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Abstract. Control over the deposition of quantum dots (QDs) on nanostructured semiconductors 

is very important for the photovoltaic performance of QD sensitized solar cells. The best control 

is typically achieved using bifunctional molecular linkers, such as mercaptopropionic acid 

(MPA), to attach the QDs to metal oxides in a specific manner; however some materials, such as 

ZnO, are not compatible with these molecules due to their pH sensitivity. We have developed 
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new linkers, mercaptophosphonic acids of different length, which allow for efficient 

functionalization of ZnO nanowires and also mesoporous TiO2 without damaging their surface. 

Detailed XPS and contact angle studies of the mechanism of self-assembly of these acids show 

that their strong chelation of the oxide surface prevents from protonic attack and etching. Using 

these linkers, we show that colloidal ternary quantum dots, CuInS2, can be conformally and 

homogeneously deposited on the functionalized metal oxides. Photophysical studies by means of 

time-resolved photoluminescence spectroscopy confirm efficient electron transfer from the QDs 

to the metal oxides with the rate and efficiency scaling with respect to the linker length and 

nature. The efficiency of the QD sensitized solar cells fabricated with such assemblies also 

strongly depends on the linkers used and follows the trends observed for the charge transfer. 

Introduction 

Quantum dots (QDs) have a series of appealing properties such as high absorption coefficients, 

size dependence and easy tunability of their optical and electronic properties due to quantum 

confinement, which make them very attractive materials for applications in different 

technological areas, including biological labelling, light-emitting diodes and photovoltaic 

devices. Furthermore, semiconductor QDs offer the possibility of multiple exciton generation,1 

which could allow them to overcome the Shockley−Queisser limit in solar cells.2 QD based solar 

cells are widely considered as a photovoltaic technology providing a high potential for becoming 

a viable alternative to silicon and inorganic thin film based cells, and were recently called “the 

next big thing in photovoltaics”.3  

QD sensitized solar cells (QDSSCs) inherit the configuration of dye sensitized cells and their 

efficiencies are rapidly progressing with a recent record of 8.21%.4 It is of high importance for 

photovoltaic applications to have controlled surface properties and size distribution of the QDs to 
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avoid charge recombination and trapping. Colloidal QDs allow for tailored surface engineering 

and narrow size distribution, in addition they have the advantage of reproducible synthesis, 

which can be separated from the solar cell fabrication process. Moreover, specific organic 

ligands or inorganic external shells can be used to passivate their surface in order to avoid charge 

carrier trapping. Thus, the preparation of QDs can be improved independently before supplying 

QD inks with optimal properties ready for deposition in the cell. Currently, most of the colloidal 

QDs used for solar cells contain toxic metals such as Pb and Cd, which limit the upscaling and 

further industrial uptake. Development of “eco-friendly” QDs without heavy elements is thus of 

high importance. Ternary and quaternary nanocrystals combine the classical advantages of QDs 

with their non-toxicity and possibility to fine tune their properties in a larger range due to the 

wider choice of composition.5 Recently, several important works showing a successful use of 

non-toxic ternary colloidal QDs in QDSSCs have appeared;6–14 typically the QDs are deposited 

on TiO2 with only one example of sensitization of ZnO nanowires.15 

There are several ways to deposit colloidal QDs onto nanostructured metal oxides (NMOs): 

simple physisorption, electrophoresis, or linker-assisted deposition (self-assembly). The last of 

these possibilities is typically considered as resulting in the best control over the QD coverage, 

moreover it allows to fine tune the distance between the QDs and a NMO in order to maximise 

charge transfer and minimise recombination processes.16–18 The nature of the linker molecule 

plays an important role in the charge transfer process: its anchoring group can have an effect on 

the charge injection;19–22 its conjugation can facilitate the charge transfer by improving electronic 

coupling through a conjugated bridge;23,24 finally, it was shown that the length of the linkers 

directly influences the charge transfer dynamics and efficiency.22,24–27 It is generally expected 

that the shortest linker binding QDs to NMOs results in better electron injection as the distance 
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necessary for electron tunnelling is smaller. However, the linker length dependence is more 

complicated as although the charge transfer becomes more efficient for short linkers, the 

probability of charge recombination also increases.28 Hence there is trade-off in which the 

positive effect of short linkers can be counterbalanced by undesired recombination processes. In 

addition, colloidal QDs are typically surrounded by a layer of passivating ligands containing long 

alkyl chains, rendering their binding to NMOs via short linkers less efficient. 

Linker-assisted deposition using bifunctional molecules can be realized either (i) by 

exchanging the ligands on the QDs first with these molecules followed by the attachment of the 

QDs to the untreated electrode (ex situ approach); or (ii) by functionalising the NMO first 

followed by the assembly of the QDs (in situ approach).16 The ex situ method generally yields 

high coverage of the electrodes (reported up to 34%),29,30 however during the ligand exchange 

with smaller bifunctional molecules the surface of the QDs can be severely perturbed with the 

formation of less passivated spots and occurrence of the defect states. The in situ method is 

simpler and even though it generally results in lower QD coverage (around 20%),31–33 it has the 

advantage of keeping the pristine passivating ligand shell of the QDs intact and thus naturally 

better protects the QD surface against the formation of defects and traps.34 In both the in situ and 

ex situ deposition methods, the nature of the NMO has to be taken into account. ZnO, for 

example, is easily etched by carboxylic acid type linkers such as widely used 2-

mercaptopropionic acid (MPA).35–39 One of the potential alternatives for the sensitisation of zinc 

oxide with QDs is the use of mercaptophosphonic acids. They are known to bind strongly to the 

surface of metal oxides due to bi- or tridentate coordination,40–43 and thus the condensation of the 

phosphonic acid moiety with the ZnO surface is more stable than that of the carboxylic acid.44 

