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A Lightweight Privacy-Preserving Fair Meeting
Location Determination Scheme

Hua Shen, Mingwu Zhang, Hao Wang, Fuchun Guo, and Willy Susilo Senior Member, IEEE

Abstract—Equipped with mobile devices, people relied on
location-based services can expediently and reasonably organize
their activities. But location information may disclose people’s
sensitive information, such as interests, health status. Besides,
the limited resources of mobile devices restrict the further
development of location-based services. In this paper, aiming
at the fair meeting position determination service, we design a
lightweight privacy-preserving solution. In our scheme, mobile
users only need to submit service requests. A cloud server and
a location services provider are responsible for service response,
where the cloud server achieves most of the calculation, and the
location services provider determines the fair meeting location
based on the computational results of the cloud server and
broadcasts it to mobile users. The proposed scheme adopts
homomorphic encryptions and random permutation methods
to preserve the location privacy of mobile users. The security
analyses show that the proposed scheme is privacy-preserving
under our defined threat models. Besides, the presented solution
only needs to calculate n Euclidean distances, and hence, our
scheme has linear computation and communication complexity.

Index Terms—Privacy-preserving, location privacy, location-
based service, fair meeting location.

I. INTRODUCTION

NOWADAYS, the rapid development of location-aware
technologies such as mobile communication and sensing

devices and the widespread use of smart mobile devices (e.g.,
smartphones) can obtain accurate location information of users
at any time. Location-based services (LBSs) become very pop-
ular in almost all social, business, and industrial domains [1]–
[3]. Users need to send their location information and queries
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to the LBS server, and then they can enjoy the corresponding
services provided by the LBS server. Some typical LBSs
include ”check-in,” location sharing, near friends’ query, map
information, automotive traffic monitoring, and road naviga-
tion [4], [5]. For example, users can find the nearest restaurant,
petrol station, market, hospital, and cinema through ”check-
in” services [6]. In the industrial sector, through ”check-in”
services, factories can find the nearest partner who provides
a similar manufacturing process. The ”check-in” services do
not depend on the locations of other users [7]. The users
in a group can obtain a fair meeting location for the whole
group through location sharing services [8], which rely on the
sharing of places (or location preferences) by group users [7].
Users can download various LBS applications from application
stores such as the Apple Store or Google Play Sore or Huawei
AppGallery [9]. LBSs bring convenience to users, while they
also bring substantial economic benefits. According to a survey
by Pyramid Research [10], location-based services had a 10.3
billion dollars market in 2015. But LBSs raise the danger
of revealing private personal information (such as the home
address, the current location, the history locations, and so
on). The analysis of the location information poses threats to
reveal sensitive information of users (such as economic status,
living habits, health conditions, social relationships, etc.). For
instance, in the Uber application, users need to share their
current and target locations to the Uber service provider. If
the service provider is curious, it could easily infer users’
home address, travel habits (such as what time to go out,
what time to go home, car model selection preference), health
conditions (for example, whether recently is or not ill), and
so on. User study in [7] shows nearly 88% of users are not
comfortable with sharing their location information. Therefore,
how to protect users’ privacy in location sharing services is a
crucial issue.

Fair Meeting Location Determination problem is a specific
problem in LBSs. The problem is to determine a location from
a given set of user locations (or location preferences) as the
meeting place such that it is fair to all users in the group.
”Fair” in the problem means that the determined meeting
location cannot be too far away from nor close to some
users. The privacy issue in this problem is representative
of the relevant privacy threats in LBSs [7]. In this paper,
considering the constrained resource of mobile devices (e.g.,
smartphones), we focus on how to high-efficiently resolve the
Fair Meeting Location Determination problem in a privacy-
preserving manner. Our goal is to enable each user in a
group to obtain a fair meeting location with low computation
and communication costs, and without disclosing any user’s
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TABLE I
COMPARISON OF THREE CATEGORIES SCHEMES

Data
Distortion TTP Comm.

Overhead
Comp.
Cost

Protection
Strength

Obfuscation
√

× Low Middle Middle
Anonymity ×

√
High Middle Low

Encryption × × Middle High High

location information. For achieving the goal, we propose a
lightweight privacy-preserving fair meeting location determi-
nation scheme (FMLD).

The remainder of the paper is organized as follows. We
overview related work in Section II. In Section III, we formu-
late the problem of the fair meeting location determination and
describe the system model, the threat model, and the design
goal, finally summarize our contributions. In Section IV, we
recall Paillier encryption. Then, we show the details of the
proposed scheme in Section V, followed by its correctness
analysis, security proof, and performance analysis in Sections
VI, VII and VIII, respectively. Finally, we summarize our work
in Section IX.

II. RELATED WORK

Recently, many approaches have been proposed to tackle the
privacy threats in LBS applications. We roughly divide them
into three categories: obfuscation based solutions, anonymity
based solutions, and encryption based resolutions [11]–[14].
For preventing revealing the exact location to others, obfus-
cation based solutions usually add noise to places or quantize
locations [11], but which reduces the quality of the location
data and LBSs [11], [15]. Anonymity based schemes address
privacy concerns of users through separating users’ identities
from their locations by using the pseudo-ID technique [16],
k-anonymity [11], [17], [18], dummy locations [9], [19],
[20], and others. But anonymity based schemes bring high
communication cost [13] and usually rely on a trusted third
party (namely anonymizer), which may suffer from a single
point of attack [11], [21]. In encryption based schemes [7],
[8], [13], [22], a user uses homomorphic encryption to encrypt
his/her location information and sends the encrypted data to
a cloud server, or an LBS server. Then the server returns
the result to the user. Encryption based schemes are with
low communication costs, but their computation costs are too
high to be suitable for smartphones. The overview of the
comparison between the three categories schemes is illustrated
in Table I.

Because the Fair Meeting Location Determination problem
requires to provide the accurate meeting location to users and
avoiding the emergence of a trust third party, we pay attention
to how to leverage homomorphic encryption to resolve the
Fair Meeting Location Determination problem efficiently. In
2014, Bilogrevic et al. [7] proposed a privacy-preserving two-
party computation framework to resolve the problem and then
presented two concrete schemes to realize the frame. The one
scheme was realized through employing BGN cryptosystem
and ElGamal cryptosystem, and the other was achieved by
utilizing Paillier cryptosystem and ElGamal cryptosystem.

