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The Minimal Zn-Symmetric Graphs That Are Not Zn-Spherical

Lowell Abrams∗and Daniel Slilaty†

December 5, 2014

Abstract

Given a graph G equipped with faithful and fixed-point-free Γ-action (Γ a finite group) we define an
orbit minor H of G to be a minor of G for which the deletion and contraction sets are closed under the
Γ-action. The orbit minor H inherits a Γ-symmetry from G, and when the contraction set is acyclic the
action inherited by H remains faithful and fixed-point free. When G embeds in the sphere and the Γ-action
on G extends to a Γ-action on the entire sphere, we say that G is Γ-spherical. In this paper we determine
for every odd value of n ≥ 3 the orbit-minor-minimal graphs G with a faithful and free Zn-action that are
not Zn-spherical. There are 11 infinite families of such graphs, each of the 11 having exactly one member
for each n. For n = 3, another such graph is K3,3. The remaining graphs are, essentially, the Cayley graphs
for Zn aside from the cycle of length n. The result for n = 1 is exactly Wagner’s result from 1937 that the
minor-minimal graphs that are not embeddable in the sphere are K5 and K3,3.

1 Introduction

A 1937-result of Wagner [10] tells us that the minor-minimal graphs that are not embeddable in the sphere
are K5 and K3,3. Let Γ be a group that acts faithfully on the sphere. It would be interesting to find the
analogous minimal graphs with faithful Γ-symmetry that do not embed in the sphere in a way that respects
the Γ-action. In this paper we find these minimal freely and faithfully Γ-symmetric graphs for Γ = Z2k+1

(these being the only odd-order abelian groups that act faithfully on the sphere). For example, the graph G
shown on the left in Figure 1.1 has an obvious 3-fold rotational symmetry which is free of fixed points on G
and is not spherical because the three triads come together to form a K3,3-minor. Furthermore, all connected
minors of G that inherit this fixed-point-free rotational symmetry are spherically embeddable with respect
to the 3-fold symmetry, as the following argument shows.

Each edge of the graph is in the orbit of one of the labeled edges a, b, c, x, y, z. When taking a minor of
this graph, deletion or contraction of an edge must be taken over the entire orbit of that edge in order to
preserve the rotational symmetry. Contracting the orbit of edge y results in the second graph shown; this
graph does embed in the sphere with the rotational symmetry extending to the whole sphere. (Similarly for
the edge x or z.) Deleting the orbit of the edge y (similarly x or z) disconnects the graph. Deleting the
orbit of the edge b (similarly a or c) results in the third graph shown, which has the required rotationally
symmetric embedding. Contracting the orbit of the edge a (similarly b or c) results in the fourth graph shown
which has a fixed point under the rotational symmetry. It is worth noting that this fourth graph is still not
spherical; however, we will not consider minors of freely symmetric graphs that inherit the symmetry but
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not fixed-point freeness. This could of course be addressed by future work; in this paper we address what we
find to be the most basic of such minimality questions.

Figure 1.1.
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An automorphism ϕ of a graph G may fix vertices, centers of edges, and/or entire edges. If there is a
positive integer t such that ϕt 6≡ 1 and ϕt(x) = x where x is some vertex, edge, or midpoint of an edge of
G, then call x a pseudofixed point of ϕ on G. Denote the set of pseudofixed points of ϕ by fixG(ϕ). We say
that ϕ is free on G when fixG(ϕ) = ∅. We say that ϕ is pseudofree on G when fixG(ϕ) is a collection of
topologically isolated points on G. This is equivalent to saying that none of ϕ,ϕ2, . . . , ϕ|ϕ|−1 fixes an entire
edge of G.

Given a group Γ, a Γ-action on G is a homomorphism a : Γ → Aut(G) (where Aut(G) is the full auto-
morphism group of the graph G). Let

fixG(a) =
⋃
g∈Γ

a(g)6≡1

fixG(a(g))

and call fixG(a) the set of pseudofixed points of a on G. The action a is faithful when ker(a) is trivial (i.e.,
a is injective), free when fixG(a) = ∅, and pseudofree when fixG(a) is a collection of topologically isolated
points on G.

Given a graph G (not necessarily simple) and a subset of the edge set X ⊆ E(G), by G\X we mean the
graph obtained from G by deleting the edges in X along with any resulting isolated vertices and by G/X we
mean the graph obtained from G by contracting the edges in X. We do not delete multiple edges or loops
resulting from the contraction of X in G. Now given disjoint edge sets C and D in G, the graph G/C\D
is called a minor of G. (It is well known that deletion and contraction of edges can be done in any order
without affecting the resulting minor.)

A Γ-symmetric graph is a pair (G, a) where G is a graph and a is a Γ-action on G. Given (G, a) and
edge sets C,D ⊂ E(G) such that orbit(C) ∩ orbit(D) = ∅, consider the minor G′ = G/orbit(C)\orbit(D) of
G. Each automorphism a(g) on G has an induced automorphism on G′ as described in [1, Prop.2.10]. So
we obtain a homomorphism m : Im(a)→ Aut(G′). Writing a′ = ma, the pair (G′, a′) is a Γ-symmetric graph
that is called an orbit minor of (G, a).

In our context, dealing with freely and faithfully Γ-symmetric graphs is easier than with those that are
not free or not faithful. Thus we will restrict our attention to Zn-symmetric graphs (G, a) and their orbit
minors (G′, a′) where the actions are both free and faithful. Proposition 2.1 gives us a way to convey freeness
and faithfulness from the action on the primary graph to the induced action on the orbit minor; namely to
contract on an acyclic set. Conversely, if the action on the primary graph is free and the induced action
on the orbit minor is still free, then Proposition 2.3 tells us that the contraction set may as well have been
acyclic. Therefore it is not restrictive to insist that orbit minors of freely and faithfully Γ-symmetric graphs
be obtained without contractions of cycles. In fact, this provides an attractive way to characterize freely and
faithfully symmetric orbit minors of freely and faithfully symmetric graphs.

An embedding of a graph G in a closed, compact surface S is said to be cellular when the complement of
G in S is a disjoint union of open 2-cells. This necessarily requires that G is connected. A group Γ is said
to act cellularly on closed, compact surface S when there is a faithfully Γ-symmetric graph (G, a) cellularly
embedded in S such that the action a takes facial-boundary walks of G in S to facial-boundary walks of
G in S. If Γ acts cellularly on a closed surface S, then it may be that a Γ-symmetric graph (G, a) has an
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embedding on S for which the Γ-action on G takes facial boundary walks to facial boundary walks. In this
case, we say that (G, a) is Γ-embeddable in S or sometimes we just say embeddable in S. When S is the
sphere we say that (G, a) is Γ-spherical or just spherical. It is known that the set of pseudofixed points on a
closed surface S under the cellular action of a single automorphism ϕ on S is a disjoint collection of simple
closed curves and isolated points. Thus if (G, a) is freely Γ-symmetric and also Γ-embeddable on S, then the
action of a extended to all of S must be a pseudofree action on S.

The class of freely and faithfully Γ-symmetric graphs that are embeddable in S is closed under taking
connected orbit minors [1, Prop. 2.11]. When Γ is the trivial group there is the additional property that for
any graph G, there is some minor H of G that is embeddable in S. For general Γ, however, this is not the
case as there are Cayley graphs for Zn defined on minimal generating sets for Zn that are not Zn-spherical
even though Zn acts cellularly on the sphere (see Propositions 3.2 and 3.4); furthermore, any orbit minor of
these Cayley graphs is either not connected or not freely Zn-symmetric.

Thus, for a given group Γ that acts pseudofreely on S, it is natural to ask the following: for which freely
and faithfully Γ-symmetric graphs (G, a) that are not Γ-embeddable in S is every proper connected orbit
minor with free and faithful induced Γ-action Γ-embeddable in S? Call such a Γ-symmetric graph a minimal
free and faithful obstruction for Γ-embedability in S. Of course, one could ask about minimal pseudofree
and faithful obstructions or just minimal faithful obstructions, however, we will not do this here. For the
trivial group and the sphere, the minimal obstructions are, of course, K5 and K3,3 (this is due to Wagner
[10] which is a result very similar to Kuratowski’s [5]). In this paper, we will determine all of the minimal
free and faithful obstructions for Zn-sphericity when n ≥ 3 is odd. These obstructions (and their quotient
graphs) are catalogued in Section 3.1. The completeness of the catalogue is proven in Section 3.2. One point
that some readers may find interesting is that a class of signed graphs first identified by Gerards [2, Ch. 3]
in the context of matroid theory plays a central role. In Section 4 we discuss the difficulties that could be
involved in extending this work to other groups and to non-free actions.

2 Preliminaries

2.1 Graphs

A graph G consists of a collection of vertices (i.e., topological 0-cells), denoted by V (G), along with a
collection of edges (i.e., topological 1-cells), denoted by E(G), where an edge has two ends, each of which is
attached to a vertex. A link is an edge that has its ends incident to distinct vertices and a loop is an edge
that has both of its ends incident to the same vertex. A cycle is a connected, 2-regular graph (i.e., a simple
closed path).

