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Bias matroids with unique graphical

representations.

Daniel C. Slilaty∗

November 17, 2006

Abstract

Given a 3-connected biased graph Ω with three node-disjoint un-
balanced circles, at most one of which is a loop, we describe how the
bias matroid of Ω is uniquely represented by Ω.

1 Introduction

In the study of representations of matroids using matrices, graphs,
signed graphs, biased graphs, etcetera, unique representability can be
useful. For instance, Theorem 1 is a lemma to the proof of Hassler
Whitney’s 2-Isomorphism Theorem as presented in [3, §5.3].

Theorem 1 (Whitney). Let Γ and Γ0 be graphs without loops and

isolated nodes. If Γ is 3-connected, then G(Γ) ∼= G(Γ0) iff Γ ∼= Γ0.

In this paper we present Theorem 2 which describes sufficient condi-
tions for the bias matroid of a biased graph Ω to be uniquely repre-
sented by Ω. For an introduction to biased graphs and their matroids
see Section 2.

Theorem 2. Let Ω and Ω0 be biased graphs without balanced loops,

loose edges, and isolated nodes. Replace all half edges with unbalanced

loops. If Ω is 3-connected and contains three node-disjoint unbalanced

circles, at most one of which is a loop, then G(Ω) ∼= G(Ω0) iff Ω ∼= Ω0.

∗Department of Mathematics and Statistics, Wright State University, Dayton OH,
45435. Email: daniel.slilaty@wright.edu. Research partially supported by NSA Young
Investigator Grant #H98230-05-1-0030.
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The statement of Theorem 2 is reminiscent of Theorem 1 and its proof
is an adaptation of A.K. Kelmans’ and J. Edmonds’ proof of Theorem
1 in [2, pp. 644–645].

It is worth noting that, for a biased graph Ω, removing or adding
isolated nodes has no effect on G(Ω), replacing half edges with unbal-
anced loops has no effect on G(Ω), and loose edges and balanced loops
form loops in G(Ω). Thus the conditions in the first two sentences of
Theorem 2 are simply meant to eliminate some of the trivial variations
that biased graphs can have without affecting their matroids.

Some results on contrabalanced biased graphs uniquely represent-
ing their matroids (which are exactly the bicircular matroids) were
obtained by D.K. Wagner in [4]. For instance, Proposition 5 in [4]
implies that if Ω is a contrabalanced biased graph whose underlying
graph is the wheel graph with n ≥ 4 spokes, then Ω is the only con-
trabalanced biased graph representing G(Ω). Surprisingly, there are
no results for unique representability of bicircular matroids in [1].

Finding the correct necessary and sufficient or almost necessary
and sufficient conditions to guarantee unique representability of bias
matroids by biased graphs seems to be a very difficult problem.

2 Definitions

In this paper we assume the reader is thoroughly familiar with matroid
theory as in [3] and somewhat familiar with biased graphs as in [5]
and [6]. We will review all of the pertinent information about biased
graphs and their matroids here in this section in an effort to make
the presentation more self contained. We follow the notation and
terminology for biased graphs and their matroids in [5] and [6].

A graph Γ has node set denoted by N(Γ) and edge set denoted
by E(Γ). There are four types of edge in a graph: links have ends
attached to distinct endpoints, loops have both ends attached to the
same endpoint, half edges have one end attached to a node and the
other unattached, loose edges have both ends unattached. A circle is
a simple closed path. A theta graph is a graph consisting of two nodes
joined by three internally disjoint paths.

A biased graph is a pair (Γ,B) where Γ is a graph and B is a collec-
tion of circles of Γ, called balanced, such that every theta subgraph of
Γ contains either 0, 1, or 3 balanced circles. A biased graph is called
balanced if it contains no half edges and no unbalanced circles. A bal-
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ancing node of an unbalanced biased graph Ω is a node whose removal
(along with its incident edges) leaves a balanced biased graph. Not
all unbalanced biased graphs have balancing nodes. A biased graph
is called contrabalanced if it contains no loose edges and no balanced
circles.

