosity has been ignored [43].  

 

∂U

∂X
+
∂V

∂Y
= 0  (1) 

U
∂U

∂X
+ V

∂U

∂Y
= −

∂P

∂X
+

Pr

√Ra
(
∂τXX

∂X
+
∂τXY

∂Y
) −

PrHa2

√Ra
U + Prθ𝑆𝑖𝑛𝛾  (2) 

U
∂V

∂X
+ V

∂V

∂Y
= −

1

ρ

∂P

∂Y
+

Pr

√Ra
(
∂τXX

∂X
+
∂τXY

∂Y
) + Prθ𝐶𝑜𝑠𝛾  (3) 
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(U
∂θ

∂X
+ V

∂θ

∂Y
 ) =

1

√Ra
(
∂2θ

∂X2
+
∂2θ

∂Y2
)  (4) 

τIJ = 2μa
∗DIJ = μa

∗ (
∂Ui

∂Xj
+
∂Vj

∂Yi
)  (5) 

μa
∗ = K {2 [(

∂U

∂X
)
2

+ (
∂V

∂Y
)
2

] + (
∂V

∂X
+
∂U

∂Y
)
2

}

(n−1)

2

   (6) 

𝑆𝑔𝑒𝑛 = ((
∂θ

∂x
)
2

+ (
∂θ

∂y
)
2
)

⏟          
𝑇ℎ𝑒𝑟𝑚𝑎𝑙 

+ 𝜁 {2 [(
∂𝑈

∂X
)
2

+ (
∂V

∂Y
)
2

] + (
∂U

∂Y
+
∂V

∂X
)
2

}
⏟                      

𝐹𝑙𝑢𝑖𝑑 𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 

+ 𝜁𝐻𝑎2(𝑈)2⏟      
𝑚𝑎𝑔𝑛𝑒𝑡𝑖𝑐 

   
(7) 

Ψ(𝑋, 𝑌) = ∫𝑈𝑑𝑌 + Ψ0     (8) 

In Eq. 6, K and n denote the constants of the exponential function model. K is the 

coefficient and n is the index of the exponential function. For shear thickening fluids, n 

> 1; and for shear thinning fluids, n < 1; while n = 1 means Newtonian fluids.  

Many of the fluids used to simulate non-Newtonian fluid flows have been simulated using 

the power-law function. This is due to the similar behavior of many non-Newtonian fluids 

to this function, which has caused this model to attract more attention among researchers. 

Many of the nanofluids have been cited by researchers as having a power-law behavior. 

This model is capable of simulating non-Newtonian dilatant and pseudoplastic fluids. 

This model is also used in this study for non-Newtonian fluid analysis. 

The following parameters is used to dimensionless the governing equations and the 

boundary conditions. The Rayleigh number (Ra), Hartmann number (Ha), Bejan number 

(Be), entropy parameter (ζ), and the Prandtl number (Pr) have been defined in these 

parameters. 

(9) 

𝑋 =
𝑥

𝑙
    , 𝑌 =

𝑦

𝑙
 , 𝑈 =

𝑢

(
𝛼

𝑙
)𝑅𝑎0.5

 , 𝑉 =
𝑣

(
𝛼

𝑙
)𝑅𝑎0.5

  𝑃 =
𝑝

𝜌(
𝛼

𝑙
)
2
𝑅𝑎

 , 𝜃 =
𝑇−𝑇𝑐

𝑇𝐻−𝑇𝑐
 , 𝐿 =

𝑙1

𝑙
, 𝐻 =

𝑙

𝑙
 

𝑃𝑟 =
𝜇𝑎

𝜌𝛼
 , 𝑅𝑎 =

𝜌𝑔𝛽𝑙3(𝑇ℎ−𝑇𝑐)

𝜇𝑎𝛼𝑓
, 𝐻𝑎 = 𝐵0𝑙√

𝜎

𝜇𝑎
,  𝜁 =

𝜇𝑛𝑓𝑇0

𝑘𝑓
(

𝛼𝑓

𝑙(𝑇ℎ−𝑇𝐶)
)
2
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𝜏𝐼𝐽 =
𝜏𝑖𝑗

𝜇𝑎
 , 𝛼 =

𝑘

𝜌𝐶𝑃
 

The governing non-dimensional boundary conditions for the problem have been listed in 

Table 1 and Table 2 for case (a) and case (b), respectively.  

 

4. Numerical method         

LBM has become an accurate method for simulating computational fluid dynamic 

problems and it has been used more frequently in recent years for such purposes. So in 

the present paper, LBM is used to simulate the flow field and temperature distribution; 

as will be described in the following sections. Some of the advantages of this method 

include its ease of implementation and its capability of performing parallel computations 

[58, 59]. 

In this research, the D2Q9 Lattice-Boltzmann model has been used for simulation (see 

Fig. 2). In LBM, the distribution function expresses the probability of particles existing 

at a definite time and in a specific region. The relevant distribution function must satisfy 

the continuity, momentum and energy equations at a macroscopic scale. However, the 

Lattice Boltzmann equations can be extracted in Finite Difference form from the 

Boltzmann transfer function. The subject of discussion in the Lattice-Boltzmann equation 

(LBE) is this particle distribution function. For solving the equations in the present 

research, a new approach called the Finite Difference LBM (FDLBM) is employed. In 

fact, one of the most important issues is the ability to simulate non-Newtonian fluids; 

since in these fluids, local viscosity changes with velocity gradient. Therefore, due to the 

non-constant relaxation time, the LBM cannot be employed to solve a whole lot of 

problems [50-62]. By using the discretization technique, Fu et al. [63-65] presented new 

equations for equilibrium distribution function, instead of Maxwell’s equations. They 

have actually assumed a variable equilibrium distribution function and a constant 
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relaxation time; and by doing so, they have eliminated the limitation of the Lattice-

Boltzmann method. Moreover, in this approach, the pressure is a variable parameter and, 

contrary to the conventional LBM, it is not obtained directly from density. In fact, they 

have applied a Finite Difference Lattice-Boltzmann Method to solve the problem. This 

method is capable of extracting the shear stress from the base equation of Lattice-

Boltzmann method for flow fields. Additionally, different boundary conditions can be 

applied in the FDLBM, without encountering the problems and limitations that exist in 

the conventional LBM. 

The function that expresses the probability of the presence of particles (moving with 

specific speed ξ) at location r and at time t. According to the LBE, the governing equation 

for distribution function f is given as:          

(10) ∂fα
∂t
+ ξα. ∇fα = −

1

εϕ
(fα − fα

eq
) 

Also, ε is a small parameter, which is taken to be equal to the time step (ε = ∆t). 