Given a graph G, an oriented edge is an edge together with a direction along that edge. The tail vertex
of oriented edge e is denoted t(e) and the head vertex is denoted h(e). Let −e denote the reverse orientation
of e and so t(−e) = h(e) and h(−e) = t(e). The collection of oriented edges of G is denoted ~E(G). Let
C1(G) be the free abelian group 〈e : e ∈ ~E(G)〉 in which (−1)e = −e. A walk is a sequence w = e1, . . . , en
of oriented edges for which the head of ei is the tail of ei+1 for each i ∈ {1, . . . , n− 1}. If the tail of e1 is u
and the head of en is v, then the walk is called a uv-walk and if u = v, then the walk is called closed. The
reverse walk is −w = −en, . . . ,−e1. Given a closed walk w = e1, . . . , en, we misuse notation and also use w
to denote

∑
i ei ∈ C1(G). Let Z1(G) be the subgroup of C1(G) generated by the collection of closed walks in

G. Given a cycle C in G, let ~C be a closed Eulerian walk around C. Of course ~C is only well defined up to
choice of starting vertex and direction around C.

For two graphs G and H an isomorphism ι : G → H is a bijection ι : (V (G) t ~E(G)) → (V (H) t ~E(H))
where ι(V (G)) = V (H), ι( ~E(G)) = ~E(H), ιh = hι| ~E(G), and ιt = tι| ~E(G). We will reserve the letter ι for

graph isomorphisms. Two Γ symmetric graphs (G, a) and (H, b) are equivariantly isomorphic when there
is an isomorphism ι : G → H such that for any g ∈ Γ, ιa(g) = b(g)ι. In this case, we call ι an equivariant
isomorphism.

If X ⊆ E(G), then we denote the subgraph of G consisting of the edges in X and all vertices incident to an
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edge in X by G:X. The collection of vertices in G:X is denoted by V (X). For k ≥ 1, a k-separation of a graph
is a bipartition (A,B) of the edges of G such that |A| ≥ k, |B| ≥ k, |V (A) ∩ V (B)| = k, V (A) \ V (B) 6= ∅,
and V (B) \ V (A) 6= ∅. A connected graph on at least k + 2 vertices is said to be k-connected when there
is no r-separation for r < k. A graph on k + 1 vertices is said to be k-connected when it has a spanning
complete subgraph. This type of k-connectivity is often referred to as “vertical k-connectivity”, especially in
the study of matroids coming from graphs. Here there is no need for the adjective “vertical” as there is no
other type of connectivity under consideration.

Given a subgraph H of G, an H-bridge is either an edge not in H whose endpoint(s) are both in H or
a connected component C of G \H along with the links between C and H. For a given H-bridge B of G,
a foot of B is a link of B with an endpoint in H, a vertex of attachment of B is a vertex in H that is an
endpoint of a foot of B. If G′ is a subdivision of a graph G with minimum degree three, then a branch vertex
of G′ is a vertex of degree at least three in G′ and a branch is a path in G′ corresponding to an edge in G.

We now state and prove Propositions 2.1 and 2.3 which were referred to in the introduction. Proposition
2.1 requires Lemma 2.2.

Proposition 2.1. If (G, a) is freely Γ-symmetric, orbit(C) ∩ orbit(D) = ∅, and orbit(C) is the edge set of a
forest in G, then the orbit minor (G/orbit(C)\orbit(D), a′) is also freely Γ-symmetric. Furthermore, if (G, a)
is in fact faithfully Γ-symmetric, then (G/orbit(C)\orbit(D), a′) is also faithfully Γ-symmetric.

Lemma 2.2. Let G be a graph and ϕ a nontrivial and free automorphism of G. If v is a vertex in G and γ
is a vϕ(v)-path in G, then the closed walk γϕ(γ)ϕ2(γ) · · ·ϕ|ϕ|−1(γ) contains a cycle.

Proof. We proceed by induction on the length of γ. It cannot be that γ has length zero because the freeness of
ϕ implies that v 6= ϕ(v). Now select a vertex v in G that produces a shortest possible path γ that contradicts
our result. Since the walk w = γϕ(γ)ϕ2(γ) · · ·ϕ|ϕ|−1(γ) does not contain a cycle, its edges form a tree T . If
e is a pendant edge of T , then without loss of generality the walk w must contain somewhere within it the
walk e,−e (i.e., traverse e in one direction and then immediately traverse e in the opposite direction). Since
γ is a path and ϕ is an automorphism of G, it must be that ϕk(γ) is also a path in G for any k. Thus e,−e
does not occur within some path ϕk(γ) and so e is the final edge of ϕk(γ) for some k and −e is the initial
edge of ϕk+1(γ). These imply that ϕ(e′) = −e′′ where e′ is the first edge of γ and e′′ is the last edge of γ.
It cannot be that e′ = e′′ because then ϕ would fix the midpoint of e′. So now the path γ′ obtained from γ
by deleting e′ and e′′ is a v′ϕ(v′)-path in G where v′ is the head of e′. By the minimality of the length of γ,
the walk w′ = γ′ϕ(γ′)ϕ2(γ′) · · ·ϕ|ϕ|−1(γ′) contains a cycle; however, the edges in the walk w′ are contained
in the tree T , a contradiction.

Proof of Proposition 2.1. By assumption, an automorphism a(g) 6≡ 1 fixes no edge or vertex of G\orbit(D) ⊆
G. Therefore, no edge of G′ = G/orbit(C)\orbit(D) is fixed by any a′(g). Assume by way of contradiction
that a vertex v′ of G′ is fixed by an automorphism ϕ′ = a′(g). Thus for any automorphism ϕ on G whose
induced automorphism on G′ is ϕ′, any vertex v in G that projects down to v′ in G′ yields a nontrivial
vϕ(v)-path γ whose edges are in orbit(C). By Lemma 2.2 the closed walk γϕ(γ)ϕ2(γ) · · ·ϕ|ϕ|−1(γ) contains
a cycle whose edges are in orbit(C), a contradiction. If a is faithful, then a(g) 6≡ 1 iff g 6= 1. That a′(g) fixes
no edge of G′ when a(g) 6≡ 1 implies that a′(g) 6≡ 1.

Proposition 2.3. If (G, a) is freely Γ-symmetric and an orbit minor (G\orbit(D)/orbit(C), a′) is also freely
Γ-symmetric, then there is an acyclic orbit(C ′) ⊆ orbit(C) and an orbit(D′) ⊇ orbit(D) such that

(G\orbit(D′)/orbit(C ′), a′′) = (G\orbit(D)/orbit(C), a′).

Proof. Consider the edge set of some connected component C0 of the subgraph G:orbit(C); the freeness of a′

on the minor G′ implies that G:orbit(C) is a vertex-disjoint union of copies of G:C0, say G:C0, G:C1, . . . , G:Cn.
Let T0 be the edges of a spanning tree of G:C0 and so orbit(T0) = T0 ∪T1 ∪ · · · ∪Tn where G:Ti is a spanning
tree of G:Ci. So now G\orbit(D ∪ (C0\T0))/orbit(T0) = G\orbit(D)/orbit(C) with the same induced Γ-action
from a.
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2.2 Voltage graphs

Given an abelian group Γ, a Γ-voltage graph (sometimes just referred to as a voltage graph) is a pair (G, σ)
where σ : ~E(G) → Γ satisfies σ(−e) = −σ(e). In general, voltage graphs may be defined using nonabelian
groups, but their applications require a few more details involving fundamental groups of graphs (which we
will not need in this paper). The Γ-voltage function σ extends to a walk w = e1, . . . , en additively and this
naturally induces a homomorphism σ∗ : Z1(G) → Γ. We say that a closed walk w is a zero walk in (G, σ)
when σ∗(w) = 0. We say that a cycle C is a zero cycle in (G, σ) when σ∗(~C) = 0. Two Γ-voltage functions σ
and ψ on G are said to be switching equivalent when σ∗ = ψ∗ and equivalent when there is an automorphism
α of Γ for which σ∗ = αψ∗. Two Γ-voltage graphs (G, σ) and (H,ψ) are isomorphic when there is a graph
isomorphism ι : G→ H such that ψι is equivalent to σ. Given a maximal forest F of G, a Γ-voltage function
σ on G is said to be F -normalized when σ(e) = 0 for all e ∈ ~E(F ). Proposition 2.4 is well known; we call
σF in Proposition 2.4 the F -normalization of σ.

Proposition 2.4. Given any maximal forest F in G, any Γ-voltage function σ on G is switching equivalent
to a unique Γ-voltage function σF on G that is F -normalized.

Proof. Set σF (e) = 0 for all e ∈ ~E(F ) and then, for any e ∈ E(G)\E(F ), let Ce be the unique cycle in F ∪ e.
Given ~Ce, say that e is oriented in the direction of ~Ce. Now set σF (e) = σ∗(~Ce). Since ~Ce1 , . . . ,

~Cen (where
{e1, . . . , en} = E(G)\E(F )) is a Z-basis for Z1(G), our result follows.

Given a Γ-voltage function σ on G, a switching function is a function η : V (G) → Γ. Define Γ-voltage
function ση on G by ση(e) = η(h(e)) + σ(e)− η(t(e)).

Proposition 2.5. Two Γ-voltage functions σ and ψ on a graph G are switching equivalent iff there is η such
that ση = ψ.

Proof. Certainly σ and ση are switching equivalent, i.e., (ση)∗ = σ∗ for any η. Conversely if σ∗ = ψ∗, then
pick a maximal forest F in G and let σF be the unique F -normalized Γ-voltage function σF that is switching
equivalent to σ∗ and ψ∗.

