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a b s t r a c t

The band topology in condensed matter has attracted widespread attention in recent years. Due to the
band inversion, topological nodal line semimetals (TNLSs) have band crossing points (BCPs) around the
Fermi level, forming a nodal line. In this work, by means of first-principles, we observe that the synthe-
sized NaAlGe intermetallic compound with anti-PbFCl type structure is a TNLS with four NLs in the kz = 0
and kz = p planes. All these NLs in NaAlGe exist around the Fermi level, and what is more, these NLs do not
overlap with other bands. The exotic drum-head-like surface states can be clearly observed, and there-
fore, the surface characteristics of NaAlGe may more easily be detected by experiments. Biaxial strain
has been explored for this system, and our results show that rich TNL states can be induced.
Furthermore, the spin-orbit coupling effect has little effect on the band structure of NaAlGe. It is hoped
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that this unique band structure can soon be examined by experimental work and that its novel topolog-
ical elements can be fully explored for electronic devices.
� 2020 THE AUTHORS. Published by Elsevier BV on behalf of Cairo University. This is an open access article

under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Introduction

Topological insulators [1–5] have been the hotspot of modern
condensed matter physics for several years. The main features of
topological insulators can be expressed as follows: (1) they exhibit
energy band inversion and a bulk band gap caused by strong spin-
orbit coupling; (2) they possess gapless boundary states, i.e., their
surface states have metallic properties. Different types and families
of topological insulators have been widely investigated since the
discovery of topological insulators in HgTe/CdTe quantum wells
[6]. More interestingly, Miao et al. [7] found that nanoscale engi-
neering can convert conventional semiconductors (with a sizable
band gap and small spin-orbit coupling effect) into topological
insulators. This research opens up new routes for designing topo-
logical insulator candidate materials.

Recently, another class of materials containing interesting topo-
logical elements, namely, topological semimetals (TSMs) [8–25],
has received wide attention. Compared with topological insulators,
TSMs have a special topological surface state, interesting magnetic
transport properties, and extremely high carrier mobility. TSMs are
characterized by non-trivial band crossings (owing to the band
inversion) between the conduction band and the valence band in
the momentum space. Around the band crossings, the quasiparti-
cles behave differently from the usual Schrödinger type fermions.
According to the degeneracy of band crossing points (BCPs) and
their distribution in the Brillouin zone, TSMs can be classified into
the following types: Dirac semimetals [26–28], Weyl semimetals
[29,30], and topological nodal line semimetals (TNLS) [31]. A Dirac
semimetal has two bands with double degeneracy, and the two
bands cross each other at or along high symmetry points near
the Fermi level (EF). On the other hand, its band crossings also
receive protection from the crystal symmetry. In a Weyl semime-
tal, two non-degenerate band crossings can be observed around
the EF. Moreover, no crystal symmetry protection is required for
a Weyl semimetal. Significantly different from the isolated points
in the Dirac and Weyl semimetals, for a TNLS, the crossings
between the bands can form one-dimensional (1D) nodal lines
(NLs)/loops in three-dimensional (3D) momentum space under
certain crystal symmetries. Depending on the slope of the energy
band dispersion in the momentum-energy space, TSMs can be
viewed as two types [32,33]: type I and type II TSMs. For type I
TSMs, these bands exhibit a traditional conical dispersion in which
the electron and hole regions are well separated by energy. For
type II TSMs, these bands are fully tilted, and their electron and
hole states coexist at a given energy. There is also the possibility,
however, that the NLs in the TSMs are composed of type I and type
II crossing points (CPs), and this new type of TSM is denoted as the
hybrid type [34]. The physical properties of type I, type II, and
hybrid type TSMs are quite different [35,36].

In this work, we focus on an experimentally synthesized inter-
metallic compound, NaAlGe [37] with an anti-PbFCl-type lattice
structure. We theoretically prove that NaAlGe hosts TNL states
near the EF. What is more, this material exhibits the following
advantages: (1) There are no other external energy bands near
the TNLs; (2) The energy band crossing produces a total of four
NLs, so the signal of the expected NLs would be very obvious for
experimental detection. Finally, biaxial strain was applied on this
material and successfully induced different TNL state transitions
in NaAlGe compound.

