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H I G H L I G H T S

• Biochar-based fertilizer (BCF) is known
to enhance crop yields and soil proper-
ties.

• Wheat straw BCFwas applied to the soil
to investigate rhizosphere interactions.

• There was an increase in rice yield, and
N (40%), P (46%), Mg, K and Na uptakes.

• Micron and submicron-sized biochar
were embedded in the plaque layer.

• Biochar increased soil Eh, which re-
sulted in greater plant nutrient content.
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the rhizosphere remain largely unstudied, with benefits to yield observed beyond the changes in soil properties
alone.We investigated the rhizosphere interactions following the addition of an activatedwheat straw BCF at an
application rates of 0.25% (g·g−1 soil), which could potentially explain the increase of plant biomass (by 67%),
herbage N (by 40%) and P (by 46%) uptake in the rice plants grown in the BCF-treated soil, compared to the
rice plants grown in the soil with conventional fertilizer alone. Examination of the roots revealed that micron
and submicron-sized biochar were embedded in the plaque layer. BCF increased soil Eh by 85 mV and increased
the potential difference between the rhizosphere soil and the root membrane by 65mV. This increased potential
difference lowered the free energy required for root nutrient accumulation, potentially explaining greater plant
nutrient content and biomass.We also demonstrate an increased abundance of plant-growth promoting bacteria
and fungi in the rhizosphere.We suggest that the redox properties of the biochar causemajor changes in electron
status of rhizosphere soils that drive the observed agronomic benefits.
© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Adding pyrogenic carbon (referred to as biochar; BC) to soil is often
reported to alter various soil physical and chemical properties (e.g. pH,
water and nutrient retention, particle aggregation). These alterations
are widely viewed to have positive knock-on effects on plant perfor-
mance, including crop yield and plant health (Liu et al., 2013; Jeffery
et al., 2015; Nguyen et al., 2017). Yet, in many situations, it has been
noted that biochar-induced plant growth and health stimulation go be-
yond obvious contributions to plant nutrition and improved soil physi-
cochemical properties, a phenomenon termed “The Biochar Effect”
(Elad et al., 2011). The Biochar Effect appears to be linked to biochar-
induced changes in microbial community structure, taxon-functional
diversity and microbial activity, which are a function of complex inter-
actions between many physical, chemical and biological components
of the intricate soil/plant/biochar system (Jaiswal et al., 2017).

Despite the often-positive impacts of biochar in modern agricultural
systems, it is commonly too expensive to apply at application rates N5 t/
ha. This is due to the high cost of collecting available biomass residues as
well as the high capital, operating and maintenance costs of pyrolysis
plants (Clare et al., 2014). To overcome the economic barriers to utilize
biochar in agriculture, efforts have been made over the past decade to
develop compound biochar-chemical fertilizers (BCF) that can capital-
ize on the Biochar Effect. BCFs are generally made up of 20–80% biochar
and 5–8% clay, other minerals, organic binders and chemical com-
pounds containing nitrogen (N), phosphorus (P) and potassium (K).
BCFs are commonly applied at ~500 kg/ha, at a cost similar to that of
conventional chemical fertilizers. Relative to conventional chemical fer-
tilizers, BCFs have been shown to increase crop yields, N and P use effi-
ciency, vegetable quality (e.g. increase vitamins and sugars content),
abundance of beneficial microorganisms, and farm profitability, and to
reduce pesticide inputs and lower soil greenhouse gas emissions
(Joseph et al., 2013; Qian et al., 2014; Zheng et al., 2017; Yao et al.,
2015; Blackwell et al., 2015).

The means by which BCF application results in observed positive
changes relative to chemical fertilizers are however still poorly under-
stood. Ye et al. (2016) found that microorganisms, which can fix carbon
dioxide and oxidise Fe and thiosulphate, grow on iron-rich minerals
embedded in the biochar portion of a BCF. (Joseph et al., 2015a,
2015b) noted that whenmineral enhancedmagnetic biochars were ap-
plied at low application rates, there was an increase in mycorrhizal fun-
gal root colonisation, which led to an increase in plant nutrient uptake.
Chen et al. (2018) found that a rice husk/urea BCF not only released N at
a slower rate than urea, but also immobilized cadmium and prevented
its uptake into plants. However, themechanism(s) behind thebeneficial
impact of BCFs remains an enigma.

One mechanism that has not yet been explored is that BCFs change
the ion potential across the root membrane. Ion potential is important,
because it governs the uptake of nutrient cations and anions, especially
nitrates (Yan et al., 2011). The energy required to transport an ion

against a potential gradient (e.g. a root cell gradient) is derived from
ATP (adenosine triphosphate). The greater the energy spent on ion ab-
sorption, the lower the plant growth (Schachtman et al., 1998). Increas-
ing the potential difference between the root membrane and the soil
(which we will refer to as the root membrane potential) can increase
the free energy for transportation of nutrients. (Joseph et al., 2015a,
2015b) noted that the Eh and pH of the soil changes when biochar is
added and themagnitude of change is a function of biochar type, the ap-
plication rate and soil properties. Biochar can embed into the plaque
layer formed on rice roots and root hairs can also enter the pores of
the biochar (Joseph et al., 2013). When biochar interacts with the
roots of a plant, both Eh and pH can theoretically change and thus
lead to changes in both the root membrane potential and the microbial
population structure (Husson, 2013).

