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Abstract11

It is known that any 3-connected matroid that is large enough is certain to contain12

a minor of a given size belonging one of a few special classes of matroids. This13

paper proves a similar unavoidable minor result for large 4-connected bicircular14

matroids. The main result follows from establishing the list of unavoidable minors15

of large 4-biconnected graphs, which are the graphs representing the 4-connected16

bicircular matroids. This paper also gives similar results for internally 4-connected17

and vertically 4-connected bicircular matroids.18

Key words: bicircular matroid, 4-connected, internally 4-connected, vertically19

4-connected, unavoidable minor20

Dedicated to Dr. James G. Oxley on the occasion of his 60th birthday

1 Introduction21

Our notation and terminology will generally follow [5]. The following result of22

Ding, Oporowski, Oxley, and Vertigan, from [2], shows that each sufficiently23

large 3-connected matroid is guaranteed to contain a large minor isomorphic24

to one of a few types of 3-connected matroids.25

Theorem 1.1 For every integer n exceeding two, there is an integer N(n)26

such that every 3-connected matroid with at least N(n) elements has a minor27

1
The research was partially supported by the Visiting Scholar’s Fund of the Department of Mathematics and Statistics,

Wright State University

Preprint submitted to Elsevier 20 February 2013



isomorphic to one of Un,n+2, U2,n+2, M(K3,n), M
∗(K3,n), M(Wn), Wn, or a28

uniform n-spike.29

Evidently, corollaries for various minor-closed classes of matroids follow by30

filtering out the members of the list in Theorem 1.1 that are not in the class31

of interest. For instance, we may choose to restrict to graphic matroids.32

Corollary 1.2 For every integer n exceeding two, there is an integer N(n)33

such that every simple, 3-connected graph having at least N(n) edges has a34

minor isomorphic to one of K3,n or Wn.35

The following result of Oporowski, Oxley, and Thomas, from [4], is a stronger36

version of Corollary 1.2. Refer to Figure 1 for an illustration of Vk, which can37

be formed by contracting a pair of consecutive rungs of the circular k-ladder38

and simplifying the resulting graph.39

Theorem 1.3 For every integer k ≥ 3, there is an integer N such that every40

3-connected graph with at least N vertices contains a subgraph isomorphic to41

a subdivision of one of Wk, Vk, and K3,k.42

The focus of this paper is an unavoidable minor result for bicircular matroids.43

As noted above, a result of this type for 3-connected bicircular matroids is44

merely a corollary of Theorem 1.1. However, a 4-connected analog of Theo-45

rem 1.1 is not known. The following theorem is the main result of this paper.46

Here, W2
n can be constructed from the n-spoked wheel by adding an edge in47

parallel to each spoke. The graph K+
3,n is formed by adding a loop at each48

of the n degree-3 vertices of K3,n. Finally, K
2
3,n is constructed from K3,n by49

adding an edge in parallel to each of the edges incident with a single degree-n50

vertex.51

Theorem 1.4 For every integer n exceeding four, there is an integer N(n)52

such that every 4-connected bicircular matroid with at least N(n) elements has53

a minor isomorphic to one of B(W2
n), B(K+

3,n), or B(K2
3,n).54

The proof of this result makes use of a type of graph connectivity called bicon-55

nectivity. Section 2 provides an equivalent characterization of n-biconnectivity56

that is used in Section 4 to prove Theorem 1.4.57

In Section 3 we analyze the graphic structure of size-n cocircuits in n-connected58

bicircular matroids. This is used in Section 5 to prove the following internally59