Finally, it has been shown that the charge injection from excited organic dyes to semiconductor 
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electrodes can be faster when they are adsorbed via phosphonic acid anchors than via carboxylic 

acid anchors45,46 even though depending on the dye structure this order can be reversed.47–49 To 

the best of our knowledge, no examples of using mercaptophosphonic acids for the attachment of 

QDs on NMOs were reported, although one work describes the use of a mercaptophosphinic acid 

(R2-PO2H) for the attachment of PbS to TiO2 for QD mesoscopic cells.50 Having the pka and 

structure similar to phosphonic acids, phosphinic acids can also be applicable as linkers for 

QDSSCs. At the same time, owing to the bidentate binding mode to the NMOs because of the 

presence of two substituents, their adsorption constants should be lower compared to phosphonic 

acids (having bi- or tridentate coordination), making these latter more promising candidates for 

the attachment of QDs to sensitive NMOs, such as ZnO. 

The aim of this work is to develop new linkers for the in situ deposition of QDs onto TiO2 and 

ZnO nanostructured electrodes in view of their application in solar cells. We show that the use of 

mercaptophosphonic acids, so far unexplored as linkers in QD sensitized solar cells, leads to 

efficient coverage of the surface of the NMOs enabling the attachment of QDs with various 

surface ligands. Moreover, due to the rapid bi- or tridentate binding of the phosphonic acids to 

the surface of the NMO, it is compatible even with pH-sensitive ZnO nanowire electrodes. We 

have investigated the deposition of the linkers on various substrates by measuring contact angles 

and by carrying out a detailed X-ray photoelectron spectroscopy (XPS) analysis to confirm 

efficient functionalization and to elucidate the binding mode. Our study shows that the linker 

nature and length strongly influence the rate and efficiency of the charge transfer between the 

QDs and the semiconductor electrodes. Finally, QD sensitized solar cells based on these 

assemblies have been fabricated and characterized. The photovoltaic efficiency of the cells 
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strongly depends on the used linker molecule and follows the trends identified by the 

photophysical studies. 

 

Results and discussion 

Surface functionalization of ZnO and TiO2. Mesoporous TiO2 and ZnO nanowires were first 

functionalized with MPA, which has been reported by various groups for the specific deposition 

of QDs.17,20,51 Under standard conditions without pH control, the zinc oxide surface was 

seriously corroded at the very initial functionalization stages followed by the complete 

dissolution of the nanowires at prolonged times. Similar behaviour was observed before in the 

case of exposure of ZnO nanostructures to acidic conditions during dye loading and was 

explained by the adsorption of protons present in solution followed by the dissolution of the ZnO 

material.36,37,39,52 It was estimated that the dissolution of ZnO colloids starts when the pH is 

below 7.4.53 In the case of nanowires, the dissolution is face-sensitive and more rapid than in 

case of bulk flat films.37 

In order to functionalise the surface of TiO2 and ZnO nanostructures without etching them two 

phosphonic acids with variable spacer length were synthesized (Figure 1): 2-

mercaptoethylphosphonic acid (MEPA) and 11-mercaptoundecylphosphonic acid (MUPA). 

Similar acids have previously been studied and characterized as self-assembled monolayers 

(SAMs) on gold.54–58 For comparison, 2- mercaptophosphonic acid (MPA) was also studied. 

 

Figure 1. Molecular structure of linkers used in this study. 
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After the functionalization of the ZnO nanowires in the solutions of phosphonic acids, no signs 

of surface damage or etching were observed. Alkylphosphonic acids are stronger compared to 

alkylcarboxylic acids, with reported values of the first pKa of MUPA SAMs on gold of 2-4.559,60 

while that of MPA is 5.5-6.5.61 So one could expect even stronger ZnO etching by phosphonic 

acids, which was indeed observed in case of prolonged exposure of a layer of ZnO to different 

phosphonic acids.62,63 However, in case of the acids studied in this work other factors likely play 

a determining role. Our interpretation of the observed unexpected stability of ZnO nanostructures 

in the presence of bifunctional phosphonic acids is as follows: carboxylic acids bind to ZnO in a 

mono- or sometimes bidentate mode allowing for reversible adsorption-desorption and exposing 

the substrate surface to the protons of the low pH solution, which gradually dissolve ZnO. In the 

case of phosphonic acids, the binding is faster and stronger as bi- and tri-dentate surface 

coordination modes are preferentially realised,40,41,64 limiting the desorption of bound 

phosphonates, which naturally protect the ZnO surface from protonic attack. A similar 

phenomenon of protection of flat ZnO surfaces against acidic etching by phosphonic acid SAMs’ 

has been previously observed by Perkins et al.41 

Mercaptophosphonic acids are in principle capable of binding to the ZnO by either the 

phosphonate or the thiol group. In the latter case the consequent binding to the QDs will not be 

efficient so the exact binding mode of the acids needs to be determined. Static contact angle 

measurements were performed on flat sputtered ZnO surfaces to avoid undesired effects on the 

angle from surface patterning. Compared to clean ZnO surface (θ = 32°), measured contact 

angles for the functionalized substrates increase significantly (MEPA, θ = 81°; MUPA, 90°) 

indicating the presence of more hydrophobic surfaces, which is in line with previous studies of 

