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Projective-planar graphs with no K3,4-minor

John Maharry ∗ Daniel Slilaty †

December 28, 2010

Abstract

An exact structure is described to classify the projective-planar graphs that do not contain
a K3,4-minor.

1 Introduction

There are several graphs H for which the precise structure of graphs that do not contain a minor
isomorphic to H is known. In particular, such structure theorems are known for K5 [13], V8 [8] and
[7], the cube [3], the octahedron [4], and several others. Such characterizations can often be very
useful, e.g., Hadwiger’s conjecture for k = 4 is verified by using the structure for K5-free graphs, and
the structure theorem for V8-free graphs is used to characterize how projective-planar graphs may
be re-embedded in the projective plane [5].

Characterizations of K6-free graphs and Petersen-free graphs are highly sought-after results,
mostly due to their connections with Hadwiger’s conjecture and Tutte’s 4-flow conjecture. Such
characterizations seem to be very difficult. The Petersen graph and K6 belong to a collection of
seven graphs known as the Petersen Family of graphs (see [9]). They are all graphs obtained by
sequences of Y∆ and ∆Y operations on the Petersen graph.

The difficulty of characterizing K3,4-free graphs seems to lie between the characterizations of
H-free graphs mentioned in the first paragraph and H-free graphs for H in the Petersen Family.
In this paper we give an exact structure for projective-planar graphs that are K3,4-free (Theorem
3.4 along with Propositions 3.1 and 3.2). The authors hope that this might be a first step in a
complete structure theorem of K3,4-free graphs. The non-projective-planar K3,4-free graphs might
be characterized using the known list of 35 minor-minimal non-projective planar graphs in [1] and
[2].

Another possible point of interest for characterizing K3,4-free graphs might be the following. A
k-separation (B1, B2) in a graph G is called flat if the subgraph of G induced by some Bi along with
a vertex of degree k attached to the k vertices of V (B1) ∩ V (B2) is a planar graph. In Section 3 we
will see that a 3-connected graph G is K3,4-free iff every 3-separation in every 3-connected minor of
G is flat.

∗Dept. of Mathematics, The Ohio State University, Columbus OH 43210, maharry@math.ohio-state.edu
†Dept. of Mathematics and Statistics, Wright State University, Dayton OH 45435, daniel.slilaty@wright.edu
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2 Preliminaries

The representativity (or face width) of an embedding of a graph in a surface is the minimum number
of intersection points of the graph and a noncontractible curve in the surface. An embedding with
representativity k is called a k-representative embedding.

Suppose that a graph G has a 2-representative embedding on the projective plane. Then some
noncontractible curve γ is entirely contained in two faces and intersects the graph in precisely two
vertices, say A and B, as shown in Figure 1.

Figure 1.

A

A

B

B

A 2-representative embedding in the projective plane.

Given a simple graph H, a graph G is said to contain an H-minor if for each vertex of v ∈ V (H)
there corresponds a connected subgraph ν(v) ⊆ V (G) such that the subgraphs ν(v) are pairwise
disjoint and for any u and v that are adjacent in H, there exists u′ ∈ ν(u) and v′ ∈ ν(v) that
are adjacent in G. If G does not contain an H-minor, we will say that G is H-free. Given N =
{v1, v2, . . . , vk} ⊂ V (H) and a set M = {v′1, v′2, . . . , v′k} ⊂ V (G), we will say that G contains an
H-minor with N rooted on M if G contains an H-minor such that each v′i ∈ ν(vi).

Given a subgraph H of a graph G an H-bridge is either an edge outside of H whose endpoints are
both in H or a connected component of G\V (H) along with the edges that connect that component
to H. Given an H-bridge B the vertices of attachment are the vertices of B that are in H. The edges
of B incident to the vertices of attachment are called legs. A bridge with n vertices of attachment
is also called an n-bridge.

If S is a subdivision of a graph G where G has no vertices of degree 2, then a path in S that
corresponds to an edge in G is called a branch of S. A vertex of S corresponding to a vertex of G
is called a branch vertex of S.