However, there are some deficiencies in Bilogrevic’s schemes.
First, the schemes are not practical due to the heavy com-
putation burden of user-side and the limited resources of
mobile devices. Take the scheme realized by using Paillier
and ElGamal cryptosystems as example, each user need to
carry out n + 1 Paillier encryption operations, n Paillier
decryption operations, 2 ElGamal encryption operations, and
n− 1 ElGamal decryption operations, where n is the number
of users. Second, there are n(n − 1)/2 Euclidean distances
needed to be calculated over ciphertext space, which will
lay a heavy burden on the mobile devices. To reduce the
computational overheads in users’ resource-constrained mobile
devices, Wang [8] introduced an untrusted cloud server to
handle most computing tasks in their scheme. Wang’s scheme
takes advantage of the homomorphic property of BGN and
ElGamal cryptosystems to determinate a fair meeting location
from a set of users’ current or preferred positions without re-
vealing their privacy. However, Wang’s scheme similarly needs
to compute n(n − 1)/2 Euclidean distances over ciphertext
space, which results in the scheme being inefficient. Besides,
in Wang’s scheme, the LDS server (named MLDS) finally
broadcasts the series number of the chosen location as the fair
meeting location rather than the location information, so users
still do not know where is the meeting location selected. In
addition, MLDS obtains the Euclidean distance of each pair of
users and the Euclidean distance average and variance of each
user. MLDS can inference some sensitive information from
these data, for example, it can learn whether the locations
of the group users are relatively centralized or scattered, and
which two users in the group are the furthest apart.

Based on the above analysis, to achieve spending lower
computation and communication costs to resolve the Fair
Meeting Location Determination problem by using homomor-
phic encryption, we identify the core issue is how to reduce
the number of Euclidean distance calculations. Based on this
idea, we propose a lightweight privacy-preserving fair meeting
location determination scheme (FMLD).

III. PROBLEM FORMULATION, MODELS AND DESIGN
GOAL

In this section, we formulate the fair meeting location
determination problem and describe the system and threat
models considered in our work, and identify the design goal,
finally summarize our main contributions.

A. Problem Formulation

The appropriate meeting location can be determined in
several ways, for example, the approach adopted by [7] is
to find the location which has the minimum of the max-
imum Euclidean distance within all locations, the method
exploited by [8] is to determine which place has minimum
Euclidean distance variance. Fig.1 shows our method to deter-
mine the fair meeting location. There are five users in Fig.1,
the intersection point of two dashed lines is the geometric
center (x, y) of the five users’ preferred locations (that is,
(x1, y1), (x2, y2), (x3, y3), (x4, y4), (x5, y5)), the solid lines
represent the Euclidean distances between users’ locations
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Fig. 1. Problem description.

Algorithm 1 Fire Meeting Location (ALFMLD).
Input: (x1, y1), (x2, y2), · · · , (xn, yn).
Output: the fair meeting location which is chosen from the
input locations.

1: Calculate the geometric center (x, y) of n preferred loca-
tions: x = (x1 + · · · + xn)/n, y = (y1 + · · · + yn)/n;

2: Compute the square of the Euclidean distance Li between
Useri preferred meeting location and the geometric center
(for all i ∈ {1, · · · , n}): Li = (xi − x)2 + (yi − y)2

3: Determine the minimum of {L1, L2, · · · , Ln}, assume it
is Lk (k ∈ {1, 2, · · · , n});

4: return (xk, yk);

and the geometric center. We use Li denote the square of
the Euclidean distance between ith user’s location and the
geometric center. Suppose L5 = min{L1, L2, L3, L4, L5},
the fair rendezvous location is (x5, y5). Generalize the above
problem description as follows. Assume there are n users,
and the preferred meeting position of each user Ui (for
i ∈ {1, 2, · · · , n}) is (xi, yi).

The main work of this paper is to obtain the output of the
above algorithm without revealing its inputs. In this paper, we
view (xi, yi) as the location privacy of User Ui. Clearly, in
our work, we only need to calculate n Euclidean distances
securely, but in [7] and [8], the number is n(n− 1)/2.

The following issue is how to utilize homomorphic encryp-
tion to achieve the ALFMLD algorithm (Alg.1). We use Ej
and Dj to denote the encryption algorithm and decryption
algorithm of a homomorphic cryptosystem under different
public and private keys, where the value of j is successively
1, 2, · · · as need. And we denote the encryption algorithm of
a broadcast cryptograph as E. The PPALFMLD algorithm
(Alg.2) provides a kind of secure realization of the ALFMLD

algorithm (Alg.1).
The inputs of the PPALFMLD algorithm (Alg.2) are the

request for determining a fair meeting location, which is
provided by users. The PPALFMLD algorithm (Alg.2) is the
response process, and the outputs of it are the response. Since
there are three encryption and decryption algorithms pairs (i.e.,
(E1, D1), (E2, D2), (E3, D3)) in the PPALFMLD algorithm
(Alg.2), we need three entities to realize the PPALFMLD

Algorithm 2 Private-Preserving FMLD (PPALFMLD).
Input: (E1(x1, y1)), · · · , (E1(xn, yn)); E2(x1), · · · , E2(xn);
E2(y1), · · · , E2(yn)
Output: the broadcast ciphertext of the fair meeting loca-
tion.

