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Abstract  

Amyotrophic lateral sclerosis (ALS) involves the rapid degeneration of upper and lower motor 

neurons leading to weakening and paralysis of voluntary movements. Mutations in copper-zinc 

superoxide dismutase 1 (SOD1) are a known genetic cause of ALS and the SOD1G93A mouse 

has been used extensively to investigate molecular mechanisms in ALS. In recent years 

evidence suggests that ALS and frontotemporal dementia (FTD) form a spectrum disorder 

ranging from motor to cognitive dysfunctions. Thus, we tested male and female SOD1G93A mice 

for the first time prior to the onset of debilitating motor impairments in behavioural domains 

relevant to both ALS and FTD. 

SOD1G93A males displayed reduce locomotion, exploration and increased anxiety-like 

behaviours compared to control males. Intermediate-term spatial memory was impaired in 

SOD1G93A females, while long-term spatial memory deficits as well as lower acoustic startle 

response and prepulse inhibition were identified in SOD1G93A mice of both sexes compared to 

respective controls. Interestingly, SOD1G93A males exhibited an increased conditioned cue 

freezing response. Nosing behaviours were also elevated in both male and female SOD1G93A 

when assessed in social paradigms. 

In conclusion, SOD1G93A mice exhibit a variety of sex-specific behavioural deficits beyond 

motor impairments supporting the notion of an ALS-frontotemporal spectrum disorder. Thus, 

SOD1G93A mice may represent a useful model to test the efficacy of therapeutic interventions 

on clinical symptoms in addition to declining motor abilities.  

 

Keywords: Amyotrophic lateral sclerosis, cognition, dementia, SOD1G93A, behaviour, 

memory, prepulse inhibition  
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1. Introduction 

Amyotrophic lateral sclerosis (ALS), also known as motor neuron disease, is a rapidly 

progressing neurodegenerative disease which leads to muscular atrophy via the degeneration 

of both upper and lower motor neurons. Mechanistically, ALS has been linked to oxidative 

stress (Barber & Shaw, 2010; Ferrante et al., 1997), protein misfolding (Piao et al., 2003; 

Wang, Johnson, Agar, & Agar, 2008), protein homeostasis imbalance, dysfunction of the 

serotonergic (M. R. Turner et al., 2005) and dopaminergic system (Przedborski et al., 1996; 

Vogels, Veltman, Oyen, & Horstink, 2000); changes which extend beyond the motor cortex. 

Indeed, degeneration and dysfunction of the frontal cortex has been established in ALS cases 

(Sharon Abrahams et al., 2005; Usman et al., 2011), as well as abnormalities in the basal 

ganglia (Machts et al., 2015) and mid-cingulate cortex (Sudharshan et al., 2011). These changes 

are consistent with the cognitive deficits that have been observed in ALS patients, including 

deficits in executive function and verbal fluency (Abrahams, Leigh, & Goldstein, 2005; 

Abrahams et al., 2000). The presentation of cognitive and other behavioural impairment in 

ALS further supports studies showing genetic overlap between FTD and ALS (DeJesus-

Hernandez et al., 2011), and the idea that these disorders make up the ALS-frontotemporal 

spectrum disorder, which includes motor and cognitive symptoms (Strong et al., 2017).  

The majority of ALS cases are sporadic (90-95%), the remaining 5-10% of ALS cases are 

inherited or familial (fALS). Accounting for approximately 20% of fALS, mutations in copper-

zinc superoxide dismutase 1 (SOD1) are one of the primary genetic causes of fALS with over 

100 different mutations in this protein currently identified (Parton et al., 2002; Bradley J Turner 

& Talbot, 2008). SOD1 is a ubiquitous cytoplasmic enzyme that catalyzes the breakdown of 

reactive oxygen species (ROS) preventing harmful oxidative stress to neurons (Rosen et al., 

1993). It is also noteworthy that SOD1G93A associated ALS cases appear to share similar disease 

Justin Yerbury
The metastability of the proteome of spinal motor neurons underlies their selective vulnerability in ALS
JJ Yerbury, L Ooi, IP Blair, P Ciryam, CM Dobson, M Vendruscolo
Neuroscience Letters

Spinal motor neuron protein supersaturation patterns are associated with inclusion body formation in ALS
P Ciryam, IA Lambert-Smith, DM Bean, R Freer, F Cid, GG Tartaglia, ...
Proceedings of the National Academy of Sciences 114 (20), E3935–E3943



pathology as sporadic ALS (Synofzik, Fernández-Santiago, Maetzler, Schöls, & Andersen, 

2010).  

The most commonly used mouse model for investigating SOD1 mutations has been the 

SOD1G93A transgenic mouse model (Gurney et al., 1994). SOD1G93A transgenic mice 

overexpress human mutant SOD1 (glycine to alanine at residue 93) and develop a relatively 

early disease onset at approximately 90-110 days (Gurney et al., 1994), after which there is 

rapid motor function decline with transgenic mice typically surviving until around 4-5 months 

of age (Zang & Cheema, 2002). SOD1G93A transgenic mice also develop ALS-relevant 

pathology such as progressive gliosis, loss of motor neurons and exhibit a rapid decline in body 

mass (Gurney et al., 1994). Copy number variation of the mutant SOD1 transgene can alter the 

severity of the phenotype (Acevedo-Arozena et al., 2011) and cage enrichment is also known 

to attenuate the motor phenotype of this mouse model (Stam et al., 2008).  

Importantly, the impact of the SOD1G93A mutation on cognitive and other behavioural domains 

beyond motor deficits has been largely overlooked.  In addition, the effect of sex on the 

behavioural phenotype of SOD1G93A transgenic mice has mostly been ignored despite the fact 

that gender effects have been found in human ALS patients (McCombe & Henderson, 2010) 

and that male SOD1G93A mice have a more rapid progression of motor dysfunction compared 

to females (Choi et al., 2008). Thus, in the present study, we tested male and female SOD1G93A 

transgenic mice in behavioural domains not considered previously and started testing before 

the onset of debilitating motor impairments.  