SAMs having thiol function on top.65–67 For comparison, freshly cleaned Au substrates were 
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exposed to the solutions of phosphonic acids and in this case the contact angles measured were 

much lower than those on ZnO with 21° and 50° for Au/MEPA and Au/MUPA, respectively, 

confirming the presence of hydrophilic surfaces as previously observed in case of SAMs with 

phosphonic acids pointing outwards.60 Taken together, these results clearly indicate the 

preferential phosphonate binding of the new linkers to ZnO, which goes in line with previous 

comparative studies.41 This binding mode is also expected from the hard-soft acid-base (HSAB) 

theory of Pearson with a hard acid Zn2+ from ZnO reacting predominantly with phosphonates 

being hard bases in contrast to soft thiol groups (Figure 2). 

 

Figure 2. Scheme of MEPA binding to different surfaces. Thiol binding to the Au surface may 

lead to dimerization of the linker molecule via formation of hydrogen bonds. 

To further study the functionalized surfaces of ZnO, XPS studies were performed. On the 

MEPA survey spectrum there are signatures of all the expected elements including P and S from 

the phosphonic acid (see ESI, Fig. S1). At the S 2p high resolution spectrum only one doublet is 

observed centered at 163.1 eV (163.4 eV for MUPA), which is generally attributed to SH (thiol), 

while bound S2- (thiolate) is typically found at around 162 eV (Figure 3). 
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Figure 3. High resolution XPS spectrum of S 2p in ZnO/MEPA. 

The fact that 100% of sulfur in ZnO/MEPA layers is in thiol form is important for the 

subsequent assembly of the QDs: under certain conditions, thiol compounds are capable of 

forming disulfide bridges rendering the attachment of QDs inefficient, while in our case the 

SAMs are disulfide-free. Moreover, the observed XPS signal serves as an additional 

corroboration of the SAMs bound by phosphonate. Another important observation is the absence 

of signal of undesired oxidized sulfur species at 168 eV, which were previously observed in 

some mercaptophosphonic SAMs.67 The elemental ratio of S and P for both assembled 

phosphonic acid monolayers on ZnO is close to 1.4, which is higher than unity expected from the 

mere stoichiometry. It can be explained by partial signal attenuation because of the deeper 

phosphonate groups partially masked by exterior thiols. 

In the case of layers of linker molecules assembled on gold, two signals of S 2p3/2 sulfur are 

observed, at 162.2 and 163.4 eV (161.7 and 163.3 eV for MUPA) corresponding to 65% of 

bound (thiolate) and 35% unbound (thiol) forms, respectively (Fig. S2, ESI). Such behavior can 

be explained by a different binding mode of mercaptophosphonic acids assembled on Au with 

 

170 168 166 164 162 160 158

S 2p
1/2

C
P

S
, 

a
.u

.

Binding energy, eV

S 2p
3/2

Page 9 of 35 Journal of Materials Chemistry A



 10

subsequent possibility of intermolecular hydrogen bonding between the exterior phosphonic 

groups (Fig. 2).54 This corroborates the contact angle data, indicating that on ZnO surfaces 

phosphonate surface binding is preferential while on Au the binding occurs via sulfur.  

Assembly of QDs on mercaptophosphonic acid functionalised metal oxides. Following the 

successful formation of MEPA and MUPA linker layers on NMOs, ternary semiconductor 

quantum dots were deposited by self-assembly from solution.  Colloidal CuInS2 QDs of 3-4 nm 

size covered with native dodecanethiol ligands were synthesized according to standard 

procedures.68 The colour of both ZnO and TiO2 electrodes changes to dark brown after overnight 

immersion into a chloroform solution of CuInS2 nanocrystals and abundant rinsing with an 

appropriate solvent, which is also reflected by the absorption spectrum of ZnO after the QD 

deposition (Figure 4). The difference of the spectra before and after assembly corresponds to the 

contribution of the CuInS2 QDs to the absorption spectrum (see Fig. S7). We also note a weak 

photoluminescence signal centered at 820 nm corresponding to the emission of the CuInS2 

nanocrystals. 

Page 10 of 35Journal of Materials Chemistry A



 11

 

Figure 4. Absorption spectra of the substrate containing ZnO nanowires before (black) and after 

CuInS2 QDs deposition using MEPA (green) and MUPA (blue). Residual photoluminescence 

spectrum of QDs deposited on ZnO (blue), excitation wavelength: 470 nm. 

After the deposition of QDs on ZnO nanowires, a signature of CuInS2 QDs is observed in the 

XPS survey spectrum (Figure 5): well defined peaks of Cu (932 eV), In (445 eV) and S (163 eV) 

appear in addition to the ZnO/MEPA pattern. The sulfur high resolution XPS signal has become 

much larger and upon deconvolution two pairs of doublets can be clearly identified showing S 

2p3/2 maxima at 163.1 eV and 161.6 eV. The first one probably corresponds to the superposition 

of two types of thiols: from the mercaptophosphonic acid and from the dodecanethiol QD 

ligands. The second one at lower energy is usually found in metal sulfides and is thus ascribed to 

the sulfur from core CuInS2 QDs. Once again, no signs of sulfur oxidation are observed, which 

indicates that the linker layers assembled on ZnO as well as CuInS2 nanocrystals are stable in the 
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ambient air. Very similar spectra were obtained for the QD sensitized mesoporous TiO2 

substrates. 