1: for i = 1 to n do
2: E1(sxi, syi)← E1(xi, yi); // s is a random noise
3: E2(sxi)← E2(xi);
4: E2(syi)← E2(yi);
5: end for
6: {E1(sx

p
(1)
1
, sy

p
(1)
1

), · · · , E1(sx
p
(1)
n
, sy

p
(1)
n

)}
←randomlypermute {E1(sx1, sy1), · · · , E1(sxn, syn)}

7: {E2(sx
p
(2)
1

), · · · , E2(sx
p
(2)
n

)}
←randomlypermute {E2(sx1), · · · , E2(sxn)}

8: {E2(sy
p
(3)
1

), · · · , E2(sy
p
(3)
n

)}
←randomlypermute {E2(sy1), · · · , E2(syn)}

9: for i = 1 to n do
10: sx

p
(2)
i

= D2(E2(sx
p
(2)
i

));
11: sy

p
(3)
i

= D2(E2(sy
p
(3)
i

));
12: end for
13: x′ =

∑n
i=1 sxp(2)i

/n, y′ =
∑n
i=1 syp(3)i

/n;
14: for i = 1 to n do
15: E1(Li) = CompuEuc(E1(sx

p
(1)
i
, sy

p
(1)
i

), E1(x′, y′), x′, y′);
16: end for
17: for i = 1 to n do
18: Li = D1(E1(Li));
19: end for
20: Lk = min{L1, · · · , Ln};
21: E3(k);
22: k = D3(E3(k)) and find E1(x

p
(1)
k

, y
p
(1)
k

);
23: E(D1(E1(x

p
(1)
k

, y
p
(1)
k

)));
24: return E(x

p
(1)
k

, y
p
(1)
k

);

algorithm (Alg.2) synergistically. We introduce a fog device
to achieve steps 1 to 8 and 22, and a cloud server to fulfill
steps 9 to 16, a service provider to implement steps 17 to 21
and 23, 24. Our system model is described in the following
section detailedly.

B. System Model

As shown in Fig.2, our system model comprises four types
of entities: (i) a set of users with mobile devices {U1, U2,
· · · , Un}, (ii) a fog device, denoted as FD, (iii) a cloud server,
indicated as CS, and (iv) a third-party location determination
service provider, signified as LDSP. Users provide the inputs of
the algorithm mentioned above; FD, CS, and LDSP achieve the
algorithm without knowing the inputs; and then LDSP return
the output of the algorithm to users, but LDSP doesn’t know
to whom the location belongs.

Each user can use his current location as his preferred
meeting location, or he can specify another location as his
preferred location. The position related to Ui is (xi, yi), of
which the values of coordinates are latitude and longitude.
Users can obtain accurate values of positions by using GPS.
After executing encryption operation, users send the encrypted
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Fig. 2. System model for fair meeting location determination.

preferred locations to FD. FD disturbs the received ciphertexts
and then forwards them to CS. After that, CS calculates the
geometric center of the candidate locations and the square of
Euclidean distances between candidate meeting locations and
the geometric center in a privacy-preserving way and then
transmits n encrypted Euclidean distances to LDSP. LDSP
determines the fair meeting location relied on the received
Euclidean distances and broadcasts the result to users.

C. Threat Model

In this paper, our primary goal is to protect the location
privacy of users while providing location service for them.
The following threat model is assumed:

• FD, CS, and LDSP are honest-but-curious, which honest-
ly follow the underlying scheme, but are curious about
the location privacy of mobile users. They try to learn
information about the position privacy of the users from
the received inputs, the intermediate results, and the
computed outputs. Users are also honest-but-curious, who
keep the system running smoothly and perhaps try to
learn the location preferences of other users from the
intermediate results and the response from LDSP. We
refer to such attacks as internal attackers’ passive attacks.
Furthermore, CS and LDSP can collude in an attempt to
obtain users’ location privacy. But CS or LDSP would not
cooperate with FD, and this is because if CS or LDSP
agree to collude with FD to obtain the information of
a user’s position, then FD would obtain some privacy
information of CS or LDSP, such as their private keys.
Users may cooperate between users for gaining the loca-
tion information of other users. We call such attacks as
internal attackers’ active attacks.

• External adversaries can eavesdrop the communication
to obtain the transmit reports and could intrude in the
databases of FD, CS, and LDSP.

Note that, since the users’ location privacy preservation is our
focus, some active attacks are beyond the scope of this work.

D. Design Goal

Under the above system model, our design goal is to develop
a lightweight privacy-preserving solution for determining a fair
meeting location for users using mobile devices. Specifically,
we should achieve the following three objectives:
• For users, their location information is sensitive and

should be protected. Hence, the proposed scheme should
guarantee against the attacking by internal or external
adversaries described in the above threat model.

• Although protecting users’ location privacy is one of our
goals, it should not reduce the service quality of a fair
meeting location determination service. Therefore, it is
necessary for our presented scheme to offer sound fair
meeting location determination service.

• Due to the limited resource of mobile devices, the pro-
posed scheme should not consume many resources of
mobile users. Besides, although a cloud server and a
providing location-based services server have generous
storage and computing resources, they will handle t-
housands of service requests at the same time. Hence,
computational costs and communication burden of server-
side should also be as less as possible.

E. Our Contribution

In summary, we make the following contributions:
• We present a novel method to determine a fair meeting

location in n candidate meeting locations. The main idea
is that firstly we find out the geometrical center of the
n meeting locations, and then calculate the Euclidean
distances between each candidate meeting location and
the geometric center respectively. We take the location
with the smallest Euclidean distance as the fair meeting
location. Our method only needs to compute n Euclidean
distances. Therefore the presented method can reduce
computation and communication costs expressively.

• We propose a privacy-preserving scheme, which lever-
ages homomorphic encryption and random permutation
skill to achieve the above method. In other words, the pro-
posed scheme can, in a private-preserving manner, obtain
the geometric center of n candidate meeting locations and
calculate the Euclidean distances between the geometric
center and each candidate meeting location.

• The proposed scheme is suitable for mobile user-centric
application service. The proposed scheme has linear
computation and communication complexity, and a cloud
server achieves its main computation tasks. The emerging
fog architecture can guarantee excellent user experience
[23]. Therefore we adopt a fog device in our system to
improve the quality of user experience.

IV. PRELIMINARIES

In this section, we give an overview for Paillier homo-
morphic encryption [24] which server as the basis of the
proposed scheme. The Paillier homomorphic cryptosystem
mainly consists of three algorithms:

Key Generation(κ): Given a security parameter κ, choose
two κ-bit prime numbers p and q. Let N = pq, λ = lcm(p−
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1, q−1), define a function L(µ) = (µ−1)/N , pick a random
generator g ∈ Z∗N2 , and calculate µ = (L(gλ mod N2))− 1.
Set the public key as PK = (N, g) and the private key as
SK = (λ, µ).