  



2. Materials and methods 

2.1 Animals 

Experimental animals were male and female heterozygous Superoxide dismutase 1 G93A 

mutant (SOD1G93A) and wild type-like (WT) control littermates bred at the Australian 

BioResources (ABR Moss Vale, Australia). Genotyping was performed post weaning 

(postnatal day 21) by polymerase chain reaction amplification. Breeding colonies at ABR were 

housed in individually ventilated (IVC) cages (Type Mouse Version 1; Airlaw, Smithfield, 

Australia; air change: 90-120 times per hour averaged; passive exhaust ventilation system). 

The test mice were transported to the animal facility at the Western Sydney University (WSU) 

Campbelltown campus, where the mice were housed in groups of 2-3 in IVC cages (GM500 

Green, Techniplast Australia Pty Ltd, Rydalmere, Australia) under a 12:12 hour light:dark 

cycle (white light illumination from 0900 and red light illumination from 2100) using corncob 

bedding (PuraCob Premium: Able Scientific, Perth, Australia), tissue and ‘crinkle nest’ for 

nesting (with no enriching structures), and provided water and standard lab chow ad-libitum. 

Cages were changed fortnightly. For the social preference test, sex-matched, adult A/J mice 

from the Animal Resources Centre (ARC: Cunning Vale, Australia) were sent to the WSU 

animal facility and used as social conspecifics. 

All research and animal care procedures were approved by the Western Sydney University 

Animal Care and Ethics Committee (#A11748) and were in accordance with the Australian 

Code of Practice for the Care and Use of Animals for Scientific Purposes. 

 

2.4 Behavioural tests 

Mice were tested in a number of behavioural paradigms with relevance to ALS and FTD prior 

to the expected onset of motor impairments to avoid motor deficits becoming a major 



confounder of test outcomes. Test biography and test age of the two test cohorts are outlined 

in Table 1.  

2.4.1 Accelerod (Cohort 1) 

To assess motor functions including balance as published previously (Karl, Pabst, & von 

Horsten, 2003), mice were first trained on the accelerod apparatus (ENV-574M, MED 

Associates Inc., St Albans, VT, USA) at a fixed speed of 12 rpm for two minutes, this training 

was repeated a total of three times to ensure that the mice were able to stay on the rod without 

falling off at this speed. Training was only performed prior to the first test. On the test day, 

mice were placed on the accelerod after which an accelerating program was started (4-40 rpm 

over 300 sec). The time the mouse spent successfully running on top of the rotating rod was 

recorded. This was done twice with an ITI of 1 hour, the average latency to loop/fall was 

analysed.  

2.4.2 Pole test (Cohort 1) 

To assess motor functions including grip strength mice were placed (facing upwards) on a 

vertical pole (diameter: 1 cm; length: 51 cm) as described previously (Karl et al., 2003). The 

time to turn around, and the time to reach the bottom of the pole was recorded. A 120s cut-off 

time was given to mice which did not turn or reach the bottom. 

2.4.3 Open Field (OF) (Cohort 1) 

To assess locomotive, explorative, and anxiety-related behaviours, mice were placed into an 

infrared photobeam controlled OF test chamber (MED Associates Inc., St Albans, VT, USA) 

for 30 minutes as described previously (Shang, Talmage, & Karl, 2017). The test area (43.2 cm 

x 43.2 cm) was divided into a central and peripheral zone (MED software coordinates for 

central zone: 3/3, 3/13, 13/3, 13/13); total distance travelled, and vertical activity were 

automatically measured. Total centre zone time and the ratio of central distance travelled vs 

total distance travelled were used to identify anxiety-related behaviours. 



2.4.4 Y-Maze (Cohort 1) 

The Y-maze was used to assess intermediate-term spatial memory [intermediate-term memory 

differentiated from short-term memory as described (Stough, Shobe, & Carew, 2006; 

Taglialatela, Hogan, Zhang, & Dineley, 2009)]. The apparatus was Y-shaped (three arms 7.5 

cm wide, 22 cm long, 19 cm high – at 120 degrees to each other) with external visual cues 

placed on the wall above the apparatus similar to that previously published (Olaya, Heusner, 

Matsumoto, Shannon Weickert, & Karl, 2018). In the first trial mice were placed in the centre 

of the Y-maze with one arm closed off, and allowed to explore for 10 min. After 30 min, mice 

were returned to the apparatus with all three arms open and allowed to explore for a further 10 

min. Entries and distance travelled in the ‘novel’ and ‘familial’ arms were recorded by Any-

MazeTM tracking software.  

2.4.5 Social Preference Test (SPT) (Cohort 1) 

The SPT was used to measure social approach behaviour (i.e. sociability) and social recognition 

memory (Moy et al., 2004) as previously published with minor alterations (Cheng, Low, 

Logge, Garner, & Karl, 2014). The apparatus consists of three connected chambers (16.5 cm x 

19 cm per chamber): a central chamber with clear Plexiglas dividing walls with square passages 

(height: 4 cm and width: 4 cm). One circular enclosure (height: 16 cm, width: 8 cm; bars spaced 

1 cm apart) was placed into each outer chamber to allow contact between mice but prevent 

fighting. Fresh bedding was added to all chambers prior to each test trial. Test animals were 

isolated for 1 hour prior to testing in a clean cage with fresh nesting material. Test mice were 

then allowed to habituate to the apparatus for 5 minutes before being removed from the test 

apparatus prior to the sociability trial. For the test of sociability, an unfamiliar social 

conspecific (i.e. a sex-matched, adult A/J mouse), was placed in one of the two opponent outer 

chambers in a quasi-randomised manner before the test mouse was return to the apparatus and 

allowed to explore the whole apparatus freely for 10 minutes. Finally, test animals were 



observed in a 10 minutes social recognition test trial in which the test mouse was again removed 

from the apparatus while a second unfamiliar ‘novel’ opponent A/J mouse was placed in the 

previously empty chamber. The test mouse was placed into the apparatus and allowed to 

explore either the familiar mouse (from the previous trial) or the novel, unfamiliar mouse for 

another 10 minutes. Any-MazeTM tracking software was used to determine the time the test 

mice spent in the different chambers during the trial. 