 

Figure 5. XPS survey spectrum (left) and S 2p region high resolution spectrum (right) of 

ZnO/MEPA/QD assembly 

The morphology of the assemblies of CuInS2 QDs on ZnO nanowires was further studied 

using scanning electron microscopy. The homogeneous and conformal deposition of the QDs 

onto the full length of mercaptophosphonic acid functionalized ZnO nanowires observed on the 

images is an important indicator of good surface coverage essential for the fabrication of the 

efficient solar cells (Figure 6A). Chemical mapping based on STEM high angle annular dark 

field (HAADF) coupled with energy dispersive X-ray spectroscopy (EDX) allows imaging a 

single ZnO nanowire with the deposited QDs (Fig. 6B, Fig. S10, ESI). The image combining the 

cartography of Zn (blue, for ZnO nanowires) and Cu (green, for CuInS2) corroborates the SEM 

morphology and shows uniform coverage of QDs on the scale of a single nanowire. 
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Figure 6. SEM (A and C) and HAADF EDX chemical characterization (B and D) images of 

ZnO/QDs assemblies with MEPA linker (A, B) or directly adsorbed (C, D). Red and yellow 

domains indicate some of the aggregated QDs and uncoated ZnO, respectively. Blue and green 

colours represent Zn (nanowires) and Cu (QD) rich zones, respectively. 

In the case of direct linkerless adsorption, which is often used to deposit QDs onto the NMOs, 

the coverage is much less homogeneous: zones on the ZnO surface without contact with the QDs 

(yellow domains on Figure 6C) are separated by the QD aggregates with sizes largely exceeding 

a monolayer thickness (red domains). On the nanometer scale, HAADF EDX chemical mapping 

indicates that in contrast to the MEPA linked QDs, the coating of directly adsorbed CuInS2 is not 

uniform on individual ZnO nanowires (Fig. 6D). A similar phenomenon has been previously 

Page 13 of 35 Journal of Materials Chemistry A



 14

observed in the case of mesoporous TiO2 electrodes sensitized by directly adsorbed CdSe QDs, 

which aggregated in the pores and on top of the TiO2 layer.32,69 

Preliminary ex situ ligand exchange of colloidal CuInS2 QDs with mercaptophosphonic acids 

has been attempted to explore this alternative route of their deposition on the NMOs. However, 

adding the solution of QDs in chloroform to the solution of MEPA in formamide followed by 

stirring resulted in the precipitation of the QDs. We attribute the observed aggregation of the 

QDs to interparticle hydrogen bonding between of the phosphonic acid groups at outer 

extremities of the ligand shell. This interpretation is supported by our study of 

mercaptophosphonic acids binding to Au (vide supra) and by other previous results of 

intermolecular binding of similar compounds.54,55,59 For this reason, all further work was 

performed using TiO2 and ZnO pre-functionalized by mercaptophosphonic acids rather than 

using the ex situ ligand exchange approach. 

Charge transfer dynamics. The dynamics of charge transfer from photoexcited nanocrystals 

to the NMOs has been investigated by means of time-resolved photoluminescence (PL) studies. 

In order to investigate the influence of linkers on the efficiency of charge transfer, several 

systems were assembled and studied: we used mesoporous TiO2 and ZnO nanowires as 

substrates with CuInS2 QDs deposited using first linkerless attachment followed by linker 

assisted assembly using MPA, MEPA, or MUPA. The PL quantum yield (QY) was measured for 

all the systems studied. The relatively high QY of the QD film on fused silica substrate (SiO2) 

(6.7%) drops significantly to 0.1-0.8% for the systems deposited on TiO2 and ZnO substrate. On 

SiO2 substrates the excitons generated in the QDs upon the absorption of light can decay either 

radiatively or non-radiatively on surface or internal defects. In the assemblies with NMOs a third 

exciton de-excitation pathway appears: injection of the excited electron of CuInS2 into the 
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conduction band of the TiO2 or ZnO. This electron transfer pathway competes with radiative 

recombination thus decreasing the overall QY of the QDs. The QY decrease in assemblies can 

therefore serve as an indirect indicator of electron transfer between excited CuInS2 QDs and 

TiO2 or ZnO. At the same time it cannot be utilized directly to quantify its efficiency because of 

other possible recombination pathways appearing upon QD-NMO binding via the linkers. For 

instance, it cannot be excluded that new surface defect states are formed because of the 

perturbation of the initial QD ligand shell by thiol groups of the ligands.  

In order to quantify the charge injection efficiency in the assemblies, transient PL studies were 

performed using time-correlated single photon counting at an excitation wavelength of 470 nm. 

Figure 7 shows time-resolved PL decay curves of QDs without electron-accepting NMOs 

deposited on SiO2 (black dots) and QDs with different linkers (MPA, MEPA and MUPA) 

deposited on TiO2 as a function of time. For comparison, QDs deposited on TiO2 without linker 

are also plotted. As shown by Figure 7, PL quenching strongly depends on the nature and length 

of the linker. In the samples with linkers the most efficient PL quenching is observed for the 

shortest linkers (MPA, MEPA) and the least efficient for the longest linker (MUPA). This decay 

behaviour is consistent with previously reported studies of charge transfer dynamics on linker 

length.22,24–27  
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Figure 7. PL kinetics of  CuInS2 without electron-accepting NMOs i.e. on SiO2  (a),  CuInS2 

with different linkers: MUPA (b), MEPA (c), MPA (d) deposited on TiO2 as function of time. 