We now define switching functions η1 and η2 such that ση1 = σF and ψη2 = σF . For each connected
component T in F , pick a root vertex r, let η1(r) = 0 and η2(r) = 0, and consider all of the edges of T to
be oriented towards r. Assuming that η1(v) and η2(v) are already defined for each vertex v in T at distance
d from r, we define η1(u) and η2(u) for a vertex u in T at distance d + 1 from r with parent vertex v as
η1(u) = η1(v) + σ(e) and η2(u) = η2(v) + ψ(e) where e is the unique edge in T with t(e) = u and h(e) = v.
Now ση1 and ψη2 are both F -normalized and so ση1 = σF = ψη2 by Proposition 2.4. Thus σ = ψη2−η1 .

Given a Zn-voltage graph (G, σ), we say that (G, σ) is balanced when all its cycles are zero cycles. Given a
subgraph H of G, we usually denote (H,σ| ~E(H)) by (H,σ). This does not cause any ambiguity in this paper.

A vertex v ∈ G is a balancing vertex when (G\v, σ) is balanced. The Γ-voltage function σ can also be defined
on contractions of G by acyclic sets of edges, up to switching, as follows. If F is a forest of G and F0 a maximal
forest of G containing F , then consider the F0-normalization σF0 and define (G, σ)/F = (G/F, σF0 |E(G)\E(F )).
We usually denote (G/F, σF0 |E(G)\E(F )) by (G/F, σ). (We sometimes call σ|E(G)\E(F ) the induced Γ-voltage
function.) We consider (G/F, σ′) for any Γ-voltage function σ′ switching equivalent to σ to be the contraction
of (G, σ) by F . In this sense, contractions of acyclic sets of edges in (G, σ) are well defined up to switching
equivalence of Γ-voltage functions. Any Γ-voltage graph (G\D/K, σ) obtained from (G, σ) where G:K is
acyclic is called a link minor of (G, σ). (Isolated vertices are normally deleted as they occur. In fact, they
can always be avoided by an appropriate choice of edges to contract.) If edges are deleted and contracted
one at a time, a link minor can be thought of as a minor obtained without contraction of any loop. If (H,ψ)
is isomorphic to (G\D/K, σ), then if it does not cause confusion we say that (H,ψ) is also a link minor of
(G, σ) rather than “isomorphic to a link minor”.

A k-split of a loopless signed graph (G, σ) is defined when (G, σ) is connected and does not have a
balancing vertex. If (A1, A2) is a 1-separation of G, then the two signed graphs (G:A1, σ) and (G:A2, σ)
comprise a 1-split of (G, σ).
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Let (A1, A2) be a bipartition of E(G) with V (A1) ∩ V (A2) = {u, v}, |Ai| ≥ 2, and |Ai| ≥ 3 when
(G:Ai, σ) is unbalanced. (Note that (A1, A2) need not be a 2-separation of G.) When (G, σ) is unbalanced,
the stipulation that (G, σ) does not have a balancing vertex can be used to show that one of (G:A1, σ) and
(G:A2, σ) is unbalanced. When (G, σ) is unbalanced, a 2-split of (G, σ) is defined for two separate cases.
First, if both (G:A1, σ) and (G:A2, σ) are unbalanced, then define (Gi, σi) to be (G:Ai, σ) taken with two
new uv-links, say e and f , with σi(e) = 0 and σi(f) = 1. The signed graphs (G1, σ1) and (G2, σ2) comprise
the 2-split of (G, σ). Second, if (G:A1, σ) is unbalanced and (G:A2, σ) is balanced, then there is x ∈ Z2 such
that every uv-walk w in A2 has σ∗(w) = x. Define (Gi, σi) to be (G:Ai, σ) taken with one new uv-link, say e,
with σi(e) = x and so now (G1, σ1) is unbalanced and (G2, σ2) is balanced. Again, the signed graphs (G1, σ1)
and (G2, σ2) comprise the 2-split of (G, σ).

Let (A1, A2) be a bipartition of E(G) with |V (A1)∩V (A2)| = 3, (G:A1, σ) unbalanced, (G:A2, σ) balanced,
and |A2| ≥ 4. (Again note that (A1, A2) need not be a 3-separation of G.) Let F2 be a maximal forest of G:A2

and extend F2 to a maximal forest F for all of G. Assuming that σ is F -normalized, we get that σ(e) = 0
for all e ∈ ~A2. Define (Gi, σi) to be (G:Ai, σ) taken with a new vertex vi of degree three attached, with
links having voltage 0, to the three vertices of V (A1) ∩ V (A2). So now (G1, σ1) is unbalanced and (G2, σ2)
is balanced and these two signed graphs comprise a 3-split of (G, σ).

Our drawings of Zn-voltage graphs for n ≥ 3 utilize the following conventions. An edge with voltage 0
is drawn without decoration and an edge with voltage k ∈ {1, 2, . . . , n − 1} in one direction is drawn with
k arrowheads in that direction. A Z2-voltage graph is often referred to as a signed graph. When drawing
signed graphs, edges with voltage 0 are drawn as solid lines and edges with voltage 1 are drawn as dashed
lines.

A Gerards signed graph is a connected signed graph (G, σ) that has no loops and which has one of the
following structures.

1. (G, σ) is balanced.

2. (G, σ) has a balancing vertex.

3. (G, σ) embeds in the plane so that exactly two faces are bounded by nonzero walks.

4. (G, σ) is isomorphic to the signed graph, call it T6, in Figure 2.6.

5. (G, σ) has a 1-split or 2-split into (G1, σ1) and (G2, σ2) where each (Gi, σi) is a Gerards signed graph.

6. (G, σ) has a 3-split into (G1, σ1) and (G2, σ2) where (G1, σ1) is a Gerards signed graph and (G2, σ2) is
balanced.

Figure 2.6. The voltage graph T6.

Theorem 2.7 is proven using the Decomposition Theorem of Seymour [7] although it is not an immediate
corollary of Seymour’s result.

Theorem 2.7 (Gerards [2, Thm. 3.2.3]). If (G, σ) is a connected and loopless signed graph, then (G, σ) is a
Gerards signed graph iff (G, σ) does not contain a link minor isomorphic to one of the two signed graphs of
Figure 2.8.

Figure 2.8.
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Given a graph G, a theta subgraph of G is a subgraph Θ consisting of two vertices u and v taken with
three internally disjoint uv-paths. Note that a theta subgraph contains exactly three cycles C1, C2, and C3

where ~C1, ~C2, and ~C3 can be chosen so that ~C1+ ~C2 = ~C3. Parts (1) and (2) of Proposition 2.9 are immediate
and Part (3) is by Zaslavsky [11, Thm. 2].

Proposition 2.9. Let Θ be a theta subgraph of G and let σ be a Γ-voltage assignment on G.

1. There are either zero, one, or three zero cycles in Θ (i.e., there are not exactly two zero cycles in Θ).

2. If Γ ∼= Z2, then there are either one or three zero cycles in Θ.

3. If every theta subgraph of (G, σ) has exactly one or three zero cycles, then there is a Z2-voltage function
ψ on G such that the zero cycles of (G,ψ) are exactly the zero cycles of (G, σ).

Theorem 2.10. Let G be a connected and loopless graph, Γ an abelian group, σ a Γ-voltage assignment on
G, and ψ a Z2-voltage assignment on G with the same zero cycles as σ.

(1) For each block B of G, there is aB ∈ Γ such that for any cycle C in B, σ∗(~C) ∈ {0, aB,−aB}.
(2) If Γ has odd order, then (G,ψ) is a Gerards signed graph.

Proof. Since any signed graph constructed by identifying any two Gerards signed graphs along a vertex is
still a Gerards signed graph, we need only prove our theorem for the case that G is a block.
(1) Certainly this is true if (G, σ) is balanced. So assuming that (G, σ) is unbalanced, take some arbitrary
nonzero cycle C0 in (G, σ) and let a = σ(~C0). Given any other nonzero cycle C in (G, σ), by [9, 4.34] there
are nonzero cycles C0, C1, . . . , Cn such that Cn = C and for each i ∈ {0, . . . , n − 1}, Ci ∪ Ci+1 is a theta
graph. If C ′i is the third cycle in the theta graph Ci ∪ Ci+1, take ~C0, ~C1, . . . , ~Cn and ~C ′0, . . . ,

~C ′n−1 so that
~Ci + ~Ci+1 = ~C ′i. Since every theta graph of (G,ψ) contains at least one zero cycle (Proposition 2.9(2)) and

(G, σ) has the same zero cycles as (G,ψ), we have that σ∗(~C
′
i) = 0 for each i which makes σ∗(~Ci) = (−1)ia.

(2) By way of contradiction, say that (G,ψ) is not a Gerards signed graph. Theorem 2.7 says that (G,ψ)
contains a link minor from Figure 2.8. Let C and D be disjoint edge sets of G whose contraction and deletion,
respectively, in (G,ψ) obtains one of the minors from Figure 2.8. Now the induced voltage functions σ and
ψ on the link minor G/C\D still have the same zero and non-zero cycles. Normalize σ and ψ on a spanning
tree T of G/C\D as in Figure 2.8. This affects neither σ∗ nor ψ∗, but we now have the property that σ(e) = 0
iff ψ(e) = 0. Since Γ is of odd order, it easy to check that it is impossible to define σ on G/C\D to have the
same zero cycles as ψ on G/C\D.