2.4.6 Fear Conditioning (FC) (Cohort 1) 

FC results from the association of a previously neutral stimulus (e.g. a tone) with an aversive 

stimulus (e.g. a foot shock) (Owen, Logue, Rasmussen, & Wehner, 1997). The test was carried 

out as previously published (Olaya et al., 2018). The FC task occurred over 3 days. On the first 

day (conditioning trial), mice were placed in a test chamber (NIR-022MD, ENV-005FPU-M, 

MED Associates Inc., St Albans, VT, USA) with a vanilla scent (Queen™ imitation vanilla 

essence) cue for 7 minutes. After an initial 2 min period, an 80dB conditioned stimulus (CS) 

was presented for 30 seconds co-terminating with a 0.4 mA 2 second foot shock (unconditioned 

stimulus). The same tone/foot shock pairing occurred again 2 min later. On the second day of 

testing (context trial), mice were returned to the apparatus for 7 minutes with the vanilla scent 

cue and no tone. On the third day of testing (cue trial), mice were placed in an altered 

environment (i.e. a triangular plastic insert added to the chamber to change its overall shape 

and scent removed) for 9 minutes. At time = 2 mins the CS was continuously presented for 5 

minutes with the test concluding 2mins after termination of the CS presentation. Total time 

spent freezing in all tests was measured using the video-freezeTM software (software settings: 

threshold = 15).  

2.4.6 Prepulse inhibition (PPI) (Cohort 1) 

PPI was used to test for sensorimotor gating (the attenuation of the startle response by a non-

startling stimulus) (Paylor & Crawley, 1997). The PPI protocol was carried out as previously 



described (Cheng et al., 2014). The test protocol used a startle pulse of 120dB, three different 

prepulse intensities (74, 82 and 86dB) and inter stimulus intervals of 32, 64, 128 and 256 ms.  

2.4.7 Novel object recognition test (NOR) (Cohort 2) 

Object recognition memory in the NOR is demonstrated by the animal’s ability to distinguish 

between familiar and unfamiliar objects [rodents have an innate preference towards novelty 

(Dere, Huston, & De Souza Silva, 2007)]. The NOR was conducted over 2 days in a similar 

protocol previously published (Cheng et al., 2014). On day 1, mice were habituated to the 

empty test arena (35 x 35 x 30 cm grey plastic). On day 2 (test day - two trials), mice were 

placed into the arena with two identical objects for 10 min (LEGO Duplo animals or blocks) 

for test trial 1. After a 20 min inter-trial interval, one of the now ‘familiar’ objects from test 

trial 1 was replaced with a ‘novel’ object (i.e. a LEGO Duplo animal different to test trial 1), 

and the mouse was allowed to explore the familial and novel object for 10 min. The objects 

and their locations were counterbalanced across genotypes. Video footage of each trial was 

recorded using AnyMazeTM tracking software, and the time spent nosing and rearing on the 

objects were quantified by an experimenter blind to the genotypes of the animals. The 

percentage of time spent nosing + rearing towards the novel object indicated object recognition 

memory (% novel object recognition) and was calculated using (novel object nosing + rearing 

time) / (novel + familiar object nosing + rearing time) × 100. 

2.4.8 Social interaction (SI) (Cohort 2) 

The social interaction test was employed to measure spontaneous social behaviour between a 

pair of unfamiliar mice as previously published (Olaya et al., 2018). One day prior to testing 

A/JArc mice were habituated to the test area for 10 min. Test animals were placed inside a grey 

plastic arena (35 x 35 x 30 cm) together with an unfamiliar, sex-matched adult A/JArc standard 

opponent mouse and allowed to explore the environment and each other freely for 10 min. 

Frequency and duration of active socio-positive behaviours including nosing, ano-genital 



sniffing, allo-grooming, following and climbing over/under were scored manually. Nosing was 

scored when the test mouse had its snout directed towards the A/JArc mouse and was 1 cm or 

less away from the standard opponent’s body. Total active social time was calculated as total 

time spent engaging in any of the socio-positive behaviours listed above. 

2.4.9 Cheeseboard (Cohort 2) 

The cheeseboard (a dry land equivalent of the Morris water maze) was used to test spatial 

learning and memory (Llano Lopez, Hauser, Feldon, Gargiulo, & Yee, 2010). Details of the 

test protocol are described in Cheng et. al (2014). Briefly, mice were deprived of food 

beginning 1 day prior to habituation and kept at 85-90% starting bodyweight during testing. 

Mice were habituated to a flat 110 cm diameter board for two days (3 x 2 min trials, 15 min 

ITI). During training, mice were placed on a 110 cm diameter board containing 32 wells (8 x 

4 well rows radiating from the centre of the board), one well containing the food reward of 

diluted sweetened condensed milk. The time for the mouse to find the reward was recorded. If 

the mice did not find the reward before the 120 s cut-off they were placed near the well (and 

given a time of 120 s). This was repeated 3 time per day with an ITI of 15 min. Training was 

conducted over 7 days in males and 9 days in females to allow sufficient training of control 

mice. On the 8th day in males and 10th day in females a probe trial was conducted where no 

wells contained the food reward. Mice were allowed to explore the board once for 2 min. The 

time spent and distance travelled in 1 of 8 zones containing the target well was recorded by 

Any-MazeTM tracking software.  

 

2.5 Statistical analysis 

SOD1G93A mice have a sex-dependent onset of motor degeneration (Choi et al., 2008) and we 

detected main sex effects as well as ‘sex’ by ‘genotype’ interactions in major behavioural 

parameters (exploration, anxiety-like behaviours and fear-associated freezing; outlined in 



Supplementary Table 1). Thus, all data were split by sex and two-way repeated measures (RM) 

ANOVAs were utilized to analyse the main between subject effect of ‘genotype’ and the within 

subject effects of ‘time’ (OF, CB, FC), ‘prepulse’, ‘startle pulse’, ‘startle block’ (PPI) and ‘cue’ 

(FC) in each sex. A ‘genotype’ main effect was further investigated in CB and PPI by splitting 

data by either training day or prepulse and using a one-way ANOVA to compare WT and 

SOD1G93A. One sample t-tests were also used for Y-maze, SPT, NOR and CB probe to 

determine whether the percentage of time or distance involved in a specific behavior was above 

chance levels. Differences were regarded as statistically significant if p < 0.05. Data are shown 

as means ± standard error of means (SEM). F-values and degrees of freedom are presented for 

ANOVAs and significant genotype effects versus WT are shown in figures and tables as ‘*’ 

(*p < 0.05, **p < 0.01 and ***p < 0.0001) Significant ‘time’ by ‘genotype’ interactions are 

shown in figures as ‘+’ (+p < 0.05, ++p < 0.01). All analyses were performed in IBM SPSS 

Statistics v24.  