For comparison, linkerless CuInS2 deposited on TiO2 (e) is also plotted. 

In the previous literature on time-resolved PL of ternary nanoparticles three exponential fits 

were performed to describe the decay.68,70–74 Here, the three component decay lifetimes found 

are 13, 93 and 486 ns for CuInS2 nanoparticles on SiO2 without electron-accepting NMOs, the 

details about the fitting parameters are given in Table S1, supplementary information. The fastest 

decay lifetime is typically associated with surface-related traps because of their shallow nature 

and the slower decay times are due to intrinsic defect related trap states.68,70,71 Accordingly, the 

observed fast (13 ns) and slower decay components (93 ns, 486 ns) can be attributed to radiative 

recombination processes of QD surface defect states and of defect related donor-acceptor pairs, 

respectively.72–74 Recently, these two longer lifetimes were further assigned to two distinct 

processes: the shorter one to recombination processes of nearest donor-acceptor pairs and the 

longer one to next-to-closest donor-acceptor neighbours.71 These donor and acceptor states in 

ternary CuInS2 nanocrystals are believed to appear due to In, Cu antisite defects or sulfur 

vacancies.74  

The average PL decay lifetime was calculated using the weighted average of the fitted 

exponentials as follows:  

� = ���� + ���� + ������ + �� + �� 																(1) 

where τ1, τ2, τ3 are the lifetimes of the fitted components and α1, α2, α3 the corresponding pre-

exponential factors. The large average lifetime (172 ns) we obtain for our ternary CuInS2 

nanocrystals compared to that of binary nanocrystals confirms that intrinsic defect states are 

mainly responsible for the emission we observe.5 
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The PL decay transients for the assemblies on NMOs can also be fitted with three exponentials 

(Table S1 for detail). The average PL lifetimes measured for the QDs deposited on TiO2 or ZnO 

were found to be generally much shorter than those on SiO2 (Figure 7, Table 1). This faster 

decay is related to the electronic interaction between components of the assemblies with a 

significant part of the excited electrons of QDs being rapidly injected into the conduction band of 

TiO2 or ZnO rather than undergoing radiative decay observed for the samples on SiO2, which is 

in line with the observed decrease of PL QY. If we assume that shortening of the QD lifetime is 

exclusively due to electron transfer from CuInS2 to TiO2 or ZnO, neglecting potential 

perturbation of the ligand shell as well as other possible secondary effects in the assemblies, then 

the rate constant for electron transfer kET can be determined. Previous studies have estimated kET 

using �
� = 1/�(����	��	���/������) − 1/�(������).13,27,51,75,76 However, such an approach 

assumes a monoexponential decay in order to convert lifetime to rate constant and is therefore 

not suitable for our data with its multiexponential decay. As we are trying to determine electron 

transfer from the nanocrystal to the substrate, it is the additional rate of decay of PL due the TiO2 

substrate that is of interest. We determine this by calculating the natural logarithm of the ratio of 

the PL decay of QDs with electron-accepting NMO (i.e. on TiO2) to the PL decay of QDs 

without NMO (on SiO2). In the absence of electron transfer, the resulting graph vs time would be 

flat. Nonlinearity observed in our case indicates presence of an additional decay, which we 

assign to a time-dependent electron transfer process (Figure 8, left). By fitting the data on the 

figure with a three exponential decay followed by differentiation we can determine this electron 

transfer rate according to77  

�
�(�) = − �
�� � � !"#	$%	&'	$(	)*+

"#	$%	&'	$(	,-.//01  (2) 
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The resulting electron transfer rates are strongly time–dependent (Figure 8, right). In order to 

compare them with previous studies, we estimated the average electron transfer rate using  

�
� = �
�2 3 �
�(�)	4���

5     (3) 

where t1 is the time for the  fluorescence to fall to 1/e of its initial value. The calculated values of 

electron transfer rate kET (Table 1) are in the range of 107-108 s-1, which is in good agreement 

with previous studies of similar TiO2/CuInS2 systems.8,13,75 Meanwhile, it is worth mentioning 

that in some works much higher kET of the order of 1011 s-1 are reported.10 However, very 

recently such high values were explained by a trion decay via Auger processes rather than a 

radiative exciton decay.76  

 

 Figure 8. Left panel: ratio of PL kinetics of TiO2/CuInS2 on SiO2/CuInS2, which was used to 

calculate electron transfer rate. Right panel: Electron transfer rates for TiO2/CuInS2 determined 

by differentiating PL ratios. 

Table 1. Electron transfer characteristics and solar cell efficiencies of the QDs assemblies 

studied.  
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Substrate Linker 
PL 
QY, % 

Average 
PL 
lifetime, 
ns 

ET rate, 
kET, 107 
s-1 

ET 
efficiency, 
ηET, % 

Jsc, 
mA/cm² 

Voc, 
V 

FF 
PCE*, 
% 

SiO2 - 6.7 172 - - - - - - 

TiO2 - 0.6 17 8.6 76 1.71 0.16 0.28 0.07 

TiO2 MPA 0.3 15 13.4 79 5.89 0.35 0.36 0.74 

TiO2 MEPA 0.8 43 3.7 60 3.77 0.30 0.48 0.55 

TiO2 MUPA 2.2 74 1.8 47 2.82 0.29 0.58 0.48 

ZnO MEPA 1.7 59 3.1 55 5.78 0.33 0.24 0.46 

ZnO MUPA 1.9 108 0.1 16 0.57 0.19 0.44 0.05 

*After SILAR treatment 

Furthermore by comparing assemblies with different linkers, one can see that the injection rate 

follows the trend MPA > MEPA > MUPA, in accordance with previous studies of other linker-

assisted QD/NMO assemblies typically showing that the injection rate decreases with the 

increasing linker chain length due to the lower probability of the electron transfer through longer 

distances.22,24–26 In our case, both the chain length and the nature of anchoring group of the 

linkers vary. The more than 3 times faster charge transfer through MPA compared to MEPA may 

be explained simply by geometrical considerations: while for the MPA the length is known to be 