4-connected analog of Theorem 1.4.60

Theorem 1.5 For every integer n exceeding four, there is an integer N ′(n)61

such that every internally 4-connected bicircular matroid with at least N ′(n)62

elements has a minor isomorphic to B(Wn) or B(K3,n).63
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Finally, we prove a vertically 4-connected version of the main result in Sec-64

tion 6. Recall that, by definition, a vertically 4-connected may not be 3-65

connected. For simplicity, we assume in the next result the matroids under66

consideration are 3-connected.67

Theorem 1.6 For each integer n exceeding four, there is an integer N ′′(n)68

such that every vertically 4-connected and 3-connected bicircular matroid on69

at least N ′′(n) elements has a restriction isomorphic to U2,n, or a minor iso-70

morphic to one of B(W2
n), B(K+

3,n), or B(K2
3,n).71

2 Preliminaries72

LetG be a graph. The bicircular matroid ofG, denoted byB(G), is the matroid73

with ground set E(G), and a subset of E(G) is a circuit if it is the edge set74

of a minimal connected subgraph of G that contains at least two cycles. A75

subgraph of G is called a Θ-graph if it consists of two distinct vertices and76

three internally disjoint paths connecting them; a subgraph is called a tight77

handcuff if it consists of two cycles having just one vertex in common; and a78

subgraph is called a loose handcuff if it consists of two disjoint cycles and a79

minimal connecting path. It is easy to see that a circuit of B(G) is either a80

Θ-graph, a tight handcuff, or a loose handcuff, shown in Figure 3. A subgraph81

of G is called a bicycle if it is a Θ-graph, a tight handcuff, or a loose handcuff.82

Wagner defines n-biconnectivity in [7] with respect to k-biseparations as fol-83

lows.84

Let (E1, E2) partition the edge set E of a connected graph G = (V,E). For
i ∈ {1, 2}, let Gi denote the subgraph of G induced by Ei. We say (E1, E2) is
a k-biseparation of G, for k ≥ 1, if each of |E1| and |E2| is at least k, and

|V (G1) ∩ V (G2)| =

⎧⎪⎪⎨
⎪⎪⎩
k − 1 if neither G1 nor G2 is acyclic

k if exactly one or all three of G1, G2, and G are acyclic

k + 1 if both G1 and G2 are acyclic, but G is not acyclic

For n a positive integer, a graph is n-biconnected if it has no k-biseparation85

for k < n.86

The next theorem of Wagner from [7] shows that biconnectivity is the version87

of graphic connectivity corresponding to matroid connectivity in bicircular88

matroids.89

Theorem 2.1 Let G be a connected graph. Then B(G) is n-connected if and90

only if G is n-biconnected.91
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Here we give an equivalent characterization for n-biconnectivity.92

Lemma 2.2 For n ≥ 3, a graph G on at least n vertices and at least 2n− 293

edges is n-biconnected if and only if each of the following holds:94

(1) G has no vertex cut of size at most n− 2.95

(2) δ(G), the minimum degree of G, is at least n96

(3) G has no bicycle of size at most n− 197

Proof.98

Equivalence holds for n = 3 by Wagner in [7]. Suppose that G = (V,E) is99

n-biconnected for a fixed n > 3 and that the lemma holds for smaller values100

of n. Since G is (n − 1)-biconnected, δ(G) ≥ n − 1, and G has no vertex101

cut of size less than n − 2. Suppose G has a vertex cut W of size n − 2.102

Let H be a component of G − W . Let E1 denote the edges of G having at103

least one end in V (H). Let EW denote the edges of G having both ends in104

W . Let E2 = E − E1 ∪ EW . By δ(G) ≥ n − 1 and the minimality of the105

vertex cut W , we have that each of |E1| and |E2| is at least n − 1. Since G106

is n-biconnected, we have that (Ei, Ej ∪ EW ) is not an (n − 1)-biseparation107

for (i, j) ∈ {(1, 2), (2, 1)}. Up to relabeling, we have that the subgraph G1 of108