2.3 Derived graphs

We assume familiarity with derived graphs of voltage graphs as in Gross and Tucker [3] but we briefly
touch on some of their main points here. Given an abelian group Γ and a Γ-voltage assignment σ on graph
G, the derived graph Gσ is constructed as follows: V (Gσ) = V (G) × Γ and ~E(Gσ) = ~E(G) × Γ where
t(e, g) = (t(e), g), h(e, g) = (h(e), g + σ(e)), and −(e, g) = (−e, g + σ(e)).

If σ is a Γ-voltage assignment on a graph G, then of course Gσ has a canonical free and faithful Γ-action
bσ defined by translation. Call this the basic action on Gσ. Conversely, if (H, a) is freely Γ-symmetric,
then the quotient space H/a is again a graph and there is a natural Γ-voltage assignment κ on H/a whose
derived graph (H/a)κ with basic Γ-action bκ is equivariantly isomorphic to (H, aα) for some automorphism
α of Γ. (We will reserve the letter κ for voltage assignments of this sort and usually use σ for other voltage
assignments.)

Proposition 2.11. If σ and ψ are equivalent Γ-voltage assignments on G, then there is an automorphism
α of Γ such that (Gσ, bσ) is equivariantly isomorphic to (Gψ, bψα).

Proof. Since σ and ψ are equivalent, there is a switching function η and automorphism α of Γ such that
ψ = αση. Define ι : Gσ → Gασ

η
by ι(v, g) = (v, α(g + η(v))) and ι(e, g) = (e, α(g + ηt(e))). Being careful
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to keep track of which graph the head and tail functions are acting on (either G, Gσ, or Gασ
η
), we now get

that ι is an isomorphism because

ιt(e, g) = ι(t(e), g) = (t(e), α(g + ηt(e))) = t(e, α(g + ηt(e))) = tι(e, g)

and
ιh(e, g) = ι(h(e), g + σ(e))

= (h(e), α(g + σ(e) + ηh(e)))
= (h(e), α(g + ηh(e) + σ(e)− ηt(e) + ηt(e)))
= (h(e), α(g + ηt(e)) + αση(e))
= h(e, α(g + ηt(e)))
= hι(e, g).

To show that ι is an equivariant isomorphism, take g ∈ Γ, (v, a), and (e, a) where v is a vertex of G and e is
an oriented edge of G. Now

ιbσ(g)(v, a) = ι(v, a+ g)
= (v, α(a+ g + η(v)))
= (v, α(a+ η(v)) + α(g))
= bψ(α(g))(v, α(a+ η(v)))
= bψ(α(g))ι(v, a).

The calculation that ιbσ(g)(e, a) = bψ(α(g))ι(e, a) is the same aside from the use of ηt rather than just η.

Given a Γ-voltage graph (G, σ), it is important for us to know when its derived graph Gσ is connected.
Certainly that G is connected is a necessary condition for Gσ to be connected. We say that (G, σ) generates
Γ when the image of σ∗ is all of Γ rather than a proper subgroup of Γ.

Proposition 2.12. A connected Γ-voltage graph (G, σ) generates Γ iff for any spanning tree T of G the
group

〈σT (e) : e ∈ ~E(G)\ ~E(T )〉

equals Γ, where σT is the normalization of σ with respect to T .

Proposition 2.13. If (G, σ) is a Γ-voltage graph, then Gσ is connected iff (G, σ) is connected and generates
Γ.

Proof. Given that G is connected, take a spanning tree T in G and consider the T -normalization σT of σ.
That GσT ∼= Gσ is given by Proposition 2.11.

Suppose that σT generates Γ. Proposition 2.12 now implies that (G/T )σT is a connected Cayley graph
for Γ. Decontracting T , we now get that GσT is connected. Conversely, if GσT is connected, then (G/T )σT

is connected, and so is a Cayley graph for Γ and so σT generates Γ.

3 Zn acting on the sphere for n odd and n ≥ 3

A Zn-voltage graph is said to be 2-branch-point spherical when there is a cellular embedding of G in the
sphere (which requires that G be connected) such that there are exactly two facial boundary walks (up
to reversal) that are not in the kernel of σ∗. So now if (G, σ) is 2-branch-point spherical and F1, . . . , Fn
are the faces of such an embedding of (G, σ) in the sphere (all oriented in the clockwise direction) then∑

i σ∗(∂(Fi)) = 0 and so the two faces, say F1 and F2, whose boundary walks are not in the kernel of σ∗
satisfy σ∗(∂(F1)) = −σ∗(∂(F2)). The branch points of this 2-branch-point-spherical embedding are the central
points of F1 and F2. (One can also think of a 2-branch-point spherical embedding of (G, σ) as an embedding
of (G, σ) in the annulus where a cycle is a zero cycle iff it is topologically contractible in the embedding.)
So now if C is a cycle in G that separates the branch points of the embedding, then σ∗(~C) = ±σ∗(∂(F1)),
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whereas if C is a cycle that does not separate the branch points of the embedding, then σ∗(~C) = 0. Note
that when (G, σ) is 2-branch-point spherical, σ generates Zn iff the value σ∗(∂(F1)) is a generator for Zn.

Of course we are using the term “spherical” for both Zn-symmetric graphs and Zn-voltage graphs, but
this is appropriate given Proposition 3.1.

Proposition 3.1. If n ≥ 3 is odd and (G, a) is a connected and freely and faithfully Zn-symmetric graph,
then (G, a) is Zn-spherical iff (G/a, κ) is 2-branch-point spherical and generates Zn.

Proof. If (G, a) is connected and freely and faithfully Zn-symmetric, then since n is odd, [1, Theorem 4.1]
implies that the action of a on G in the sphere is rotation of odd order around two fixed points that are in
two distinct faces of G. That (G/a, κ) is 2-branch-point spherical and generates Zn follows.

Conversely, if (G/a, κ) is 2-branch-point spherical and generates Zn, then the Riemann-Hurwitz Equation
gives us that the derived embedding of (G/a)κ ∼= G is in the surface whose Euler Characteristic is 2n−2(n−
1) = 2, which is the sphere. Therefore ((G/a)κ, bκ) is Zn-spherical and there is an automorphism α of Zn
such that (G, a) is equivariantly isomorphic to ((G/a)κ, bκα).

Now if (G, a) is freely and faithfully Zn-symmetric, then taking an orbit minor of (G, a) corresponds to
taking a link minor in the quotient voltage graph (G/a, κ). Therefore, Proposition 3.1 yields an equivalent
formulation of the problem of finding the minimal free and faithful obstructions for Zn-sphericity among
freely and faithfully Zn-symmetric graphs; that is, finding the link-minor-minimal Zn-voltage graphs that are
not 2-branch-point spherical, are connected, and generate Zn. Using

⊗
n (pronounced “not spherical n”) to

denote the collection of such Zn-voltage graphs, we are seeking to identify the link-minor-minimal members
of

⊗
n. Note that if (G, σ) is a link-minor-minimal member of

⊗
n, then any proper link minor of (G, σ) is

either not connected, does not generate Zn, or is 2-branch-point Zn-spherical.

3.1 A catalogue of link-minor-minimal members of
⊗

n

Minimal Generating Bouquets Let (G, σ) be a bouquet of m ≥ 2 loops {l1, . . . , lm} for which
{σ(l1), . . . , σ(ln)} is a minimal generating set for Zn. This requires that the odd integer n has at least
two distinct prime factors, which makes n ≥ 15. Conversely, any odd n ≥ 15 with two distinct prime divisors
will have a minimal generating bouquet with m ≥ 2 loops. Given a minimal generating bouquet, we must
have that σ(li) 6= ±σ(lj) for each i 6= j and so we have Proposition 3.2.

Proposition 3.2. For any odd n with two distinct prime divisors, a minimal generating bouquet for Zn is a
link-minor-minimal member of

⊗
n.

A freely Zn-symmetric graph derived from a minimal generating bouquet on m loops is, of course, a
Cayley graph for Zn and can be viewed with vertices on an m-dimensional array where the length of the ith

dimension of the array is the order of the ith generator and edges are placed appropriately. The Zn-action
may be hard to visualize for m ≥ 3; however, for m = 2, the array and Zn-action on it can be viewed as a
rotation on a “torus-grid” as explained in [1, §6.1]. See Figure 3.3.

Figure 3.3.
Torus rotation for a 3× 5 grid. The thin lines form a simple-closed curve along which the rotation occurs.
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Spiral Bouquets Let (G, σ) be a bouquet of two loops l1 and l2 for which σ(l1) generates Zn and
σ(l2) /∈ {0, σ(l1),−σ(l1)}. This latter property requires n ≥ 4, and any Zn with n ≥ 4 will have a spiral
bouquet.

Proposition 3.4. For any odd n ≥ 5, a spiral bouquet for Zn is a link-minor-minimal member of
⊗

n.

A freely Zn-symmetric graph derived from a spiral bouquet is, again, a Cayley graph for Zn and can be
described as a “torus spiral” from [1, §6.1]. See Figure 3.5. The free Zn-action is rotation along the horizontal
cycle in Figure 3.5.