5.3 Å,78 it is not directly available for the MEPA, our estimations based on interatomic bond 

lengths show that the carboxylate (C–C–O: 2.8 Å) moiety is smaller than the phosphonate one 

(C–P–O: 3.5 Å), while calculations show that the distance between an adsorbate and TiO2 is 5-

10% shorter with carboxylate anchor compared to phosphonate (4.1 vs. 4.4 Å).45 However, in 

reality the interpretation of the variation of kET with different anchoring groups can be more 
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complex due to the specific interaction of these groups with the TiO2 surface realizing different 

binding modes (mono-, bi- or tridentate) and bond strengths involved. Various studies comparing 

the charge transfer in the case of the organic dyes attached to TiO2 substrates by carboxylic and 

phosphonic anchors come to contradictory conclusions: some  groups report faster injection 

through phosphonates,45,46 while other through carboxylates.47–49,79 Most likely, the relative rates 

depend strongly on the structure of the injecting moiety.80 Meanwhile, it should be noted that all 

these studies have been made on the organic adsorbates conjugated to TiO2 surface, with the 

electron injected directly through the anchoring group. In this case, slower injection through 

phosphonates can be explained by lower electronic coupling  of the dye with the anchor (and 

thus TiO2 surface) because of the tetrahedral sp3 geometry of the phosphorus.49,79 In the case of 

QDs attached to the TiO2, the linker is saturated, electron injection occurs essentially by 

tunnelling and thus conjugation effects should be less applicable. A more systematic theoretical 

study of the mechanism of charge transfer from QDs using linkers with different anchoring 

groups is necessary. 

In contrast to TiO2, charge injection from CuInS2 into the ZnO nanowires is much less studied. 

The only values available for the ZnO/CuInS2:Zn system lie in the range of 107-108 s-1,15 which 

is comparable to our results. Recent detailed photophysical studies by Židek et al. of the 

ZnO/CdSe systems showed an ultrafast charge injection of the order of 1012 s-1,81,82 however care 

should be taken while comparing CuInS2 and CdSe based systems:  first, it is known that 

contrary to the former, binary CdSe QDs exhibit band edge emission with much faster decay 

rates on the order of tens of nanoseconds. Moreover, we have to consider that in the reported 

CdSe based systems electron injection coexists with Auger recombination. Therefore, we can 
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assume that the mechanisms of charge injection in the two cases are quite different, which can 

explain the discrepancy in observed kET. 

The high electron injection rate (8.6 × 107 s-1) observed for CuInS2 deposited via direct 

adsorption onto TiO2 can be explained by the fact that such a linkerless mode provides for the 

shortest distance between the QD and NMO thus avoiding the electron tunnelling through a 

linker chain. Similar observations of higher injection rates were previously made in the case of 

CdSe nanocrystals directly adsorbed on TiO2.
33,69,83 However, as will be shown below, the solar 

cell device efficiency obtained with this linkerless system is very low compared to the systems 

with linkers. 

In order to calculate the electron transfer efficiency ηET, we integrated the entire decay of QDs 

on SiO2 and on electron-accepting NMOs. We then used the difference of area to calculate the 

electron transfer efficiency ηET as follows84 

6
� = 1 − 3 789	:;	<=>?/@;>��
3 789	:;	A=>?�� 	   (4) 

where IQD on TiO2 and IQD on SiO2 are intensity decays of QDs on NMOs and on SiO2, respectively. 

The electron transfer efficiencies calculated for the systems based on TiO2 show high values with 

ηET = 79% for the best TiO2/MPA/CuInS2 assembly (Table 1), which are very close to the 

previously reported values of CuInS2 nanocrystals deposited on TiO2.
75 For systems based on 

ZnO, the electron transfer efficiency is comparably low. This may be due to fact that ZnO 

nanowires can present a large number of surface trap states compared to TiO2: transfer efficiency 

in ZnO/QD systems depends strongly on the photoelectron recombination at the interface, 

therefore defects on the surfaces of both ZnO and QDs could act as traps for the photoelectron 

and thus lower the overall injection efficiency.85 Overall, fast electron injection together with 
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high electron transfer efficiency obtained for the assemblies studied demonstrate the high 

potential of these systems for use in photovoltaic cells. 

Photovoltaic behavior. To investigate the effects of electron transfer rates on the photovoltaic 

performance, QDSSCs based on the assemblies studied above have been fabricated and tested 

under simulated sunlight using standard AM 1.5G conditions. Functionalization of mesoporous 

TiO2 by new mercaptophosphonic linkers and deposition of QDs was followed by the coating of 

the assemblies with an inorganic CdS passivation layer. Such layer was deposited by successive 

ionic layer adsorption and reaction (SILAR) method consisting in consecutive dipping of the 

substrate into the solutions with cationic and anionic precursors. In addition to slight contribution 

of CdS coating to the light absorption (see Fig. S8), CdS and ZnS layers were shown to 

significantly reduce recombination in the QDSSCs due to the suppression of undesired electron 

transfer from the QD to the electrolyte because of the type I band alignment at the interface 

QD/SILAR layer representing a potential energy barrier.18 The cell was completed by 

introduction of the polysulfide electrolyte and CuxS counter-electrode. Unlike classical 

iodide/triiodide electrolyte used in dye sensitized cells, this former does not etch the surface of 

QDs and thus is preferentially used in QDSSCs. 