G induced by E1 is acyclic. Since δ(G) ≥ n− 1 we have that a leaf vertex in109

G1 −W must be adjacent to all n− 2 vertices of W . By acyclicity, there can110

be no such vertex. This contradicts that W is a vertex cut.111

Suppose G has a vertex v of degree n − 1. Since G has no vertex cut of size112

at most n − 2, the subgraph induced by the edges incident with v is acyclic.113

Thus G − v is acyclic since G has no (n − 1)-biseparation. Each leaf vertex114

of G − v − N(v) is adjacent to at least δ(G) − 1 ≥ n − 2 members of N(v),115

where N(v) denotes the set of neighbors of v. Since G− v − N(v) is acyclic,116

each connected component of G − v − N(v) consists of exactly one vertex.117

Since δ(G) ≥ n−1, every such vertex must be adjacent to all vertices of N(v).118

Therefore, G− v − N(v) consists of exactly one vertex of degree n− 1, so G119

is isomorphic to K2,n−1, a contradiction to δ(G) > 2.120

By the inductive assumption, G has no bicycle of size less than n−1. Suppose121

G has a bicycle of size n − 1 with edge set E1. Let E2 = E − E1. Then122

|E2| ≥ 2n−2− (n−1) = n−1, and |V (G1)∩V (G2)| = |V (G1)| = n−2. Since123

G has no (n− 1)-biseparation, G2 must be acyclic. However, G2 has at least124

n− (n−2) = 2 vertices and therefore at least two leaf vertices; every such leaf125

vertex is adjacent to all members of V (G1), a contradiction to acyclicity.126

Now suppose G = (V,E) is a graph satisfying the three conditions in the127

statement of the lemma for some n > 3 and that the equivalence holds for128

smaller values of n. By assumption, G has no k-biseparation for k < n − 1.129

Suppose G1 and G2 are induced by an (n − 1)-biseparation (E1, E2). First,130
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suppose that |V (G1) ∩ V (G2)| = n− 2. Since G has no size-(n− 2) cutset, at131

least one of V (G1)−V (G2) and V (G2)−V (G1) is empty – assume the former.132

Then |E1| ≥ n− 1 and |V1| = n − 2, so G1 contains a bicycle of size at most133

n− 1, a contradiction. Hence |V (G1) ∩ V (G2)| ≥ n− 1.134

Next suppose that |V (G1) ∩ V (G2)| = n − 1. The graph G is not acyclic135

by assumption, so we may assume G1 is acyclic. Since |E1| ≥ n − 1 and136

|V (G1)∩V (G2)| = n− 1, it follows that V (G1)− V (G2) �= ∅. Since δ(G) ≥ n,137

a leaf vertex of V (G1) − V (G2) is adjacent to all vertices of V (G1) ∩ V (G2).138

As G1 is acyclic, there is only one such vertex. This contradicts the fact that139

δ(G) ≥ n.140

Therefore, we may assume that |V (G1) ∩ V (G2)| = n, so both G1 and G2141

are acyclic. First we show that one of V (G1) − V (G2) and V (G2) − V (G1)142

is empty. Suppose that neither V (G1)− V (G2) nor V (G2)− V (G1) is empty.143

Since each of G1 and G2 is acyclic and δ(G) ≥ n, each of V (G1)− V (G2) and144

V (G2)− V (G1) must have only one vertex by the pigeonhole principle. So G145

is isomorphic to K2,n, a contradiction.146

Therefore we may assume that V (G1)− V (G2) = ∅. Then |E1| = n− 1. Thus147

|V (G2)− V (G1)| ∈ {0, 1}. If V (G2)− V (G1) �= ∅ then a leaf of G1 has degree148

2 in G, a contradiction. Therefore V (G2) − V (G1) = ∅. Hence G is a graph149

on 2n− 2 edges and n vertices. The sum of the degrees of vertices of G is at150

least nδ(G) ≥ 4n. However, 2|E| = 4n − 4, a contradiction. Thus, G has no151

(n− 1)-biseparation, so G is n-biconnected. �152

3 The graphic structure of small cocircuits in n-connected bicircu-153

lar matroids154

The following from [3] is Matthews’s description of a hyperplane of B(G) in155

the underlying graph G, which we assume to be connected and containing a156

bicycle. A hyperplane H is a collection of edges of G such that the subgraph157

with vertex set V (G) and edge set H consists of158

(1) exactly one acyclic component H0, which may be an isolated vertex; and159

(2) a collection of other components, each of which is cyclic;160

such that all edges of E(G)\H have at least one endpoint in H0.161

Evidently, a cocircuit of B(G) is a minimal set of edges X such that G − X162

has exactly one acyclic component. In general, the edges of a cocircuit need163

not form a bond in G as they would in the case of graphic matroids. The164

results below describe small cocircuits in the underlying graphs of n-connected165
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bicircular matroids. Before exploring this graphic structure, we consider the166

following trivial consequence of the minimum degree condition in Lemma 2.2167

that will be used frequently in our description of these small cocircuits.168

Lemma 3.1 Let G be a connected graph. Suppose B(G) is n-connected, for
some n ≥ 3. Let X be a cocircuit of B(G). Let H0 denote the unique acyclic
component of G−X. Then