Figure 3.5.
A typical torus spiral (embedded in the torus) with the action being rotation along the horizontal cycle.

Up to voltage-graphic isomorphism there is only one spiral bouquet for Z5 and the freely Z5-symmetric
graph derived from it is K5. There is exactly one (again up to voltage-graphic isomorphism) spiral bouquet
for Z7, there are exactly two spiral bouquets for each of Z9 and Z11, and there are exactly three spiral
bouquets for Z13.

A Z3 theta graph Let (G, σ) be the Z3-voltage graph in Figure 3.6.

Figure 3.6.

Proposition 3.7. (G, σ) is a link-minor-minimal member of
⊗

3.

The derived Z3-symmetric graph (Gσ, bσ) is K3,3 with the Z3-action being an order-3 rotation along a hexagon
in K3,3.

Gerrards-type obstructions For any n ≥ 2, consider the eleven Zn-voltage graphs shown in Figure
3.8. The edges with an arrow represent an edge with voltage 1 in the direction of the arrow and the edges
without an arrow have voltage 0. The zero cycles of these voltage graphs are independent of the choice of n.

Figure 3.8.
The voltage graphs K`

5 and K`
3,3
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The voltage graphs K2`
5 and K2`

3,3 The voltage graphs ∆3` and Y 3`.

The voltage graphs K̂5/ê, (K3,3 ∪ ê)/ê, K̂3,3/ê.

The voltage graphs V̂ ` and ∆̂3`.

Proposition 3.9. For any n ≥ 2, each Zn-voltage graph in Figure 3.8 is a link-minor minimal member of⊗
n.

Sketch of Proof. Each voltage graph of Figure 3.8 clearly generates Zn and is connected. For each voltage
graph we must show that: it is not 2-branch-point spherical and any proper link minor that is still connected
and generates Zn is 2-branch-point spherical. This is obvious for K`

5 and K`
3,3. We will not show this for the

all of the remaining 9 voltage graphs, but just for K2`
5 and (K3,3 ∪ ê)/ê. The remaining cases are dealt with

in a similar manner.
Figure 3.10 shows all of the single-edge deletions of K2`

5 up to isomorphism and 2-branch-point spherical
embeddings of them. These embeddings are unique save for the placement of the loop in the first embedding.
One can now check that the deleted edge cannot be added to any of the three embeddings. Thus K2`

5 is
not 2-branch-point spherical and every single-element deletion is. Each single-link contraction of K2`

5 is also
2-branch-point spherical because any single-link contraction will contain a pair of parallel links that form a
zero cycle. These parallel links have no effect on embeddability in the 2-branch-point sphere and so one of
these two links could have been deleted before contraction without affecting embeddability; hence returning
us to the deletion case.

Figure 3.10.

*
*

* * * *

Figure 3.11 shows all of the single-link contractions of (K3,3 ∪ ê)/ê up to isomorphism and and 2-branch-
point spherical embeddings of them. These embeddings are unique. One can now check that the contracted
edge cannot be restored to either of these embeddings. Thus (K3,3 ∪ ê)/ê is not 2-branch-point spherical
and every single-link contraction is. Each single-edge deletion of (K3,3 ∪ ê)/ê is also 2-branch-point spherical
because any single-edge deletion will contain a subdivision of a subgraph of one of the single-link contractions.
Subdivisions have no effect on embeddability in the 2-branch-point sphere and so one of the two series
edges could have been contracted before deletion without affecting embeddability; hence returning us to the
contraction case.
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Figure 3.11.
*

*
*

*

Figure 3.12 shows the 11 freely Z3-symmetric graphs derived, respectively, from the voltage graphs in
Figure 3.8 with Z3-voltages. These are minimal free obstructions for Z3-sphericity by Propositions 3.1 and
3.9. The renderings of the Z3-symmetric graphs in Figure 3.12 clearly show the free Z3-action as a rotation.
Therefore we can derive the analogous freely Zn-symmetric graphs for other n in the obvious fashion.

Figure 3.12. The freely Z3-symmetric graphs derived, respectively, from the voltage graphs in Figure 3.8
with Z3-voltages. These are minimal free obstructions for Z3-sphericity.
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3.2 Completeness of the catalogue

In this section we will show that the catalogue of link-minor-minimal members of
⊗

n presented in Section
3.1 is complete. For n odd and n ≥ 3 assume that (G, σ) is a link-minor-minimal member of

⊗
n. We will

show that (G, σ) is isomorphic to one of the voltage graphs from Section 3.1.

Claim 1. If (G, σ) has one vertex, then (G, σ) is a spiral bouquet or a minimal generating bouquet.

Proof of Claim: If (G, σ) has only one vertex v, then (G, σ) is a bouquet of loops l1, . . . , lm. Since (G, σ)
generates Zn, the group 〈σ(l1), . . . , σ(lm)〉 equals Zn and since (G, σ) is not 2-branch-point-spherical, m ≥ 2.
If this set of voltages is a minimal generating set for Zn, then we are done. If not, then there is some li (say
l1) such that 〈σ(l2), . . . , σ(lm)〉 = Zn. So since (G, σ) is a link-minor-minimal member of

⊗
n, (G\l1, σ) is

2-branch-point spherical. So up to automorphism of Zn, {σ(l2), . . . , σ(lm)} = {1,−1}. Since (G, σ) is not
2-branch-point spherical, we must have that σ(l1) 6= ±σ(l2). So now (G, σ) contains a spiral bouquet, which
is not 2-branch-point spherical and generates Zn. By minimality we then get that (G, σ) is a spiral bouquet. ♣

Claim 2. If (G, σ) has more than one vertex and contains a theta subgraph Θ whose three cycles are all
nonzero under σ, then Zn = Z3 and (G, σ) is isomorphic to the Z3-voltage graph shown in Figure 3.6.

Proof of Claim: If (G, σ) contains a theta subgraph Θ in which all three cycles are nonzero under σ, then
when n = 3, (Θ, σ) is a subdivision of a Z3-voltage graph isomorphic to the one in Figure 3.6. This Z3-voltage
graph is a link-minor-minimal member of

⊗
n and thus, by minimality, (G, σ) is the Z3-voltage graph shown.

For the remainder of the proof take n ≥ 5 and say that C1, C2, and C3 are the cycles of Θ with
~C1 + ~C2 = ~C3. Write σ∗(~C1) = a and σ∗(~C2) = b so that σ∗(~C3) = a+ b 6= 0.

If (Θ, σ) generates Zn, then either there is one element of {a, b, a + b} that generates Zn (without loss
of generality assume a is a generator) or any pair of elements from {a, b, a + b} is a minimal generating set
for Zn. In the first case, (Θ, σ) has a bouquet of two loops as a proper link minor where we may choose the
voltages on the two loops to be either a and b (if a 6= b) or a and a + b (if a = b). If a 6= b, then the fact
that a 6= −b implies that the two loops form a spiral bouquet. If a = b, then the facts that a 6= −b and
n ≥ 5 imply that the bouquet of two loops with voltages a and 2a 6= ±a form a spiral bouquet. These both
contradict the minimality of (G, σ). In the second case, the link minor that is the bouquet of two loops with
voltages a and b is a minimal generating bouquet, a contradiction to the minimality of (G, σ).

If (Θ, σ) does not generate Zn, then take a spanning tree T ′ of Θ and extend it to a spanning tree T ⊃ T ′
of G. (Recall that the link-minor-minimal members of

⊗
n must be connected.) Because (G, σ) does generate

Zn, Proposition 2.12 guarantees us that the group 〈σT (e) : e ∈ ~E(G)\ ~E(T )〉 equals Zn. Now (G/T, σT ) is a
proper link minor of (G, σT ) which generates Zn which (by the minimality of (G, σ)) must be 2-branch-point
spherical. Thus there is x ∈ Zn such that σT (e) ∈ {0, x,−x} for all e ∈ ~E(G)\ ~E(T ). Thus 〈x〉 = Zn and
±x ∈ {a, b, a + b}, which implies that {a, b, a + b} is a generating set for Zn, contradicting the assumption
that (Θ, σ) does not generate Zn. ♣

For the remainder of this section we may now assume that every theta subgraph of (G, σ) has at least one
zero cycle. By Proposition 2.9(2) there is a signed graph (G,ψ) with the same zero cycles as (G, σ). Let LG
be the set of loops in G and so by Theorem 2.10 (G\LG, ψ) is a Gerards signed graph. Claim 3 completes
the proof of the completeness of the catalogue of voltage graphs presented in Section 3.1.
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Claim 3. If (G\LG, ψ) is a Gerards signed graph, then (G, σ) is isomorphic to one of the eleven Zn-voltage
graphs in Figure 3.8.

Proof of Claim: In Case 1 assume that (G\LG, ψ) is balanced. In Case 2, assume that (G\LG, ψ) is unbalanced
and not 2-connected. In Case 3, assume that (G\LG, ψ) is unbalanced and 2-connected and LG 6= ∅. In
the remaining cases we assume that (G\LG, ψ) is unbalanced, 2-connected, but LG = ∅. In Case 4, assume
that (G,ψ) is not 3-connected. So in the remaining cases we may assume that (G,ψ) is 3-connected and so
the structure of Gerrards signed graphs gives us the following four remaining cases. In Case 5, assume that
(G,ψ) is 3-connected and has a balancing vertex. In Case 6, assume that (G,ψ) is 3-connected and has a
planar embedding with exactly two nonzero facial boundary cycles. In Case 7, assume that (G,ψ) ∼= T6. In
Case 8, assume that (G,ψ) has a 3-split.

