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Abstract

Given a finite connected graph G and specifications for a closed, con-
nected pseudosurface, we characterize when G can be imbedded in a
closed, connected pseudosurface with the given specifications. The speci-
fications for the pseudosurface are: the number of face-connected compo-
nents, the number of pinches, the number of crosscaps and handles, and
the dimension of the first Z2-homology group. The characterizations are
formulated in terms of the existence of a dual graph G∗ on the same set
of edges as G which satisfies algebraic conditions inspired by homology
groups and their intersection products.

1 Introduction

All graphs in this paper are finite. Theorem 1.1 from [17] is a classic result
of H. Whitney characterizing planar graphs in terms of the existence of
what Whitney calls a dual graph. Let c(G), e(G), and v(G) be the number
of components, edges, and vertices, respectively, of a graph G. A dual
graph of a graph G is a graph G′ on the same edge set as G such that, for
any H ⊆ G, the complementary edge set of H forms a subgraph H ′ ⊆ G′

satisfying

e(H)− v(H) + c(H) = v(G′)− c(G′)− v(H ′) + c(H ′)

We will refer to this notion of a dual graph as a combinatorial dual graph.

∗Partially supported by NSA grant # MDA904-03-1-0023.
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Theorem 1.1 (Whitney). A graph is planar if and only if it has a
combinatorial dual graph. Furthermore, if G is connected and imbedded
in the plane, then the topological dual graph of G is also a combinatorial
dual graph of G.

Similar to Whitney’s result is that of S. MacLane from [12]. There he
uses the idea of a 2-basis to algebraically characterize planar graphs. Let
V be a Z2-vector space with basis e1, . . . , ek and let W be a subspace of
V . A 2-basis of W relative to e1, . . . , ek is a basis B of W for which each
ei is a summand of at most two of the vectors in B.

Theorem 1.2 (MacLane). A graph G is planar if and only if the cycle
space of G has a 2-basis relative to the edges of G.

Whitney’s and MacLane’s theorems are related in that a 2-basis for
the cycle space of G can be used as the face boundaries (for the closed
faces) of an imbedding of G in the plane, in which case the 2-basis can
also be viewed as the vertex set of a combinatorial dual graph of G. Thus
both theorems classify planarity in terms of the existence of a dual graph.

There are two notable generalizations of the theorems of Whitney and
MacLane: one by S. Lefschetz in [11] and another by J. Edmonds in [7].
The result of Lefschetz uses the combinatorial language of rotation sys-
tems (which Lefschetz calls ”umbrellas”) of graphs imbedded in surfaces,
and extends MacLane’s criterion to any orientable surface. Edmonds’
Theorems (shown below) are elegant and simply-stated combinatorial re-
sults using the idea of dual graphs.

Theorem 1.3 (Edmonds). A one-to-one correspondence between the
edges of two connected graphs is a duality with respect to some surface S
if and only if, for each vertex v of each graph, the edges which meet v in
the graph of v form in the other graph a subgraph which is connected and
has an even number of edge ends to each of its vertices (where if an edge
meets v at both ends, its image in H is counted twice).

Theorem 1.4 (Edmonds). A necessary and sufficient condition for a
connected graph G to have a polyhedral surface imbedding in a surface S
of Euler characteristic χ(S) is that it has an edge correspondence with
another graph G∗ for which

(1) the conditions of Theorem 1.3 are satisfied and

(2) v(G)− e(G) + v(G∗) = χ(S).

Edmonds comments in the conclusion of [7] that his theorems cannot
be generalized using oriented edges in order to distinguish between ori-
entable and nonorientable surfaces. (He does not comment on character-
izing imbeddability in pseudosurfaces.)

In [1] the authors of this paper presented an algebraic generalization
of Whitney’s theorem to the projective plane. In this paper we build on
the work in [1] in two ways: a more topological approach is used and the
results here cover all surfaces and pseudosurfaces, rather than just the
projective plane.

Imbeddability of graphs in surfaces has also been discussed from other
algebraic perspectives. Archdeacon, Bonnington, and Little provide a
novel characterization of planarity in [2] in terms of diagonals, which are
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a particular kind of walk double cover. The topological content of that
result is clarified by the approach of Richter and Keir in [15] and [9].
The latter approach essentially deals with homology and the former with
cohomology, although neither is explicitly stated in these terms.