Materials and methods

The crystal structures have been totally relaxed in this work
(see Fig. S1) with the help of density functional theory (DFT), and
the obtained theoretical lattice parameters are a/b = 4.189 Å and
c = 7.414 Å. The theoretical lattice constants that we obtained
are consistent with the experimental values [37], i.e. a/b = 4.164
Å and c = 7.427 Å. NaAlGe crystallizes in a tetragonal structure
with the P4/nmm space group (No. 129). This unit cell contains
six atoms, i.e., two Na atoms, two Al atoms, and two Ge atoms,
respectively. The Na, Al, and Ge atoms occupy the (0.5, 0.0, 0.64),
(0.0, 0.0, 0.0), and (0.5, 0.0, 0.21) Wyckoff sites, respectively. In this
study, we calculated the band structure of NaAlGe using density
functional theory, within the VASP code [38]. The Perdew-Burke-
Ernzerhof (PBE) [39] parameterization of the generalized gradient
approximation (GGA) [40] was selected to describe the exchange
and correlation functionals. We also used the projector augmented
wave (PAW) [41] method to deal with the interaction between the
ion cores and valence electrons. For the anti-PbFCl type NaAlGe
system, a plane-wave basis set cut-off of 500 eV and a
Monkhorst-Pack special 13 � 13 � 7 k-point mesh were used in
the Brillouin zone integration. The unit cell was optimized until
the force and total energy were less than 0.005 eV/Å and
0.0000001 eV, respectively. The phonon energy calculation for
NaAlGe was performed in NanoAcademic Device Calculator (Nan-
odcal) code [42]. As shown in Fig. S2, we utilized the phonon spec-
trum to test the stability of the tetragonal NaAlGe compound. The
absence of a virtual frequency guarantees the stability of the
tetragonal state of NaAlGe. Therefore, we can conclude that the
tetragonal NaAlGe is structurally stable. Also, the elastic constant
and mechanical properties (see Tables S1 and S2) of NaAlGe com-
pound have been studied, and the results are given in the Supple-
mentary Information. The mechanical stability of this system was
also evaluated based on the obtained elastic constant. The surface
states of NaAlGe were investigated in this study via the Wan-
nierTools software package [43] according to the method of maxi-
mally localized Wannier functions [44,45].

Results and discussion

Fig. 1(a) exhibits the band structures of anti-PbFCl-type NaAlGe
that were calculated with the help of PBE along the high symmetry
points X-M-C-X-A-Z-R-A in the bulk Brillouin zone (see Fig. S3). In
this figure, we do not consider the effect of spin-orbit coupling
(SOC) due to the fact that Na, Al, and Ge are not heavy elements.
We will also discuss the influence of the SOC on the band struc-
tures later in this manuscript. From Fig. 1(a), one can see that
the NaAlGe system exhibits metallic properties due to the bands
and the Fermi level overlapped with each others [46]. Furthermore,
one can see that there are some BCPs near the EF (range from
�0.4 eV to 0 eV). We can see that the band crossing points are
mainly concentrated in two regions, marked as A and B. In order
to make our results more accurate, we repeated the calculation
of the band structures of NaAlGe using the state-of-the-art Heyd-
Scuseria-Ernzerhof (HSE06) [47,48] functional, and the results are
shown in Fig. S4(a). By comparing the results of PBE and HSE06,
we found that the band structures near the EF are basically the
same. That is to say, the inverse band topology [49] can be clearly
found near the EF and the BCPs occurred in regions A and B.
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Next, we will discuss the two regions A and B, respectively. For
region A, four BCPs along the M- C -X direction can be observed,
and these four CPs arise from the crossings of three bands, i.e.,
bands 1, 2, and 3 (see Fig. 2(a)). In detail, there are two BCP A1
along the M- C -X path, one is the M- C and the other one is along
the C -X path. Both A1 BCPs are arising from the intersection of
band 1 (orange line) and band 2 (blue line). Similar to BCPs A1,
two BCPs A2, which coming from the crossings of band 2 and band
3 (red line), are along M- C and C -X directions, respectively.