In support of such a process, Sun et al. (2017) found that biochar can
directly transfer electronsmore than three times faster than the charge/
discharge cycles of surface functional groups and has a 1.5 V potential
range for biogeochemical reactions that invoke electron transfer pro-
cesses. Root membrane potential can also be increased when there are
changes in the abundance of particular microorganisms that promote
changes in the surrounding soil Eh through complex redox reactions in-
volving electron shuttling (Zhou et al., 2016). BCFs have been reported
to induce shifts in rhizosphere microbial populations. We hypothesized
that deposition of biochar in the rhizosphere and in the plaque layer
that surrounds the roots of rice leads to changes in soil Eh thatmight re-
sult in some changes of plant growth and microbial population. This, in
turn, leads to changes in the ion potential across the root, and these
changes are, in part, responsible for observed improvements in plant
growth.

2. Materials and methods

2.1. Soil characteristics

A clay-loam soil (Fimi-Orthic Anthrosol) was collected from a vege-
table plot inNanjing (31°58′N, 118°48′ E). The soil pH (H2O)was5.4, EC
13.5 μS/cm, organic matter was 13.53 mg/g. N, P, K concentrations are
presented in Table 1. The analytical method followed those described
by Lu (2000).

2.2. Production and characterisation of a nutrient enhanced biochar (BCF)

In the production of BCF, 200 g of dry wheat straw was mixed with
15 g urea, 15 g bentonite clay, 15 g rock phosphate, 5 g Fe2O3 and 5 g
FeSO4.7H2O (Yao et al., 2015). The non-biomass ingredients were dis-
solved and dispersed in 100 g demineralized water at 80 °C and then
the straw was added. The mixture was left to stand for 24 h, then
dried for 3 h at 110 °C in a laboratory pyrolysis system as described by
Rawal et al. (2016). The temperature was increased at a heating rate
of 5 °C/min and held at 400 °C for 30 min. It was then cooled to room
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temperature over a period of 24h and stored at 4 °C in sealed containers.
The pH, EC, total C, N and P, water-soluble and citrate-soluble P and ex-
changeable cations of the BCF were measured using the procedures de-
tailed in Van Zwieten et al. (2010) and Slavich et al. (2012) in an
ISO17025 accredited facility. The equipment and further methods are
detailed in the supplementary information. During pyrolysis, some of
the nitrogen will be liberated and part of the nitrogen will be incorpo-
rated into the carbon lattice. Analysis of the BCF using XPS (Table S1)
and liquid chromatography with organic carbon detection (LC-OCD)
(Table S2) indicated that the total dissolved organic nitrogen (DON)
was 0.026 mg/g of carbon.

2.3. Plant growth trials

Rice seedlings were cultivated in growth bags (10 cm wide and
15 cm deep) into 540 g soil (dry weight equivalent), which are
chemical-fertilized soil without BCF (CK treatment) or with BCF (BCF
treatment，Table 1). The CK treatment contains total N 0.95 g/kg soil,
total P 0.75 g/kg soil and total K 38.17 g/kg soil. The BCF treatment
was added 0.25% BCF (w/w, 0.25 g per 100 g soil) to chemical-
fertilized soil. In chemical-fertilized soil, the additional available nutri-
ent levels brought by 0.25% BCF was very low (0.027 mg N/kg soil,
25 mg P/kg soil, and 50 mg K/kg soil).

Rice plants (Oryza sativa L., cv. Japonica)were grown from seeds and
the soil was initiallywetted to 95% ofwater holding capacity (WHC) and
maintained at this level. There were 5 replicates for each of the treat-
ments and the grow bag experimentwas repeated three times. The ran-
domly placed plants were grown in a greenhouse with a temperature
that ranged between 22 and 27 °C and at natural lighting.

2.4. Measurement of electrophysiology/potential across the root membrane

Sixty days after germination, all bags with and without BCF were
opened to expose the roots. The open bags were placed into a Faraday
Cage using Ag/AgCl microelectrodes to measure the electric potential
of root cells, the potential of the soil (Eh), and the soil pH. All the mea-
surements were taken on three roots per plant. The Ag/AgCl electrode
was placed approximately 2 cm from the root and the working elec-
trode was placed in the epidermal cells at distances 1, 3 and 5 cm
along the root tip (Fig. S1). Five readings were taken at each point
along each root on four roots per plant. Readings of voltage were con-
verted to the standard hydrogen electrode (SHE). The microelectrodes
were constructed using filamented single-barrelled borosilicate glass
(1 mm outer diameter and 0.8 mm inner diameter, Hilgenberg,
Germany) constructed on a Narashige micromanipulator (model
NMN-21, Narashige, Japan). The voltage was amplified by an Axon
900A amplifier and analysed and displayed using Clampex software.
After the electrophysiology measurements, the roots were separated
from the above-ground biomass and weighed both wet and dry.