Two classical approaches to graph imbedding, although unrelated to
the work here, require mention in any discussion of imbeddability. Kura-
towski’s planarity criterion [10] states that a graph is planar if and only if
it does not contain K5 or K3,3 as a minor. This has given rise to a large
study of imbeddability in surfaces under the title “graph minors” which is
described in [13]. Another approach to imbedding grows out of the notion
of voltage graphs (i.e., directed graphs with edges labelled by elements of
a group) and their derived graphs, which is a combinatorial version of the
theory of covering spaces. A good reference for these ideas is [8].

A closed, connected pseudosurface P is a topological space obtained
from a disjoint union of surfaces via a finite number of point identifica-
tions (henceforth pinches). We say that a graph G properly imbeds in a
pseudosurface P when G imbeds in P , subdivides P into 2-cells, and pinch-
points in P correspond to vertices in G. When we say in this paper that
“G imbeds in P” we mean that G properly imbeds in P . Imbeddability
for graphs in pseudosurfaces has received much less attention than imbed-
dability in surfaces, although the literature does contain some results. For
instance, [3] describes a criterion for imbeddability in the pseudosurface
Bn obtained from n spheres by identifying all north poles and identifying
all south poles, and [4] contains a characterization of graphs of connectiv-
ity 1 or 2 which are minimally nonimbeddable (under edge-deletion and
contraction of edges not in a triangle) in B2.

In [14] some of the basic theorems about imbeddings in surfaces are
extended to pseudosurfaces, and there is also a determination of the max-
imum pseudocharacteristic pseudosurface for various classes of complete
multipartite graphs. (The pseudocharacteristic of a pseudosurface P is
defined to be the Euler characteristic of any 2-cell decomposition of the
pseudosurface.) Some calculations of maximum pseudocharacteristic for
other classes of graphs appear in [16].

Our purpose in this paper is to characterize imbeddability of a con-
nected graph G in a closed, connected pseudosurface with a given set
of specifications: the number of face-connected components, the number
of pinches, the number of crosscaps and handles, and the dimension of
the first Z2-homology group. The characterizations are in terms of the
existence of a type of dual graph G∗ on the same set of edges as G satisfy-
ing certain algebraic conditions inspired by homology groups, intersection
products, and Whitney’s planarity theorem. Of note is that our results
distinguish between imbeddability of a graph G in the orientable surface
of even Euler characteristic from imbeddability of G in the nonorientable
surface of the same characteristic (a problem left open at the end of [7]).

In Section 2 we review some definitions and notation for graphs and
cellular complexes. We then show how a graph and a combinatorial dual
graph produce a chain complex whose homology is 0. We then define an
algebraic dual graph (introduced previously in [1]): An algebraic dual of
a graph G is a graph G∗ with E(G∗) = E(G) whose coboundary space is
a subspace of the cycle space of G. An algebraic dual graph will also yield
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a chain complex, but the homology of that complex is not necessarily 0.
Section 3 describes how to use an algebraic dual of a graph G to con-

struct a pseudosurface in which G is imbedded and whose first homology
group is that of the chain complex from Section 2. In [1] we studied al-
gebraic and topological duals of planar and projective-planar graphs. In
those cases it is easy to exclude loops from dual graphs, but in the more
general context of this work, loops in duals cannot be avoided. (Actu-
ally, the existence of a loopless algebraic dual G∗ for a given a graph G
is equivalent to the existence of a cycle double cover for G; this is a fa-
mous open question in graph theory, see [18].) Thus we adapt the idea
of weighted Eulerian walks from [7] to modify the construction in [1] in
order to handle algebraic duals with loops.

Homology groups alone do not provide sufficient information to char-
acterize the pseudosurface in which a particular graph has been imbed-
ded. So in Section 4 we discuss intersection forms for curves imbedded
on surfaces and an extension of these forms to pseudosurfaces. This will
provide the additional information necessary for our main results about
imbeddability.

In Section 5 we describe our main results characterizing imbeddability.
The first is: given a connected graph G, n ≥ 0, f ≥ 1, and p ≥ f − 1,
we characterize when G may be imbedded in a connected pseudosurface
with f face-connected components, p pinches, and Z2-homology group of
dimension n. The second is: given n, p, h, and c ≥ 0 we characterize when
a connected graph G imbeds in a face-connected pseudosurface with p
pinches, h handles, c crosscaps, and Z2-homology group of dimension n.
The last characterizes when G can be imbedded in the orientable surface
with Z2-homology group of dimension n (for n ≥ 0 and even) and when
G can be imbedded in the nonorientable surface with Z2-homology group
of dimension n (for any n ≥ 1).