If Eq. 10 is discretized and the relaxation time is taken to be ϕ = 1, the diffusion part of 

the equation can be written as Eq. 11:  

(11) ∂fα
∂t
+ ξα. ∇Xfα = 0 

Eq. 17 is obtained by applying the Lax-Vanderhoff method. The impact part of the 

equation, in discrete form, can be written as follows: 

(12) ∂fα
∂t
= −

1

εϕ
(fα(X, t) − fα

eq
(X, t)) 

The diffusion part of the equation is used as appropriate condition for solving the impact 

part; and by employing the Euler method and choosing ε = f and ϕ = 1, Eq. 10 can be 

written as Eq. 13: 

(13) fα(x, t + ∆t) − fα(X, t)

∆t
= −

1

εϕ
(fα(X, t) − fα

eq
(X, t)) 
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Thus, 

(14) (𝑓𝛼(𝑋, 𝑡 + ∆𝑡) = 𝑓𝛼
𝑒𝑞(𝑋, 𝑡)) 

For the density distribution function, the Chapman-Anscock expansion has been used as 

Eq. 15: 

(15) 𝑓𝛼 = 𝑓𝛼
𝑒𝑞 + 𝜀𝑓𝛼

(1)
+ 𝜀2𝑓𝛼

(2)
+ 𝑂(𝜀3) 

(16) 

∑𝑓𝛼
(𝑛)

8

𝛼=0

= ∑𝑓𝛼
(𝑛)

8

𝛼=0

𝜉𝛼𝑥 = ∑𝑓𝛼
(𝑛)
𝜉𝛼𝑦

8

𝛼=0

= 0, 𝑛 ≥ 1 

(17) 

∑𝑓𝛼
𝑒𝑞

8

𝛼=0

= 𝜌 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

(18) 

∑𝑓𝛼
𝑒𝑞𝜉𝛼𝑥 = 𝜌𝑢

8

𝛼=0

 

(19) 

∑𝑓𝛼
𝑒𝑞𝜉𝛼𝑦 = 𝜌𝑣

8

𝛼=0

 

 

(20) 

∑𝑓𝛼
𝑒𝑞𝜉𝛼𝑥

2 = 𝜌𝑢2 + 𝑝 − 𝜏𝑥𝑥

8

𝛼=0

 

 

(21) 

∑fα
eq
ξ𝛼𝑦
2 = 𝜌𝑣2 + 𝑝 − 𝜏𝑦𝑦

8

α=0

 

 

(22) 

∑fα
eq
ξ𝛼𝑥ξ𝛼𝑦 = 𝜌𝑣𝑢 − 𝜏𝑥𝑦

8

α=0

 

With the help of the above equations, the Navier-Stokes equations can be derived from 

the Lattice-Boltzmann equation: 

𝜕(𝜌𝑢)

𝜕𝑥
+
𝜕(𝜌𝑣)

𝜕𝑦
= 0 (23) 



11 
 

𝜕𝜌𝑢2

𝜕𝑥
+
𝜕𝜌𝑣𝑢

𝜕𝑦
= −

𝜕𝑝

𝜕𝑥
+ (

𝜕𝜏𝑥𝑥
𝜕𝑥

+
𝜕𝜏𝑥𝑦

𝜕𝑦
) + 𝑂(𝜀) (24) 

𝜕𝜌𝑣2

𝜕𝑦
+
𝜕𝜌𝑣𝑢

𝜕𝑥
= −

𝜕𝑝

𝜕𝑦
+ (

𝜕𝜏𝑦𝑦

𝜕𝑦
+
𝜕𝜏𝑥𝑦

𝜕𝑥
) + 𝑂(𝜀) (25) 

where 𝜌 is the density that is assumed to be constant. For the viscosity, the second-order 

Chapman-Enskog expansion term, which contains the relaxation time, is used. Therefore, 

this model allows viscosity to be a function of the shear rate. The effort to develop the 

LBM is for problems in simulating non-Newtonian fluids. Unfortunately, the relaxation 

time destabilizes the numerical simulations, especially in the case of non-Newtonian fluid 

flow, when the shear rate drops to zero. Therefore, relaxation time must be controlled to 

ensure solution convergence. The small relaxation time means that from the point of view 

of analysis, scale and rank of the viscosity terms relative to other terms is relatively 

insignificant and causes this problem not to be realized. To overcome this problem, 

Chapman-Enskog expansion is used to recover Navier-Stokes equations. The LBM finite 

difference method is used for modeling non-Newtonian fluids. 

The viscosity can be easily considered as a variable for non-Newtonian fluids. If fα
eq

 is 

appropriate has an appropriate value, by using Eqs. 16 through 22, the solution of Eq. 9 

will, in fact, be the solution of Navier-Stokes equation (2-3) with an error of O(ε). A 

second-degree polynomial series (ξ𝛼) has been assumed as the first suggestion initial 

value for the variable of fα
eq

 for microflows, which does not follow the older viewpoint. 

Therefore, fα
eq

 is totally different from the Maxwell-Boltzmann distribution function 

obtained from the second-degree or third-degree trimmed expansion with U and ξα.    

(26) 𝑓𝛼
𝑒𝑞 = 𝐴𝛼 + (𝜉𝛼)𝑋𝐴𝑋𝛼 + (𝜉𝛼)𝑌𝐴𝑌𝛼 + (𝜉𝛼)𝑋

2𝐵𝑋𝑋𝛼 + (𝜉𝛼)𝑌
2𝐵𝑌𝑌𝛼

+ (𝜉𝛼)𝑋(𝜉𝛼)𝑌𝐵𝑋𝑌𝛼 

Parameter ξα  depends on the selected model. The model used for discretizing the 

Boltzmann equation on a lattice is generally displayed as DnQm; where n is indicative of 
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dimension and m is the number of permitted directions for the movement of particles. 

The D2Q9 model is the most common 2-D model. This type of lattice is shown in Fig. 2.    

The values of ξα  are expressed as Eq. 27. In this equation, c is the speed of virtual 

particles on the lattice; which should be determined with the consideration of other 

parameters [65].   