2.5. Microbial analysis

Total DNA was extracted in triplicate from 0.25 g aliquots of both
bulk and rhizosphere samples using a PowerSoil™ DNA isolation kit
(Mo Bio Laboratories Inc., CA) following the manufacturer's protocols.
The quantity and purity of DNA extracts were checked using

spectrophotometry (Nanodrop 1000) before sequencing of bacterial
16S rRNA genes and fungal ITS regions. The primers 515F and 807R
targeting the V4 hypervariable region of the 16S rRNA gene (REF), and
the primers ITSF1 and ITS4 targeting the ITS region 2 (REF) were used.
Paired-end sequencing was conducted using the Illumina MiSeq plat-
form (Kit v2, 2 × 250 bp). PCR and sequencing were conducted at the
Ramaciotti Centre for Genomics (UNSW, Sydney Australia) following
the centre's protocols (https://www.ramaciotti.unsw.edu.au/). Process-
ing of sequences, clustering into operational taxonomic units (OTUs)
and taxonomic assignment and is described in the supporting
information.

2.6. Data analysis

Fresh and dried shoot biomass, soil pH, soil Eh, and the electric po-
tential across the root cell membranes were examined using linear
models and analysis of variance (ANOVA). Treatments and distance
from root tip were treated as fixed factors, and an alpha level of 5%
(P b .05)was used for hypothesis testing. Means and 95% confidence in-
tervals were obtained from the linear models and used for the figures.
Microbial communities in the samples were compared using distance-
based and per-taxon level approaches. For distance-based comparisons,
each sample was subsampled (‘rarefied’) to the lowest total number of
read counts observed and square root transformed before comparing
every sample using the Bray-Curtis similarity coefficient. The resulting
distancematrixwas visualised using non-metricmultidimensional scal-
ing (NMDS). Permutational ANOVA (PERMANOVA) was used to exam-
ine the effect of BCF addition (absent vs present) and environment (bulk
soil vs rhizosphere soil) and the biochar by environment interaction. P
values were calculated by 999 permutations of the data. Models and P
values were generated using the R package vegan. Further details are
given in the supporting information.

The free energy for uptake of specific nutrients was calculated using
the following equation (Chesworth, 2008):

Δμ ¼ RTln Ci=Coþ zFΔ E ð1Þ

Ci = concentration inside the cell
Co = concentration outside the cell
E = the electrical potential difference across the cell
F = Faraday constant
z = valence on the ion

3. Results

3.1. Basic properties of the BCF

It was important to first establish the profile of the BCF before addi-
tion of the chemical NKP fertilizer. Detailed characterisation of the BCF
aimed at elemental, micron and submicron scale features are
summarised here, with full details in the SI:

1. The BCF exhibited the following elemental analysis: C, 43%; N, 2.7%;
K, 2%; P (as citrate extractable), 1.1%, slightly lower than total P,
1.4%. Its pH was near neutral, with an acid neutralising capacity of
5.8% in calcium carbonate equivalents. Its exchangeable cations
were dominated by K, with low levels of Al and Na. The BCF had a

Table 1
NPK concentration of soil; CK = control and BCF.

Initial unamended soil
mg/kg (dry weight)

Available NPK added to soil from
addition of fertilizer mg/kg

Available NPK added to soil from
addition of BCF mg/kg

CK nutrient content
mg/kg soil

Total nutrient content of BCF
treatment mg/kg soil

N 850 100 0.027 950 950
P 700 50 25 750 775
K 38,100 70 50 38,170 38,220
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relatively high content of soluble K, S and Ca and a lower content of
Na and Br (Table S3) compared to woody biochars (Van Zwieten
et al., 2010).

2. Water extraction tests of BCF showed detectable amounts of water-
soluble organic compounds, metals and non-metals (Table S2).
Total dissolved C constituted approximately 1% of the total C in the
BCF at an extraction temperature of 20 °C. The greatest percentage
of organic compounds constituted low molecular weight acids. Low
molecular weight neutrals and high molecular weight compounds,
which had similar characteristics to humic substances, were also
detected.

3. Gas chromatography/mass-spectrometry analysis of compounds
using the NIST98 library indicated that there were 20 predominant
organic acids and five neutral compounds, such as alkanes, sugars
and aldehydes (Table S4).