Given a set of edges X in G, let V (X) denote the vertices of G incident to edges in X. For k ≥ 0,
a k-separation in G is a bipartition (A1, A2) of the edges of G with nonempty parts such that each
|Ai| ≥ k and and |V (A1)∩ V (A2)| = k. The k-separation is called vertical when V (A1) \ V (A2) ̸= ∅
and V (A2)\V (A1) ̸= ∅. A graph on at least k+1 vertices is called vertically k-connected when every
vertical t-separation has t ≥ k. We use vertical k-connectivity rather than Tutte-k-connectivity to
allow for loops and multiple edges. A vertically 3-connected graph G is almost 4-connected when
any vertical 3-separation (A1, A2) has some |V (Ai)| = 4. This is similar to but weaker than the
usual notion of internal 4-connectivity.

3 Patch graphs and K3,4-free graphs

Summing and K3,4-free graphs Given two graphs G1 and G2, a 1-sum G1 ⊕1 G2 is the identifi-
cation of G1 and G2 along some specified vertex and a 2-sum G1⊕2G2 is obtained by identifying G1

and G2 along some specified link and then deleting that link. (A link is an edge that is not a loop).
If G1 and G2 both contain a 3-valent vertex, then a Y -sum G1 ⊕Y G2 is obtained by identifying
the neighbors of these 3-valent vertices in some specified ordering and then removing the 3-valent
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vertices. Propositions 3.1 and 3.2 reduce the problem of classifying K3,4-free graphs to classifying
almost-4-connected K3,4-free graphs. The proof of the first is easy.

Proposition 3.1. For each k ∈ {1, 2}, G and H are both vertically k-connected and K3,4-free if and
only if G⊕k H is vertically k-connected and K3,4-free.

Proposition 3.2.

(1) If G is simple, vertically 3-connected, and K3,4-free, then G is obtained by taking one simple,
almost 4-connected, K3,4-free graph and then taking Y -sums with planar graphs with possible
subdivisions of edges before each sum.

(2) If G is K3,4-free and P is planar, then G⊕Y P is K3,4-free.

Proof. (1) If G is K3,4-free and almost 4-connected, then our result follows. So suppose that G is
K3,4-free and vertically 3-connected. Thus G = H1 ⊕Y H2 for some graphs H1 and H2 on at least
5 vertices each. Since G is vertically 3-connected and Hi has at least 5 vertices, it can be shown
that Hi is vertically 3-connected except possibly for some 2-valent vertices adjacent to the 3-valent
vertex along which the Y -sum is taken. Using Theorem 3.3 shown below, it cannot be that H1 and
H2 are both nonplanar. So G = H ⊕Y P where P is planar.

Now if H is planar, then evidently G is planar as well. If H is not planar, then H must be
K3,4-free because otherwise any minimal subgraph H ′ of H that contracts to K3,4 would by the
vertical 3-connectivity of P have a corresponding subgraph H ′′ of G = H ⊕Y P that contracts to
K3,4, a contradiction. We may now smooth degree-2 vertices and iterate this process on H to get
our result.

(2) Suppose that G is K3,4-free but G⊕Y P has a K3,4-minor. If H is a minimal subgraph of G⊕Y P
that contracts to K3,4, then one can show that H ∩P is either a path or a subdivision of K1,3. Thus
we can then get a corresponding subgraph H ′ of G, that contracts to K3,4, a contradiction.

Theorem 3.3 (Truemper [11, 10.3.9]). Let v be a 3-valent vertex of a vertically 3-connected non-
planar graph. Then there is a K3,3-subdivision in G that contains v as a branch vertex.

Patch graphs Given a graph G embedded in the projective plane, certain faces with boundary
cycles of length four will be designated as patches . Patches are drawn as shaded regions in the
interior of their faces. A patch graph is a pair (G,P) where G is a embedding of a graph in the
projective plane with designated vertices A and B on a 2-representative cut and P is a collection
of patches (possibly empty) which together are constructed iteratively as follows. We call the patch
graph (4K2, {P0}) shown on the left in Figure 2 the initial patch graph.