  



3. Results 

Two-way RM ANOVA found a significant effect of ‘sex’ on bodyweight [F(1,34) = 115.383; 

p < 0.0001], with males having a higher bodyweight compared to females (Supplementary 

Figure 1A-B). Split by sex, a ‘time’ by ‘genotype’ interaction in both male and female 

bodyweight was found [male: F(1,85) = 34.63; p < 0.0001; female: F(1,85) = 29.08; p < 

0.0001], with SOD1G93A mice failing to gain weight from PND96 onwards (Supplementary 

Figure 1A-B). One-way ANOVA identified a significant difference in bodyweight between 

WT and SOD1G93A from PND125 onwards in males and PND96 onwards in females 

(Supplementary Figure 1A-B). 

 

3.1 Motor functions 

A ‘sex’ by ‘genotype’ interaction effect was detected in the ‘latency to turn’ on the pole test at 

PND74, [F(1,34) = 4.87; p = 0.034] where SOD1G93A males needed longer to turn compared to 

WT males while SOD1G93A females showed a reduced latency to turn compared to WT females 

(Table 2). However, split by sex, no main effect of ‘genotype’ was found in the pole test when 

analysing latencies to turn and to reach the bottom in either sex at either age (all p’s > 0.05) 

(Table 2). 

In the accelerod task no significant effect of genotype on motor performance of male mice was 

found at either test age (all p’s > 0.05). However, one-way ANOVA found a significant effect 

of ‘genotype’ in female mice [PND74: F(1, 18) = 8.543; p = 0.009 – PND94: F(1, 18) = 11.725; 

p = 0.003], as SOD1G93A transgenic females showed poorer motor co-ordination compared to 

WT females at both test ages (Table 2). 

 

3.2 Locomotion and exploration 



In the open field, two-way ANOVA revealed a significant ‘sex’ by ‘genotype’ effect on the 

total distance travelled [F(1,34) = 6.916; p = 0.013] (Table 3). SOD1G93A males travelled less 

than WT males while SOD1G93A females travelled a similar distance compared to WT females. 

Split by sex, one-way ANOVA revealed a significant effect of ‘genotype’ on total distance 

travelled [F(1,17) = 17.328; p = 0.001] and OF exploration [F(1,17) = 12.31; p = 0.003] with 

male SOD1G93A transgenic mice travelling less and showing less rearing compared to their WT 

littermates (Table 3). However, habituation to the OF arena was similar, as no ‘time’ by 

‘genotype’ interaction was found in male mice (p > 0.05) (Figure 1A).  

In females a ‘time’ by ‘genotype’ interaction described a moderately slower habituation to the 

OF in SOD1G93A mice when compared to WT [F(5,85 = 2.57; p = 0.032] (Figure 1B) which 

appeared to be most evident in the first 10 min of the test. Total distance travelled and rearing 

frequency of females were not different between genotypes (all p’s > 0.05; Table 3). 

 

3.3 Anxiety 

Two-way ANOVA found a significant effect of ‘sex’ on OF centre time [F(1,34) = 12.754; p 

= 0.001] and centre zone distance ratio [F(1,34) = 4.32; p = 0.045], with males spending more 

time and travelling relatively further in the centre zone compared to females. Split by sex, one-

way ANOVA found a main effect of ‘genotype’ on OF centre time [F(1,17) = 10.17; p = 0.005] 

and centre distance ratio [F(1,17) = 5.38; p = 0.033] with SOD1G93A transgenic males exhibiting 

more anxiety-like behaviours than controls (Table 3). No genotype effects were evident in 

females (all p’s > 0.05, Table 3).  

 

3.4 Spatial memory 

Three-way RM ANOVA found a significant effect of ‘sex’ on the latency to find the reward in 

the first trial of CB training [F(1,48) = 8.822; p = 0.005] with females taking significantly 



longer to find the reward compared to males (Figure 2C-D). Thus, all cognitive data were split 

by sex. 

3.4.1 Y-maze: There were no main effects of ‘genotype’ on the total distance travelled in the 

novel arm, or total entries into the novel arm in either male or female mice (all p’s > 0.05; 

Table 4). One sample t-tests revealed that males regardless of genotype had a preference for 

the novel arm (all p’s for percentage novel arm entries and distance < 0.05; Table 4). However, 

SOD1G93A transgenic females failed to develop such a preference [WT - entries: t(10) = 4.53, p 

= 0.001; WT - distance: t(10) = 4.47, p = 0.001; SOD1G93A - distance: t(7) = 2.95, p = 0.106; 

SOD1G93A - entries: t(7) = 2.15, p = 0.068] (Table 4). 

3.4.2 Cheeseboard (CB): Two-way RM ANOVA revealed a main effect of ‘genotype’ in both 

male [F(1,21) = 4.464; p = 0.047] and female [F(1,27) = 5.197; p = 0.031] mice, with SOD1G93A 

transgenic mice exhibiting an overall higher latency to find the food reward compared to WT 

when averaged across the three daily training trials (Figure 2A-B). Importantly, a ‘time’ by 

‘genotype’ interaction in female mice [F(8,216) = 3.493; p = 0.001] indicated that SOD1G93A 

transgenic females acquired the task slower than their WT littermates, in particular at the later 

stages of training (training day 7, 8 and 9) (Figure 2B). This task acquisition impairment was 

not observed in male mice (‘time’ by ‘genotype’: p > 0.05). Interestingly, examining the first 

trial of each training day as a measure of long-term memory (i.e. 24-h test delay), ‘time’ by 

‘genotype’ interactions in both male [F(6,126) = 3.564; p = 0.003] and female [F(8,216) = 

4.453; p < 0.0001] mice were evident highlighting a learning deficit in both sexes of SOD1G93A 

mice (Figure 2C-D). Again, this was evident in the later stages of training (training day 7, 8, 9 

in females, and 5, 6 and 7 in males) (Figure 2C-D). This deficit was specific to long-term 

memory as analysing the average latency to find the reward during trails two and three (15 min 

ITI) did not reveal any significant differences in either sex (all p’s > 0.05; data not shown). In 



the probe trial, none of the mice regardless of sex or genotype showed a preference for the 

target zone (one sample t-test: all p’s > 0.05; Table 4). 