Generally decent photovoltaic conversion efficiencies (PCEs) of 0.4-0.5% were achieved for 

the cells, with open circuit voltage, Voc, values of the order of 0.3 V (Table 1, Fig. S11). The 

parameter, which changes most significantly with the nature of the ligands, is the short circuit 

current, Jsc. Interestingly, the trend in the variation of Jsc generally follows the calculated charge 

injection efficiency with linkers having shorter chain length showing higher current and 

efficiency. One drastic exception from this trend is CuInS2 directly adsorbed on TiO2 having one 

of the fastest injection rates but also the lowest efficiency among all TiO2 based cells tested. The 
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explanation for this observation may come from the observed incomplete and non-homogeneous 

coverage of the nanostructured metal electrodes by the QDs (Figure 6C, D). Consequently, even 

though the injection of QDs in close contact with the electrode is rapid, a significant part of the 

QDs is situated within the aggregates far from the electrode, increasing the losses and resulting 

in low current and Voc. The highest PCE was achieved using classical mercaptopropionic acid as 

a linker in accordance with the trend observed in electron transfer rate and efficiency. 

There are very few examples of solar cells based on ZnO nanowire electrodes sensitized with 

colloidal QDs. All of them have been fabricated using ex situ ligand exchange with a linker 

molecule or electrophoresis for deposition and show relatively modest efficiencies (below 1%) 

compared to their TiO2 counterparts.15,30,86,87 This can be explained by a high defect density in 

the solution grown ZnO nanowires but also by the impossibility to use classical MPA ligands for 

the direct functionalization of the nanowires because of the inevitable surface etching. By using 

ZnO functionalization with the novel bifunctional linker MEPA we achieve 0.46% using as-

synthesized ternary CuInS2 QDs. 

In summary, new mercaptophosphonic linkers for the homogeneous deposition of quantum 

dots on nanostructured NMOs were developed. XPS studies showed that mercaptophosphonic 

acids of various lengths form monolayers with the phosphonic group bound to the NMOs and the 

thiol function pointing outwards. The deposition of ternary CuInS2 quantum dots on the 

mercaptophosphonic SAMs is efficient and uniform as demonstrated by XPS, SEM, HAADF-

EDX and UV-vis absorption studies. Charge transfer processes investigated by time-resolved PL 

studies show that the electron injection from the QDs to TiO2 or ZnO occurs at fast rates of 107-

108 s-1 with high transfer efficiencies of 50-80% and strong dependence on the linker length and 

nature of the anchoring group. Photovoltaic cells based on ternary QDs on TiO2 and ZnO NMOs 

Page 23 of 35 Journal of Materials Chemistry A



 24

attached via the novel mercaptophosphonic acid linkers result in PCEs of 0.4-0.6%. The 

efficiencies follow the trend observed in the charge transfer studies: shorter linkers lead to better 

injection and thus increased Jsc, which results in higher overall efficiency. The studied 

phosphonic acid based linkers result in slightly lower kET and PCE compared to 

mercaptopropionic acid, probably due to the different binding geometry and eventually more 

efficient electron transfer via the carboxylate function. On the other hand, contrary to 

mercaptocarboxylic acids the investigated mercaptophosphonic acids provide an efficient way to 

functionalize pH-sensitive ZnO nanowires with a variety of nanomaterials. Because of the high 

binding strength owing to multidentate coordination through the phosphonic acid group, they 

rapidly functionalize the surface of ZnO nanostructures without detectable etching damages 

induced by the acidic solution.  Linkerless attachment of the CuInS2 nanocrystals (direct 

adsorption) leads to fast electron transfer but the corresponding PCE is low due to the 

inhomogeneous and incomplete coverage of the NMOs. Further improvement of the photovoltaic 

properties can be expected through the optimization of the light-harvesting properties (e.g. via 

the adsorption of multiple layers of QDs) and nanocrystal surface passivation (e.g. via Zn or Cd 

cation exchange).7 

 

Experimental details 

Synthesis. 2-Mercaptoethyl phosphonic acid (MEPA) was synthesized according to the 

literature procedure.88 Triphenylmethanethiol (4.28 g, 15.4 mmol) was added to NaH (0.4 g, 15 

mmol) in 130 ml dry tetrahydrofurane (THF), yielding a yellow solution. (2-

Bromoethyl)phosphonic acid diethyl ester (2.5 ml, 14 mmol) was added and the solution stirred 

for 1 h. The excess NaH was quenched with 13 ml of water. The resulting mixture was 
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evaporated to ca. 15 ml, dissolved in 50 ml of water, and extracted with 3 x 80 ml of CH2Cl2. 

The organic layer was concentrated by rotary evaporation and dried under vacuum. Upon 

trituration with 20 ml of diethyl ether, a white solid formed. The mixture was cooled to -78°C 

and filtered.  After rinsing with cold (-78°C) diethyl ether, the white product, diethyl (2-

tritylsulfanylethyl)phosphonate was dried (5.2 g, 84% yield). 1H NMR (200 MHz, CDCl3): 7.24 

(m, 15H), 3.88 (m, 4H), 2.33 (m, 2H), 1.62 (m, 2H), 1.15 (t, 6H). 