Figure 2.
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A

A

B

B

The initial patch graph and the topologically unique embedding of K3,4 on the projective plane.
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Now all patch graphs are constructed from (4K2, {P0}) by applying sequences of operations H, Y ,
X, and I. Each of these operations replaces a patch with the respective configuration shown in
Figure 3 or a configuration obtained by rotating or flipping the interior of the patch while leaving
the boundary fixed. Since operations X and I remove a patch and do not introduce any new ones
we call them terminal patching operations.

Figure 3.
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Operations H, Y , X, and I, respectively.

Figure 4.
An example of a subgraph of a patch graph.

Main result Our main result is Theorem 3.4 which along with Propositions 3.1 and 3.2 give a
complete characterization of K3,4-free projective-planar graphs.

Theorem 3.4 (Main Result). If H is a simple, nonplanar, and almost-4-connected projective-planar
graph that is K3,4-free, then H ∼= K6 or H is a subgraph of a patch graph. Furthermore, all patch
graphs are K3,4-free.

In Section 3.1 we show that every 2-representative, almost 4-connected, K3,4-free graph in the
projective plane is a subgraph of a patch graph and in Section 3.2 we show that all patch graphs
are K3,4-free. For a 3-representative or higher almost 4-connected K3,4-free graph in the projective
plane we have Theorem 3.5.

Theorem 3.5. If G is vertically 3-connected, simple, and K3,4-free and G has an embedding in the
projective plane with representativity at least 3, then G ∼= K6.

Proof. It is shown by Vitray [12] and also by Randby [6], that if G embeds in the projective plane
with representativity at least 3, then G contains as a minor one of the six projective-planar graphs
from the Petersen Family (see [9] for a listing of these seven graphs). One can easily check that each
of these seven graphs except for K6 has a K3,4-minor. Thus G has a K6-minor. Now there is no
vertically 3-connected and simple single-edge extension of K6 and only one vertically 3-connected
and simple single-edge decontraction of K6 (up to isomorphism). This decontraction clearly contains
a K3,4-minor and so by the Splitter Theorem [10] we get that G ∼= K6.

3.1 K3,4-free graphs and patch graphs

Theorem 3.6 along with Theorem 3.5 prove the first part of Theorem 3.4.
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Theorem 3.6. If R is almost 4-connected, simple, and K3,4-free and R has a 2-representative
embedding on the projective plane, then R is planar or a subgraph of a patch graph.

Proposition 3.7. If (G,P) is a patch graph and P ∈ P, then there are four disjoint (some possibly
trivial) paths in G from the four corners of the patch P to the vertices A and B on the boundary.

Proof. Our statement is true for the initial patch graph (4K2, {P}). Now assume that the statement
holds for some arbitrary patch graph (G,P) and that the patch graph (G′,P ′) is obtained from
(G,P) by patching operation Y or H. (We need not consider the terminal patching operations as
they do not introduce any new patches or alter the graph outside the patch.) For each of these
operations, there are clearly paths from the vertices of any new patch to the vertices of the original
patch and these paths can be extended to paths to the vertices on the boundary. We need not
consider any old patches as the patching operation does not alter the graph outside of the patch.

Figure 5.

a

c

b

d

Corollary 3.8. If (G,P) is a patch graph and H is obtained from G by placing the configuration of
Figure 5 in some patch P , then H contains a K3,4-minor.

Proof. If H is the subgraph consisting of the configuration inside P from Figure 5 along with the
four paths from Proposition 3.7, then contracting the four paths yields K3,4.

Proof of Theorem 3.6. Given R as in the hypothesis of the theorem, we will iteratively construct
a patch graph (G,P) such that R ⊆ G. Consider (G0,P0) = (4K2, {P0}) being the initial patch
graph on the left of Figure 2. Let R0 be the graph obtained from R by adding whichever of the four
AB-edges of (4K2, {P0}) that may be missing. Thus we have a patch graph (Gi,Pi) and supergraph
Ri ⊇ R such that Gi & Ri and all Gi-bridges in Ri are subgraphs of R and are contained in the
patches Pi. We will now show that there is (Gi+1,Pi+1) with Gi & Gi+1 such that either Ri ⊆ Gi+1

(in which case we have our desired conclusion) or we will define Ri+1 ⊇ Ri ⊇ R such that Gi+1 & Ri+1

and all Gi+1-bridges in Ri+1 are subgraphs of R and are contained in the patches Pi+1. In this latter
case we can iterate the process again and by the finiteness of R and the fact that Gi & Gi+1 this
process will eventually halt with our desired patch graph containing R.