4. The surface of the biochar was heterogeneous with a range of min-
erals and inorganic compounds many with a diameter of b100 nm
(Fig. 1 and S2). Most of these mineral particles were surrounded by
organic molecules. There was a relatively high concentration (com-
pared towoody biochars) of C functional groups (phenols, esters, ke-
tones and carboxylic acids) and N groups including NH3

+, amines,
amino groups (Table S1, Figs. S3 and S4) on the surface of biochar.

5. Assessment of the radical concentration in the biochar by Electron
Spin Resonance (ESR) spectroscopy is presented in Table S6 reveals
that the BCF has a hundred-fold greater concentration of radicals
than the standard 2,2-diphenyl-1-picrylhydrazyl (DPPH) and there
is a slight shift in the g band. The high concentration of radicals is in-
dicative of p-type aromatic free radicals that are stabilized by delo-
calization in the aromatic ring systems. The value of the g band at
2.003 is indicative of the presence of a C structure similar to that ob-
served in activated C with a significant concentration of quinone/
semi-quinone functional groups (Xu et al., 2016) known to facilitate
redox reactions with soil organic matter.

6. Solid state NMR spectroscopy revealed that the detectable carbon
content has a high concentration (65%) of both protonated and
non-protonated aromatic C (Fig. S3). Hydrogen pyrolysis indicated
that the aromatic carbon was stable on a long timescale (Bird et al.,
2015). Details of the methods used are given the supplementary

information. Furthermore, the biochar is redox active (Fig. S5) and
is ferromagnetic (Fig. S6) with a relatively high concentration of
both hematite and magnetite particles having diameters ranging
from 5 nm to N100 nm (Fig. S3). The smaller b10 nm particles are
likely to be superparamagnetic and the N10 nm particles
paramagnetic.

3.2. Growth experiments and plant properties

The addition of the BCF significantly increased thewet and dry shoot
biomass of rice plants compared to the control treatment without BCF.
The average increase of the wet biomass was 82%, from 1.60 g to
3.02 g per plant and the average increase of dry biomass was 67%,
from 0.3 g to 0.5 g/plant (F1,4 = 177, P b 0.001, Fig. 2a and b). Nutrient
content (N, P, K, Mg, and Na) was significantly higher (P b 0.05) in the
plants from the BCF treatment than the plants in control (Table 2).
Herbage N increased by 40%, P by 46% and K by 26%. However, there
wasnodifference between the totalN and P content in the soil amended
by the BCF and the control (Tables 1 and 2).

Therewas a significantly higher concentration of K, Ca, Mg, Na in the
BCF soil than in control and a significantly higher concentration of K,Mg
andNa in the BCF plant compared to the control (Table 2). To determine
if the higher concentration of K Ca, Mg and Na was responsible for a
large proportion of the plant growth the total free energy and the free
energy component related to the concentration difference between
plant and soil was calculated using the Nernst equation (Chesworth,
2008). This showed that in all cases the free energy for cation uptake
was greater for the BCF treatment and this wasmainly due to the differ-
ence in root membrane potential (Table 3).

3.3. Electrophysiology, soil Eh and pH, examination of the plaque on the root
and microbial analysis

The root cell membrane potential compared with NPK was signifi-
cantly increased as a result of BCF addition (Fig. 3a and Table S7). The
more negative the root membrane potential, the greater is the differ-
ence between the root membrane and the soil. There was a significant
decrease in the potential difference (P b 0.001) as measurements were

(a)

(b) C, O, N, Si, Ca, S, Na, K

Si, O, Mg, Na, Fe

Fe, O, S

K, Cl, Si

Fig. 1. Secondary electron SEM image of fresh BCF. (a) EDS spectrum of the external and internal surfaces of the carbon. (b) STEM Bright field image and EDS phase maps.
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taken upwards from the root tip regardless of whether BCFwas present
or not (root membrane potential became less negative). The potential
was approximately 65 mV more negative than the control as a result
of BCF addition at all measurement points along the root. The bulk soil
Eh for the BCF increased over the time of the experiment by approxi-
mately 80 mV, whereas the control was only 35 mV (Fig. 3d). The soil
Eh in the rhizosphere was significantly (P = 0.002) greater (by
85 mV) as a result of BCF addition. There was a significant increase in
Eh as measurements were taken upwards from the root tip in both
the control and BCF amended soil (Fig. 3b and Table S7). The pHwas sig-
nificantly (P = 0.002) greater (by ca. 0.5 units) as a result of BCF addi-
tion and pH increased upwards from the root tip in both control and
the BCF amended soil.

SEM analysis of the root surface was carried out to determine if BCF
particles had imbedded in the plaque layer andwhether therewas a de-
tected concentration of macro and micronutrients remaining in these
particles. Fig. 4 represents an image and an X-ray elemental analysis
(EDS) of a piece of BCF that was embedded in the plaque layer of the
root. Fig. 4b is a higher magnification image of the biochar structure
that is derived from the phloem and xylem of the wheat straw. There
is a range of submicron particles on the BCF surface with a relatively
high concentration of Si, Ca, Fe, K, Al and smaller quantities of Mg, Na,
P, S, Ti and Cl (Fig. 4). There was no detectable N or P on the surface of
the BCF fixed with 2% glutaraldehyde in phosphate-buffered saline
(PBS, pH 6.2) for 1 hr.