2|X| ≥ ∑
v∈V (H0);

dG−X(v)<n

n− dG−X(v)

Recall that a triangle is a 3-element circuit and a triad is a 3-element cocircuit.169

We now consider triads in 3-connected bicircular matroids.170

Lemma 3.2 Let G be a connected graph having at least seven edges. Suppose171

B(G) is 3-connected. If X ⊆ E(G) is a triad of B(G), then the edges of X172

are all incident with a common vertex; or G|X is isomorphic to P4, and the173

set of edges incident to either of the two internal vertices of this path consists174

of the edges of X along with a single edge in parallel to the middle edge of the175

path.176

Proof. We have that G−X contains exactly one acyclic component H0. Evi-177

dently G−X has at most one cyclic component H1 since G is 2-connected by178

Lemma 2.2. If H0 has exactly one vertex, we are done. Assume H0 is a tree179

containing at least two vertices. Thus, H0 has at least two leaf vertices. By180

Lemma 3.1, H0 has at most three leaf vertices.181

If all edges of X have both ends in H0, then H0 is a tree and |E(H0)| =182

|E(G)| − 3 ≥ 7 − 3 = 4. Since H0 has at most three leaves, it is easy to see183

that either H0 is a path of length at least 4, or H0 has exactly three leaves and184

at least one degree-2 vertex. However, each of these contradicts Lemma 3.1.185

So we may assume that an edge of X has one end in H0 and one end in a186

cyclic component H1 of G −X. Since G is 2-connected, there is at least one187

other H0-H1 edge of X. Therefore, H0 has exactly two leaf vertices, say u and188

v, and these are the only vertices in H0. Each is incident with an H0-H1 edge189

of X. Since δ(G) ≥ 3, the third edge of X must be incident to both u and v.190

�191

A similar proof technique establishes the graphic structure of n-cocircuits in192

n-connected bicircular matroids for n ≥ 4.193

Lemma 3.3 Suppose G is a connected graph having at least seven edges, and194

B(G) is n-connected for some n ≥ 4. If X ⊆ E(G) is a size-n cocircuit of195
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B(G), then the edges of X are all incident with a common vertex.196

Proof. As in the proof of Lemma 3.2, we may assume that H0 has at least two197

vertices. Since 2n < 3(n− 1) , H0 has exactly two leaf vertices by Lemma 3.1,198

so H0 is a path. Furthermore, 2n < 2(n− 1) + 2(n− 2) so H0 is P2 or P3.199

First suppose that all edges of X have both ends in H0. So |V (G)| = 2 or 3,200

and |E(G)| ≥ 7. It is easy to see that G must contain a bicycle of size at most201