(27) 𝜉𝛼 =

{
 
 

 
 

0                                                                      𝛼 = 0  

𝑐(𝐶𝑜𝑠𝛾𝛼, 𝑆𝑖𝑛𝛾𝛼) ,             𝛾𝛼 =
(𝛼 − 1)𝜋

2
,   𝛼 = 1,2,3,4

𝑐√2(𝐶𝑜𝑠𝛾𝛼, 𝑆𝑖𝑛𝛾𝛼) , 𝛾𝛼 =
(𝛼 − 5)𝜋

2
+
𝜋

4
 ,    𝛼 = 5,6,7,8          

 

The other parameters in the microscopic velocity distribution equation are as follows: 

 
𝐴0 = 𝜌 −

2𝜌

𝑐2
−
𝜌|𝑢|2

𝑐2
+
𝜏𝑋𝑋 + 𝜏𝑌𝑌

𝑐2
,        𝐴1 = 𝐴2 = 0 

 
𝐴𝑥1 =

𝜌𝑈

2𝑐2
, 𝐴𝑋2 = 0 

 
𝐴𝑌1 =

𝜌𝑉

2𝑐2
, 𝐴𝑌2 = 0 

 
𝐵𝑋𝑋1 =

1

2𝑐4
(𝑃 + 𝜌𝑈2 − 𝜏𝑋𝑋),    𝐵𝑋𝑋2 = 0 

 
𝐵𝑌𝑌1 =

1

2𝑐4
(𝑃 + 𝜌𝑉2 − 𝜏𝑌𝑌),    𝐵𝑌𝑌2 = 0 

(28) 
𝐵𝑋𝑌2 =

1

4𝑐2
(𝜌𝑉𝑈 − 𝜏𝑋𝑌),    𝐵𝑋𝑌1 = 0,   𝐼, 𝐽 = 𝑋, 𝑌  

The considered coefficients in Eq. 29 are defined as follows: 

 𝐴2 = 𝐴4 = 𝐴6 = 𝐴8 𝐴1 = 𝐴3 = 𝐴5 = 𝐴7 

 𝐴𝑋2 = 𝐴𝑋4 = 𝐴𝑋6 = 𝐴𝑋8 𝐴𝑋1 = 𝐴𝑋3 = 𝐴𝑋5 = 𝐴𝑋7 

 𝐴𝑌2 = 𝐴𝑌4 = 𝐴𝑌6 = 𝐴𝑌8 𝐴𝑌1 = 𝐴𝑌3 = 𝐴𝑌5 = 𝐴𝑌7 

 𝐵𝑋𝑋2 = 𝐵𝑋𝑋4 = 𝐵𝑋𝑋6 = 𝐵𝑋𝑋8 𝐵𝑋𝑋1 = 𝐵𝑋𝑋3 = 𝐵𝑋𝑋5 = 𝐵𝑋𝑋7 

 𝐵𝑌𝑌2 = 𝐵𝑌𝑌4 = 𝐵𝑌𝑌6 = 𝐵𝑌𝑌8 𝐵𝑌𝑌1 = 𝐵𝑌𝑌3 = 𝐵𝑌𝑌5 = 𝐵𝑌𝑌7 

 𝐵𝑋𝑌2 = 𝐵𝑋𝑌4 = 𝐵𝑋𝑌6 = 𝐵𝑋𝑌8  
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(29) 
𝜏𝐼𝐽 =

𝑃𝑟𝜇𝛼

𝐾√𝑅𝑎
(
𝜕𝑈

𝜕𝑌
+
𝜕𝑉

𝜕𝑋
) 

The magnetic field and buoyancy force terms in the momentum equation are added to the 

diffusion parts of Eqs. 30.  

 𝑓𝛼 = 𝐴𝛼 + (𝜉𝛼)𝑋𝐴𝑋𝛼 + (𝜉𝛼)𝑌𝐴𝑌𝛼 

 𝐴0 = 𝐴1 = 𝐴2 = 0 

 

𝐴𝑋1 =
𝑃𝑟𝜃𝑆𝑖𝑛𝛾 −

𝑃𝑟𝐻𝑎2

√𝑅𝑎
𝑈

2𝑐2
,     𝐴𝑋2 = 0 

(30) 
𝐴𝑌1 =

𝑃𝑟𝜃𝐶𝑜𝑠𝛾

2𝑐2
,             𝐴𝑌2 = 0 

By disregarding the loss of viscosity, the Lattice-Boltzmann energy equation is obtained 

as Eq. 31: 

 𝜕𝑔𝛼
𝜕𝑡

+ 𝜉𝛼. 𝛻𝑔𝛼 = −
1

𝜀𝜙
(𝑔𝛼 − 𝑔𝛼

𝑒𝑞) 

(31) 𝑔𝛼(𝑥, 𝑡 + ∆𝑡) − 𝑔𝛼(𝑥, 𝑡)

∆𝑡
= −

1

𝜀𝜙
(𝑔(𝑥, 𝑡) − 𝑔𝛼

𝑒𝑞(𝑥, 𝑡)) 

gα is discretized in the direction of velocity. The equilibrium and the thermal energy 

distribution functions have been expressed as follows:  

 𝑔𝛼
𝑒𝑞 = 𝐴𝛼 + (𝜉𝛼)𝑋𝐴𝑋𝛼 + (𝜉𝛼)𝑌𝐴𝑌𝛼 

 𝐴0 = 𝜃 ,     𝐴1 = 𝐴2 = 0 

 

𝐴𝑋1 =
𝑈𝜃 −

1

√𝑅𝑎

𝜕𝜃

𝜕𝑋

2𝑐2
,     𝐴𝑋2 = 0 

(32) 

𝐴𝑌1 =
𝑉𝜃 −

1

√𝑅𝑎

𝜕𝜃

𝜕𝑌

2𝑐2
,       𝐴𝑌2 = 0 

 

5.  Boundary conditions  
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The boundary condition applied to the enclosure is the mirror reflection boundary 

condition. This condition is equivalent to the no-slip-at-wall boundary condition. To 

apply the boundary condition, the flow distribution functions, after the impact of flow 

with a wall, are reflected along the flow’s movement path. Fig. 3 shows the manner of 

applying the mirror reflection boundary condition. The distribution functions indicated 

by a dash line are unknown functions. This boundary condition is used on triangle chord 

and other sides.          

 

Considering the definition of mirror reflection condition, the unknown functions of Fig. 

3 are computed by means of Eq. 33, which can also be generalized for other boundaries. 

(33) 

𝑓2 = 𝑓4 

𝑓5 = 𝑓7 

𝑓6 = 𝑓8 

The constant-temperature boundary conditions have been presented in Eqs. 34. 

 Cold wall Hot wall 

(34) 

𝑔3 = (𝑇𝑐(𝑤1 + 𝑤3)) − 𝑔1 

𝑔7 = (𝑇𝑐(𝑤5 + 𝑤7)) − 𝑔5 

𝑔6 = (𝑇𝑐(𝑤8 + 𝑤6)) − 𝑔8 

𝑔1 = (𝑇ℎ(𝑤1 + 𝑤3)) − 𝑔3 

𝑔5 = (𝑇ℎ(𝑤5 + 𝑤7)) − 𝑔7 

𝑔8 = (𝑇ℎ(𝑤8 + 𝑤6)) − 𝑔6 

To measure the amount of heat transfer, the local and the average Nusselt numbers on 

hot walls are computed by means of Eqs. 35 and 36, respectively.  