Changes in concentration of total P and N in the plant could also be
due to changes in microbial community. Multivariate analysis of bacte-
rial community composition using distance-based methods showed
clustering of samples with respect to BCF addition, high variability
among sampleswithout BCF addition and little difference between sam-
ples from bulk soil and rhizosphere soil environments (Figs. 5 and S7).
Permutational analysis of variance (PERMANOVA) confirmed an effect
of the BCF addition (F= 3.19, P= 0.014) and no detectable effects else-
where (Table S8). Similarly, the sum of likelihood ratios (sum of LR)
from individual generalised linear models (GLMs) of each bacterial op-
erational taxonomic unit (OTU) revealed a sole effect of BCF addition on
bacterial communities (LRsum= 3983, P= 0.047). Fungal communities
within the rhizosphere environment also showed clustering of samples
in theBCF amended soils (Figs. 5 and S8). PERMANOVA suggested a pos-
sible small effect of BCF addition (BCF, F = 2.07, P = 0.1, with the ac-
ceptable P value possible by permutation equal to 0.1) given the small
sample size (Table S8). The sum of LR from individual GLMs models of
each fungal OTU revealed no strong effect of BCF addition (LRsum =
609, P = 0.141).

There were 121 bacterial OTUs that responded strongly to the addi-
tion of BCF (P b 0.01), including 75 and 46 that responded positively and
negatively, respectively, in terms of abundance changes (Fig. 6a and
Table S9). These OTUs were associated with a diverse range of taxo-
nomic ranks, which included related taxa showing opposite responses
to the BCF (Fig. S7). The most abundant OTUs responding positively to

Fig. 2.Dryweight, root cell membrane potential, soil Eh and pHnear root tip. (a) Dry weight of shoot. (b) Freshweight of shoot. (c) Bulk soil pH and (d) soil Eh (SHE) adjusted for pH after
60 days in response to BCF under 95% WHC conditions. Error bars: SE (n = 3 experimental replicates). Significant differences between NPK and BCF are indicated by different letters
(P b 0.05, one-way ANOVA).

Table 2
Analysis of specific element concentration (Mean ± SD, n = 3) in plants and rhizosphere soil. Different letters in a single row indicate a significant difference between the CT and BCF
treatments (P b 0.05).

(mg/g) Treatment N P Mg Ca Na K

Plant CT 3.25 ± 0.45b 0.88 ± 0.12b 0.78 ± 0.13b 1.31 ± 0.19a 0.43 ± 0.03b 15.7 ± 0.80b
Plant BCF 5.24 ± 0.17a 1.63 ± 0.43a 1.28 ± 0.36a 2.13 ± 0.63a 0.58 ± 0.09a 26.9 ± 4.28a
Soil CT 0.75 ± 0.03a 0.36 ± 0.18a 1.81 ± 0.03b 3.95 ± 0.008b 0.36 ± 0.02b 19.6 ± 0.18b
Soil BCF 0.77 ± 0.01a 0.38 ± 0.01a 2.58 ± 0.05a 4.97 ± 0.07a 0.52 ± 0.03a 23.7 ± 0.08a
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the BCF were associated with the family Comamonadaceae (Phylum
Proteobacteria) and the genus Phormidium (Phylum Cyanobacteria),
while the most abundant OTU responding negatively to the BCF addi-
tion was associated with the family Oscillatoriophycideae
(Cyanobacteria), (Figs. 6a and S7, Table S9). The number of different
genera from the order Rhizobiales (Phylum Proteobacteria) increased
in abundance in the presence of BCF, including Afifella, Rhodoplanes
and Devosia. Some bacteria from the order Rhizobiales are known for
their phosphorus-solubilizing activity and others for nitrogen fixation
(Souza et al., 2013).

Investigation of fungal OTUs responding to biochar addition showed
19 and 25 to respond positively and negatively, respectively, to BCF ad-
dition (Figs. 5, 6b and S8, Table S9). Some of these OTUs were the most
abundant observed in the communities, including the fungal species
Mortierella alpina, Cyberlindnera saturnus, and Phaeosphaeria
microscopica that responded positively to BCF. The fungal species Fusar-
ium pseudonygamai, Alternaria tenuissima, Paraphaeosphaeria sporulosa
and members of the genera Cladosporium and Aureobasidium were ob-
served to decrease in abundance with the addition of BCF. Some of

these latter fungal taxa have members that are pathogenic (Logrieco
et al., 1990). A large number of fungal OTUs, however, were only classi-
fied to kingdom level suggesting changes to a number of
uncharacterized fungal groups. Furthermore, it was found that fungi
grew on the BCF embedded in the plaque layer (Fig. S9), where Al, Si,
Fe, K, S, Na, Mg and Ca have been detected.