3, contradicting the n-biconnectivity.202

Thus there is an edge in X that has an end in a cyclic component H1 of G−X.203

By the (n− 1)-connectivity of G, there are least 2 such edges. Then there are204

at most 2n− 2 ends of the edges of X in H0. Thus H0 is P2. Since bicycles of205

G must have at least four edges, at most one edge of X has both ends in H0.206

Then there are at most n− 1 + 2 = n+ 1 ends of the edges of X in H0. Since207

n+ 1 < 2n− 2, this is a contradiction. �208

4 Unavoidable minors of 4-connected bicircular matroids209

Before proving the main result of the paper, we recall that if a graph H is210

a minor of a graph G, then the bicircular matroid B(H) is a minor of B(G)211

[8]. The next result can be found in Biedl [1]; one may proved it by a simple212

counting argument.213

Lemma 4.1 A maximal matching in a max-deg-k graph with m edges has size214

at least m
2k−1

.215

The next lemma is the main result of this section.216

Lemma 4.2 For each n there is an R(n) such that every 3-connected graph217

on at least R(n) vertices having minimum degree at least four has a minor218

isomorphic to one of W 2
n , K

+
3,n, or K2

3,n.219

Proof. By Theorem 1.3, there is an R such that each 3-connected graph on220

at least R vertices has a subgraph isomorphic to a subdivision of Wk, K3,k,221

or Vk for k = 4n2 − 2n − 4. Suppose G is a 3-connected graph on at least R222

vertices. Since k = 4n2 − 2n − 4 > 4n, if G has a Wk- or Vk-subdivision as223

a subgraph, then G has a W 2
n -minor, and we are done. Assume then that G224

has a K3,k-subdivision as a subgraph. That is, G has vertices u1, u2, u3, v1,225

v2, . . . , vk such that there for each i ∈ {1, 2, . . . , k} there are paths Pi,1, Pi,2,226

and Pi,3 from vi to u1, u2, and u3, respectively, such that Pi1,j1 and Pi2,j2 are227

internally vertex-disjoint whenever (i1, j1) �= (i2, j2).228
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Let e ∈ E(G). Note that if e satisfies either of the following conditions, then229

G/e contains a K3,k subdivision having small and large sides {u1, u2, u3} and230

{v1, v2, . . . , vk}, respectively, such that dG/e(vj) ≥ 4 for each j ∈ {1, 2, . . . , k}.231

(1) For some a ∈ {1, 2, 3} and b ∈ {1, 2, . . . , k}, e is an edge on the path Pa,b232

that is incident with ua but has its other end in V (G)− {v1, v2, . . . , vk}.233

(2) Each path Pi,j has length one and e is an edge of G with one end in234

{v1, v2, . . . , vk} and the other end in V (G)− {u1, u2, u3, v1, v2, . . . , vk}.235

Obtain a minor H of G by consecutively contracting edges of the types given236

above until no such edges remain, followed by deleting all edges not incident237

with some {v1, v2, . . . , vk}.238

Now, H consists of a K3,k-subgraph with some extra edges added incident239

with the vertices on the large side of the bipartition. By construction, no step240

of the algorithm above decreases the degree of a vertex in {v1, v2, . . . , vk}.241

Hence, each of the k = 4n2 − 2n − 4 vertices is incident with at least one242

such extra edge. If at least n of these vertices have adjacent loops, then H has243

a K+
3,n-minor. If at least 3n − 2 of these vertices are adjacent to a vertex in244

{u1, u2, u3} by an edge not in the K3,k-graph, then at least n are adjacent to245

the same vertex by the pigeonhole principle, so H has a K2
3,n minor. Assume246

neither of these cases occurs. Let E1 be the set of non-loop edges of H that247

have both ends in {v1, v2, · · · , vk}, let H1 = spanH(E1) and let Z = V (H1).248

Then |Z| ≥ (4n2 − 2n− 4)− (n− 1)− (3n− 3) = 4n2 − 6n and every vertex249

in Z is adjacent to some other vertex in Z. We have that H1 has at least250

|Z|
2

≥ 2n2 − 3n edges. If some vertex vi ∈ Z has degree greater than n− 1 in251

H1, then H has K2
3,n-minor by contraction of the edge viu1. Assume then that252

the maximum degree in H1 is at most n − 1. Then by Lemma 4.1, H1 has a253

matching of size at least 2n2−3n
2n−3

= n. Thus H has a K2
3,n-minor by contraction254

of each edge in this matching. �255

Corollary 4.3 For each n there is an N(n) such that every 4-biconnected256

graph on at least N(n) edges has a minor isomorphic to one of W 2
n , K

+
3,n, or257

K2
3,n.258

Proof. Note that a 4-biconnected graph G contains at most one loop at each259

vertex, and each parallel class of edges has size at most two. Therefore,260

|E(G)| ≤ |V (G)|+ 2
(|V (G)|

2

)
= |V (G)|2. Hence |V (G)| ≥

√
|E(G)|. Fix n. Let261

R(n) be given as in Lemma 4.2. If |E(G)| ≥ R(n)2 then G is a 3-connected262

graph with δ(G) ≥ 4 on at least R(n) vertices, so G has one of the given263

minors. �264

It is a trivial matter to prove Theorem 1.4 from the above corollary.265
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Proof. [Proof of Theorem 1.4]The theorem follows from Corollary 4.3 since a266

sufficiently large 4-connected bicircular matroid can be represented by a large267