Because Gi & Ri, there is P ∈ Pi such that Ri contains Gi-bridges in the face P . Let BP be the
collection of these Gi-bridges. In Case 1 say that |BP | > 1 and in Case 2 say that |BP | = 1.

Case 1: Here we must have that any Gi-bridge in BP has at most three attachments among a, b, c, d.
So by the almost 4-connectivity of R each such bridge is either a single link or a triad and so the
bridges of BP in P are a subconfiguration of the configuration for patch operation I. So now apply
the terminal patch operation I to patch P in (Gi,Pi) to obtain (Gi+1,Pi+1) where Pi+1 = Pi \P . If
Ri ⊆ Gi+1, then we are done. Otherwise let Ri+1 be obtained from Ri by placing all of the edges of
patch operation I into the quadrilateral P of Ri and we have that Gi+1 ⊂ Ri+1 and the Gi+1-bridges
in Ri+1 are subgraphs of R and are contained in the patches Pi+1.

Case 2: Suppose BP = {B}. Now either B is a k-bridge for k ≤ 3 or B is a 4-bridge. Let these be
Cases 2.1 and 2.2, respectively.
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Case 2.1: By the almost 4-connectivity of R, B is either a triad or a single edge. Thus we are done
as in Case 1.

Case 2.2: If there is one vertex of attachment, say a, with only one leg of B incident to it, then
the Gi-bridge B in the face P is contained within the configuration for patch operation Y . So we
define (Gi+1,Pi+1) and Ri+1 using patch operation Y and we are done as in Case 1. So say that
each of a, b, c, d has at least two legs of B incident to it. So now consider the four facial cycles inside
of P that include the four boundary edges of P . Call these faces Fa,b, Fb,c, Fc,d and Fd,a and call
the corresponding paths obtained after removing the four boundary edges of the patch Pa,b, Pb,c, Pc,d

and Pd,a. By the vertical 3-connectivity of R and restrictions on parallel edges, two of these paths
that are consecutive around P (e.g., Pa,b and Pb,c) must be internally disjoint. Also two of these
paths that are antipodal around P (e.g., Pb,c and Pd,a) are either internally disjoint or intersect in a
path of length 0 or 1. So without loss of generality we can split the remainder of the proof into the
following three cases. In Case 2.2.1 Pb,c and Pd,a intersect in a path of length one, in Case 2.2.2 Pb,c

and Pd,a intersect in a path of length zero, and in Case 2.2.3 Pb,c and Pd,a are disjoint.

Case 2.2.1: Let the endpoints of the intersecting path of Pb,c and Pd,a be a′ and a′′ where a′ is
above a′′ (see the leftmost graph in Figure 6). So now there are 3-separations of Ri at a, a

′, b. This
separation has the interior vertices of Pa,b on one side and so by the almost 4-connectivity of R, Pa,b

has exactly one interior vertex and so one can show that BP is exactly as shown on the left of Figure
6.

Figure 6. x
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But now there is a 3-separation of R at either a, a′′, b or d, a′, c that contradicts the almost 4-
connectivity of R unless {a, b, c, d} = {A,B}, i.e., (Gi,Pi) is the initial patch graph and R is
contained in the graph of Figure 6. But this graph is planar when A = a = c and B = b = d.

Case 2.2.2: Here B contains a subdivision of the configuration for patch operationX after removing
vertices u and v. Using a similar argument to Case 2.2.1 we get that either B is contained within
the configuration for patch operation X or A = a = c and B = b = d and R is a subgraph of one of
the two graphs shown on the right in Figure 6. In the latter case R is planar and in the former case
we define (Gi+1,Pi+1) from (Gi,Pi) using patch operation X and we are done as in Case 1.