Average distance travelled and speed were also evaluated: the average distance travelled during 

training was not significantly different across experimental groups (all p’s > 0.05; data not 

shown). However, SOD1G93A males did have a lower average speed across training days 

(average of three trials) when compared to WT [F(1,21) = 4.578; p = 0.044] (Supplementary 

Table 2). Average speed when considering trial 1 only was not significantly different between 

SOD1G93A and WT in either males or females (all p’s > 0.05) (Supplementary Table 2).  

 

3.5 Social domains 

3.5.1 Sociability and social recognition memory: SOD1G93A transgenic males failed to show a 

preference for the chamber containing a mouse [t(9) = 0.939, p = 0.372] whereas sociability 

was intact in WT mice [t(8) = 4.303, p = 0.003]  (Figure 3A). All females regardless of genotype 

showed intact sociability, i.e. having a preference for the chamber containing a mouse [WT: 

t(9) = 4.014, p = 0.003; SOD1G93A: t(8) = 3.276, p = 0.014] (Figure 3B). All mice exhibited 

intact social recognition memory as they all had a preference for nosing a novel mouse (all p’s 

< 0.05) (Figure 3C-D).  

3.5.2 Social interaction: SOD1G93A transgenic males showed WT-like levels of total active 

social interaction time whereas transgenic females engaged for longer in social behaviours 

compared to respective WT females [F(1,27) = 5.594; p = 0.025] (Table 4). Analysing social 

behaviours individually, a ‘genotype’ effect was observed in both male [F(1,21) = 4.645; p = 

0.043] and female mice [F(1,27) = 5.122; p = 0.032] with SOD1G93A transgenic mice spending 

more time nosing the standard opponent mouse compared to control mice (Table 4). 

 

3.6 Prepulse inhibition (PPI) 



3.6.1 Startle response and habituation: Two-way RM ANOVA showed that all mice responded 

to increasing startle pulse intensities [‘startle pulse’: males: F(2,34) = 36.193; p < 0.0001 – 

females: F(2,32) = 54.393; p < 0.0001]. However, an interaction of ‘startle intensity’ and 

‘genotype’ in both sexes [males: F(2,34) = 13.172; p < 0.0001 – females: F(2,32) = 5.124; p = 

0.012]  suggested that this correlation was significantly weaker in SOD1G93A transgenic mice 

(Figure 4A-B). Furthermore, a significantly weaker acoustic startle response to 120dB was 

observed in SOD1G93A mice [males: F(1,18) = 16.09; p = 0.001, females: F(1,17) = 6.292; p = 

0.023] (Figure 4A-B). Startle habituation to repeated presentation of 120dB startle blocks was 

evident in all mice regardless of sex and genotype (data not shown). 

3.6.2 Prepulse inhibition: Mice of all experimental groups responded to increasing prepulse 

intensities [RM ANOVA for ‘prepulse’: males: F(2,34) = 138.568; p < 0.0001 - females: 

F(2,32) = 61.860; p < 0.0001] (Figure 4C-D). However, an interaction of ‘prepulse intensity’ 

and ‘genotype’ indicated that this response was impaired in SOD1G93A transgenic males 

[F(2,34) = 4.619; p = 0.017], a phenomenon not seen in females (‘prepulse intensity’ by 

‘genotype’: p > 0.05). Male and female SOD1G93A mice had overall lower PPI compared to WT 

[‘genotype’ effect: male - F(1,17) = 8.431; p = 0.01, female - F(1,16) = 18.791; p = 0.001] 

(Figure 4C-D). Split by prepulse intensity, SOD1G93A males had significantly lower percent PPI 

at 82dB [F(1,18) = 8.47; p = 0.01] and  86dB [F(1,18) = 13.34; p = 0.002] when compared to 

WT (Figure 4C). Female SOD1G93A had lower percent PPI at 74dB [F(1,17) = 6.69; p = 0.02], 

82dB [F(1,17) = 17.98; p = 0.001] and 86dB [F(1,17) = 34.96; p < 0.0001] (Figure 4D). 

 

3.7 Fear conditioning 

Three-way RM ANOVA found an effect of ‘sex’ on contextual freezing time [F(1,34) = 6.861; 

p = 0.013], where females spent significantly longer freezing compared to males (Figure 5A-

B). Thus, data were split by sex. 



3.7.1 Conditioning: Two-way RM ANOVA detected a main effect of ‘time’ on freezing [males: 

F(6,102) = 9.208; p < 0.0001, females: : F(6,102) = 13.565; p < 0.0001]  with all mice 

increasing freezing behaviour as a response to the foot shocks (Figure 5A-B). Importantly, a 

‘time’ by ‘genotype’ interaction was found in males [F(6,102) = 3.05; p = 0.009], with 

SOD1G93A transgenic males freezing increasing more over time compared to WT males (Figure 

5A). 

3.7.2 Context: Split by sex, two-way RM ANOVA comparing the total freezing in the first 2 

min of the conditioning test (i.e. baseline before tone / shock exposure) to the first 2 min of the 

context test found a significant effect of ‘test’ with all mice increasing freezing in response to 

the context [male: F(1,17) = 20.49; p < 0.0001, female: F(1,17) = 22.39; p < 0.0001] (Table 3). 

Importantly, two-way RM ANOVA found an interaction of ‘time’ and ‘genotype’ in contextual 

freezing across 1-min blocks in males with SOD1G93A transgenic mice showing an increase in 

freezing across time compared to WT males [F(6,102) = 2.40; p = 0.033], in particular in the 

later stages of contextual conditioning testing (i.e. 6th and 7th minute; Figure 5C). This effect 

of SOD1G93A was absent in female mice (p > 0.05) (Figure 5D). 

3.7.3 Cue: Two-way RM ANOVA for average freezing prior and during cue presentation found 

a significant effect of ‘cue’ on freezing in both males [F(1,17) = 51.585; p < 0.0001] and 

females [F(1,16) = 79.726; p < 0.0001], indicating all mice responded to the cue (Figure 5E-

F). However, a ‘cue’ by ‘genotype’ interaction in males indicated that SOD1G93A transgenic 

males showed an increased freezing response to the cue when compared to WT males [F(1,17) 

= 15.173; p = 0.01] (Figure 5E). In line with this, SOD1G93A transgenic males also exhibited 

higher overall freezing levels during cue presentation [F(1,17) = 14.48; p = 0.001], a 

phenomenon absent in female mice (p > 0.05; Table 5).  