(35) 
Nu = (−

∂θ

∂n
)    ,      𝑛 = 𝑋, 𝑌       ,      X = 0     ,    𝑌 = 0  

(36) 
NuAve = ∫ Nud𝑛           𝑛 = 𝑋, 𝑌

L

0

 

Total entropy can be obtained by integration over the entire solution boundary. 
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𝑆𝑔𝑒𝑛 = ∫𝑆𝑔𝑒𝑛𝑑Ω =∬ 𝑆𝑔𝑒𝑛𝑑𝑋𝑑𝑌
1

0

 
(37) 

Also to evaluate the degree of irreversibility, the Bejan number and the average Bejan 

number are respectively obtained from Eqs. 38 and 39.  

𝐵𝑒 =
𝑆𝑔𝑒𝑛,𝑇

𝑆𝑇𝑜𝑡𝑎𝑙
 

(38) 

𝐵𝐴𝑣𝑒 =∬ 𝐵𝑒 𝑑𝑋𝑑𝑌
1

0

 
(39) 

 

6. The mesh-independency and the validation of results  

To evaluate the independency of the solution from the number of mesh points, 6 different 

mesh configurations have been used according to Table 3 for cases (a) and (b) and for 

Ra = 105, Ha = 20 and two exponential function indices of n = 0.6 and n = 1.4. Table 

3 shows the values of average Nusselt number on the hot wall (NuAve), average entropy 

and maximum flow function (Ψmax) for these 6 mesh configurations. Since the difference 

between the results of mesh sizes 140 × 140, 160 × 160 and 180 × 180 in Table 3 is 

small, mesh size 160 × 160 or 19600 nodes was deemed as appropriate for use in the 

computations performed in this work. In this case, the size of each mesh is 0.00625. 

To confirm the accuracy of the computer program and to validate the average 𝑁𝑢 values 

obtained for different exponential function indexes, the values related to flow and heat 

transfer inside a square enclosure with constant-temperature vertical walls and insulated 

horizontal walls containing an exponential function model non-Newtonian fluid have 

been compared in Table 4 with the results of Khezzar [66] and Huilgol and Kefayati [67]. 

at Rayleigh numbers of 104 and 105. Also, the average 𝑁𝑢 obtained for the mentioned 

enclosure under the effect of the magnetic field have been compared with the results of 

Kefayati [42] in Fig. 4.  
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7. Analysis of results         

7.1. Variations of Rayleigh number and power-law index 

Fig. 5 illustrates the contours of flow lines in cases (a) and (b) for different 𝑅𝑎 and 𝑛 for 

𝐻𝑎 = 20, 𝐿 = 0.3, 𝛾 = 45𝑜 . In both cases, a large vortex can be seen within the 

enclosure. Also, the maximum value of flow function, which shows the vortex strength, 

has been written at the center of each vortex. The creation of a vortex in the enclosure is 

due to the buoyancy force. The buoyancy force arises from the difference in fluid 

densities, which itself is due to the temperature difference within the enclosure. The 

difference between wall temperatures causes a temperature difference in the fluid and 

eventually leads to the formation of the vortex inside the enclosure. The higher this 

temperature difference, the greater the buoyancy force and the stronger the vortex formed 

inside the enclosure. The rise in wall temperature difference means the increase of 𝑅𝑎. 

So in all the considered cases, the formed vortex in the enclosure becomes stronger for a 

higher 𝑅𝑎. A magnetic field along the horizontal axis is applied to the enclosure. This 

causes the fluid to move away from the left wall of the enclosure and approach the right 

wall. This is why the vortex formed in case (b) is stronger than that in case (a); because 

in case (a), fluid moves away from the hot wall and thus the vortex is weakened, but in 

case (b), the magnetic field drives the fluid toward the hot wall and creates more contact 

between them, thereby enhancing the buoyancy force. Also, the rotation directions of 

vortexes in cases (a) and (b) are opposite to each other. In case (a) the formed vortex 

rotates counterclockwise, while in case (b) it has a clockwise rotation. The vortex rotation 

direction depends on the direction of gravity and the magnetic field applied. The shifting 

of hot walls also has a great influence on the direction of vortex rotation. For a higher 𝑛, 
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the apparent viscosity of the fluid increases as well, which causes the fluid to circulate 

more slowly in the enclosure. At high 𝑅𝑎, vortex strength is reduced with the increase of 

𝑛. At low 𝑅𝑎, vortex velocity is very low, and the variation of 𝑛 has no effect on vortex 

velocity.  

Fig. 6 shows the contours of isothermal lines in cases (a) and (b) for different 𝑅𝑎 and 𝑛 

for 𝐻𝑎 = 20, 𝐿 = 0.3, 𝛾 = 45𝑜. The concentration of isothermal lines is higher where 

there is a greater temperature difference. Hence, it is observed that in all the examined 

cases, the concentration of isothermal lines is higher over a hot wall than at any other 

region. So the temperature gradient and the amount of heat transfer are also greater in 

these regions. At low 𝑅𝑎, the isothermal lines enjoy a certain orderliness and regularity. 

However, with the increase of 𝑅𝑎, the isothermal lines become irregular and disordered. 

The regularity or the disorderliness of isothermal lines indicates the mechanism of heat 

transfer. The regular isothermal lines portend a stronger conduction heat transfer and the 

disorderly isothermal lines mean a stronger convection heat transfer. So a stronger 

conduction heat transfer results at low 𝑅𝑎 and a stronger convection heat transfer ensues 

at high 𝑅𝑎, and the underlying cause is vortex strength. At low 𝑅𝑎, vortex strength is 

negligible and, thus, the enclosure fluid is almost stationary; but at high 𝑅𝑎, vortex 

strength is considerable and there is movement in the enclosure fluid. Also, with the rise 

of 𝑅𝑎, the isothermal lines near the hot and cold walls get more compacted; which means 

the increase of temperature gradient and heat transfer rate in these regions. The elevated 

temperature gradient is caused by the faster movement of the vortex and the higher fluid 

velocity near the constant-temperature walls. The concentration location of isothermal 

lines changes by altering the position of the hot wall. Because of a stronger vortex in case 

(b), the concentration of isothermal lines is slightly greater in case (b) than in case (a). 