Case 2.2.3: In this case we have |V (Pa,b ∪ Pb,c ∪ Pc,d ∪ Pd,a)| ≥ 6 and so |V (Ri)| ≥ 7 unless
{a, b, c, d} = {A,B} and by the simplicity of R, R is a subgraph of the graph in Figure 7 which is a
subgraph of a patch graph constructed using the sequence of patching operations H,X,X.

Figure 7.

A

A

B

B

If there are paths P1 and P2 (which must be of non-zero length in this case) from the interior of Pa,b to
the interior of Pc,d and from the interior of Pb,c to the interior of Pa,d, then P1 and P2 must intersect.
This leads to a minor rooted on the corners of the patch as in Figure 5, which cannot happen by

6



Corollary 3.8. So, without loss of generality, we can assume that no path exists from the interior of
Pa,b to the interior of Pc,d. Then there must exist a face, f , of the embedding as an obstruction that
is incident with Pb,c and Pd,a. By the vertical 3-connectivity of R and the restrictions on parallel
edges, the boundary cycle of f intersects Pb,c in a path of length 0 or 1 and similarly so for Pd,a.
Call these paths b′ and a′, respectively. Again because of vertical 3-connectivity we can say without
loss of generality one of the following cases occurs: (a′ ∪ b′) ∩ {a, b, c, d} = ∅, a′ is incident with d
and b′ ∩ {a, b, c, d} = ∅, or a′ is incident with d and b′ is incident with b (see Figure 8).

Figure 8.
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A crosshatched path has length one or zero.

In the first case B is contained in the configuration for patch operation H. In the second case there
is a 3-separation of Ri and R at vertices c, d, b′′ where b′′ is the lower endpoint of b′. Because of
the almost 4-connectivity of R, there is at most one vertex in B separated by c, d, b′′ from the rest
of R. Thus B is contained in the configuration for patch operation Y . In the third case, there are
3-separations of Ri and R at b, c, d and a, b, d. So by the almost 4-connectivity of R, B is contained
in the configuration for patch operation I. In each of these three cases we define (Gi+1,Pi+1) and
Ri+1 as in Case 1 using the appropriate patching operation and we are done.

3.2 Patch graphs are K3,4-free

This section is devoted to proving that no patch graph contains a K3,4-minor (Theorem 3.11). We
begin by proving Propositions 3.9 and Proposition 3.10. Let H1 and H2 be the projective-planar
graphs with the specified quadrilateral face P as shown in Figure 9. We say that a patch graph
(G,P) has an H1- or H2-minor when G contains the minor shown rooted on A and B and the corners
of some patch P ∈ P.

Figure 9.

A
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B
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b

c
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P
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B

B

v

P

H1- and H2-minors rooted on the corners of a patch P and on A and B

Proposition 3.9. If (G,P) is a patch graph, then (G,P) does not contain an H1-minor rooted on
any patch P ∈ P.

Proof. Of course, the initial patch graph (4K2, {P}) has no rooted H1-minor on the patch P . So by
way of contradiction, say that (G,P) has a rooted H1-minor on some patch Q. Furthermore assume
that the number of patching operations done to obtain (G,P) from (4K2, {P}) is a the minimum
number of operations necessary to obtain such a minor. The patch Q in (G,P) is created by some
patching operation on patch Q′ with vertex set {a, b, c, d} in some intermediate patch graph (G′,P ′)
in the construction of (G,P) from (4K2, {P}) as shown on the left of Figure 10. Let the vertex set of
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patch Q be {a′, b′, c, d} as in Figure 10 as well. Since {a, b, c, d} separates Q from A and B and since
we have an H1-minor rooted on P , we must then have one of the rooted minors shown on the right
of Figure 10. Thus there is an H1-minor rooted on Q′ in (G′,P ′), a contradiction of the minimality
of (G,P).

Figure 10.
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Proposition 3.10. If (G,P) is a patch graph, then (G,P) does not contain an H2-minor rooted on
any patch P ∈ P.

Proof. Let (G,P), Q ∈ P , (G′,P ′), and Q′ ∈ P ′ be as in the proof of Proposition 3.9 for an H2-minor
rooted on Q in (G,P). Thus we again have the one of the configurations on the left of Figure 10.
If H2 is a minimal subgraph in (G,P) that contracts to the H2-minor, then let C be the cycle in
H2 that contracts to the corner quadrilateral in H2. By the argument in the following paragraph,
C does not intersect the interior of Q′.