Based on the calculated orbital-resolved band structures [50] in
Fig. 1(b)–(f), one can see that the band 1 in region A is coming from
the Ge-p(x) orbitals, while band 2 is formed from Al-s orbitals, and
band 3 is mainly arising from the Ge-p(y) orbitals. Therefore, the
two A1 crossing points are formed by the hybridization between
the Al-s and the Ge-p(x) orbitals; the two A2 crossing points are

formed by the hybridization between the Al-s and the Ge-p(y) orbi-
tals. As shown in Fig. 2(a), we can see that all of these four crossing
points in region A have double degeneracy. Furthermore, for the
NaAlGe system, the spin effect was not included because the non-
magnetic state is the most stable ground state for this system. Also,
NaAlGe compound was protected from time reversal (T) symmetry
and spatial inversion (P) symmetries. Therefore, we can conclude
that such BCPs cannot be seen as isolated nodal points [51,53]
when the role of the SOC is not taken into account. As shown in
Fig. 3(a) and (b), one can see that these four CPs belong to two
NLs (A1 and A2) that are centered around the C point in the
kz = 0 plane. From Figs. 2(a), 3(a), and (b), we can see that TNL
A1 has higher energy and larger size than TNL A2.

For region B, there are also four CPs along the A-Z-R direction.
Since the energy bands of regions A and B are roughly the same,

Fig. 1. (a) Band structure of anti-PbFCl-type NaAlGe calculated with the help of PBE along the high symmetry points X-M- C -X-A-Z-R-A in the bulk Brillouin zone; (b)-(f)
Orbital-resolved band structures of anti-PbFCl-type NaAlGe calculated with the help of PBE.

Fig. 2. (a) and (b) Band structure of anti-PbFCl-type NaAlGe, calculated with the help of PBE along the M- C -X and A-Z-R directions, respectively, in the bulk Brillouin zone;
(c) Possible TNL state transitions in NaAlGe under biaxial strain (�5% � 0%) in the ab-plane.
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therefore, there are also two TNLs (named as B1 and B2) [53] cen-
tered around the Z point in the kz = p plane. Two BCPs belong to NL
B1, and two BCPs are parts of NL B2. Similar to region A, the sche-
matic diagrams of these two NLs (B1 and B2) in the kz = p plane are
also given in Fig. 3(c) and (d), respectively.

Based on above-mentioned information, nodal points can be
divided into two types, namely, type-I and type-II [32,33], accord-
ing to the slope of the energy band dispersion at these BCPs. As
shown in Fig. 2(a), both nodal points of A1 along the M- C and C
-X directions in region A are type I, and therefore, one can see that
the A1 NL corresponds to type-I. The same situation can be seen in
the A2 and B2 NLs. The nodal point of B1 along the A-Z direction in
region B is type I, whereas the nodal point of B1 along the Z-R
direction in this region is type II (see the inset figure in Fig. 2(b)),
reflecting the fact that the TNL B1 contains both type -I and type
II nodal points at the same time and is thus a hybrid type NL [34].

One of the most obvious features of the TNLS is the presence of
a ‘drum-head-like (D-H-L)’ surface state inside/outside the pro-
jected bulk TNLs, which can be determined via the Berry phase
[52–54]. To confirm the existence of this particular D-H-L surface
state, we calculated the projected spectrum and different constant
energy slices of the NaAlGe (0 0 1) surface along A(s)-Z(s)-R(s)-A(s)
in the surface Brillouin zone (BZ) (see Fig. S3), and the results are
exhibited in Fig. 4. In Fig. 4(a), we use four green balls to indicate
the location of the four BCPs and we use purple arrows to highlight
the D-H-L surface states. From the figure, we can clearly see that
some D-H-L surface states arise from the bulk TNLs. Different con-
stant energy slices at E = 0 eV (Fig. 4(b)), E = �0.1 eV (Fig. 4(c)), E =
�0.15 eV (Fig. 4(d)), E = �0.20 eV (Fig. 4(e)), and E = �0.30 eV
(Fig. 4(f)) were calculated with the help of WannierTools software
[43]. As we know, the NaAlGe system exhibits four TNLs (A1, A2,
B1, and B2) in total, and therefore, up to four D-H-L surface states
can be found in the above mentioned slices, with all these D-H-L
surface states concentrated at the Z(s) high symmetry point. More
importantly, as exhibited in Fig. 4, the D-H-L surface states of

NaAlGe are very clear, which makes the special surface character-
istics of this material very suitable for experimental observation
[22,53].