With the increase of 𝑛, the concentration of isothermal lines is severely reduced and they 
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become more regular and less curly. This means that, with the rise of 𝑛, the conduction 

heat transfer mechanism becomes stronger and more dominant against the natural 

convection mechanism. The reason for these changes with the rise of 𝑛 is the reduction 

of vortex velocity with the increase of fluid’s apparent viscosity; which leads to the 

reduction of fluid velocity and temperature gradient in the enclosure.          

Fig. 7 displays the contours of generated entropy lines in cases (a) and (b) for different 

𝑅𝑎 and 𝑛 for 𝐻𝑎 = 20, 𝐿 = 0.3, 𝛾 = 45𝑜 . A high entropy generation is shown in the 

regions where the temperature gradient is high. There is also a concentration of entropy 

generation lines in these regions. This shows that the increase of temperature gradient 

boosts the generation of entropy in the enclosure. The reason for this can be sought in the 

constituent components of the total generated entropy. Total entropy comprises three 

components of thermal, fluid friction and magnetic field, which, respectively, depend on 

temperature gradient, velocity gradient, and fluid velocity and 𝐻𝑎. By raising 𝑅𝑎, fluid 

velocity and the temperature gradient in the enclosure are increased, thereby boosting the 

entropy generation. The fluid’s apparent viscosity goes up with a higher 𝑛 . As the 

apparent viscosity of fluid surges in the flow field and temperature field, the vortex 

velocity and the temperature gradient are reduced, thereby diminishing the fluid friction 

and thermal entropies, respectively. This leads to the decline of total entropy generation. 

Also, the entropy field shows that the concentration of generated entropy lines goes down 

with the rise of 𝑛. By shifting the position of the hot wall in the enclosure, the location 

of generated entropy lines changes and is always positioned over the hot wall and 

indicates that the entropy generation rate is greater in the regions that have a high-

temperature gradient.    

The local 𝑁𝑢 on the hot wall of enclosure is plotted in Fig 8 for case a (different 𝑛 for 

𝑅𝑎 = 105, 𝐻𝑎 = 20, 𝐿 = 0.3, 𝛾 = 45𝑜 ) and case b (different 𝑅𝑎 and 𝐻𝑎 = 20, 𝑛 =
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1.4, 𝐿 = 0.3, 𝛾 = 45𝑜). According to the figure, at a specific 𝑛, with the increase of x, 

𝑁𝑢 goes up first and then starts to decrease and, as we approach the end of the hot wall, 

it rises again. The low v at the beginning section of the hot wall is due to the small space 

there, which inhibits the infiltration of fluid into this region and reduces the contact of 

the cold fluid with the hot wall. The local 𝑁𝑢 diminishes with the rise of 𝑛. The reason 

for this is that, with the increase of 𝑛, the apparent fluid viscosity goes up, and with the 

increase of fluid viscosity, vortex velocity diminishes under similar conditions. With the 

decline of fluid flow velocity in the enclosure, the temperature gradient decreases near 

the cold wall. This is due to the increase of thermal boundary layer thickness according 

to the increase of dynamic boundary layer thickness. The reduction of temperature 

gradient lowers the rate of heat transfer over the enclosure wall. At low 𝑅𝑎, the local 𝑁𝑢 

does not change with the rise of 𝑅𝑎. However, with the further increase of 𝑅𝑎, the heat 

transfer rate rises at the beginning section of the hot wall and falls at the end section. 

Since these graphs have been plotted for 𝑛 = 1.4, the fluid velocity is hardly affected by 

𝑅𝑎. At low 𝑅𝑎, fluid velocity does not change significantly with the rise of 𝑅𝑎 and, 

therefore, the heat transfer rate remains unchanged. With the further increment of 𝑅𝑎, 

fluid velocity in the enclosure escalates, more fluid flows into the lower section, which 

has little space for fluid infiltration, and consequently, the heat transfer rate goes up in 

this region. Also, with more fluid infiltration in this region, fluid can move along a longer 

section of the hot wall and get warmer. So, when the fluid reaches the midsection of the 

hot wall, it will have a higher temperature; this will reduce the temperature gradient, and 

the local 𝑁𝑢 will diminish as well.  

Fig. 9 illustrates the average 𝑁𝑢 on the hot wall of enclosure in case a (dash line) and 

case b (dash-dot line) for different 𝑅𝑎  and 𝑛  for 𝐻𝑎 = 20, 𝐿 = 0.3, 𝛾 = 45𝑜 . This 

figure shows that at low 𝑅𝑎, the rate of heat transfer in case (b) is greater than that in case 
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(a). The reason for this is the direction of the magnetic field, which directs the fluid 

toward the right wall of the enclosure. So in the case in which the hot wall is on the right 

enclosure wall, the fluid is in contact with the hot wall for a longer period and gets 

warmer; thus, the heat transfer rate increases. At low 𝑅𝑎, in both cases, the average 𝑁𝑢 

changes very little with 𝑛, and 𝑁𝑢 remains constant. The reason for this is that at low 

𝑅𝑎 , fluid velocity within the enclosure is very small and the fluctuations of fluid’s 

apparent viscosity have no effect on vortex velocity. Therefore, since the fluid velocity 

does not vary, the heat transfer rate also remains constant. However, at high 𝑅𝑎, heat 

transfer rate diminishes considerably with the rise of 𝑛. This is due to the reduction of 

vortex velocity with the increase of fluid’s apparent viscosity in the enclosure. As the 

apparent viscosity goes up, shear stress increases and fluid velocity diminishes, thereby 

lowering the rate of heat transfer within the enclosure. With the reduction of fluid 

velocity, convective heat transfer is weakened and conductive heat transfer is reinforced; 

so the total amount of heat transfer is reduced as well. At high 𝑅𝑎, case (a) is more 

sensitive to the variations 𝑛 and, at low 𝑛, it has a larger 𝑁𝑢 and, at high 𝑛, it has a 

smaller average 𝑁𝑢 relative to the case (b). The diagrams indicate that in the case of high 

apparent viscosity and low 𝑅𝑎, case (b) produces a higher heat transfer rate and in the 

case of low apparent viscosity and high 𝑅𝑎, case (a) yields a better heat transfer rate.             