4. Discussion

AddingBCF to the soil resulted in increaseddry plant biomass by 67%
over the control and increased plant N, P and K by 40%, 46% and 26% for,
respectively, despite there being no significant differences in the soil N
and P content between the BCF and chemical fertilizer treatments. BCF
treated plants had substantially higher root membrane potentials than
plants from the CF treatment, and microbial communities in the rhizo-
sphere and bulk soil were different in the two treatments. These obser-
vations, together with the presence of BCF particles in the root plaque
layer, support the hypothesis that improved rice plant performance
under BCF treatment is connected to biochar interactions in the

Table 3
Free energy for selected cations in the rhizosphere in kJ/mol.

Element Ca/kJ/mol. Mg/kJ/mol. Na kJ/mol. K kJ/mol.

Total Free Energy Control
Δμ = RTln Ci/Co + zFΔ E

−22.85b
sd = 0.36

−23.16b
sd = 0.26

−12.17b
sd = 0.74

−3.84b
sd = 0.23

Total Free Energy BCF
Δμ = RTln Ci/Co + zFΔ E

−34.7a
sd = 0.2

−34.27a
sd = 0.45

−18.74a
sd = 0.24

−9.21a
sd = 0.1

Free Energy Control due to concentration difference = RTln Ci/Co 9.24a
sd = 0.36

8.94a
sd = 0.46

3.88a
sd = 0.74

12.21a
sd = 0.23

Free Energy BCF due to concentration difference = RTln Ci/Co 8.72a
sd = 0.35

9.16a
sd = 0.77

2.98a
sd = 0.24

12.51a
sd = 0.1

Note: Calculation based on the cell membrane potential at 2 cm from the root tip.

Fig. 3. The rootmembrane potential, soil Eh and pH. (a) Potential difference between the inside of the rootmembrane and the soil. (b) Soil Eh and (c) pHas a function of distance from root
tip for moisture content under 95% WHC conditions (n = 5 for each mean). (d): Eh and pH of soil at the beginning and end of the experiment plotted on a modified Pourbaix.
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rhizoplane that contribute to increases in the ion potential across the
root and improved macronutrient uptake.

4.1. BCF interacts physically with roots

A plaque layer slowly forms on rice roots within the first few weeks
of growth (Chen et al., 1980). and as new roots elongate, theywill inter-
sect the BCF particles (Prendergast - Miller et al., 2014). We demon-
strate the presence of BCF embedded in the plaque layer (Fig. 4), a
phenomenon that may underlie several of the interactions we report
here including being partly responsible for the substantially higher po-
tential difference between the inside of the root and the soil (ca 65mV)
in the BCF treatment compared to the control.

4.2. BCF interacts with roots to modify local redox conditions

As noted by Joseph et al., 2015a, 2015b, the introduction of highmin-
eral ash biochar results in significant changes in both soil Eh and pH.

(a) (b)

(c) (d)

(e)

(b)
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Fig. 4. The X-ray elemental analysis of BCF. (a); (b) Secondary electron image of biochar embedded in the plaque layer and (c); (d); (e) EDS spectrum and map of an area where BCF has
embedded in the plaque layer. (f) The unidentified peak is Cr that was used to coat the specimen to facilitate high magnification imaging.

Fig. 5. NMDS ordination of (a) bacterial, (b) fungal communities in soil (S, filled circles)
and rhizosphere (R, open circles) in rice plant grow bags after 90 days with (Red) and
without (Black) BCF compared using the Bray-Curtis similarity coefficient. (For
interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)
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This increase is in part related to the release of both cations and anions,
inorganic oxide particles (especially Fe/O andMn/O) and organic mole-
cules that can be redox active, as well as changes in microbial popula-
tion that may also affect changes in soil redox state (Ye et al., 2016). It
is also in part due to the interaction of the redox active species in the
BCF with the oxygen both in soil and from the plant. In the simulated
rice paddy trials reported here, we have demonstrated the role of the
BCF in influencing soil redox condition, and how this increased Eh as
well as increased rootmembrane potential difference improves nutrient
accumulation (Quin et al., 2015; Sun et al., 2017) and thereby leads to
higher biomass.

Ultimately the increase in root membrane potential results in a re-
duction in the energy the plant expends to translocate specific cations
from the soil through the cell membrane. Our results also indicate a

complex series of biological, chemical and physical changes taking
place on the plaque layer and surrounding rhizosphere in the presence
of BCF. The processes that are taking place are summarised in Fig. 7.

Higher root membrane potential is known to drive the uptake of nu-
trients, particularly nitrate, by roots, because energy requirements to
move nutrient ions from the soil into the plant is lower (Yan et al.,
2011). Environment factors that influence root membrane potential
are O2 (or Eh), K+ and pH (Zeng et al., 2014; Haruta et al., 2018), so
that roots with higher membrane potential will take upmore nutrients,
especially nitrogen, than roots with lower membrane potential.