Encryption(m,PK): Pick a random number r ∈ Z∗N and
encrypt a message m ∈ ZN with the public key PK: C =
gm · rN mod N2.

Decryption(C, SK): Consider the ciphertext C = gm · rN
mod N2, and recover the corresponding message with the
private key SK: m = L(Cλ mod N2) · µ.

Paillier cryptosystem has the following homomorphic prop-
erties: E(m1, r1)E(m2, r2) = E(m1 + m2, r1 · r2) and
E(m1, r1)m2 = E(m1 ·m2, r

m2
1 ).

V. THE PROPOSED SCHEME

This section presents a lightweight privacy-preserving fair
meeting location determination scheme (FMLD). Fig.3 illus-
trates the prime process procedure of FMLD. In Fig.3, we
use E1, E2, and E3 denote Paillier encryption based on
public keys PKSP , PKCS and PKFD, respectively, and
respectively utilize D1, D2, and D3 denote Paillier decryption
based on private keys SKSP , SKCS and SKFD. We divide
the prime process into three parts: system initialization, service
request, and service response; the full description is as follows.

A. System Initialization

In this part, the participants’ public and private key pairs and
the system public parameters are generated. For each user Ui,
∀i ∈ {1, 2, · · · , n}, the system generates his public and private
key pair (pki, ski) for broadcast encryption, and generates
the LDSP’s public and private key pair (PKSP , SKSP ), the
CS’s public and private key pair (PKCS , SKCS), and the
FD’s public and private key pair (PKFD, SKFD) for Paillier
encryption respectively. Assume the position coordinates have
a value range of T , T << N and the Euclidean distance of
arbitrary two positions is smaller than N .

B. Service Request

In this part, users provide their preferred locations to request
LDSP return a fair meeting position without jeopardizing their
location privacy. The detailed processing is as the following
steps:

Step 1. Each user Ui, ∀i ∈ {1, 2, · · · , n}, randomly chooses
ri1, ri2, ri3, ri4, ri5, ri6 ∈ Z∗N and encrypts the coordinates
of his preferred position (xi, yi) with the LDSP’s public key
PKSP as follows:

Ci1 = gxi
2

· rNi1 mod N2 (1)

Ci2 = gN−xi · rNi2 mod N2 (2)

Ci3 = gyi
2

· rNi3 mod N2 (3)

Ci4 = gN−yi · rNi4 mod N2 (4)

Ci5 = gxi · rNi5 mod N2 (5)

Ci6 = gyi · rNi6 mod N2 (6)

Ui randomly chooses r′i1, r
′
i2 ∈ Z∗N and encrypts the coordi-

nates of his preferred position (xi, yi) with the CS’s public
key PKCS as follows:

C ′i1 = gxi · r′i1
N

mod N2 (7)

C ′i2 = gyi · r′i2
N

mod N2 (8)

Step 2. Ui sends Ci||Ci5||Ci6||C ′i1||C ′i2 to FD, where Ci =
Ci1||Ci2||Ci3||Ci4.

Note that Ci1, Ci2, Ci3, and Ci4 are utilized to compute
the Euclidean distance, C ′i1 and C ′i2 are used to calculate
the geometric center, Ci5 and Ci6 be leveraged to search the
corresponding ciphertext of the location determined.

C. Service Response

After receiving the ciphertexts of n users, FD firstly disturbs
these ciphertexts and then transmits them to CS. After receiv-
ing disturbed ciphertexts, CS first computes the geometric cen-
ter of n candidate locations, and then calculates the Euclidean
distances between the geometric center and each candidate
position in the encrypted domain, finally sends n encrypted
Euclidean distances to LDSP. LDSP obtains n Euclidean
distances by decrypting the corresponding ciphertexts with
its private key SKSP , and then determines the minimum
Euclidean distance and sends the corresponding index to
FD. According to the index, FD returns the corresponding
coordinates ciphertexts of the chosen location to LDSP. At last,
LDSP utilizes a broadcast encryption scheme to re-encrypt the
decrypted location, and then broadcasts the ciphertext to users.
The detailed processing is as the following steps:

Step 3. After receiving n users’ ciphertexts, FD first adds
noise to Ci1, Ci2, Ci3, Ci4, C ′i1, C ′i2, and then respectively
disturbs them according to three different random permuta-
tions.

Step 3.1. FD picks a random number s that satisfies s2 ·
4T 2 < N and calculates:

C̄i1 = Cs
2

i1 = gx̄
2
i · r̄Ni1 mod N2 (9)

C̄i2 = Csi2 = g(s·N−x̄i) · r̄Ni2 mod N2 (10)

C̄i3 = Cs
2

i3 = gȳ
2
i · r̄Ni3 mod N2 (11)

C̄i4 = Csi4 = g(s·N−ȳi) · r̄Ni4 mod N2 (12)

C̄ ′i1 = C ′i1
s

= gx̄i · r̄′Ni1 mod N2 (13)

C̄ ′i2 = C ′i2
s

= gȳi · r̄′Ni2 mod N2 (14)

where x̄i = s · xi, ȳi = s · yi, r̄i1 = rs
2

i1 , r̄i2 = rsi2, r̄i3 = rs
2

i3 ,
r̄i4 = rsi4, r̄′i1 = r′

s
i1, r̄′i2 = r′

s
i2.

Step 3.2. FD randomly chooses three permutations
of {1, 2, · · · , n}: {p(1)

1 , p
(1)
2 , · · · , p(1)

n }, {p(2)
1 , p

(2)
2 , · · · , p(2)

n }
and {p(3)

1 , p
(3)
2 , · · · , p(3)

n }.
According to the random permutation {p(1)

1 , p(1)
2 , · · · , p(1)

n },
FD shuffles {C̄1, C̄2, · · · , C̄n} to obtain { ¯̄C1, ¯̄C2, · · · , ¯̄Cn}
where C̄i = C̄i1||C̄i2||C̄i3||C̄i4, ¯̄Ci = C̄

p
(1)
i

. In other words,
¯̄Ci1 = C̄

p
(1)
i 1

, ¯̄Ci2 = C̄
p
(1)
i 2

, ¯̄Ci3 = C̄
p
(1)
i 3

, ¯̄Ci4 = C̄
p
(1)
i 4

.