Case 1 Since (G\LG, ψ) is balanced, so is (G\LG, σ). Since (G\LG, σ) is balanced, we may normalize σ on
any spanning tree of G and get σ(e) = 0 for any e /∈ ~LG. So since (G, σ) generates Zn, the loop voltages
generate Zn. However, by minimality, (G, σ) cannot contain as a link minor a minimal generating bouquet
nor a spiral bouquet. So up to automorphism of Zn, σ(e) = ±1 for each e ∈ ~LG. In Case 1.1 assume that
|LG| = 1, in Case 1.2 assume that |LG| = 2, and in Case 1.3 assume that |LG| ≥ 3.

Case 1.1 Write LG = {`}. It cannot be that G\` is planar, because then (G, σ) is 2-branch-point spherical.
So by minimality (G, σ) is K`

5 or K`
3,3.

Case 1.2 Write LG = {`1, `2}. Since (G\`1, σ) still generates Zn, it must be that (G\`1, σ) is 2-branch-point
spherical while (G, σ) is not. This tells us there is no planar embedding of (G\{`1, `2}, σ) with the endpoints
of `1 and `2 on the same face, and so the graph obtained from G\{`1, `2} by adding an edge connecting the
endpoints of `1 and `2 is not planar and is minor minimally so, which can only be K5 or K3,3. Thus (G, σ)
is K2`

5 or K2`
3,3.

Case 1.3 Write LG = {`1, . . . , `n} where `i has endpoint vi. By minimality, we must have that vi 6= vj for
i 6= j. As G is connected, let T be a spanning tree of G and take a path p of longest length in T connecting
two loop endpoints. If there is a third loop in G whose endpoint is not on p, then the maximality of p implies
that (G, σ) will contain Y 3` as a link minor. So, by minimality, (G, σ) is Y 3`.

So now assume that all loop endpoints of G appear on p. Reindex so that v1, . . . , vn are arranged in
order along the path. We claim that there is not some vi with 1 < i < n that is a cut vertex of G. By way
of contradiction, if vi with 1 < i < n is a cut vertex of G, then (G, σ) has a 1-split at vi into (G1, σ1) and
(G2, σ2) where `1 ∈ G1 and `n ∈ G2. Say without loss of generality that `i ∈ G1 and add a copy of `i to vi
in (G2, σ2) to get (G′2, σ

′
2). Both (G1, σ1) and (G′2, σ

′
2) are proper link minors of (G, σ) that generate Zn and

so each is 2-branch-point spherical. As (G\LG, σ) is balanced, the embedding of (G1, σ1) must be as shown
in Figure 3.13 (the embedding of (G′2, σ

′
2) is similar).

Figure 3.13.

*

*
v2

v1 vi
v3

Glue the embeddings of (G1, σ1) and (G′2, σ
′
2) together along `i to obtain a 2-branch-point spherical embedding

of (G, σ), a contradiction. So there is some path p0 of G that is internally disjoint from p such that p ∪ p0
contains a v1vn-path bypassing some vi with 1 < i < n. Thus (G, σ) contains ∆3` as a link minor and so, by
minimality, (G, σ) is ∆3`.

Case 2 Since (G\LG, ψ) is connected but not 2-connected, consider the blocks B1, . . . , Bm of G\LG. Without
loss of generality block B1 contains a vertex x such that (E(B1), E(B2)∪ · · · ∪E(Bn)) is a 1-separation of G
at vertex x with B2 ∪ · · · ∪Bm connected (i.e., B1 is an “end block” of G). In Case 2.1, assume that (B1, σ)
is balanced and in Case 2.2 assume that (B1, σ) is unbalanced.

Case 2.1 If (B1, σ) is balanced, then either there is a loop ` of G attached to a vertex x′ 6= x in B1 or there
is not. Let these be Cases 2.1.1 and 2.1.2.

14



Case 2.1.1 If B1 is not planar, then (G, σ) contains a proper K`
5- or K`

3,3-link minor, a contradiction. If
B1 is planar, then either there is an embedding of B1 in the plane with x and x′ on the same face or there
is not such an embedding. If not, then (as in Case 1.2) (G, σ) contains a proper K2`

5 - or K2`
3,3-link minor, a

contradiction. So now assume that B1 has a planar embedding with x and x′ on the same face. Since (B1, σ)
is balanced, (G/E(B1), σ) still generates Zn and so, by minimality, must be 2-branch-point-spherical. Let b
be the endpoint of ` in (G/E(B1), σ). Either there is a 2-branch-point-spherical embedding of (G/E(B1), σ)
with b on the face bounding a branch point, or there is not.

If there is such an embedding, then we can reembed ` so as to bound a face containing one of the
branch points. We can now decontract B1 to obtain an embedding of (G, σ) in the 2-branch-point sphere, a
contradiction.

If there is no such embedding, then any embedding of (G/E(B1), σ) has ` separating two vertex-disjoint
nonzero cycles C1 and C2. Take paths γ1 and γ2 in G/E(B1) from b to C1 and b to C2, respectively. Now
B1 ∪ ` ∪ γ1 ∪ γ2 ∪ C1 ∪ C2 contains Y 3` as a link minor. Thus (G, σ) ∼= Y 3`.

Case 2.1.2 Here (G\E(B1), σ) is connected (up to removal of isolated vertices) and generates Zn, and so by
minimality must be 2-branch-point spherical. So now since (B1, σ) is balanced and (G, σ) is not 2-branch-
point spherical, we must have that B1 is not planar. Thus (G, σ) has a proper K`

5- or K`
3,3-link minor, a

contradiction.

Case 2.2 By Theorem 2.10, each block (Bi, σ) has ai ∈ Γ such that each cycle C in Bi has voltage from
{0, ai,−ai}. Since (B1, σ) is unbalanced a1 6= 0. By the following argument we now get that there is a nonzero
element a ∈ Γ such that each ai ∈ {0, a,−a} and each loop of G has voltage ±a. Take a spanning tree T of
G and note that T restricted to a block of G is a spanning tree of that block. As such, each e ∈ ~E(G)\ ~E(T )
in block Bi has σT (e) ∈ {0, ai,−ai}. Since (G, σ) generates Zn, the bouquet of loops (G, σ)/E(T ) generates
Zn and so must be 2-branch-point spherical, which implies that each nonzero loop in this bouquet has the
same voltage. Up to automorphism of Zn we may assume that this voltage is ±1.

Let B◦2 be B2 ∪ · · · ∪ Bm along with the loops of LG that are attached to vertices in B2 ∪ · · · ∪ Bm. Let
B◦1 be B1 along with the loops of LG that are attached to vertices in B1. Now (B◦2 , σ) generates Zn or is
balanced. In the latter case we can rechoose B1 and revert back to Case 2.1. So now there are proper link
minors (G1, σ1) and (G2, σ2) of (G, σ) where (Gi, σi) is (B◦i , σ) along with a new loop `i added at x with
voltage σi(`i) = 1. Furthermore, each of these link minors generates Zn and so is 2-branch-point spherical.
Because B1 is a block, the embedding of (G1, σ1) has `1 bounding a face containing one of the branch points.
Now either the loop `2 in the embedding of (G2, σ2) may be reembedded so that it bounds a face containing
one of the branch points or it cannot. If it can be, then we can identify the embeddings of (G1, σ1) and
(G2, σ2) along `1 and ±`2 to obtain a 2-branch-point spherical embedding of (G, σ), a contradiction. So
assume that `2 cannot be reembedded so that it bounds a face containing a branch point. Now if x is a
balancing vertex of (G1, σ1), then again we can identify the embeddings of (G1, σ1) and (G2, σ2) along `1 and
±`2 to obtain a 2-branch-point spherical embedding of (G, σ), a contradiction. If x is not a balancing vertex
of (G1, σ1), then there is a nonzero cycle C1 in (G1, σ)\x. Furthermore, as in Case 2.1.1, `2 separates two
vertex-disjoint nonzero cycles in (G2, σ2)\x, call them C2 and C3. Taking C1, C2, and C3 along with a path
from each Ci to x, we find Y 3` as a link minor of (G, σ), making (G, σ) ∼= Y 3`.

Case 3 Since (G\LG, ψ) is unbalanced and 2-connected, Theorem 2.10 implies that there is a ∈ Zn such
that σ∗(C) ∈ {0,−a, a} for all cycles C in G\LG. If a does not generate Zn, then there are loops in LG
whose voltages along with a do generate Zn, in which case (G, σ) contains a minimal generating bouquet or
a spiral bouquet as a proper link minor, a contradiction to the minimality of (G, σ). Thus a does generate
Zn, so up to automorphism of Zn we can assume that a = 1. Now if there is a loop l ∈ LG such that
σ(l) 6= ±1, then (G, σ) contains a spiral bouquet as a proper link minor, a contradiction to the minimality
of (G, σ). Thus each l ∈ LG satisfies σ(l) = ±1. Since there is an l ∈ LG and since (G\l, σ) still generates
Zn, minimality implies that (G\l, σ) is 2-branch-point spherical. Now consider a 2-branch-point spherical
embedding of (G\l, σ) where C1 and C2 are the facial-boundary cycles around the two branch points and u is
the endpoint of l. Since (G, σ) is not 2-branch-point spherical, it cannot be that u is a vertex of C1 ∪C2. In
Case 3.1, say that C1 and C2 are vertex disjoint, in Case 3.2 say that C1 and C2 intersect in a single vertex,
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and in Case 3.3 say that C1 and C2 intersect in several vertices and/or paths.