The results presented here show that the addition of BCF substan-
tially increased plant biomass andmacronutrient uptake. The character-
istics of BCF particles attached to the roots and themeasured changes in
soil Eh, K+ and pH, microbial communities and root membrane provide

Fig. 6.Mean relative abundance and log fold changes of (a) bacterial and (b) fungal OTUs detected to significantly differ (P b 0.01) between BCF treatments. OTUs responding positive or
negative to biochar are coloured green or red, respectively. Circled points refer to OTUs shown in Table S9. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Fig. 7. The model of possible processes with the incorporation of BCF in plaque layer of rice roots. There is a potential difference between the membrane and the soil. The biochar,
membrane and plaque layer have a capacitance and a resistance. The biochar under reducing conditions can store electrons and donate electrons when there are electron acceptors
(O2 and NO3). Root hairs and micro- organisms can reside in the pores of the biochar increasing the availability and reducing the energy plants have to expend to uptake nutrients.
Root exudates (organic and O2) can diffuse into the biochar resulting in increases of beneficial microbes and release of certain nutrients.
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an understanding of the possible mechanisms behind the enhanced
growth and increased nutrient uptake. Plaque layers typically and
slowly form on the roots within the first few weeks of growth (Chen
et al., 1980) and as new roots elongate, they will interact with biochar
particles (Prendergast - Miller et al., 2014). We demonstrate such a
presence of biochar in the form of a BCF embedded in the plaque layer
(Fig. 4) and demonstrate here several interactions that are responsible
for a substantially greater root membrane potential (ca 65 mV) in the
BCF treatment compared to the control (Fig. 7).

It has been reported the difference of Eh value markedly increased
redox potential close to the root tips where aerobic conditions were
reached (Flessa and Fischer, 1992). Furthermore, both the extension of
the oxidation zone around the root tips and themaximum redox poten-
tial reached were influenced by the reducing capacity of the soil (Zeng
et al., 2014). Our results showed that the Eh difference between the
bulk soil at the beginning of the experiment and the soil Eh in the rice
rhizosphere at the end of the experiment can be 85 mV which also
should attribute to fluctuating conditions around rice roots (Fig. 3d).

Yan et al. (2011) have previously shown that roots with higher
membrane potential difference will take up more nutrients, especially
nitrogen, than those roots with lower membrane potential difference.
We also determined that the cells in the root tip and the differentiation
zone have a slightly different membrane potential. Previous studies
have found that a greater nutrient influx and efflux occur in the differ-
entiation zone than in the root tip (Fan et al., 2007; Barberon and
Geldner, 2014). Both these phenomena are likely to have contributed
to the observed increased in nutrient uptake in the BCF treatment com-
pared to the control.

O2 content increase around the root cell activated the inward K-
+ influx and inhibited the outward K+ efflux (Zeng et al., 2014; Lew
and Nasserifar, 2009; Pang et al., 2006). Our results also showed that
the both external and internal K+ of plants were significantly increased
by BCF compared with NPK (Table 2). The increased Eh should contrib-
ute partially for the internal K+ increase in plants and the increase in
available K on the surface of the BCF that had embedded in the root
plaque (Fig. 4, Table S3) would also contribute the uptake of K and
higher root membrane potential (Lew and Nasserifar, 2009).

4.3. BCF changes microbial communities and impacts biogeochemical
processes

Microorganisms play an important role in soil by altering the bio-
availability of nutrients, which can then be used by plants as well as
changing rootmembrane potential. Biochar and BCF have also been pre-
viously shown to influence the community composition in soils and the
rhizosphere (Nguyen et al., 2018).We also observed a change in the rel-
ative abundances of a number of taxa from the presence of BCF in soil
and belowwe provide factors that drive the changes onmicrobial com-
munities. Here we briefly discuss the consequence of the changes. The
Comamonadaceae, which were found to be enriched with BCF addition,
play a role in the mineralization of C bound sulphur in cereal rhizo-
spheres, thus likely allowing for cycling of soil sulphur between organic
and inorganic forms (Zak et al., 1994).

There was also a relative increase in various species of cyanobacteria
and Rhizobales with the addition of BCF, and this group of bacteria has
been associated with increasing the soil fertility through biological N2

fixation, with Rhizobales also being shown to assist in solubilizing soil
P (Rodríguez and Fraga, 1999; Allouti et al., 2006). The fungal species
we observed to respond positively to the BCF, including Cyberlindnera
saturnus and Mortierella alpina, are important in the degradation of
decaying leaves and organic matter, and also interact with plant roots
via the production of a number of fatty acids, including arachidonic
acid, IAA and indole-3-pyruvic acid (IPYA) (Nassar et al., 2005). Thus,
the microorganisms found in the treatment BCF could stimulate im-
prove soil health increasingnutrient cycling and nutrient bioavailability.