If C does intersect the interior of Q′, then possible placements for C in (G,P) are shown in Figure
11. In the first configuration of Figure 11, there must be four disjoint paths (some possibly trivial)
starting at C with one such path to a′ and the other three to A and B on the boundary. Furthermore
no one of these four paths may intersect two vertices of Q. However, in our configuration any four
such paths have one that intersects two vertices ofQ, a contradiction. In the last two configurations of
Figure 11, at most two disjoint paths from {a′, b′, c, d} to A and B can be disjoint from C. However,
in H2, there are three such paths disjoint from the image of C (i.e., the corner quadrilateral), a
contradiction.

Again there must be four disjoint paths (some possibly trivial) in H2 starting at C with one
such path to v ∈ {a′, b′, c, d} and the other three to A and B on the boundary. Furthermore these
four paths cannot intersect all the vertices of Q. Because C does not intersect the interior of Q′, we
must have in (G,P) one of the rooted minors shown in Figure 12. But each gives us an H2-minor
in (G′,P ′), a contradiction to the minimality of (G,P).

Figure 11.

a b

cd

a' b'

C

a b

cd

a' b'

C

a

a'

b=b'

cd

v

P'

C

Figure 12.

a

a'

b

cd

v

P'

a'
v

P'

a'
v

P'

a b

cd

a' b'

a'
b'

a b

Here a crosshatched edge represents a path that may have length zero.
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Theorem 3.11. No patch graph contains a K3,4-minor.

Proof. Evidently, the initial patch graph (4K2, {P}) does not contain a K3,4-minor, so we need only
show that none of the four patching operations can introduce a K3,4-minor to a patch graph. So by
way of contradiction say that (G′,P ′) is obtained from (G,P) by some patch operation on P ∈ P
and say that (G,P) is K3,4-free while (G′,P ′) is not.

The unique embedding of K3,4 in the projective plane is the first graph shown in Figure 13.
Furthermore, up to isomorphism, then the only essential 2-cut is the one shown in Figure 13. Given
this, one can check that the only proper splits1 of K3,4 up to isomorphism whose embeddings are
2-representative are the seven embedded graphs shown in Figure 13. Let M = {M1, . . . ,M7} be the
set of these embeddings numbered respectively from left to right. (Note that M1 = K3,4.) Thus G′

contains a subdivision, call it SM , of some M ∈ {M1, . . . ,M7} while G contains none of M1, . . . ,M7

as a minor. Thus at least one edge of E(G′) \ E(G) must be contained in a branch of SM . Denote
the vertices of P in cyclic order by a, b, c, d and note that P divides the projective plane into an
interior disk and an exterior Möbius band given the imbedding of (G′,P ′). Let M Int be the open
interior of the disk.

Figure 13.

A

A

B

B

A

A

B

B

A

A

B

B

A

A

B

B

A

A

B

B

A

A

B

B

A

A

B

B

The embeddings of K3,4 and its seven proper splits.

We will examine all such placements of P on the graphs in M and find a contradiction in each
case. The contradictions will be obtained by either finding a rooted Hi-minor or a K3,4-minor in
(G,P). The analysis falls into three cases. In Case 1, say that M Int contains none of the branch
vertices of SM . In Case 2, say that M Int contains a single 3-valent branch vertex of SM . In Case 3,
say M Int contains a 4-valent branch vertex of SM or several branch vertices.

Case 1: We must have that the intersection of SM with M Int contains one or two paths because
G is K3,4-free. Furthermore, we can assume that any such path is an ac- or bd-path because we
could reroute an ab-, bc-, cd-, or da-path in M Int on the quadrilateral boundary of P to get another
M -subdivision. So now since G is K3,4-free we get without loss of generality that M Int intersects
SM in an ac-path. Again we could reroute this path on the quadrilateral boundary of P to get an
M -subdivision in G (a contradiction) unless both b and d are also vertices in SM .