Case 3.1 Either there are two paths, say γ′1 and γ′2, where γ′i goes from u to Ci and γ′i does not intersect Cj
for i 6= j, or such paths do not exist.

In the first case, there are three internally disjoint paths γ1, γ2, γ ⊆ (γ′1 ∪ γ′2) and vertex x ∈ (γ′1 ∪ γ′2)
such that γ is from u to x (γ of length zero is possible), γ1 is from x to C1 and γ2 is from x to C2. Since G
is 2-connected, G\x is still connected and so there is a path γ′3 in G\x connecting C1 and C2. Contract C1

and C2 down to loops. The path γ′3 shares an endpoint with each γi, and furthermore, there is a subpath
γ3 ⊂ γ′3 that is internally disjoint from γ1 and γ2 and such that one endpoint of γ3 is in γ1\γ2 and the other
endpoint is in γ2\γ1 (and γ3 avoids x, of course). Now starting from u, let x̂ be the first vertex of γ that is
in γ1 ∪ γ2 ∪ γ3. Necessarily either x̂ = x or x̂ is in the interior of γ3. In either case, (G, σ) contains either
∆3` or ∆̂3` as a link minor. So by minimality, (G, σ) is either ∆3` or ∆̂3`.

In the latter case (where γ′1 and γ′2 do not exist), without loss of generality, we may suppose that every
path from u to C2 must first intersect C1. Let Pu be the union of all minimal paths from u to C1; the
subgraph C1 ∪ Pu is therefore vertex disjoint from C2. The induced embedding of C1 ∪ Pu has a face in
which C2 is embedded. Since we cannot have a path from C2 to Pu that does not first intersect C1, this
face contains on its boundary a unique maximal proper subpath γ of C1 whose two endpoints, u1 and u2,
separate u from C2. Now let Bu be the {u1, u2}-bridge of G that contains u in its interior. We can detach
Bu from the embedding of G\l and reattach it inside the face bounded by C1. Either there is a reembedding
of Bu such that u, u1, u2 are all on the same face or there is no such reembedding. In the former case, this
common face is the face with the branch point in it and so we can add in the loop l to this embedding, a
contradiction. In the latter case, attach a new vertex x to Bu that is adjacent to u, u1, u2, so that Bu ∪ x is
not planar while Bu is planar. Thus there is a K5- or K3,3-subdivision, call it H, in Bu ∪ x that uses x. Let
γ be a u1u2-subpath of C1 that is internally disjoint from Bu and such that Bu ∪ γ contains a nonzero cycle.

If H is a subdivision of K5, then because K5 has no vertices of degree 3, x appears in the middle of
a branch of H and H contains only two edges incident to x. If H contains the xu1- and xu2-edges, then
Bu ∪C1 is nonplanar, a contradiction. If (without loss of generality) H contains the xu1- and xu-edges, then
take l and a path γ′ in G from u1 to C2 to obtain K2`

5 as a proper link minor of (G, σ), a contradiction to
the minimality of (G, σ).

If H is a subdivision of K3,3, then either x is in the interior of a branch of H or is a branch vertex of H.
The former case is similar to the previous paragraph. If x is a branch vertex of H, then Bu ∪ γ ∪ l contains
V̂ ` as a proper link minor, a contradiction to the minimality of (G, σ).

Case 3.2 Write v = C1 ∩C2. Either there are two paths, say γ′1 and γ′2, where γ′i goes from u to Ci\v and γ′i
does not intersect Cj for i 6= j, or such paths do not exist. If they do exist, then using reasoning nearly the

same as in Case 3.1 we get that (G, σ) ∼= V̂ `. If the two paths do not exist, then (without loss of generality)
every path from u to C2 must first intersect C1 and we finish as in Case 3.1.

Case 3.3 Since C1 and C2 intersect, we have a configuration as in Figure 3.14 excluding the vertex x. As in
the second part of Case 3.1, we can either reembed the {u1, u2}-bridge Bu of G containing u so that l can
be added to the embedding or attach new vertex x so that Bu ∪ x is nonplanar and then finish as before.

Figure 3.14.
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Case 4 Since G is 2-connected and loopless, Theorem 2.10 implies that (up to automorphism of Zn)
σ∗(C) ∈ {0,−1, 1} for all cycles C in G. Say that G has a 2-separation at vertices x1 and x2. Let
B1, . . . , Bm, E1, . . . , Ek be the {x1, x2}-bridges of G where each Bi contains more vertices that just x1 and
x2 and each Ei is a single edge on {x1, x2}. Note that the minimality and looplessness of (G, σ) implies that
k ≤ 2 and since G is not 3-connected, m ≥ 2.
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First, it cannot be that some (Bi, σ) is balanced. Suppose for the sake of contradiction, and without
loss of generality, that (B1, σ) is balanced. Then there is a ∈ Zn such that every x1x2-path γ in B1 has
total voltage a, and (G, σ) has a link minor (G2, σ2) obtained from (G, σ) by replacing B1 with a single
x1x2-link e having voltage a. Minimality now implies that (G2, σ2) is 2-branch-point spherical. If B1 has a
planar embedding with x1 and x2 on the same face, then in an embedding of (G2, σ2) we can replace e with
B1 to obtain a 2-branch-point-spherical embedding of (G, σ), a contradiction. So suppose that B1 does not
have a planar embedding with x1 and x2 on the same face. Since (G, σ) is unbalanced, it has a proper link
minor (B1 ∪ {e′, e′′}, σ) where σ(e′) = 1 and σ(e′′) = 0. Without loss of generality, we may now assume that
(B1∪e′, σ) is unbalanced. Furthermore, we have that B1∪e′ is 2-connected and nonplanar. Thus (B1∪e′, σ)
contains a link minor H with e′ ∈ H and H ∼= K5, K3,3, or K3,3 ∪ e′ (see [6]). Thus (H,σ)/e′ is a proper link

minor of (G, σ) and is one of K̂5/ê, (K3,3 ∪ ê)/ê, or K̂3,3/ê, a contradiction to the minimality of (G, σ).
Second, it cannot be that both x1 and x2 are balancing vertices of some (Bi, σ). If this were the case,

then there would be a 2-separation (A,B) of Bi at x1 and x2 (see [12]). Since Bi has no x1x2-links, this
2-separation would be a vertical 2-separation of Bi, a contradiction to the fact that Bi is an {x1, x2}-bridge.
Since one of x1 and x2 is not a balancing vertex of Bi (say x1 is not a balancing vertex) then there is an
nonzero cycle C in (Bi\x1, σ). Because (G, σ) is 2-connected, there are internally disjoint paths connecting
C to x1 and x2 and so (Bi, σ) contains the link minor shown in Figure 3.15 rooted at {x′, x′′} = {x1, x2}.

Figure 3.15.

x'

x''

If (G, σ) contains at least three Bi’s, then (G, σ) contains either (K3,3 ∪ ê)/ê as a link minor or V̂ ` as a
proper link minor. Minimality now implies that (G, σ) ∼= (K3,3 ∪ ê)/ê.

Thus (G, σ) contains exactly two Bi’s which are both unbalanced. Now (G,ψ) has 2-split (G1, ψ1) and
(G2, ψ2) which are both proper link minors of (G,ψ). Thus we get the corresponding proper link minors
(G1, σ1) and (G2, σ2) of (G, σ) where Gi = Bi ∪ {e1, e2}, σi(e1) = 0, σi(e2) = 1, and σi|Bi = σ|Bi . Since
each (Gi, σi) generates Zn, each (Gi, σi) is 2-branch-point spherical. A 2-branch-point spherical embedding
of (Gi, σi) would be as shown on either the left or right of Figure 3.16; however, the embedding must be
as shown on the right because the embedding on the left shows a vertical 2-separation of Bi at {x1, x2}, a
contradiction to the fact that Bi is a {x1, x2}-bridge. We can now combine the embeddings of (G1, σ1) and
(G2, σ2) to obtain an embedding of (G, σ), a contradiction.

Figure 3.16.
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Case 5 Say that v is a balancing vertex of (G,ψ) and that (G, σ) is 3-connected. Thus v must also be a
balancing vertex of (G, σ). Choose a spanning tree T of G where v is a leaf of T . If we normalize σ on T ,
then any oriented edge e without v as one of its endpoints has σ(e) = 0. Because (G, σ) is 3-connected and
generates Zn, Theorem 2.10 implies that, up to automorphism of Zn, σ(e) ∈ {0, 1} for each oriented edge e
with v as its tail endpoint. In Case 5.1 say that G is nonplanar and in Case 5.2 say that G is planar.