According to the random permutation {p(2)
1 , p(2)

2 , · · · , p(2)
n },

FD disturbs {C̄ ′11, C̄ ′21, · · · , C̄ ′n1} to obtain { ¯̄C ′11, ¯̄C ′21, · · · ,
¯̄C ′n1} where ¯̄C ′i1 = C̄ ′

p
(2)
i 1

.
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Fig. 3. The Prime Process Procedure of FMLD.

According to the random permutation {p(3)
1 , p(3)

2 , · · · , p(3)
n },

FD perturbs {C̄ ′12, C̄ ′22, · · · , C̄ ′n2} to obtain { ¯̄C ′12, ¯̄C ′22, · · · ,
¯̄C ′n2} where ¯̄C ′i2 = C̄ ′

p
(3)
i 2

.

FD sends ( ¯̄C1 || ¯̄C2 || · · · || ¯̄Cn, ¯̄C ′11 ||
¯̄C ′21 || · · · ||

¯̄C ′n1,
¯̄C ′12 ||

¯̄C ′22 || · · · ||
¯̄C ′n2) to CS. Besides, FD stores Ci5, Ci6,

and {p(1)
1 , p

(1)
2 , · · · , p(1)

n }, and then removes {p(2)
1 , p(2)

2 , · · · ,
p

(2)
n }, {p(3)

1 , p(3)
2 , · · · , p(3)

n } and s.
Step 4. After receiving the ciphertexts from FD, CS

achieves the computation of Euclidean distance as follows:
Step 4.1. CS decrypts ¯̄C ′11 ||

¯̄C ′21 || · · · ||
¯̄C ′n1 and ¯̄C ′12 ||

¯̄C ′22

|| · · · || ¯̄C ′n2 by carrying out the Paillier decryption algorithm
under its private key SKCS , in a result, obtains {¯̄x′1, ¯̄x′2, · · · ,
¯̄x′n} and {¯̄y′1, ¯̄y′2, · · · , ¯̄y′n} where ¯̄x′i = x̄

p
(2)
i

= s · x
p
(2)
i

,
¯̄y′i = ȳ

p
(3)
i

= s · y
p
(3)
i

.
Step 4.2. CS calculates the geometric center: x′ = (¯̄x′1 +

¯̄x′2 + · · · + ¯̄x′n)/n and y′ = (¯̄y′1 + ¯̄y′2 + · · · + ¯̄y′n)/n.
Step 4.3. CS randomly chooses r̄1, r̄2 ∈ Z∗N and encrypts

x′
2
, y′

2 with the LDSP’s public key PKSP :

C̄x′2 = gx
′2
· r̄N1 mod N2 (15)

C̄y′2 = gy
′2
· r̄N2 mod N2 (16)

Step 4.4. CS computes the Euclidean distances as follows:
¯̄CLi = ¯̄Ci1 · ¯̄Cx

′

i2 · C̄x′2 · ¯̄Ci3 · ¯̄Cy
′

i4 · C̄y′2

= g
¯̄xi

2+(sN−¯̄xi)·x′+x′2+¯̄yi
2+(sN−¯̄yi)·y′+y′2 ·RNi mod N2

= g
¯̄Li ·RNi mod N2

(17)
where ¯̄xi = x̄

p
(1)
i

= s · x
p
(1)
i

, ¯̄yi = ȳ
p
(1)
i

= s · y
p
(1)
i

, Ri =

¯̄ri1 · ¯̄ri2x
′
· r̄1 · ¯̄ri3 · ¯̄ri4y

′
· r̄2 = r̄

p
(1)
i 1
· r̄x′

p
(1)
i 2
· r̄1 · r̄p(1)i 3

· r̄y
′

p
(1)
i 4
·

r̄2 = (r
p
(1)
i 1

)
s2 · (r

p
(1)
i 2

)
sx′
· r̄1 · (rp(1)i 3

)
s2 · (r

p
(1)
i 4

)
sy′ · r̄2,

¯̄Li = L̄
p
(1)
i

= s2 · L
p
(1)
i

, where L
p
(1)
i

represents the square of
the Euclidean distance between the raw location (x

p
(1)
i
, y
p
(1)
i

)

and the geometric center (x, y).

Step 4.5. CS transmits ¯̄CL1
|| ¯̄CL2

|| · · · || ¯̄CLn
to LDSP.

Step 5. Upon receiving the ciphertexts from CS, LDSP
determines the appropriate meeting location as follows:

Step 5.1. LDSP decrypts the received ciphertexts by carry-
ing out the Paillier decryption algorithm under its private key
SKSP , in a result, obtains ¯̄L1, ¯̄L2, · · · , ¯̄Ln.

Step 5.2. LDSP lookups the minimum value in { ¯̄L1,
¯̄L2, · · · , ¯̄Ln} by adopting some kind of sorting algorithm
or searching algorithm, assume the minimum is ¯̄Lk where
k ∈ {1, 2, · · · , n}.

Step 6. LDSP returns the response of users location service
request as follows:

Step 6.1. LDSP encrypts the index k with PKFD and sends
the ciphertext to FD.

Step 6.2. Upon receiving the ciphertext, FD decrypts it
with SKFD to obtain the index k, and then checks the
random permutation {p(1)

1 , p(1)
2 , · · · , p(1)

n } with k to gain the
corresponding value p(1)

k . Note that p(1)
k may be equal to k,

which has a probability of 1
n . And then, FD sends (C

p
(1)
k 5

,
C
p
(1)
k 6

) to LDSP.
Step 6.3. LDSP decrypts (C

p
(1)
k 5

, C
p
(1)
k 6

) by carrying out the
Paillier decryption algorithm under its private key SKSP to
obtain the fair meeting location (x

p
(1)
k

, y
p
(1)
k

), and then LDSP
encrypts (x

p
(1)
k

, y
p
(1)
k

) with the group users’ public pk1, pk2,
· · · , pkn carrying out the broadcast encryption BEnc() [25]
and broadcasts the ciphertext to U1, U2, · · · , Un.