Fig. 10 displays the total generated entropies in case a (dash line) and case b (dash-dot 

line) for different 𝑅𝑎 and 𝑛 for 𝐻𝑎 = 20, 𝐿 = 0.3, 𝛾 = 45𝑜. Here we can also see that 

at low 𝑅𝑎, the total generated entropy varies very little with the changes of 𝑛. The reason 

is that fluid velocity does not vary with 𝑛 at low 𝑅𝑎. With the rise of 𝑅𝑎, temperature 

and velocity gradients go up; thus, the amounts of thermal and friction entropies also 

enhance, thereby boosting the total generated entropy. At high 𝑅𝑎, the total generated 

entropy diminishes with a higher 𝑛. The underlying cause is the reduction of vortex 
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velocity inside the enclosure with the increase of fluid’s apparent viscosity. With the 

reduction of vortex velocity, temperature and velocity gradients in the enclosure also go 

down. This diminishes the thermal entropy and fluid friction entropy, respectively, and 

leads to the reduction of total generated entropy. At a high 𝑅𝑎 and low apparent viscosity, 

because of the elevated fluid velocity in case (a), the total generated entropy in this case 

is greater than the other cases. In case (a), considering the existing flow field, a strong 

vortex is formed inside the enclosure, which helps raise the temperature and velocity 

gradients and eventually increase the amount of generated entropy.  

Fig. 11 shows the plotted values of 𝐵𝑒 in case a (dash line) and case b (dash-dot line) for 

different 𝑅𝑎 and 𝑛 for 𝐻𝑎 = 20, 𝐿 = 0.3, 𝛾 = 45𝑜 . 𝐵𝑒 indicates the share of thermal 

entropy in the total generated entropy. The higher 𝐵𝑒, the larger the share of thermal 

entropy in the total generated entropy. 𝐵𝑒 is higher at low 𝑅𝑎 and is lower at high 𝑅𝑎. 

The reason is that at low 𝑅𝑎, flow velocity in the enclosure is negligible and temperature 

gradient, which leads to the generation of thermal entropy, has a large share in the total 

generated entropy. With the rise of 𝑅𝑎 and fluid velocity in the enclosure, the velocity 

gradient and thus the fluid friction entropy increase, thereby reducing the share of thermal 

entropy in the total generated entropy. As a result, 𝐵𝑒 diminishes with the increase of 

𝑅𝑎. This occurs in both cases. In general, with the increase of 𝑛, fluid’s apparent viscosity 

goes up, and because of the rise of shear stress in fluid flow, vortex velocity diminishes. 

Thus, the values of velocity gradient and fluid friction entropy dwindle as well. This 

increases the thermal entropy contribution in the total generated entropy and leads to the 

rise of 𝐵𝑒. 

 

7.2.Changing the Hartmann number and the length of enclosure’s hot wall  
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Fig. 12 demonstrates the contours of flow lines in case (a) and case (b) for various 𝐻𝑎, 

three different hot wall lengths for 𝑅𝑎 = 105, 𝑛 = 1, 𝛾 = 45𝑜 . By exposing the 

enclosure to a magnetic field, a force called the Lorentz force is applied to the enclosure. 

This force drives the fluid in the direction of the magnetic field and tries to keep the fluid 

steady. Hence, the Lorentz force counteracts the buoyancy force which moves the fluid 

in the enclosure. So the presence of the magnetic field leads to the reduction of buoyancy 

force. The buoyancy force is the cause of vortex formation in the enclosure, and with its 

decline, the strength of formed vortexes is reduced. Therefore, it is observed that in both 

cases, vortex strength diminishes with the increase of 𝐻𝑎 (i.e., the boosting of Lorentz 

force). With the rise of 𝐻𝑎, the formed vortex moves away from the left enclosure wall 

and is squeezed toward the right wall. In case (a), this causes the fluid to have less contact 

with the hot wall and, therefore, less heat transfer takes place between the hot wall and 

fluid. In case (b), the fluid remains near the hot wall and is not displaced considerably. 

This lowers the temperature difference in the enclosure and reduces the vortex velocity. 

By increasing the hot wall length, fluid is exposed to high temperatures along a longer 

section of the wall and becomes warmer. Thus, the temperature difference and density 

difference in the enclosure are increased. The rise of density difference fortifies the 

buoyancy force and adds to vortex strength. As vortex strength is boosted, faster vortex 

forms in the enclosure, which occupies most of the fluid regions and penetrates the sharp 

corners of the enclosure more easily.  

Fig. 13 shows the contours of isothermal lines in both cases (a) and (b) for various 𝐻𝑎, 

three different hot wall lengths for 𝑅𝑎 = 105, 𝑛 = 1, 𝛾 = 45𝑜. With the increase of 𝐻𝑎, 

the isothermal lines become more regular and less disordered. Regular and uniform 

temperature lines indicate a greater conduction heat transfer, and irregular and disrupted 

temperature lines characterize a stronger convection heat transfer. Therefore in both 
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cases, with the rise of 𝐻𝑎 , conduction heat transfer is fortified and convection heat 

transfer is weakened. This is due to the reduction of fluid velocity in the enclosure with 

the increase of 𝐻𝑎. Also, as 𝐻𝑎 rises, the isothermal lines near the hot wall become less 

compact, which means the decline of temperature gradient and heat transfer rate. Again, 

this is due to the reduction of flow velocity and, thus, the increase in the thickness of the 

dynamic boundary layer. As the thickness of the dynamic boundary layer increases, so 

does the thickness of the thermal boundary layer and, consequently, the temperature 

gradient goes down. In both cases, it is observed that the temperature gradient over the 

hot wall is higher than the other regions. By making the hot wall longer, fluid is more 

exposed to a wall of high temperature and gets warmer. This increases the vortex velocity 

with regards to the flow field. Moreover, with the rise of fluid temperature in the 

enclosure, the temperature gradient near the cold wall also increases and causes a surge 

of heat transfer rate. This can be deduced from the considerable increase in the 

concentration of isothermal lines near the cold wall. By adding to the length of the 

thermal wall, not only the conductive heat transfer is boosted by getting the hot wall 

closer to the cold wall, but also the convective heat transfer is fortified by increasing the 

vortex velocity; and eventually, the temperature gradient in the vicinity of the cold wall 

is raised.           

Fig. 14 illustrates the plotted contours of generated entropy lines in cases (a) and (b) for 

various 𝐻𝑎, three different hot wall lengths and for 𝑅𝑎 = 105, 𝑛 = 1, 𝛾 = 45𝑜. It is 

observed that the concentration of generated entropy lines diminishes with the increase 

of 𝐻𝑎. The reason is the decrease in the temperature and velocity gradients with the rise 

of 𝐻𝑎, according to temperature and flow fields. The decline of temperature and velocity 

gradients diminishes the thermal entropy and the fluid friction entropy, respectively, and 

lowers the total entropy accordingly. The rise of 𝐻𝑎 does not affect the component of 
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magnetic field entropy; because the magnetic field entropy includes both the 𝐻𝑎 and the 

fluid flow velocity, and these two have an inverse relationship with each other. As 𝐻𝑎 

rises, fluid velocity falls, and so the magnetic field entropy remains almost unchanged. 