 

3.8 Object recognition memory 



Novel object: A significant preference for novel object exploration was found in WT and 

SOD1G93A transgenic mice of both sexes (all p’s < 0.05; Supplementary Figure 1A-B). 

  



4. Discussion 

We have investigated the behavioural impact of the SOD1G93A mutation in both male and 

female mice. SOD1G93A mice exhibit motor degeneration beginning at approximately 120 days 

of age, and therefore the majority of behavioural phenotyping was carried out in younger mice, 

before motor dysfunction could significantly impact mobility during testing. The SOD1G93A 

mutation increased nosing social interaction, attenuated the acoustic startle response, impaired 

prepulse inhibition to acoustic startle and impaired long-term spatial memory in the 

cheeseboard task in both male and female mice. In some cases, the cognitive changes were sex-

dependent with only female SOD1G93A mice showing a spatial memory deficit in the Y-maze. 

Compared to WT littermates, male SOD1G93A mice had decreased locomotion and exploration, 

and increased anxiety in the open field. SOD1G93A males also showed elevated freezing in 

response to fear conditioning compared to WT; these changes were not observed in female 

SOD1G93A mice. 

Locomotion and exploration (rearing) in the open field was lower in male SOD1G93A mice 

compared to WT. A previous study did not find a hypo-locomotive phenotype in younger 

(PND56) SOD1G93A males (Quarta, Bravi, Scambi, Mariotti, & Minciacchi, 2015), suggesting 

this phenotype is progressive. Importantly, the impact of motor impairments on this result can 

be largely excluded as SOD1G93A males did not show a deficit in accelerod or pole test 

performance when compared to WT males at the age of OF testing. These findings may be 

linked to early dysfunction in the nucleus accumbens, a region known to be involved with 

locomotion and motivation (Pijnenburg, Honig, & Van Rossum, 1975; Pulvirenti, Berrier, 

Kreifeldt, & Koob, 1994). Interestingly, reduced dopamine levels have been found in the 

nucleus accumbens of end stage SOD1G93A mice (at 140 days of age but not at 28 days) and 

may explain the reduced locomotor and exploratory behaviors in younger SOD1G93A males. 

The OF phenotype of SOD1G93A females was not affected, potentially due to protective nature 
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of female sex hormones on neurological processes in female SOD1G93A (Choi et al., 2008), e.g. 

the neuroprotective properties of 17-β estradiol (Culmsee et al., 1999; Singer, Figueroa-Masot, 

Batchelor, & Dorsa, 1999).  

Anxiety-like behaviors were elevated in male SOD1G93A mice in the OF in line with a previous 

study on presymptomatic SOD1G93A male mice (Quarta et al., 2015). In that study an observed 

loss of hippocampal inhibitory GABAergic interneurons was identified as a potential 

mechanism (Quarta et al., 2015), and deactivation of these neurons has indeed been shown to 

elevate anxiety in rats (Temel, Blokland, & Lim, 2012).. Fear-associated freezing was also 

elevated in SOD1G93A males compared to WT in fear conditioning, context and cue trials.  

SOD1G93A female mice did not exhibit an anxiety-like OF although it is known that estrogen 

increases anxiety and fear-related behaviours (Morgan & Pfaff, 2001), which is consistent with 

the lower OF centre zone time and elevated freezing time detected in our females compared to 

males. Importantly, anxiety is observed in ALS patients as well (Kurt, Nijboer, Matuz, & 

Kübler, 2007; Vignola et al., 2008).  

Male and female SOD1G93A mice showed a long-term spatial memory deficit, whereas the 

intermediate-term task acquisition performance (i.e. using a 15 min ITI in the CB) was intact 

in all mice. Interestingly, SOD1G93A females also exhibited a spatial memory deficit in the Y-

maze which uses a similar ITI. A previous study using the Barnes maze also identified an 

initially slower spatial memory learning in SOD1G93A male mice, however, SOD1G93A learnt as 

quickly as WT in proceeding training trials (Quarta et al., 2015). The motivation factor of the 

Barnes maze (i.e. fear) is significantly different compared to the CB (i.e. hunger), which may 

explain the differences observed. Memory deficits in SOD1G93A mice may arise from 

hippocampal dysfunction, as the region has previously been identified as having elevated 

oxidative stress levels and altered calcium signaling in these mice (Cha et al., 2000; Chung et 
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al., 2005). Hippocampal degeneration is also evident in ALS patients (Takeda, Uchihara, Arai, 

Mizutani, & Iwata, 2009), as are deficits in memory (Mantovan et al., 2003).  

Social interaction nosing time was robustly elevated in both SOD1G93A male and female mice, 

an observation described for the first time in SOD1G93A mice. In younger SOD1G93A mice 

(PND82), sociability was not elevated above WT levels in the social preference test, suggesting 

increased social interaction develops later in the disease progression. Increased striatal cAMP  

has been shown to increase social interaction in cyclic nucleotide phosphodiesterase 10A 

deficient mice without altering anxiety-like behaviours (Sano, Nagai, Miyakawa, Shigemoto, 

& Yokoi, 2008), however, this is likely to be related to elevated dopamine signaling. This is 

inconsistent with finding in SOD1G93A mice (Kostic et al., 1997) and human ALS (Vogels et 

al., 2000) which describe a depression of the dopaminergic system. Additionally, apathy is 

commonly observed in ALS (Caga et al., 2018; Radakovic et al., 2016), inconsistent with the 

increased social interaction phenotype in our SOD1G93A mice. Further studies are required to 

elucidate the unexpected social interaction phenotype of SOD1G93A mice. 