As we mentioned above, NaAlGe does not contain heavy ele-
ments, so its SOC effect is not significant. In order to further prove
our viewpoint, however, we also consider the influence of the SOC
on the energy structures near the EF. Figs. S4(b) and (c) show the
electronic structures of NaAlGe along the M- C -X and A-Z-R direc-
tions, respectively. From it, we found that all CPs were opened to a
certain degree of energy gap under the influence of the SOC. In
region A, the SOC-induced band gaps are 3.4 meV at the maximum
and 0.5 meV at the minimum; and in region B, the SOC-induced
band gaps are between 0.2 meV and 2.1 meV. As shown in
Fig. S4, we should point out the NaAlGe can be well described as
a TNLS due to its gap sizes throughout the nodal line are less than
5 meV, which is much lower than typical TNLSs such as ZrSiS
(>20 meV) [55,56], TiB2 (>25 meV) [57], Mg3Bi2 (>36 meV) [58],
Cu3PdN (>60 meV) [59], CaAgBi (>80 meV) [60].

Furthermore, the influence of biaxial strain [61] on the elec-
tronic structures of NaAlGe compound was studied. As we have
shown in Fig. 2, according to the energy band that we calculated,
NaAlGe is a TNLS with hybrid type NLs. A series of phase transition
can be found, however, under the effect of the biaxial strain in the
ab-plane, and the results are given in Fig. 2(c). In detail, when we
applied a 2% compressive biaxial strain to the system, the slope
of the crossing bands along the C -X direction (A1) was changed
(See Fig. S6(c)). In this case, the A1 nodal line changed from type
I (ground state) to hybrid type (�2%). As shown in Fig. S6(e)–(h),
the energy band ordering at 3% and 4% compression biaxial strain
is the same as that at 2% compression biaxial strain, so we will not
analyze it in detail here. When the applied biaxial stress increases
to �5%, the topological inversion characteristic of the bands along
the A-Z-R direction disappear, which means that the two TNLs in
region B disappear. For the two NLs in region A, the hybrid nodal
line A1 still exists (see Fig. S6(i)), but the type I nodal line A2 is

Fig. 3. (a) and (b) Schematic diagram of the A1 and A2 TNLs in the kz = 0 plane; (c) and (d) Schematic diagram of the B1 and B2 TNLs in the kz = p plane. The TNLs are
highlighted as white lines.
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completely destroyed (see Fig. S6(j)). The reason can be shown as
follows: band 2 moves toward the high energy level under the
�5% biaxial strain, and the CPs between band 2 and band 3
disappear.

Conclusion

In summary, we theoretically proposed that synthesized
NaAlGe with anti-PbFCl type structure is a TNLS. It naturally exhi-
bits four NLs, with two type I NLs at kz = 0; the other two nodal
points, one hybrid type NL (B1) and one type I NL (B2), are located
in the kz = p plane. All of the NLs in NaAlGe exist near the EF and do
not coexist with other bands. More importantly, the D-H-L surface
states from the bulk NLs were clearly identified, which makes them
well suited for experimental testing. Via biaxial strain, the size of
the NLs can be actively adjusted, and different types of NLs can
be observed in this system, making NaAlGe’s NL features more
interesting. The SOC has little effect on the energy band near the
EF in this material, which means that the NLs in NaAlGe material,
which is composed of light elements, are highly resistant to SOC
effects. NaAlGe was experimentally synthesized 40 years ago, but
this material has not received widespread attention. Based on this
work, this old compound was rejuvenated as a TNLS. It is hoped
that such novel topological elements can be soon examined by
experimental work.
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