Conversely, the magnetic field entropy has a much lower value compared to thermal and 

friction entropies; so the total generated entropy is more affected by the values of thermal 

entropy and fluid friction entropy and much less by the magnetic field entropy. In both 

cases, there are a large number of generated entropy lines over the hot wall; which is 

indicative of a high-temperature gradient in that region. By adding to the length of the 

hot wall, the concentration of entropy lines, especially on the cold wall, increases. This 

is due to the rise of temperature gradient in that region. As it was mentioned, with the 

increase in the length of the hot wall, the temperature gradient near the hot wall goes up, 

thereby boosting the generation of thermal entropy and increasing the value of total 

generated entropy in that region.       

Fig. 15(a) displays the non-dimensional horizontal velocities and Fig. 15(b) the non-

dimensional temperatures at line X = 0.5 for different 𝐻𝑎 for 𝑅𝑎 = 105, 𝑛 = 1, 𝐿 = 0.3,

𝛾 = 45𝑜 in case (a). According to the figure, at a specific 𝐻𝑎, fluid velocity has two 

maximum positive and negative values. This is due to the existence of a vortex in the 

enclosure. Fluid velocity has negative values in the upper section of the enclosure and 

positive values in the lower section. This indicates the presence of a counterclockwise 

rotating vortex in the enclosure. The velocity values diminish with the increase of 𝐻𝑎. 

The reason, as was previously mentioned, is the Lorentz force counteracting the 

buoyancy force; which leads to a decline of vortex velocity in the enclosure. The figure 

also shows the drop of non-dimensional temperature with the rise of 𝐻𝑎. This is caused 

by the decrease of fluid velocity, which reduces the temperature gradient near the 

constant-temperature wall and diminishes the heat transfer rate. Thus, temperature 
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variations within the enclosure are also lowered. At low 𝐻𝑎, curvatures appear in the 

temperature profile, which indicates fluid movement in the enclosure. With the rise of 

𝐻𝑎  and the diminishing of vortex velocity, these curves become smoother and the 

temperature profile assumes a more even shape, and it outlines the temperatures from the 

vicinity of the hot wall to cold wall in a regular manner.        

As Fig. 16 illustrates, at most of the considered hot wall lengths, the non-dimensional 

temperature profile has two maximum negative and positive values; which is also 

indicative of vortex generation in the enclosure. However, as the hot wall gets larger, the 

negative and positive values switch places, and the negative velocity now becomes 

positive. This shows a change in the direction of vortex rotation. When the high-

temperature wall is small and up to a size of 0.3, a counterclockwise rotating vortex is 

present in the enclosure and, as the hot wall becomes bigger, it turns into a clockwise 

rotating vortex. With the increase in the hot wall length, velocity values become greater 

and they also have more maximums. This is due to the rise of vortex velocity with the 

increase of hot wall length. The figure also shows that the increase of hot wall length 

leads to the rise of non-dimensional temperature at the beginning section of the diagram; 

so that at a hot wall size of over 0.5, it reaches a value of 1.0. The reason is that the hot 

wall gets closer to the beginning part of the diagram and causes the temperature to go up 

in that region. Moreover, the fluid temperature in the enclosure is raised with the 

prolonged contact of the fluid with the hot wall; which can be seen clearly in the graph 

of non-dimensional temperature.   

The average 𝑁𝑢 on the hot wall is plotted in Fig. 17 in cases (a) and (b) for different 𝐻𝑎 

and hot wall lengths for 𝑅𝑎 = 105, 𝑛 = 1, 𝛾 = 45𝑜. Both figures show a decline in heat 

transfer rate with the increase of 𝐻𝑎. This arises from the reduction of fluid velocity with 

the rise of 𝐻𝑎, for reasons already mentioned. Also, the increase in hot wall length has 
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caused the average 𝑁𝑢 to go up. There are two reasons for this: first, with the increase of 

hot wall length, fluid velocity escalates due to the surge in buoyancy force; this boosts 

the convective heat transfer and also raises the temperature gradient in the enclosure, 

which increases the heat transfer rate. Second, with the enclosure’s hot wall getting closer 

to the cold wall, the existing conductive heat transfer capacity goes up as well. In other 

words, with the addition of hot wall length, both the conductive heat transfer and 

convective heat transfer rates improve, eventually leading to an increase of average 𝑁𝑢. 

With the increase of hot wall length, the heat transfer rate grows more in case (a) than in 

case (b). The highest heat transfer rate is achieved in case (a), in the absence of a magnetic 

field and at a hot wall length of 0.6. 

Fig. 18 shows the total generated entropies in cases (a) and (b) for different 𝐻𝑎 and hot 

wall lengths for 𝑅𝑎 = 105, 𝑛 = 1, 𝛾 = 45𝑜. These graphs, which are very similar to the 

preceding ones, reveal that the amount of total generated entropy diminishes with the 

increase of 𝐻𝑎. This is due to the decrease of vortex velocity and thus the reduction of 

velocity and temperature gradients. The diminishing of these two gradients leads to the 

respective decline of fluid friction entropy and thermal entropy, which eventually cause 

the reduction of total generated entropy. Also, with the increase in hot wall length, total 

entropy surges up as well. The underlying cause is the rise of velocity in the enclosure 

with the increase of hot wall length. The temperature field reveals that the temperature 

gradient, especially over the cold wall, goes up with the increase in hot wall length. This 

leads to the surge of thermal entropy. Moreover, the velocity gradient and, thus, the fluid 

friction entropy goes up with the rise of vortex velocity, thereby increasing the total 

entropy generated in the enclosure. The variations of generated entropies in both cases 

are very similar to each other.  
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Fig. 19 displays the plotted 𝐵𝑒 obtained in cases (a) and (b) for different 𝐻𝑎 and hot wall 

lengths for 𝑅𝑎 = 105, 𝑛 = 1, 𝛾 = 45𝑜. As it was mentioned, 𝐵𝑒 indicates the share of 

thermal entropy in the total generated entropy. With the rise of 𝐻𝑎, fluid velocity in the 

enclosure diminishes severely, due to the reduction of buoyancy force. This decreases 

the amount of fluid friction entropy. Also, with the escalation of 𝐻𝑎, the temperature 

gradient falls slightly, thereby reducing the amount of thermal entropy. However, since 

the fluid friction entropy has declined substantially, with the increase of 𝐻𝑎, the share of 

thermal entropy in the total generated entropy grows. So, 𝐵𝑒 goes up with the rise of 𝐻𝑎. 