Instantiation: we leverage an example in Fig.4 to illus-
trate how our scheme FMLD works. To begin with, five
users generate six Paillier ciphertexts with PKSP and two
Paillier ciphertexts with PKCS , and then send these cipher-
texs to FD. Upon receiving these ciphertexts, FD embed-
s noise to {C1, C2, C3, C4, C5}, {C ′11, C

′
21, C

′
31, C

′
41, C

′
51},

{C ′12, C
′
22, C

′
32, C

′
42, C

′
52} and shuffles them according to

three random permutations respectively and sends them to CS.
Here, we assume the three random permutations are {p(1)

1 ,
p

(1)
2 , p(1)

3 , p(1)
4 , p(1)

5 } = {2, 4, 1, 5, 3}, {p(2)
1 , p(2)

2 , p(2)
3 ,
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p
(2)
4 , p(2)

5 } = {4, 5, 1, 3, 2}, {p(3)
1 , p(3)

2 , p(3)
3 , p(3)

4 , p(3)
5 }

= {3, 5, 2, 1, 4}. Finally, FD stores (C15, C16), (C25, C26),
(C35, C36), (C45, C46), (C55, C56), and {p(1)

1 , p(1)
2 , p(1)

3 , p(1)
4 ,

p
(1)
5 }, and deletes the noise and {p(2)

1 , p(2)
2 , p(2)

3 , p(2)
4 , p(2)

5 },
{p(3)

1 , p(3)
2 , p(3)

3 , p(3)
4 , p(3)

5 }. Upon receiving the ciphertexts
came from FD, CS first calculates the geometric center and
then computes five Euclidean distances on Paillier ciphertexts,
finally sends the results { ¯̄CL1 ,

¯̄CL2 ,
¯̄CL3 ,

¯̄CL4 ,
¯̄CL5} to LDSP.

LDSP decrypts these ciphertexts with its private key SKSP ,
and discovers ¯̄L4 is minimum, after that sends k = 4 to
FD. Note the message sent here should be ciphertext of
k, which is not shown in Fig.4 for the sake of simplicity.
According to k = 4, FD checks the random permutation
{p(1)

1 = 2, p
(1)
2 = 4, p

(1)
3 = 1, p

(1)
4 = 5, p

(1)
5 = 3} and obtains

p
(1)
k = p

(1)
4 = 5, and then returns (C55, C56) to LDSP. After

decrypting (C55, C56), LDSP broadcasts the chosen location
by using the broadcast encryption BEnc() [25].

VI. CORRECTNESS ANALYSIS

In this section, we analyze whether the following e-
quation holds: ALFMLD((x1, y1), (x2, y2), · · · , (xn, yn)) =
ALFMLD((¯̄x1, ¯̄y1), (¯̄x2, ¯̄y2), · · · , (¯̄xn, ¯̄yn)), where ¯̄xi = x̄

p
(1)
i

= s · x
p
(1)
i

, ¯̄yi = ȳ
p
(1)
i

= s · y
p
(1)
i

(i = 1, 2, · · · , n), {p(1)
1 ,

p
(1)
2 , · · · , p(1)

n } is a random permutation of {1, 2, · · · , n}.
According to Step 4.1, we have

x′ = s · 1

n

n∑
i=1

x
p
(2)
i

= s · 1

n

n∑
i=1

xi = s · x

y′ = s · 1

n

n∑
i=1

y
p
(3)
i

= s · 1

n

n∑
i=1

yi = s · y
(18)

where {p(2)
1 , p(2)

2 , · · · , p(2)
n } and {p(3)

1 , p(3)
2 , · · · , p(3)

n } are two
random permutations of {1, 2, · · · , n}. According to Eq.17,
we can obtain
¯̄Li = (¯̄xi − x′)2 + (¯̄yi − y′)2 = (x̄

p
(1)
i
− x′)2 + (ȳ

p
(1)
i
− y′)2

= (s · x
p
(1)
i
− s · x)2 + (s · y

p
(1)
i
− s · y)2

= s2 · ((x
p
(1)
i
− x)2 + (y

p
(1)
i
− y)2) = s2 · L

p
(1)
i

(19)
Assume ALFMLD((¯̄x1, ¯̄y1), · · · , (¯̄xn, ¯̄yn)) = k, that is ¯̄Lk =
min{ ¯̄L1, · · · , ¯̄Ln}. We have

¯̄Lk = s2 · L
p
(1)
k

= min{s2 · L
p
(1)
1
, · · · , s2 · L

p
(1)
n
}

⇒ L
p
(1)
k

= min{L
p
(1)
1
, · · · , L

p
(1)
n
}

⇒ Lk = min{L1, · · · , Ln}

(20)

Therefore, ALFMLD((x1, y1), (x2, y2), · · · , (xn, yn)) = k.
The equation ALFMLD((x1, y1), (x2, y2), · · · , (xn, yn)) =
ALFMLD((¯̄x1, ¯̄y1), (¯̄x2, ¯̄y2), · · · , (¯̄xn, ¯̄yn)) holds.

VII. SECURITY ANALYSIS

Following our design goals, we discuss how the presented
scheme (FMLD) realizes the location privacy preservation of
users.

Theorem 1: Passive attacks launched by internal adversaries
can be resisted in the proposed scheme.
Proof: Since users first encrypt their location coordinates with
the LDSP’s public key PKSP and the CS’s public key PKCS

and then send these ciphertexts to FD, FD cannot obtain any
user’s location information without LDSP’s private key SKSP

and the CS’s private key SKCS .
It is clear that CS cannot gain any user’s location informa-

tion from these ciphertexts encrypted by the LDSP’s public
key PKSP sent from FD. CS can obtain n x-coordinates
and n y-coordinates which have been perturbed according to
different random permutations of {1, 2, · · · , n} and have been
blinded by a random number s. Therefore, CS obtains nothing
information about the location of users.