4-biconnected graph, which in turn must have one of the given large minors.268

�269

5 Unavoidable minors of internally 4-connected bicircular matroids270

Recall that a matroid M is internally 4-connected if M is 3-connected and271

for every 3-separation (X, Y ) of M , either |X| = 3 or |Y | = 3. It is clear272

that a triangle in a bicircular matroid B(G) is a set of three parallel edges, a273

set of two parallel edges and a loop at one end, or two loops at two distinct274

vertices and an edge between them in the associated graph G. Lemma 3.2275

describes what a triad looks like in a 3-connected bicircular matroid. Note276

that the exceptional case in Lemma 3.2 gives rise to a 3-separating set of size277

4, thus does not occur in an internally 4-connected bicircular matroid B(G)278

when |E(G)| ≥ 8. Therefore, every triad in an internally 4-connected bicircular279

matroid corresponds to either a degree-3 vertex, or a degree-4 vertex incident280

to exactly one loop in the underlying graph.281

By Lemma 2.2, the graph underlying an internally 4-connected bicircular ma-282

troid is 2-connected and has a minimum degree of at least three. However, us-283

ing Wagner’s original definition of biconnectivity, we see that the 2-separations284

in such a graph are highly restricted.285

Lemma 5.1 Let G be a connected graph having at least six edges. If B(G) is286

internally 4-connected and G has a 2-vertex cut, then one side of the separation287

consists of a single vertex having exactly three incident edges.288

Proof. Since δ(G) ≥ 3, each side of the 2-separation is cyclic. Therefore, the289

2-vertex cut in G naturally induces a “small” 3-biseparation (E1, E2) in G.290

Assume |E1| = 3 since G is internally 4-connected. Thus |V (G1)−V (G2)| = 1.291

�292

Each 2-separation in the graph underlying an internally 4-connected bicircular293

matroid must have one of the configurations given in Figure 4.294

Now it is easy to see that we have the following graphic characterization for295

a bicircular matroid to be internally 4-connected.296

Lemma 5.2 Let G be a connected graph having at least eight edges. Then297

B(G) is internally 4-connected if and only if each of the following holds.298

(1) G is 2-connected.299

(2) There exists at most one loop at each vertex.300
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(3) δ(G), the minimum degree of G, is at least 3301

(4) Every vertex cut of size 2 must have one of the forms shown in Figure 4;302

moreover, there exists no edges between and no loops at the two cut ver-303

tices.304

(5) Every parallel class of edges has size at most 3.305

(6) For each parallel class of size 3, there exists no loop at either end.306

(7) For each parallel class of size 2, there exists at most one loop at the two307

ends.308

We now prove our result on the unavoidable minors of large internally 4-309

connected bicircular matroids.310

Proof.[Proof of Theorem 1.5] First note that the matroids B(Wn) and B(K3,n)311

are internally 4-connected by Lemma 5.2.312

Suppose G is a connected graph for which B(G) is internally 4-connected. A313

parallel class of edges in G has size at most three, and there is at most one314

loop at each vertex. Therefore, |E(G)| ≤ |V (G)|+3
(|V (G)|

2

)
≤ 3

2
|V (G)|2. Thus315

|V (G)| ≥
√

2
3
|E(G)|.316

Now suppose G is a connected graph underlying an internally 4-connected317

bicircular matroid B(G) having at least 3
2
R4 elements in its ground set, where318