2 Definitions and basic information

Given a graph G we denote the vertex set by V (G) and the edge set by
E(G). Each edge has two ends and each end is attached to a vertex. If
an edge has both ends attached to the same vertex, then we call the edge
a loop. If an edge has its ends attached to two different vertices, then
we call the edge a link. A circle in G is a simple-closed path in G. A
bond in G is a minimal set of edges whose removal increases the number
of components of G. Given v ∈ V (G), by starG(v) we mean the collection
of links in G incident to v. This is called the vertex star of v in G. By
star+G(v) we mean the collection of all edges in G incident to v. This is
called the augmented vertex star of v in G. If X ⊆ E(G), then by G:X
we mean the subgraph of G consisting of the edges in X and the vertices
in G incident to edges in X.

Let C0(G) and C1(G) denote the Z2-vector spaces of formal linear
combinations of elements of V (G) and E(G), respectively. Note that
addition of vectors in these spaces amounts to symmetric difference of the
support of those vectors, so for c ∈ Ci(G), we let c also denote its own
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support. Let

Z1(G) = 〈c ∈ C1(G) : c is the edge set of a circle in G〉.

(Here 〈v1, . . . , vt〉 denotes the subspace generated by v1, . . . , vt.) The sub-
space Z1(G) is the cycle space of G and we call its elements cycles. This
subspace is exactly the kernel of the linear map ∂ : C1(G) → C0(G) de-
fined by ∂(e) = u + v where u and v are the vertices to which the ends of
the edge e are attached. It is easy to show that z ∈ Z1(G) if and only if
G:z has an even number of edge ends attached to every vertex. Let

B1(G) = 〈b ⊆ E(G) : b is a bond of G〉.

The subspace B1(G) is the coboundary space of G and we call its elements
coboundaries. (In parts of the graph-theory literature, e.g., [5], these are
called “cocycles.”) It is easy to show that the orthogonal complement of
Z1(G) in C1(G) is B1(G).

Let C∗0 (G) and C∗1 (G) denote the vector-space duals of C0(G) and
C1(G), respectively. Since we have chosen bases for C0(G) and C1(G),
namely V (G) and E(G), respectively, we may identify each v ∈ V (G) with
the corresponding dual element v∗ ∈ C∗0 (G), and each e ∈ E(G) with the
corresponding e∗ ∈ C∗1 (G). The space B1(G) may thus be viewed as the
image of the adjoint map ∂∗ : C∗0 (G) → C∗1 (G) which is characterized by
∂∗(v) = starG(v) for each vertex v.

Whitney’s combinatorial dual graphs are characterized in the above
language in Proposition 2.1.

Proposition 2.1. A graph G′ on the same edge set as a graph G is a
combinatorial dual graph of G exactly when, for each S ⊆ E(G) = E(G′),
the subgraph G:S is a circle if and only if G′:S is a bond.

Given a graph G with a combinatorial dual graph G′, we can construct
a chain complex as follows:

C0(G)
∂←− C1(G) = C1(G

′) ∼= C∗1 (G′)
∂∗←− C∗0 (G′) (1)

Because of the circle/bond relationship between G and G′, the composi-
tion ∂ ◦ ∂∗ (suppressing the isomorphism in the middle) is the zero map,
and moreover the homology of this complex is 0.

The property that ∂ ◦ ∂∗ = 0 for complex (1) of course holds if and
only if im ∂∗ ⊆ ker ∂. This gives rise to the following generalization of
combinatorial dual: An algebraic dual to a graph G is a graph G∗ with
E(G∗) = E(G) and B1(G∗) ⊆ Z1(G).

In [1] the authors of the present article offer the following reformulation
of Whitney’s planarity criterion in terms of vector spaces associated with
graphs as well as (1). Its proof also follows as a corollary to the results in
Section 5.