In agreement with our findings, lower acoustic startle has previously been observed in 

SOD1G93A mice (Acevedo-Arozena et al., 2011). This may be attributed to muscle weakness 

that precedes severe motor degeneration. Our study also shows a robust PPI deficit in both 

male and female mice that was previously not observed in a low copy number variant of the 

SOD1G93A mouse (Acevedo-Arozena et al., 2011). To our knowledge this is the first description 

of a PPI deficit in the SOD1G93A mouse model, ALS mouse model or human ALS. Serotonin 

receptor modulation impacts on PPI in mice, with 5HT1A activation increasing PPI, and 5HT1B 

activation decreasing PPI (Dulawa, Gross, Stark, Hen, & Geyer, 2000). Changes in the 

serotonergic system are also implicated in ALS with reduced 5HT1A binding in ALS patients 

(M. R. Turner et al., 2005) and delayed motor phenotype in SOD1G93A mice treated with 

serotonin precursors (B. J. Turner, Lopes, & Cheema, 2003). These results give further support 
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to potential serotonergic dysfunction in SOD1G93A mice and ALS, and highlights a neurological 

deficit that requires further investigation in human patients. 

In summary, behavioural deficits are evident in SOD1G93A mice prior to the onset of a severe 

motor phenotype, some of which resemble phenotypes in other mouse models of 

neurodegeneration with dementia. Furthermore, sex-dependent findings suggest that sex 

hormones may play a neuroprotective role to ameliorate the presentation of these phenotypes 

in female SOD1G93A. To conclude, SOD1G93A mice show several behavioural deficits related to 

symptoms observed in human ALS patients, therefore examining altered behavioural 

phenotypes (prior to onset of significant motor dysfunction) may provide a useful, non-invasive 

biomarker of therapeutic efficacy in future studies.  
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6. Figure legends 

 

Figure 1A-B: Locomotor behaviour in a 30-min open field test. A-B) Ambulatory distance 

[cm] across 5-min blocks, for male (A) and female (B) SOD1G93A and wild type-like (WT) mice 

(n = 9-10 per group). Data are shown as mean ± SEM.  

 

Figure 2A-D:  Long-term and intermediate-term spatial learning and memory in the 

cheeseboard task. A-B) The latency to find a food reward averaged across three trials per day 

and C-D) the first trial per day in male (A,C) and female (B,D) SOD1G93A and wild type-like 

(WT) mice (n = 11-17 per group). A significant effect of ‘sex’ was found in the latency to find 

the reward average across three trials per day (p = 0.005). Data are shown as mean ± SEM. 

Two-way ANOVA ‘time’ by ‘genotype’ interaction ++p < 0.01, +++p < 0.0001, one-way 

ANOVA ‘genotype’ effect *p < 0.05, **p < 0.01, ***p < 0.0001. 

 

Figure 3A-D: Sociability and social recognition memory test. A-B) Percent time spent in a 

chamber containing a standard opponent (sex matched AJ) vs an empty chamber, and C-D) 

percent time spent nosing a novel standard opponent vs time spent nosing a familiar mouse in 

male (A,C) and female (B,D) SOD1G93A and wild type-like (WT) mice (n= 9-10 per group). 

Data are shown as mean ± SEM. One sample t-test vs 50% chance *p < 0.05, **p < 0.01, ***p 

< 0.0001. 

 

Figure 4A-D: Acoustic startle and prepulse inhibition. A-B) Acoustic startle response to 120 

dB [arbritary units] and C-D) prepulse inhibition [%] at 74, 82 and 86 dB prepulse intensities 

averaged across inter stimulus intervals are shown for male (A,C) and female (B,D) SOD1G93A 

and wild type-like (WT) mice (n = 9-10 per group). Data are shown as mean ± SEM. Two-way 



ANOVA ‘startle pulse/prepulse’ by ‘genotype’ interaction +p < 0.05, +++p < 0.0001. One-way 

ANOVA *p < 0.05, **p < 0.01, ***p < 0.0001.  

 

Figure 5A-F: Fear associated learning during fear conditioning. A-B) Conditioning, C-D) 

context test and E-F) cue test in male (A,C,E) and female (B,D,F) SOD1G93A and wild type-

like (WT) mice (n = 9-10 per group). An effect of ‘sex’ was found in contextual freezing time 

(p = 0.013). Data are shown as mean ± SEM. Two-way ANOVA ‘time’ by ‘genotype’ 

interaction +p < 0.05 Two-way ANOVA ‘cue’ by ‘genotype’ interaction ++p < 0.01. One-way 

ANOVA *p < 0.05.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

Table 1: The 

order of 

behavioural testing and age of SOD1G93A and wild type-like (WT) mice. Cohort 1: n = 9-10 per 

group; Cohort 2: n = 11-17 per group. 

  

 Behavioural test Age  

(postnatal days ± 4) 

C
oh

or
t 1

  

Motor function (Accelerod, pole test) 74  

Open field 76 

Y maze 80 

Social preference 82 

PPI 86 

Motor function (Accelerod, pole test) 94 

Fear conditioning 96 

Bodyweight 96-138 

C
oh

or
t 2

  

Novel object recognition 116 

Social interaction 120 

Cheeseboard 131 



Table 2 Motor co-ordination in male and female SOD1G93A and wild type-like (WT) mice (n = 

9-10 per group). A ‘sex’ by ‘genotype’ interaction effect was found in ‘time to turn’ on the 

pole test at postnatal day (PND) 74 (p = 0.034). Data are shown as mean ± SEM. One-way 

ANOVA **p < 0.01 vs WT of the corresponding sex. 

  

  WT Male SOD1 Male WT female SOD1 female 

PND74 Accelerod 

latency [s] 
164.9 ± 9.36 161.1 ± 7.44 182.5 ± 9.64 146.7 ± 5.27** 

PND94 Accelerod 

latency [s] 
172.2 ± 13.8 146.5 ± 10.4 181.6 ± 10.7 134.6 ± 6.43** 

PND74 Pole test – 

latency to turn [s] 
16.2 ± 4.9 29.2 ± 6.5 26.1 ± 7.1 12.8 ± 3.3 

PND94 Pole test – 

latency to turn [s] 
11.1 ± 3.2 17.2 ± 5.0 10.2 ± 3.1 7.8 ± 2.3 

PND74 Pole test – 

latency to bottom 

[s] 

24.5 ± 4.9 36.2 ± 5.7 31.0 ± 6.2 21.6 ± 3.7 

PND94 Pole test – 

latency to bottom 

[s] 

16.9 ± 3.4 23.7 ± 4.9 16.2 ± 3.4 15.0 ± 3.5 



Table 3: Open field exploration, locomotion and anxiety measures in male and female 

SOD1G93A and wild type-like (WT) mice (n = 9-10 per group). A ‘sex’ by ‘genotype’ effect 

was found in open field distance (p = 0.013). A significant effect of ‘sex’ was found in centre 

time (p = 0.001) and centre zone distance ratio (p = 0.045). Data are shown as mean ± SEM. 