Uponing decrypting received ciphertexts, LDSP can gain
n plaintexts each of which is s2 times of the square of
the Euclidean distance between one user’s raw location and
the geometric center. Besides, these ciphertexts have been
perturbed based on a random permutation of {1, 2, · · · , n}.
Hence, LDSP gains nothing information about the locations of
users through these inputs and the intermediate results. Finally,
LDSP obtains the specific coordinate values of the fair meeting
location through decrypting the ciphertext comes from FD, but
LDSP cannot identify this location belongs to which user and
only knows that the place belongs to one of the n users.

Consequently, FMLD achieves the location privacy preser-
vation of users under passive attacks launched by internal
adversaries.

Theorem 2: Active attacks launched by internal adversaries
can be resisted in the proposed scheme.
Proof: In this attack model, CS and LDSP may share each
other’s inputs and intermediate results each other. LDSP can
use its private key SKSP to decrypt ( ¯̄C1 || ¯̄C2 || · · · || ¯̄Cn)
received by CS. Hence, LDSP and CS have the following
knowledge: ((s·x

p
(1)
i

)2, −s·x
p
(1)
i

, (s·y
p
(1)
i

)2, −s·y
p
(1)
i

), s·x
p
(2)
i

,
s·y

p
(3)
i

, for all i ∈ {1, 2, · · · , n}. LDSP and CS cannot gain the
raw coordinate values of users’ locations since unknowing the
random number s and cannot identify ((s · x

p
(1)
i

)2, −s · x
p
(1)
i

,

(s · y
p
(1)
i

)2, −s · y
p
(1)
i

) belong to which user because {p(1)
1 ,

p
(1)
2 , · · · , p(1)

n } is a random permutation of {1, 2, · · · , n}.
Some users also probably cooperate for obtaining other

users’ location information. The knowledge these users share
is their location and the fair meeting location. Hence they
try their best to guess whose position is the fair location.
Assume there are n′ (n′ < n) users conspire together. If the
fair meeting location belongs to one of these conspiring users,
they cannot obtain anything information about other users’
location; otherwise, they only know the fair meeting location
belongs to one of the other n − n′ users. Conceivably, the
probability that these conspiring users successfully guess is
n−n′

n · 1
n−n′ = 1

n . Therefore, the users’ collusion cannot help
them gain any information about other users’ locations.

In summary, FMLD achieves the location privacy preser-
vation of users under active attacks launched by internal
adversaries.

Theorem 3: Confidentiality of users’ locations against ex-
ternal adversaries can be guaranteed in the proposed scheme.
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Fig. 4. An Instantiation of FMLD.

Proof: As users’ location coordinates are encrypted with the
LDSP’s public key PKSP and the CS’s public key PKCS ,
there is a confidentiality guarantee against eavesdropping
communication and intruding in the databases by external
adversaries.

VIII. PERFORMANCE EVALUATION

In this section, we study the results of controlled experi-
ments and compare the performance of our scheme FMLD
with the ElGamal-Paillier-based PPFRVP scheme [7] and the
ORFMLD scheme [8] in terms of computation and commu-
nication costs. FMLD adopts Paillier cryptosystem, PPFRVR
uses Paillier and ElGamal cryptosystems, and ORFMLD uti-
lizes BGN and ElGamal cryptosystems.

A. Computation Costs Analysis

The process of the encryption and decryption of Paillier,
BGN, ElGamal cryptosystems can be divided into some basic
computations: the exponentiation, multiplication operations in
Z∗N2 , Z∗N and Z∗p′ , respectively, and Pollard’s lambda method.
Note that p′ is a large prime and the system parameter of
ElGamal. We set |N | = |p′|, so the computation time of one
exponentiation operation in Z∗N is equal that of one exponenti-
ation in Z∗p′ . We use Te1 to denote the computational time of an
exponentiation operation in Z∗N , and denote the computational
times of an exponentiation operation in Z∗N2 , an multiplication
operation in Z∗N and that in Z∗N2 , a multiplication in G, and a
pairing operation by Te2 , Tm1 , Tm2 , Tm, Tb, respectively. And,
we denote the computation time of using Pollard’s lambda
method to compute the discrete logarithm by Tp.

Computation cost of PPERVP: Each user carries out n+ 1
times Paillier encryption operations, 2 times ElGamal encryp-
tion operations, n times Pailliers decryption operations, and

n − 1 ElGamal decryption operations. Therefore, each user’s
computational overhead is (3n+ 2)Te2 + (2n+ 1)Tm2 + (n+
3)Te1 + (n + 1)Tm1 , the total user-side computation cost is
n(3n+ 2)Te2 +n(2n+ 1)Tm2

+n(n+ 3)Te1 +n(n+ 1)Tm1
.

The server takes n(n−1)
2 ∗ 4 = 2n(n− 1) times modular mul-

tiplication operations on ElGamal ciphertexts, and n(n−1)
2 ∗ 5

times modular multiplication operations and n(n−1)
2 ∗ 2 =

n(n − 1) times modular exponential operations on Paillier
ciphertexts. Therefore, the total server-side computation cost
is 2n(n− 1)Tm1

+ 5n(n−1)
2 Tm2

+ n(n− 1)Te2 .
Computation cost of ORFMLD: Each user carries out 3

times BGN encryption operations and 3 ElGamal encryption
operations. Therefore, each user’s computational overhead
is 12Te1 + 3Tm + 3Tm1 , the total user-side computation
cost is 12nTe1 + 3nTm + 3nTm1. CC caries out 3n times
ElGamal decryption operations, n times BGN encryption
operations, and n(n−1)

2 ∗ 4 = 2n(n − 1) times bilinear
map operations. MLDS takes n(n−1)

2 times BGN decryption
operations. Therefore, the total server-side computation cost is
n(n+9)

2 Te1 + 3nTm1 + nTm + 2n(n− 1)Tb + n(n−1)
2 Tp.

Computation cost of FMLD: Each user carries out 8
times Paillier encryption operations. Therefore, each user’s
computational overhead is 16Te2 + 8Tm2

, the total user-side
computation cost is 16nTe2 + 8nTm2. FD takes 6n times
modular exponential operations on Paillier ciphertexts and one
time Paillier decryption operation. CS caries out 2n Paillier
decryption operations, 2 times Paillier encryption operations,
and 5n times modular multiplication operations on Paillier
ciphertexts. LDSP executes n times Paillier decryption opera-
tions and one time Paillier encryption operation. Therefore, the
total server-side computation cost is (9n+7)Te2+(8n+4)Tm2 .