Case 5.1 Hall’s Theorem [4] states that a 3-connected and simple nonplanar graph is either isomorphic to
K5 or contains a K3,3-subdivision. Now G is 3-connected and simple up to removal of parallel edges. If the
underlying simple graph of G is K5, then, up to equivalence and deletion of parallel edges, (G, σ) contains
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(K5, σ) with either one nonzero edge incident to v or two nonzero edges incident to v. In the case of one
nonzero edge, (K5, σ) contains K̂5/ê as a proper link minor and in the case of two nonzero edges, (K5, σ)
contains K̂3,3/ê as a proper link minor; each possibility contradicts the minimality of (G, σ). If G contains a
K3,3-subdivision H, then either (H,σ) has a balancing vertex or is already balanced. If there is a balancing

vertex, then (H,σ) has (up to switching) one nonzero edge. In this case, (H,σ) contains K̂3,3/ê as a proper
link minor, a contradiction to the minimality of (G, σ). If (H,σ) is balanced, then append a path γ to H
that runs through v so that (H ∪ γ, σ) is unbalanced. Thus (H ∪ γ, σ) contains either K̂3,3/ê or (K3,3 ∪ ê)/ê
as a proper link minor, a contradiction to the minimality of (G, σ).

Case 5.2 Since G is 3-connected and loopless, there is a unique embedding of G in the plane up to exchanging
places of edges within pairs of parallel edges. Furthermore, uniqueness implies that parallel edges in G must
be embedded so as to bound faces of length two, and 3-connectivity ensures that each face of the embedding
of G is bounded by a cycle in G. Assume that the parallel edges are embedded in such a way as to minimize
the number of nonzero facial boundary cycles. Since the sum of the facial boundary cycles in Z1(G) is zero
and since each facial boundary cycle has total voltage in {0, 1,−1}, the number of nonzero facial boundary
cycles must be even. Since (G, σ) is not 2-branch-point spherical, this number of nonzero facial boundary
cycles is at least 4.

The 3-connectivity of G implies that the union of the facial boundary cycles that contain the balancing
vertex v form a wheel-like subgraph Gv consisting of a rim cycle R not containing v along with spoke edges
connecting v to R. Let e1, . . . , en be the spoke edges of Gv in cyclic order around v and let vi be the endpoint
of ei on R. Without loss of generality we may assume that σ(ei) ∈ {0, 1} where ei is oriented away from v. If
there are three or more parallel pairs of edges among e1, . . . , en, then (Gv, σ) contains K̂5/ê as a link minor
and so the minimality of (G, σ) implies that (G, σ) is K̂5/ê. So now we may assume that there are at most
two parallel pairs of edges among e1, . . . , en. We will explain the proof for two parallel pairs of edges; the
proof for one or zero parallel pairs uses detail similar (and easier) to Case 5.2.1 below.

If there are two parallel pairs of edges, say a1, a2 and b1, b2, then we may assume that neither of the two
parallel pairs is adjacent to two nonzero faces; otherwise, we could exchange the places of the parallel pair of
edges to make them adjacent to two zero faces. This would reduce the number of zero faces in an embedding
of (Gv, σ), a contradiction to the fact that we chose an embedding with the minimum possible number of
nonzero faces. Now, either a1, a2 and b1, b2 do not appear in consecutive order around v or they do. Let
these be Cases 5.2.1 and 5.2.2, respectively.

Case 5.2.1 Say without loss of generality that a1 is on a zero face, so that the induced embedding of
(Gv\a1, σ) has the same number of nonzero faces as the embedding of (Gv, σ); furthermore, since a1, a2
and b1, b2 are not ordered consecutively around v, we cannot reduce this number of nonzero faces in the
embedding of (Gv\a1, σ) by exchanging b1 and b2. Similarly and without loss of generality the induced
embedding of (Gv\{a1, b1}, σ) has the same number of nonzero faces as the embedding of (Gv, σ) (which is
at least 4). Additionally (Gv\{a1, b1}, σ) is a subdivision of a wheel and so its planar embedding is unique.
Since the number of nonzero faces in this embedding is at least 4, there are four spokes ei1 , ei2 , ei3 , ei4 in
cyclic order around v whose σ-values alternate 0, 1, 0, 1. Thus (Gv, σ) contains K̂3,3/ê as a proper link minor,
a contradiction to minimality.

Case 5.2.2 If there is a nonzero face, call it F , of the embedding of (Gv, σ) that is adjacent to neither a1, a2
nor b1, b2, then we can contract the edges R′ ⊂ R along F to get a proper link minor (Gv/R

′, σ) of (Gv, σ) with
three parallel pairs of edges among e1, . . . , en. As before at the beginning of Case 5.2, (Gv/R

′, σ) contains
K̂5/ê as a link minor, a contradiction to the minimality of (G, σ). So now assume that there is no such
nonzero face in the embedding of (Gv, σ). Write D1, F,D2, F1, . . . , Fn for the faces of (Gv, σ) in cyclic order
around v where D1 and D2 are of length two, F and each Fi are of length at least three, and F2, . . . , Fn−1 are
all zero faces. By switching places of a1 and a2 (if necessary) we may assume that F is a zero face without
affecting the total number of zero faces of the embedding. So now F1 6= Fn and F1 and Fn are both nonzero
faces. Now switching the places of a1 and a2 and also of b1 and b2 yields an embedding of (G, σ) with only
two nonzero faces, which implies that (G, σ) is 2-branch-point spherical, a contradiction.

Case 6 The fact that (G,ψ) is planar with exactly two nonzero facial boundary cycles implies that (G, σ) is
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2-branch-point spherical, a contradiction.

Case 7 That (G,ψ) ∼= T6 implies that (G, σ) contains K̂5/ê as a proper link minor, a contradiction to the
minimality of (G, σ).

Case 8 Let (G1, ψ1) be the unbalanced part of the 3-split and (G2, ψ2) the balanced part of the 3-split. Let
v be the trivalent vertex of summation in G1 and G2 and let {x, y, z} be the three neighbors of v. Since
G2\v has at least four edges we get that V (G2)\{x, y, z} 6= ∅ because otherwise we would have two parallel
edges with the same voltage in (G,ψ), contradicting minimality. Furthermore, since (G,ψ) does not have a
balancing vertex and (G,ψ) contains neither of the signed graphs of Figure 2.8 as a link minor, it must be
that V (G1)\{x, y, z} 6= ∅, as well. Now the 3-connectivity of G implies that (G1, ψ1) is a proper link minor
of (G,ψ). By the minimality of (G, σ), the corresponding link minor (G1, σ1) is 2-branch-point spherical. In
Case 8.1, say that G2 is planar and in Case 8.2, say that G2 is not planar.

Case 8.1 A planar embedding of G2 and a 2-branch-point spherical embedding of (G1, σ1) can be summed
along their common triads to obtain a 2-branch-point-spherical embedding of (G, σ), a contradiction.

Case 8.2 We will find one of the following as a link minor of (G, σ): (G2, σ
′
2) which is unbalanced with

balancing vertex v, or (G2 ∪ e, σ′2) where e is a link on {x, y, z} and all nonzero cycles of (G2 ∪ e, σ′2) contain
e. Let Ai be the edges of Gi\v. Take a vertex v′ in V (G1)\{x, y, z} 6= ∅ and three internally disjoint paths
γx, γy, γz in G1\v linking v′ to {x, y, z}. Now G′′2 = (G:A2) ∪ γx ∪ γy ∪ γz is a subdivision of G2 and either
(G′′2, σ) is unbalanced or not. If it is unbalanced, then because (G:A2, σ) is balanced, v′ is a balancing vertex
of (G′′2, σ) and we have our desired minor. If (G′′2, σ) is balanced, then extend γx ∪ γy ∪ γz to a spanning
tree T of G:A1. Because (G:A1, σ) is unbalanced, there is some e ∈ A1 such that the single cycle T ∪ e is
unbalanced. That G is 3-connected now allows us to get one of our desired link minors of (G, σ).

Now G2 is 3-connected, possibly after smoothing degree-2 vertices from {x, y, z}. So, using [8, 10.3.9]
and the fact that G2 is nonplanar, there is a K3,3 subdivision H in G2 with v as a branch vertex of H. Now

we have either K̂3,3/ê or (K3,3 ∪ ê)/ê as a proper link minor of (G, σ), a contradiction to the minimality of
(G, σ). ♣

4 Future Directions

There are several significant difficulties for trying to extend the techniques in this paper to other groups that
act faithfully on the sphere, or to non-freely Γ-symmetric graphs.

First, the investigation of the minimal free and faithful obstructions for Z2k+1-sphericity begins with the
correspondence of these obstructions with the link-minor-minimal members of

⊗
n given by Proposition 3.1.

Using any other group Γ that acts faithfully on the sphere introduces other quotient spaces in addition to the
2-branch-point sphere. For example, pseudofree cellular actions of Z2k for k ≥ 2 on the sphere have quotient
space that is either the 2-branch-point sphere or the single-branch-point projective plane.

Second, in Section 3.2 our proof relies heavily on the tightly defined structure of Gerards signed graphs.
We reduce our proof to the class of Gerards signed graphs by applying Theorem 2.10. If Γ acts pseudofreely
on the sphere but |Γ| is even, then we cannot apply Theorem 2.10.

Third, investigating non-freely symmetric graphs is complicated by the fact that their quotients need
not be graphs. Even when their quotients are graphs, derived graphs of voltage graphs do not suffice to
reconstruct the original symmetric graph from the quotient.

All this being said, we imagine that finding the minimal free and faithful obstructions for Z2-sphericity
should not be too hard.
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