Theorem 2.2 (Whitney). A graph G is planar if and only if there exists
an algebraic dual G∗ satisfying Z1(G) = B1(G∗). Furthermore, if G is
planar, then the topological dual graph G⊥ satisfies Z1(G) = B1(G⊥).
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If K is a 2-dimensional cellular complex (or 2-complex, for brevity),
write V (K), E(K), and F (K) for its sets of vertices (i.e., 0-cells), edges
(i.e., 1-cells) and faces (i.e., 2-cells), respectively. Let |K| denote the
geometric realization of K. A 2-complex is 2-regular if each edge is either
attached to exactly two faces or is attached to one face twice, i.e., an edge
of K either appears in two distinct boundary walks once, or twice in one
boundary walk. We say that K is face connected if for any two faces f
and f ′ ∈ F (K) there is a sequence of faces f = f1, . . . , fn = f ′ such that,
for each i, fi and fi−1 share a common boundary edge.

Given a 2-regular 2-complex K with 1-skeleton G, there exists a topo-
logical dual graph G⊥ constructed as follows: Let V (G⊥) = F (K) and
E(G⊥) = E(G). An edge e connects distinct vertices f1 and f2 in G⊥ (i.e.,
e is a link) exactly when e is an edge in the boundary walks of distinct
faces f1 and f2 in G. An edge e is a loop on vertex f in G⊥ exactly when
e appears twice in the boundary walk of face f in G. When the imbedding
of a graph G in a complex K is understood, we sometimes write F (G)
for F (K). When viewing G and G⊥ as subsets of |K|, we will presume
that each point corresponding to a vertex of G⊥ lies in the interior of the
appropriate face of G, and that the two curves in |K| corresponding to
an edge of G and G⊥, respectively, cross transversely and only at a single
point. Finally, when K is a surface, it is well known that (G⊥)⊥ = G.
Proposition 2.3 is easy to prove.

Proposition 2.3. Given a 2-regular 2-complex K with 1-skeleton G, the
topological dual graph G⊥ is an algebraic dual of G.

An algebraic dual G∗ of a graph G is called component-split if for
each v ∈ V (G∗), the subgraph G: star+G∗(v) is connected. If G∗ fails
to be component-split, it is not difficult to alter G∗ so as to produce a
component-split algebraic dual: If vertex v of G∗ is such that G: star+G∗(v)
has components G1, . . . , Gm, then replace v by vertices v1, . . . , vm 6∈ V (G∗)
where, for each i, the edge ends incident to vi are the ends of the edges
in E(Gi) incident to v.

For K and G as above, let C2(K) denote the Z2-vector space of formal
linear combinations of elements of F (K). We also write C1(K) for C1(G).
Define the boundary map ∂2 : C2(K) → C1(K) by mapping each face to the
sum of the edges in its boundary walk, and extending by linearity. Write
B1(K) for im ∂. Using the isomorphisms C∗0 (G⊥) ∼= C0(G

⊥) = C2(K)
and C∗1 (G⊥) ∼= C1(G

⊥) = C1(K), we may view ∂2 and ∂∗ : C∗0 (G⊥) →
C∗1 (G⊥) as having the same domain and codomain. In this view, each
vertex of G⊥ is a face of K, and each vertex star of G⊥ is the set of
links in the boundary walk of the corresponding face of K. Since ∂2 is
characterized by sending faces to boundary walks and ∂∗ is characterized
by sending vertices to vertex-stars, we may view B1(K) and B1(G⊥) as
equal.
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3 Constructing a cellular complex from
G and an algebraic dual

Consider a graph G and an algebraic dual G∗. We now describe a method
for constructing a 2-regular 2-complex K(G, G∗) which has 1-skeleton G
and topological dual graph that is the component split of G∗. Similar to
what is done in [7], to each edge in E(G) = E(G∗) assign weight 1 if the
edge is a link in G∗ and assign weight 2 if the edge is a loop in G∗. A
subset S ⊆ E(G) is weighted Eulerian if G:S is connected and each vertex
of G:S has even weighted degree, that is, the sum of the weights of the
edge ends meeting any vertex in G:S is even.

A walk in G is a sequence v1e1v2e2 . . . envn+1 where for each i, vi is a
vertex and ei is an edge with end-point(s) vi and vi+1. The walk is called
closed if v1 = vn+1. When S is weighted Eulerian, G:S has a closed walk
covering all edges of weight 1 exactly once and all edges of weight 2 exactly
twice (just as would be the case for a walk along a face boundary of a
graph properly imbedded in a pseudosurface). Call such a walk a weighted
Eulerian walk. Note that if S ∈ Z1(G), then each connected component
of G:S is Eulerian in the usual sense because there is an even number of
edge ends incident to each vertex in G:S.