One-way ANOVA *p < 0.05 **p < 0.01 vs WT of the corresponding sex. 

 

  

  WT Male SOD1 Male WT female SOD1 female 

Open field 

Rearing frequency [n] 
371.2 ± 22.8 307.4 ± 15.6** 279.5 ± 27.0 240.3 ± 31.8 

Open field 

Total distance [cm] 
10626 ± 820 6392 ± 622** 8162 ± 610 7448 ± 572 

Open field 

Centre time [s] 
306.1 ± 21.5 204.4 ± 23.3** 174.4 ± 19.9 177.9 ± 23.4 

Open field  

Centre distance ratio [%] 
32.6 ± 2.1 26.2 ± 1.8* 25.6 ± 2.2 24.4 ± 2.3 



Table 4: Spatial memory and sociability measures in male and female SOD1G93A and wild 

type-like (WT) mice (n = 9-17 per group). Data are shown as mean ± SEM. One-way 

ANOVA *p < 0.05 vs WT of the corresponding sex. One sample t-test vs 33.3% chance +p < 

0.05, ++p < 0.01, +++p < 0.0001. 

 

  

  WT Male SOD1 Male WT female SOD1 female 

Y-maze 
(percentage distance 

in novel arm [%]) 
  

44.1 ± 2.4++ 40.7 ± 2.1++ 42.9 ± 2.1++ 40.1 ± 3.6 

Y-maze 
(percentage entries 
into novel arm [%]) 

  

42.1 ± 1.6++ 40.0 ± 2.2+ 43.0 ± 2.1++ 40.1 ± 3.1 

Cheeseboard probe 
(percentage time in 

target zone [%]) 
  

16.1 ± 3.7 21.6 ± 5.2 16.0 ± 3.0 21.1 ± 6.7 

Social interaction 
Total active social 

time 
[s] 

70.6 ±  5.9 78.0 ±  5.2 59.8 ±  3.6 78.0 ±  7.6* 

Social interaction 
Nosing time 

[s] 
34.6 ±  5.6 53.2 ±  6.6* 35.4 ±  4.0 52.4 ±  6.9* 



Table 5: Freezing time in the first 2 min of fear conditioning and context trial. Total freezing 

in contextual fear and conditioned cued fear (during cue presentation) in SOD1G93A and wild 

type-like (WT) mice (n = 9-10 per group). Data are shown as mean ± SEM. RM ANOVA main 

effect of ‘genotype’ **p < 0.01 vs WT of corresponding sex.  

 

 

 

 

 

 

Figure 1 

 

  WT Male SOD1 Male WT female SOD1 female 

Fear conditioning  

First 2 min 

conditioning  freezing 

[s] 

0.13 ± 0.13 0.10 ± 0.10 0 ± 0 0.29 ± 0.19 

Fear conditioning 

First 2 min context 

freezing [s] 

5.78 ± 2.12 7.53 ± 1.96 11.95 ± 3.0 14.4 ± 3.0 

Fear conditioning 

Total context freezing 

[s] 

18.4 ± 7.9 38.9 ± 8.0 54.9 ± 10.7 58.5 ± 13.9 

Fear conditioning 

Cue presentation 

freezing [s] 

25.3 ± 9.3 76.3 ± 14.5** 106.8 ± 9.1 83.1 ± 17.8 
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Figure 2 
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Supplementary Figure 1 
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Supplementary Table 1: P values from two-way ANOVA analysing main effects of ‘sex’ 

and ‘sex’ by ‘genotype’ in SOD1G93A
 mice compared to WT. n.s = not significant. 



Behavioural test Sex effect Sex*genotype effect 

Accelerod PND 74 n.s n.s 

Accelerod PND 94 n.s n.s 

Pole test total time PND 74 n.s n.s 

Pole test total time PND 94 n.s n.s 

Pole test time to turn PND 74 n.s 0.034 

Pole test time to turn PND 94 n.s n.s 

Open field locomotion n.s 0.013 

Open field rearing 0.002 n.s 

Open field centre time 0.001 0.023 

Open field centre distance ratio 0.045 0.223 

Y maze percent novel arm distance n.s n.s 

Y maze percent novel arm entries n.s n.s 

Sociability n.s n.s 

Social recognition memory n.s n.s 

Total active social interaction n.s n.s 

Social interaction nosing time n.s n.s 

Acoustic startle response n.s n.s 

Percent PPI n.s n.s 

Freezing time conditioning 0.018 n.s 

Freezing time context 0.013 n.s 

Freezing time cue <0.0001 0.004 

Novel object recognition percent nosing + 

rearing time 

n.s n.s 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cheeseboard time to find reward – 

average three trials per day 

0.001 n.s 

Cheeseboard time to find reward – first 

trial 

0.005 n.s 

Cheeseboard probe –percent time in target 

zone 

n.s n.s 



Supplementary Table 2: Average distance travelled, and average speed during training trials 

of the cheeseboard task in male and female SOD1G93A and WT mice. Data are shown as mean 

± SEM. One-way ANOVA *p < 0.05 vs WT of corresponding sex. 

 

 

 

 

  

  WT Male SOD1 Male WT female SOD1 female 

Cheeseboard average 

speed (first trial) 

[cm/s] 

3.35 ± 0.57 2.23 ± 0.55 2.95 ± 0.60 1.66 ± 0.55 

Cheeseboard average 

speed (3 trials) [cm/s] 
4.06 ± 0.46 2.98 ± 0.48* 3.84 ± 0.40 2.84 ± 0.47 



Supplementary Figure 1A-B: Bodyweight in male (A) and female (B) SOD1G93A and wild 

type-like (WT) mice measured from postnatal day (PND) 96-138 (n = 9-10 per group). There 

was an overall sex effect between males and females (p < 0.0001). Data are shown as mean ± 

SEM. Two-way RM ANOVA ‘time’ by ‘genotype’ interaction +++p < 0.0001. One-way 

ANOVA *p < 0.05 **p < 0.01, ***p < 0.0001 vs WT of the corresponding sex. 
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