M = M1: We first, if necessary, contract subdivided edges in SM so that a, b, c, d all lie on the branch
vertices of the contraction of SM , call it SM as well. When making these contractions we always
choose not to contract onto the boundary vertices A and B whenever possible. Now there are, up
to isomorphism, only a five ways that {a, b, c, d} can be positioned in SM , see Figure 14. In the first
graph there is an H1-rooted minor. In the second graph, there there is an H2-minor obtained by
contracting the vertical edge from the lower left boundary vertex and the horizontal edge from the

1A split of a graph G is a decontraction that does not create any new vertices of degree 1 or 2.
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upper left boundary vertex. The third graph would make a violation of Proposition 3.7 in (G,P)
because we assume that we do not contract onto A and B whenever possible. The fourth graph
contains an H2-minor. Lastly, for the fifth graph, note that we must have contracted the vertex of
the quadrilateral onto the center vertex of SM because otherwise we would have the fourth graph as
a minor. So now Proposition 3.7 implies the existence of an extra path in G as shown in the figure
that allows us to find an H2-minor.

Figure 14.
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B
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M = M2: Let (x, y) be the edge that was decontracted to create M2 from M1. If the ac-path of SM

in M Int does not intersect the xy-branch or an incident branch of SM , then we fall back into one
of the cases for M = M1. As in the case for M = M1 we contract subdivided edges in SM so that
a, b, c, d all lie on the branch vertices of the contraction of SM , call it SM as well. The graphs of
Figure 15 show all possible configurations for a, b, c, d on SM . In the first and third configurations
there is an H2-minor, in the second case there is an H1-minor, and in the fourth through sixth cases
there is a K3,4-minor in G, a contradiction in each case.

Figure 15.

A

A

B

B

A

A

B

B

A

A

B

B

A

A

B

B

A

A

B

B

A

A

B

B

M ∈ {M3, . . . ,M7}: Again contract subdivided edges in SM to get branch vertices on a, b, c, d. For
M3, there is only one case where the decontracted edge is in the interior of the patch. In this case,
the first graph in Figure 16, the original G contains a K3,4-minor. The second and third graphs in
the figure are the only cases where the decontracted edge is one of the edges of the patch. In both
cases, the original graph G already contains a K3,4-minor. Each of the graphs M4,M5,M6 and M7

are obtained by decontracting at least two edges from M1. In each case, for any possible position of
P , at least one of those edges along with at least one of its endpoints would be in the open exterior of
P . Hence contracting that edge would reduce to one of the previous case with M ∈ {M1,M2,M3}.
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Figure 16.
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Case 2: Now consider the case where M Int contains a single 3-valent vertex of SM . So now we can
contract subdivided edges of SM on the three branches incident to this 3-valent vertex so that at
least three vertices from a, b, c, d lie on the other endpoints of the branches of the 3-valent vertex.
The fourth vertex of a, b, c, d may or may not be on SM . If so we contract subdivided edges in SM

to get it onto the branch vertices of SM . If not, then Proposition 3.7 will yield a path in G off of SM

connecting this fourth vertex to SM . (See the first graph in Figure 17.) This path can be contracted
to get the fourth vertex of a, b, c, d on SM . After contracting, all of the possible configurations of
a, b, c, d on our contraction of SM are shown in Figure 17. The first, second, third and fifth graphs
all contain an H2-minor and the fourth yields a K3,4-minor in G, a contradiction in each case.

Figure 17.
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Case 3: Here all of a, b, c, d are in SM and so we contract subdivided edges in SM to get a, b, c, d onto
the branch vertices of the contraction of SM , call it SM as well. If M Int contains the central 4-valent
vertex of SM or the two 3-valent vertices obtained by splitting the central 4-valent vertex, then we
have one of the first two configurations of Figure 18. The first configuration contains an H1-minor.
The second configuration is not possible because the patching operations introduce at most 3 new
vertices and the second configuration has at least five vertices in M Int. If M Int contains neither the
central 4-valent vertex of SM nor both 3-valent vertices obtained by splitting the central 4-valent
vertex but yet does contain two branch vertices of SM , then we we obtain one of the second through
fourth configurations of Figure 18. For the second one we already know that it is not possible and
the third and fourth each contain an H2-minor.

Figure 18.
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