Let v be a vertex in G∗. Since starG∗(v) ∈ B1(G∗) ⊆ Z1(G), the
connected components of G: starG∗(v) are Eulerian. Since the difference
between star+G∗(v) and starG∗(v) consists of the edges that are loops in G∗

incident to v, it must be that the connected components of G: star+G∗(v)
are weighted Eulerian.

Construction 3.1. This construction uses as input a graph G and an al-
gebraic dual G∗, and gives as output a 2-regular 2-complex K(G, G∗).
Take the 1-skeleton of K(G, G∗) to be the graph G. Write V (G) =
{v1, . . . , vn}. Each component of G: star+G∗(vi) is weighted Eulerian. Iden-
tify the boundaries of 2-cells F i

1 , . . . , F i
ki

with some choice of weighted
Eulerian walks in the connected components Ci

1, . . . , C
i
ki

of G: star+G∗(vi),
and let the faces of K(G, G∗) be the cells F i

j glued to the edges of G.

Proposition 3.2 follows readily follows from Construction 3.1, the def-
inition of a topological dual graph, and the definition of component split.

Proposition 3.2. If G∗ is an algebraic dual graph of G, then G is the
1-skeleton of K(G, G∗) and the topological dual graph of G in K(G, G∗)
is the component split of G∗.

4 An intersection form for curves in pseu-
dosurfaces

Suppose that K has f(K) face-connected components. Then K may be
obtained via a sequence of 2-regular 2-complexes K0, . . . , Kp = K where
K0 is a disjoint union of f(K) closed surfaces and Ki is obtained from
Ki−1 by identifying two distinct points of Ki−1 to one point (i.e., making
a new pinch). Note that the order of pinching is immaterial; since exactly
f(K) − 1 pinches are required to connect up the f(K) components of
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K0, we may require that Kf(K)−1 is a connected pseudosurface. By the
definition of a 2-regular 2-complex, all pinches are made at vertices of
K. Let G⊥i denote the topological dual of the 1-skeleton of Ki. Since
pinching does not change the incidence of faces with edges, we have that
G⊥0 = · · · = G⊥p .

As described in [6, p.221], there is a nondegenerate bilinear form 〈 , 〉0
on the Z2-homology group H1(K0) which, after choosing an appropriate
basis for H1(K0), corresponds to the block-diagonal matrix

(
Ic 0

0 J2h

)
.

Here, c is the number of crosscaps in one realization (up to homeomor-
phism) for K0, h is the corresponding number of handles, Ic is the c × c
identity matrix, and J2h is a block-diagonal matrix with h blocks of the
form (

0 1
1 0

)
.

We may apply this intersection form to the cycles in Z1(G
⊥
0 ) = · · · =

Z1(G
⊥
p ). Now, the quotient group

Z1(G
⊥
0 )

B1(G0)

is the homology group H1(K0) and, because of the requirement that
Kf(K)−1 be connected,

Z1(G
⊥
i )

B1(Gi)
∼= H1(K0) for 0 ≤ i ≤ f(K)− 1.

So now we have that

Z1(G
⊥
i )

B1(Gi)
∼= H1(K0)× Zi−f(K)+1

2 for f(K) ≤ i ≤ p,

and the new generators introduced by the pinches are circles in G⊥i = G⊥0
that contract to the pinchpoints (i.e., circles that orbit the pinchpoints).
Because all pinchpoints occur at the vertices of G, pinching does not
affect the intersections of cycles in G⊥. Thus, extending the basis for
H1(K0) = Z1(G

⊥
0 )/B1(G0) to a basis for Z1(G

⊥
i )/B1(Gi) by including

linearly independent circles which contract to pinchpoints yields the in-
tersection form 〈 , 〉i for Z1(G

⊥
i )/B1(Gi) with block-diagonal matrix




Ic 0 0

0 J2h 0

0 0 0m


 with m = i− f(K) + 1.

Here 0m is the m×m matrix of zeros.
In light of Proposition 3.2, we may apply the intersection form 〈 , 〉K(G,G∗)

to the cycle space Z1(G
∗) to obtain topological information about inter-

sections of cycles in G∗ on K(G, G∗). In fact, it is possible to define the
desired intersection form 〈 , 〉K(G,G∗) on Z1(G

∗) without actually referring
to the 2-complex K(G, G∗) because the choice of Eulerian walks in G is
equivalent to choosing a rotation system on the vertices of G∗. We will
not, however, explicitly make this construction here.
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Proposition 4.1. Let 〈, 〉 be a symmetric bilinear form on a Z2-vector
space V . Then the sets

D(V ) := {v ∈ V | ∀(x ∈ V )〈v, x〉 = 0}
O(V ) := {v ∈ V | 〈v, v〉 = 0}

are subspaces of V with D(V ) ⊆ O(V ).