Given a biased graph Ω, the bias matroid of Ω, denoted by G(Ω),
is the matroid on E(Ω) in which the rank of X ⊆ E(Ω) is given by
rk(X) = |N(X)|−b(X) where N(X) is the collection of nodes incident
to an edge in X and b(X) is the number of balanced components of the
subgraph of Ω whose edge set is X and whose node set is N(X) (see [6,
Thm 2.1]). As a convention we say that loose edges do not contribute
to the number of balanced components. The bicircular matroid of a
graph Γ is the bias matroid of the contrabalanced biased graph (Γ, ∅).

Given the form of the rank function we find that addition and
deletion of isolated nodes in Ω does not affect G(Ω), loose edges and
balanced loops in Ω are both loops in G(Ω), and a half edge is in-
distinguishable in G(Ω) from an unbalanced loop. Note that if Ω is
balanced, then G(Ω) is simply the ordinary graphic matroid of the
underlying graph of Ω.

Given an edge e in Ω = (Γ,B), the deletion of e is defined in the
obvious way as Ω\e = (Γ\e,B∩C(Γ\e)), where C(Γ\e) is the collection
of circles in Γ\e. Evidently G(Ω)\e = G(Ω\e). A balancing set of Ω
is a collection of edges whose removal leaves a balanced biased graph.
A cocircuit of G(Ω) is a minimal edge set whose removal increases the
number of balanced components by one (see [6, Thm 2.1]). Given a
biased graph Ω we define a node cocircuit of the bias matroid G(Ω) to
be a cocircuit that is exactly the collection of edges incident to some
node of Ω. In general, the set of edges incident to a given node may
not be a cocircuit.

The contraction of an edge e in Ω = (Γ,B) is defined for three
cases. If e is a balanced loop or loose edge, then Ω/e = Ω\e. If e is a
link, then Ω/e is the biased graph with underlying graph Γ/e in which
a circle C in Γ/e is balanced if C ∈ B or C = C ′/e for some C ′ ∈ B.
If e is an unbalanced loop or half edge with endpoint v, then Ω/e is
the biased graph obtained from Ω by deleting e, detaching the ends
incident to v of the remaining edges, then removing v. It is known
that G(Ω)/e = G(Ω/e) (see [6, Thm 2.5]).
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3 The Proof of Theorem 2

Lemma 3. If Ω is a connected biased graph, then the complemen-

tary cocircuit of a connected hyperplane of G(Ω) is either a minimal

balancing set of Ω or a node cocircuit of Ω. Furthermore, the comple-

mentary cocircuit of a connected and nonbinary hyperplane of G(Ω)
is a node cocircuit of Ω.

Proof. Recall that a cocircuit of G(Ω) is a minimal set of edges whose
removal increases the number of balanced components of Ω by one.
Thus a cocircuit C can be written as a disjoint union C = S ∪ B
where S = ∅ or S is a separating edge set of Ω and B = ∅ or B is a
minimal balancing set of an unbalanced component of Ω \ S. Now, if
a biased graph has two components with nonempty edge sets, then its
matroid cannot be connected. Since Ω is connected, the complemen-
tary cocircuit of a connected hyperplane of Ω must be either a node
cocircuit or a minimal balancing set of Ω. Furthermore, since the bias
matroid of a balanced biased graph is graphic (and thus binary), the
complementary cocircuit of a connected and nonbinary hyperplane of
G(Ω) must be a node cocircuit of Ω.

Lemma 4. Let Ω be a biased graph without balanced loops. If Ω is

unbalanced, 2-connected, and without balancing nodes, then the edges

of any node of Ω form a node cocircuit.

Proof. Let v denote some node of Ω. By assumption Ω\v is connected
and unbalanced. Thus the rank of E(Ω\v) is one less than the rank
of G(Ω). Furthermore, if e is an edge incident to v, then e is a link,
half edge, or unbalanced loop. Thus E(Ω\v)∪e has full rank in G(Ω).
Thus the edges incident to v form a cocircuit.

Lemma 5. Let Ω be a biased graph without balanced loops or loose

edges. If Ω is unbalanced, 2-connected, and without balancing nodes,

then G(Ω) is connected.