The variations of 𝐵𝑒 with the increase of hot wall length, at various 𝐻𝑎, show different 

trends. In both cases, in the absence of magnetic field, 𝐵𝑒 rises with the increase of hot 

wall length. This is due to the elevation of temperature gradient and the increased share 

of thermal entropy in the total generated entropy. But at other 𝐻𝑎, 𝐵𝑒 behaves differently 

for each case. The reason for this varying behavior is that, with the increase in the hot 

wall length, the velocity and temperature gradients go up and result in the growth of fluid 

friction entropy and thermal entropy; and in different cases, the share of thermal entropy 

can become more or less depending on the length of hot wall.        

 

7.3.Changing the tilt angle of enclosure 

Fig. 20 illustrates the contours of flow lines, isothermal lines and generated entropy lines 

in cases (a) and (b) for different enclosure tilt angles for 𝑅𝑎 = 105, 𝐻𝑎 = 20, 𝑛 = 1,

𝐿 = 0.3. In the flow field, we can see that the strongest vortex has occurred at the 

enclosure tilt angle of 90º. As it was previously mentioned, the rotation direction and the 

strength of a vortex depend on the Earth’s magnetic field angle and acceleration of 

gravity. The angles of these two forces can strengthen or weaken a vortex and also 

determine its rotation direction. Hence, in an enclosure with a tilt angle of 0º, the formed 
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vortexes rotate clockwise and in an enclosure tilted 90º, they have a counterclockwise 

rotation. In an enclosure tilted 45º, the vortex rotation direction in case (a) is opposite to 

that in case (b). As the fluid gets warmer near the hot wall of the enclosure, it becomes 

less dense and lighter in weight and, so, it moves upward. By reaching the upper section 

of the enclosure and contacting the cold wall, the fluid’s temperature drops and it 

becomes denser. Thus, the fluid is pulled down by the force of gravity and it displaces 

the less heavy fluid below. In the meanwhile, the Lorentz force drives the fluid toward 

the right side of the enclosure. The sum of these motions creates a vortex in the enclosure. 

Whether the fluid is moved toward the right side of the enclosure in the enclosure’s upper 

section or lower section determines the rotation direction of the formed vortex. 

In the temperature field, the concentration of isothermal lines can be seen at different 

enclosure tilt angles, and this concentration does not change significantly in all the 

considered cases. The concentration of isothermal lines is more prevalent in the enclosure 

and gets closer to the cold wall only at the tilt angle of 90º. This is because in this case, 

the formed vortex is stronger and fluid circulates faster in the enclosure and causes the 

temperature gradient to rise in the colder region. The increase of temperature 

concentration near the cold wall means the improvement of heat transfer rate in this 

region; which can add to temperature difference in the enclosure and fortify the formed 

vortex. 

In the contours of entropy lines, it is observed that the highest concentration of generated 

entropy lines has occurred at the enclosure tilt angle of 90º in case (a) and tilt angle of 0º 

in case (b). Because in these cases, better conditions have existed for heat transfer on 

these walls and, therefore, temperature gradients have become higher. With the rise of 

the temperature gradient, thermal entropy has also increased; so the concentration of 

generated entropies is higher in these regions. In general, in the areas where the hot wall 
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runs into the insulated wall, because of the fluid having a higher temperature gradient, 

the amount of generated entropy is also greater relative to the other regions. In the corner 

regions of the enclosure, due to a less infiltration of fluid and the lower values of velocity 

and temperature gradients, the amount of generated entropy is also negligible; and this 

can be clearly seen in the entropy contours.  

Fig. 21 displays the plotted local 𝑁𝑢 on the hot wall of enclosure in cases (a) and (b) for 

different enclosure tilt angles and for constant values of 𝑅𝑎 = 105, 𝐻𝑎 = 20, 𝑛 = 1,

𝐿 = 0.3. As it is observed, with the increase of enclosure tilt angle, the maximum and 

minimum 𝑁𝑢 on the hot wall diminish and the trend of local 𝑁𝑢 becomes linear. At the 

tilt angle of 0º, at the beginning section of the hot wall, the local 𝑁𝑢 is almost zero and 

at the end section of the wall it has a high value. In this case, there is a very little fluid 

circulation in the corner region of the enclosure, which causes 𝑁𝑢 there to be near zero. 

However, at the end section of the hot wall, because of the large temperature gradient, 

the heat transfer rate is also high. With the increase in tilt angle and with the hot wall 

positioned vertically, the fluid is heated uniformly by the hot wall, and the uniform 

temperature gradient leads to a fixed heat transfer rate. Fig. 21(b) also shows the opposite 

of the previous trend. At the enclosure tilt angle of 90º, 𝑁𝑢 has maximum and minimum 

values with large variations; while at lower tilt angles, the local 𝑁𝑢  exhibits little 

variations along the hot wall. This case is opposite to the preceding case, and with the tilt 

angle reaching 0º, the hot wall becomes horizontal and fluid penetration into the corner 

zone diminishes, thereby reducing the rate of heat transfer in that region. The reason for 

the discrepancy in the two figures of (a) and (b) is the magnetic field. In the absence of 

the magnetic field, the two figures would have been identical; but the presence of a 

magnetic field has caused some differences in the local 𝑁𝑢 in the two cases.    
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8. Conclusion         

In this paper, the natural convective characteristics of a non-Newtonian fluid inside a 

triangular enclosure, and subjected to a magnetic field, have been investigated. In 

addition to heat transfer, generated entropy and Bejan number have also been studied in 

this work. By varying the effective parameters of Rayleigh number, Hartmann number, 

power-law index, enclosure tilt angle and hot wall size, the following results have been 

obtained: 

1- By raising the Rayleigh number from 103 to 105 in the non-Newtonian fluid, the heat 

transfer rate goes up by 71% in case (a) and 31% in case (b).  

2- By raising the Rayleigh number the amount of thermal entropy increases by 80% (case 

a) and 88% (case b) in the Newtonian fluid, by 210% (case a) and 175% (case b) in the 

shear thickening non-Newtonian fluid  

3- For a higher power-law index at Rayleigh number of 105, the average Nusselt number 

decreases by 56% (case a) and 42% (case b) and the total generated entropy diminishes 

by 65% (case a) and 58% (case b). 

4- In both cases of (a) and (b), the rise of Hartmann number leads to a 45% reduction in 

the heat transfer rate and the increase of Bejan number. 

5- The increase of hot wall length leads to a higher heat transfer rate and total generated 

entropy. 
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