In light of this proposition, for any symmetric bilinear form 〈, 〉 on a
Z2-vector space V we define the degeneracy of 〈, 〉 to be the dimension of
D(V ) and the self-orthogonality to be the dimension of O(V ).

Proposition 4.2. Let K be a connected, 2-regular 2-complex with p
pinches whose face-connected components may be expressed, up to home-
omorphism, with h handles and c crosscaps.

(1) The dimension of Z1(G
⊥)/B1(G) is 2h + c + p− f(K) + 1.

(2) The degeneracy and self-orthogonality of the intersection form 〈 , 〉
for Z1(G

⊥)/B1(G) are p − f(K) + 1 and 2h + c + p − f(K) + 1 −
min(1, c), respectively.

Note that the dimension of H1(K(G, G∗)) is uniquely determined by
the graph G and the number of vertices and components of the component
split of algebraic dual G∗. The intersection form 〈 , 〉K(G,G∗), however,
depends on the choice of weighted Eulerian walks in the construction of
K(G, G∗). Given G and G∗, there may be different choices possible for
the face walks in the construction of K(G, G∗). When and how these
variations occur is a topic of interest for future investigations.

5 Imbeddability criteria

Given a pseudosurface P , we define f(P ) to be the number of face-
connected components in any 2-regular 2-complex K with P ∼= |K|. This
number is well defined as it is actually the rank of the second homology
group H2(P ).

Theorem 5.1. A connected graph G properly imbeds in a closed, con-
nected pseudosurface P with p pinches, f(P ) face-connected components,
and dim(H1(P )) = n if and only if G has a component-split algebraic dual
G∗ such that

(1) G∗ has f(P ) components,

(2) dim

(
Z1(G)

B1(G∗)

)
= n, and

(3) Eulerian walks can be chosen in the construction of K(G, G∗) so that
〈 , 〉K(G,G∗) has degeneracy d = p− f(P ) + 1.

Proof. Suppose that G properly imbeds in pseudosurface P with p pinches,
f(P ) face-connected components, and dim(H1(P )) = n. Then let K be
the cellular complex resulting from subdividing P by G, and let G∗ = G⊥

(as in Proposition 3.2). First, by the definition of a topological dual, G∗

has f(P ) components, satisfying property (1). Second, because B1(G∗) =
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B1(K) we have that dim
(

Z1(G)

B1(G∗)

)
= dim

(
Z1(G)
B1(K)

)
= dim(H1(P )) = n,

satisfying property (2). Last, by choosing weighted Eulerian walks in
the construction of K(G, G∗) to match the face walks of K, we have
〈 , 〉K(G,G∗) = 〈 , 〉K with degeneracy d = p − f(P ) + 1 (by Proposition
4.2), satisfying property (3).

Conversely, suppose that G has a component-split algebraic dual G∗

satisfying (1)–(3). Using Construction 3.1 we construct K = K(G, G∗).
By the construction and the fact that G∗ has f(P ) components, we
get that K(G, G∗) has f(P ) face-connected components, and because

B1(K) = B1(G∗) we get that dim(H1(K)) = dim
(

Z1(G)
B1(K)

)
= dim

(
Z1(G)

B1(G∗)

)

= n. Since |K| is a pseudosurface, it has an intersection form 〈 , 〉 as de-
scribed in Section 4. We know that the degeneracy of 〈 , 〉 is due exclusively
to generators of H1(K) arising from pinches; since we know that K has
f(P ) face-connected components and the degeneracy of 〈 , 〉 is d, we deduce
from Proposition 4.2 that K has d + f(P )− 1 = p pinches.

In Theorem 5.1, it is difficult to be more specific about the distribution
of handles and crosscaps among the face-connected components of P .
We can, however, analyze the algebraic dual G∗ componentwise. These
components correspond to the face-connected components of K(G, G∗),
and Theorem 5.2 tells us more about the handles and crosscaps within a
face-connected component.