R is an integer for which any 3-connected graph on at least R vertices has a319

minor isomorphic to Wn or K3,n as given by Corollary 1.2.320

If G has a 2-separation, we have by Lemma 5.1 that one side of the separation
consists of a single degree-3 vertex that is adjacent to exactly two vertices,
namely the two cut vertices. Call such a degree-3 vertex a tick. A vertex that
is not a tick is a non-tick. There is a natural injection between the set of ticks
and the set of pairs of non-ticks given by matching a tick with its associated
pair of 2-separating non-tick vertices. Let τ denote the number of ticks in G,
and let η denote the number of non-tick vertices. We have that τ ≤

(
η
2

)
and

η + τ = |V (G)|. By η ≥ 1 we have η−1
2

+ 1 ≤ η, so

η2 ≥ η
(
η − 1

2
+ 1

)
=

(
η

2

)
+ η ≥ τ + η = |V (G)|

Note that the graph resulting from the contraction of a link edge incident321

with a tick is still 2-connected. Furthermore, any 2-separations of the resultant322

graph are also (up to identification of vertices via contraction) 2-separations323

of G. Thus, we can consecutively contract link edges incident with ticks to324

obtain a 3-connected graph H having η ≥
√
|V (G)| vertices.325

Recall that G has at least 3
2
R4 edges, so G has at least R2 vertices. Hence,326
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G has a 3-connected minor having at least R vertices. Thus, G has a minor327

isomorphic to one of Wn or K3,n, so B(G) has a minor isomorphic to one of328

B(Wn) or B(K3,n). �329

6 Bicircular matroid that are vertically 4-connected and 3-connected330

In this section we study bicircular matroids that are both vertically 4-connected331

and 3-connected. Since a rank-2 flat in a 3-connected bicircular matroid is a332

class of parallel non-loop edges plus the set of loops at the two end vertices,333

the next result follows easily from Lemma 2.2.334

Lemma 6.1 If G is a connected graph on at least four vertices such that B(G)335

is vertically 4-connected and 3-connected, then G is 3-connected and δ(G) ≥ 4.336

Now we are ready to prove Theorem 1.6.337

Proof.[Proof of Theorem 1.6] SupposeG is a connected graph such that B(G) is338

3-connected and vertically 4-connected and |E(G)| ≥ N ′′ = n−1
2
R(n)2, where339

R(n) is given as in Lemma 4.2.340

If G has a parallel class of edges of size at least n, then B(G) has a U2,n-341

restriction. So we may assume that each parallel class of edges has size at342

most n−1. Since B(G) is 3-connected, G has at most one loop at each vertex.343

Therefore we have |E(G)| ≤ |V (G)|+(n−1)
(|V (G)|

2

)
= n−1

2
|V (G)|2−n−3

2
|V (G)|.344

Since n ≥ 4, |E(G)| ≤ n−1
2
|V (G)|2. Therefore, |V (G)| ≥

√
2

n−1
|E(G)| ≥345 √

2
n−1

· n−1
2
R(n)2 = R(n). By Lemma 6.1, G is a 3-connected graph having346

minimum degree at least four. By Lemma 4.2, G has a minor isomorphic to347

one of W2
n, K

+
3,n, or K2

3,n. Thus, G has one of these minors, so B(G) has a348

minor isomorphic to the bicircular matroids of one of these graphs.349

�350

7 Conclusion351

The class of 4-connected bicircular matroids is admittedly restrictive. However,352

the techniques in this paper center around the biconnectivity property and do353

not readily extend to more general classes of bias matroids. Slilaty and Qin354

offer a version of Wagner’s biconnectivity that is generalized to bias matroids355

in [6]. Evidently, the extra attention that must be paid to balanced cycles356

is the inherent complication in obtaining an analog of Lemma 2.2, which we357

11



have relied upon in our proof. An extension to 4-connected signed graphic358

matroids might be much more easily obtained and would still have the benefit359

of providing the list of unavoidable minors of large 4-connected graphs.360
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Fig. 1. Illustration of Vk
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Fig. 2. Unavoidable minors for 4-biconnectivity
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(a) (b) (c)

Fig. 3. Three types of bicycles
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Fig. 4. The 2-separations in graphs underlying internally 4-connected bicircular
matroids
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