Interestingly, an abundant OTU assigned to the family
Oscillatoriophycideae was negatively impacted by the BCF addition.
Oscillatoriophycideae are filamentous, photoautotrophic bacteria that
contribute to the formation of soil organic carbon, particularly in
nutrient-poor biocrusts and can be inhibited by liming. The reduction
of this bacterial groupmight therefore be a consequence of the increase
pH caused by the BCF amendment (see above).

4.4. BCF provides soluble organic components that can influence root
processes

As the soils were maintained under wet conditions, it is likely that
dissolution of organic molecules from BCF modified redox reactions
(Graber et al., 2014), which would have contributed to the alteration
in the abundance of specific microorganisms (see above). GC–MS of
the liquid extracts (Table S4) indicated the presence of organic com-
pounds similar to those reported for other biochar-mineral complexes
(e.g. succinic acid, hexadecanoic acid, octadecenoic acid,
hydroxybenzoic acid) (Chia et al., 2014). In addition, some of these com-
pounds, for example succinic acid, have also been reported to act di-
rectly as plant growth promoters (Yoshikawa et al., 1993; Pizzeghello
et al., 2006).

LC-OCD of BCF also showed that there was a significant concentra-
tion of large macromolecules that have similar properties to humic-
like substances and polyphenols. These macromolecules have been as-
sociated with increased absorbance of heavy metals, changes in micro-
bial communities (Lovley et al., 1996), increased cation exchange and
availability of essential micronutrients, especially iron (Hättenschwiler
and Vitousek, 2000; Chantigny, 2003; Chen et al., 2004; Schmidt et al.,
2013). Humic-like macromolecules from biochar have also been re-
ported to have hormone-like effects resulting in an increase in rice
calli and rice cells (Wang et al., 1999).

Organic root exudates (especially acids) can be adsorbed by the
BCF. This can result in an increase in certain microorganisms grow-
ing on the biochar (Masiello et al., 2013) and the dissolution of nu-
trients (especially P) on the surfaces of the biochar, in turn altering
the Eh as and pH around the root. Since BCF is redox active and has a
high reducing capacity it may play a role in abiotic formation of
humic structures in soil, in solubilizing Mn and Fe, in microbial
electron shuttling between bacterial cells and Fe-bearing minerals,
in scavenging radicals, and in contaminant immobilization (Li et al.,
2012; Nassar et al., 2005). Similarly, high concentrations of stabi-
lized free radicals (Table S6) have been associated with increased
resistance to plant stresses (Edreva et al., 1998).

4.5. BCF may act as a ‘micro-geobattery’

BCF can be represented by an equivalent circuit that has a capac-
itance and an impedance (Fig. 7). Sun et al. (2017) has previously
noted that biochar can act as a geobattery enabling rapid transfer
of electrons within the biochar and to the rhizosphere where
there are electron acceptors. The BCF in soil has a complex water-
filled porous carbon structure where there are areas that have a
net positive charge or a net negative charge. Recent work by
Huggins et al. (2014). has shown that biochar can be used as elec-
trodes in a microbial fuel cell where organic compounds can be
converted to CO2 and electrons by specific microorganisms in an
anoxic environment and these electrons can be transferred to a bio-
char electrode in an anoxic environment when oxygen can be re-
duced to water. BCF particles in the rhizosphere is therefore
potentially analogous to a microbial fuel cell where anoxic areas
within the pores are anodic and surface areas near the roots are
that are exuding oxygen are cathodic (Xia et al., 2018). Further
work is required to confirm this hypothesis.
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5. Conclusion

This study shows that a BCF made from nutrient-enhanced
wheat straw biochar and NPK chemical fertilizers has dramatically
increased nutrient uptake and biomass in rice. The observed in-
creases are likely due to a number of linked BCF-rhizosphere inter-
actions that increase the membrane potential difference between
the soil and the root. The BCF that is both in direct contact with
the roots and present within the rhizosphere can both store and
donate electrons, root and microbial exudates, cations and anions
(Sun et al., 2017). Exudation of oxygen from the roots also can re-
sult in an increase in both biotic and abiotic redox reactions on
the surface of the BCF that will alter both the Eh and pH in the
plaque layer and rhizosphere(Zeng et al., 2014; Haruta et al.,
2018,). This and the increased concentration of organic molecules
dissolving from the BCF likely causes changes in the relative abun-
dance of certain microbial groups, that contributed to nutrient cy-
cling and availability (Fig. 7). Our data also indicates BCF particles
embedded in the plaque layer of the roots may increase root mem-
brane potential resulting in an increase in nutrient uptake and
plant biomass. The interactions between BCF, plant, soil, soil solu-
bles and microbiota ultimately underpin the agronomically benefi-
cial outcomes for rice growth and have great potential to be
engineered in the future for other agricultural systems.
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