Theorem 5.2. A connected graph G properly imbeds in a closed, face-
connected pseudosurface P with p pinches, h handles, and c crosscaps if
and only if G has a component-split algebraic dual G∗ such that

(1) G∗ is connected,

(2) dim

(
Z1(G)

B1(G∗)

)
= 2h + c + p with c, h, p ≥ 0, and

(3) Eulerian walks can be chosen in the construction of K(G, G∗) so
that 〈 , 〉K(G,G∗) has degeneracy p and self-orthogonality 2h + p + c−
min(1, c).

Proof. Suppose that G properly imbeds in a face-connected pseudosurface
P with h handles, c crosscaps, and p pinches. Then let K be the cellular
complex resulting from subdividing P by G, and let G∗ = G⊥ (as in
Proposition 3.2). That K satisfies conditions (1)–(3) follows by arguments
analogous to those in the first paragraph of the proof of Theorem 5.1.

Conversely, suppose that G has a connected component-split algebraic
dual satisfying conditions (1)–(3). As in the proof of Theorem 5.1 we
construct K = K(G, G∗) and, because G∗ is connected, K(G, G∗) is face-
connected. Thus dim(H1(K)) = dim(Z1(G)/B1(G∗)) = 2h + c + p with
c, h, p ≥ 0. By assumption, the intersection form 〈 , 〉K corresponding to
K has degeneracy p. Since G∗ is connected and K is face-connected,
Proposition 4.2 implies that the degeneracy of 〈 , 〉K equals the number of
pinches in K. Thus K has p pinches.

By assumption, the self-orthogonality of 〈 , 〉K is 2h+p+ c−min(1, c).
Let K′ be the 2-regular 2-complex obtained after releasing the p pinches
of K; since K is face connected, K′ is a surface. We have dim(H1(K

′)) =
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2h + c and 〈 , 〉K′ has self-orthogonality s = 2h + c−min(1, c). This self-
orthogonality either equals dim(H1(K

′)) (iff c = 0) or equals dim(H1(K
′))−

1 (iff c ≥ 1). When c = 0 we know that |K′| is orientable and must have
h handles. In the case that c ≥ 1 we know that |K′| is nonorientable and
may be represented up to homeomorphism by 2h + c crosscaps. We can
then use the standard homeomorphism to exchange three crosscaps for a
handle and crosscap, showing that K′ will have h handles and c crosscaps.
It follows that we know, up to homeomorphism, exactly the number of
crosscaps and handles of K′, and thus of K as well.

Even in Theorem 5.2 we are not able to distinguish between imbed-
dability in homotopically equivalent pseudosurfaces with different configu-
rations of pinches (e.g., a sphere with a triple pinch and a sphere with two
double pinches); however, different configurations of pinches do actually
affect imbeddability. For example, in [14, p.32–33] the author displays an
imbedding of K6 in the sphere with two double pinches but argues that
K6 does not imbed in the sphere with one triple pinch because releasing
the triple pinch in some assumed imbedding of K6 would yield an imbed-
ding of K5 in the sphere, which is impossible. Whether or not algebraic
techniques could distinguish between such cases is unknown.

Corollaries 5.3 and 5.4 of Theorem 5.2 characterize imbeddability in
orientable and nonorientable surfaces. They may also be used to dis-
tinguish between imbeddability in the orientable surface of even Euler
characteristic 2k from imbeddability in the nonorientable surface with
the same characteristic. This is because the intersection form for an ori-
entable surface Σ has self-orthogonality dim(H1(Σ)) and the intersection
form for a nonorientable surface Σ′ has self-orthogonality dim(H1(Σ

′))−1.

Corollary 5.3. A connected graph G properly imbeds in the closed, ori-
entable surface with h handles if and only if G has a component-split
algebraic dual G∗ such that

(1) G∗ is connected,

(2) dim

(
Z1(G)

B1(G∗)

)
= 2h and

(3) Eulerian walks can be chosen in the construction of K(G, G∗) so that
〈 , 〉K(G,G∗) has self-orthogonality 2h.

Corollary 5.4. A connected graph G properly imbeds in the closed, nonori-
entable surface with c crosscaps if and only if G has a component-split
algebraic dual G∗ such that

(1) G∗ is connected,

(2) dim

(
Z1(G)

B1(G∗)

)
= c and

(3) Eulerian walks can be chosen in the construction of K(G, G∗) so that
〈 , 〉K(G,G∗) has self-orthogonality c− 1.
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