Proof. By way of contradiction, suppose that we can partition the
edges of Ω into nonempty subsets X and Y such that every cocircuit
of G(Ω) is contained entirely in X or entirely in Y . Let N(X) denote
the collection of nodes of Ω incident to some edge in X. Since Ω
is 2-connected and contains no loose edges, N(X) ∩ N(Y ) 6= ∅. Let
v ∈ N(X) ∩ N(Y ). Since Ω is unbalanced and 2-connected and does
not contain balancing nodes and balanced loops, Lemma 4 implies
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that the edges incident to v form a node cocircuit of G(Ω). This node
cocircuit must intersect both X and Y , a contradiction.

Lemma 6. Let Ω be biased graph without balanced loops and loose

edges and with all half edges replaced with unbalanced loops. If Ω is 3-

connected and contains three node-disjoint unbalanced circles, at most

one of which is a loop, then for any node v in Ω, G(Ω\v) is nonbinary

and connected.

Proof. Since Ω is 3-connected, Ω \ v is 2-connected. Since Ω contains
three node-disjoint unbalanced circles (at most one of which is a loop),
Ω \ v contains two node-disjoint unbalanced circles (at most one of
which is a loop). Thus Menger’s Theorem implies that Ω contains a
subdivision, call it S, of one of the following two graphs where the
digons and loops are all unbalanced.

Because theta subgraphs of biased graphs do not contain exactly two
balanced circles, S must contract to the contrabalanced biased graph
shown below.

The matroid of this biased graph is the four-point line. Thus G(Ω\v)
is nonbinary. That G(Ω \ v) is connected follows from Lemma 5 and
the fact that Ω\v (which contains S) cannot contain a balancing node,
has no balanced loops and loose edges, and is 2-connected.

Proof of Theorem 2. If Ω ∼= Ω0, then we must have G(Ω) ∼= G(Ω0).
So now assume that G(Ω) ∼= G(Ω0) and that Ω and Ω0 are biased
graphs satisfying the hypotheses of our theorem. By Lemma 3, every
connected and nonbinary hyperplane of G(Ω) is the complement of a
node cocircuit. Furthermore, Lemmas 4 and 6 imply that every node
of Ω is incident to a node cocircuit whose complementary hyperplane
is connected and nonbinary. Since Ω is connected and unbalanced,
G(Ω) has exactly |N(Ω)| = rk(G(Ω)) connected and nonbinary hyper-
planes, each of which is the complement of a node cocircuit. Thus the
connected and nonbinary hyperplanes of G(Ω) completely determine
the incidences of nodes with edges in Ω.

Since G(Ω) is a connected matroid, G(Ω0) is a connected matroid.
Since Ω0 has no isolated nodes, Ω0 must be connected. Since G(Ω) is
nonbinary, G(Ω0) is nonbinary. Thus Ω0 must be unbalanced. Since
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Ω0 is connected and unbalanced, rk(G(Ω0)) = |N(Ω0)|. Thus G(Ω) ∼=
G(Ω0) implies that |N(Ω0)| = rk(G(Ω0)) = rk(G(Ω)) = |N(Ω)|.
Since the number of connected and nonbinary hyperplanes of G(Ω)
and G(Ω0) must be the same, G(Ω0) has exactly |N(Ω0)| connected
and nonbinary hyperplanes. Since Ω0 is connected, Lemma 3 implies
that all of these connected and nonbinary hyperplanes of G(Ω0) are
complements of node cocircuits. Furthermore, the number of these
hyperplanes implies that every node of Ω0 is incident to a node co-
circuit whose complementary hyperplane is connected and nonbinary.
So here too the connected and nonbinary hyperplanes of G(Ω0) com-
pletely determine the incidences of nodes with edges in Ω0.

The conclusions of the previous two paragraphs imply that the
isomorphism between G(Ω) and G(Ω0) is an isomorphism between
the underlying graphs of Ω and Ω0. Thus Ω ∼= Ω0 because two biased
graphs with isomorphic underlying graphs represent isomorphic bias
matroids iff they have corresponding lists of balanced circles.
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