Since the multiplications in Z∗N2 , Z∗N and Z∗p′ are negligibly
small compared to the exponentiation and pairing operations,
in this paper, the computational cost of these multiplication
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Fig. 5. Comparison of Computation Costs.

TABLE III
RESPONSE TIME OF FMLD

User Number 10 20 30 40 50
Response Time (S) 0.91 1.76 2.61 3.46 4.31
User Number 60 70 80 90 100
Response Time (S) 5.15 6.00 6.85 7.70 8.55

operations is negligible. In other words, we omit Tm1 and
Tm2

in the comparison analysis of computation costs. Table II
shows the comparison of the computation overhead. Te1 , Te2 ,
Tm, Tb, and Tp are constants, and the relationships between
them are constant multiples. Therefore, according to Table
II, it is clear that, along with increasing users’ number, the
computation cost growth rate of PPERVP is O(n2), that of
ORFMLD is O(n2), and that of our scheme FMLD is O(n). In
other words, FMLD is more efficient in terms of computation
cost.

To further illustrate this, we utilize JPBC Library [26] to
conduct our experiment on a 3.10-GHz Inter Pentium G3240
processor, 4GB RAM, and 64-bit operating system, computing
machine. For Paillier and ElGamal encryptions, we adopt
1024-bit secret keys. For BGN encryption, we choose 160-bit
secret key and assume the message space consists of integers
in the set {0, 1, · · · , T}, where |T | << 512, the expected time
is around O(

√
T ) when using the Pollard’s lambda method

[27], here we let |T | = 13. Specifically, we have the result
Te1 = 3.66ms, Tm = 0.06ms, Te2 = 9.37ms, Tb = 17.65ms.
When Tp = 0.02ms. Based on Table II, we depict the variation
of computational costs of n in Fig.5. From Fig.5, it is clear
that the computation cost of FMLD grows linearly with the
number of users, and the growth of computation cost of FMLD
is slower than that of PPERVP and ORFMLD.

Moreover, because there is no interaction between users
and servers in response processing of FMLD, we can take
the total server-side computation cost as the response time
of service. Table III shows some response times of FMLD.
From Table III, we can find when there are 100 users to
require determining a meeting location, the response time is
about 8.55 seconds, which is marginally tolerable for users.
When there are 40 users, the response time is about 3.46
seconds, which is terrific for users. In FMLD, the computation
cost of each user is about 1.5 seconds, which is suitable for
resource-restricted mobile devices. Hence, our FMLD scheme
is efficient and practical.

TABLE IV
COMMUNICATION OVERHEADS OF PPEPVP, ORFMLD, AND FMLD

PPERVP [7] User→LDS(1st) LDS→User User→LDS(2nd)
n(2LP + 4LE) 2n(n− 1)LE n(n− 1)LP

ORFMLD [8] User→CC C→MLDS
n(3LB + 6LE) n(n− 1)LB

FMLD User→FD FD→CS CS→LDSP LDSP→FD
n(6LP + 4LE) 4n(LP +LE) nLP 1LE

TABLE V
COMPARISON OF COMMUNICATION OVERHEAD

PPERVP [7] ORFMLD [8] FMLD
(n2 +n)(LP +2LE) (n2 + 2n)LB + 6nLE 11nLP +(8n+1)LE 
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B. Communication Overhead Analysis

We set the security parameter κ = 512 for Paillier and
BGN encryptions and set the security parameter κ′ = 1024
for ElGamal encryption. Therefore, the length of a Paillier
ciphertext is LP = 2048 bits, that of a BGN ciphertext is
LB = 1024 bits, and that of an ElGamal ciphertext is LE =
1024 bits. Communication overheads of PPERVP, ORFMLD,
and FMLD are shown in Table IV. The total communication
overhead comparison of the three schemes is shown in Table
V. Because LP , LB , and LE are constants, according to
Table V, the growing rates of communication overhead of
PPERVP and ORFMLD along with increasing users’ number
are O(n2), that of our scheme FMLD is O(n). Therefore,
FMLD is more efficient in terms of communication overhead.
Fig.6 demonstrates the overall communication overhead of
PPERVP, ORFMLD, and FMLD. From Fig.6, it is clear that
the communication overhead of FMLD is close to that of
ORFMLD, but along with the increasing number of users, the
advantage in terms of communication cost of FMLD are more
visible.

IX. CONCLUSION

In this paper, we propose a novel solution to determinate
a fair meeting location. In our method, there are only n
Euclidean distances need to be calculated. To realize our
approach without disclosing n user’s location privacy and
consider the limited resource of mobile devices, we propose a
lightweight privacy-preserving fair meeting location determi-
nation scheme (namely FMLD). We synergistically employ
Paillier homomorphic encryption and random permutation
method to achieve FMLD. FMLD has linear computation and
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TABLE II
COMPARISON OF THE COMPUTATION COST

User-side Computation Cost Server-side Computation Cost Total Computation Cost
PPERVP [7] (3n2 + 2n)Te2 + (n2 + 3n)Te1 (n2 − n)Te2 (4n2 + n)Te2 + (3n2 + n)Te1

ORFMLD [8] 12nTe1 + 3nTm
n(n+9)

2
Te1 + nTm + 2n(n− 1)Tb +

n(n−1)
2

Tp
n(n+33)

2
Te1 + 4nTm + 2n(n − 1)Tb +

n(n−1)
2

Tp

FMLD 16nTe2 + 8nTm2 (9n+ 7)Te2 + (8n+ 4)Tm2 (25n+ 7)Te2 + (16n+ 4)Tm2

communication complexity, which thanks to FMLD only needs
to calculate n Euclidean distances securely. The security analy-
sis confirms FMLD’s security properties. The security analysis
confirms FMLD’s security properties. Note that, FMLD is for
a static application scene. In other words, we do not consider
users’ movement after submitting their candidate locations.
Different movement speeds of users can lead the fair meeting
location to be changed. Future research will discuss how
to extend the current scheme to be suitable for a dynamic
application scene.
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