To remove the trityl protection group, the product was dissolved in 25 ml of trifluoroacetic 

acid (TFA). Triethylsilane was added dropwise to the rapidly stirred solution until the yellow 

colour was gone and a white solid precipitated. Once the precipitate was removed via vacuum 

filtration, the TFA was evaporated to yield a slightly brown oil. The oil was transferred to a flask 

equipped with a Dean-Stark trap and condenser and hydrolyzed in 75 ml of refluxing 5 M HCl 

for 72 h. The aqueous layer was washed with 2x100 ml of chloroform and was concentrated by 

rotary evaporation and dried in vacuo to yield MEPA, an off-white solid (1.2 g, 71% yield). 1H 

NMR (200 MHz, D2O) 2.73 (m, 2H), 2.05 (m, 2H), 1.21 (d, 1H). 

11-Mercaptoundecyl phosphonic acid (MUPA) was synthesized according to the literature 

procedure.55 Freshly distilled triethylphosphite (5.4 ml, 31.2 mmol) and 11-bromo-1-undecene (3 

g, 12.9 mmol) were refluxed for 24 h under Ar flux. The solution was cooled, 20 ml of cold 

deionized water was added and the mixture was stirred for 3 h. The organic compound was 

extracted by chloroform (2x20 ml), washed with water, brine, dried over MgSO4 and purified by 

column chromatography to yield 2.4 g (64% yield) of yellowish oil. 2 g of the oil were mixed 

with thioacetic acid (1.89 ml, 27.3 mmol) and AIBN (5 mg, 0.03 mmol) and exposed to UV light 

using 35 W mercury lamp in a photochemical reactor under stirring and cooling for 8 h. 

Saturated sodium hydrocarbonate solution (20 ml) was slowly added and the organic phase was 

Page 25 of 35 Journal of Materials Chemistry A



 26

washed with water and brine to yield an orange yellow oil followed by its purification by column 

chromatography to result in 1.37 g (52% yield) of diethyl 11-(acetylthio)undecylphosphonate. 

This thioether has been hydrolyzed by dissolution in ethanol and concentrated HCl (35-37%) and 

refluxing under Ar for 7 h and concentrated by rotary evaporator to give 0.965 g (92% yield) of 

diethyl 11-mercaptoundecylphosphonate. The ester (0.8 g, 2.3 mmol) was hydrolyzed by adding 

concentrated HCl and refluxing for 19 h to finally result in 11-mercaptoundecyl phosphonic acid 

after drying in vacuo. 1H NMR (200 MHz, CDCl3): 7.17 (br, (2H), PO(OH)2), 2.52 (q, 2H, 

CH2SH), 1.5-1.9 (m, 6H), 1.2-1.5 (m, 16H). 

ZnO nanowires were grown according to published techniques:89 indium-doped tin oxide 

(ITO) glass was cleaned by sonication in a deionized (DI) water, ethanol and acetone, followed 

by 10 min. treatment in an UV ozone chamber. The substrate was then spin-coated with 5 mM 

zinc acetate solution in ethanol followed by thermal treatment at 300 °C for 20 min. The seeded 

substrate is then immersed into the ZnO growth solution (25 mM zinc nitrate, 12.5 mM 

hexamethylenetetramine (HMTA), 5 mM PEI (end-capped, molecular weight 800 g/mol LS, 

Aldrich), and 0.4 M ammonium hydroxide). The container was covered heated to 90°C. The 

resulting nanowire arrays were rinsed with DI water and calcined in air at 450 °C for 30 min to 

remove any residual organics. 

QD synthesis. Synthesis of colloidal CuInS2 QDs roughly follows established route:68 indium 

acetate (1.17 g, 4 mmol) is mixed with copper(I) iodide (0.760 g, 4 mmol) and 1-dodecanethiol 

(DDT, 15 mL) in a three-necked flask. The reaction mixture is degassed under vacuum for 5 min 

and purged with argon three times. The flask is heated to 100°C for 1 h for the complexation. 

The temperature is then rapidly raised to 230°C for 15-30 min. After cooling, the colloidal QDs 

are isolated by precipitating by addition of acetone, centrifuging, decanting the supernatant and 
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redispersing in chloroform. This purification procedure is typically repeated 3 times to get rid of 

the free DDT and unreacted byproducts. 

Characterisation. 1H NMR spectra were recorded on a Bruker AC 200 MHz spectrometer 

using deuterated solvents containing TMS as internal standard. A Zeiss Ultrascan 55 scanning 

electron microscope (SEM) was used to take images of the nanowires. Scanning transmission 

electron microscopy (STEM) with HAADF and EDX was done on FEI-Titan microscopes 

operated at 300 kV. X-ray photoelectron spectroscopy (XPS) measurements were performed on 

an SSI S-Probe spectrometer from (Euroscan SA) using a monochromatic Al Kα X-ray source 

(1486.6 eV) at a constant dwell time of 100 ms and pass energy of 50 eV. The core-level signals 

were obtained at a photoelectron takeoff angle of 35°. The pressure in the analysis chamber was 

maintained at 10−9 mbar or lower. All peaks were adjusted using the C 1s peak at 284.6 eV to 

correct the binding energies for the charge shift. Photoelectrons were detected using a 

hemispherical analyzer, with an angular acceptance of 30° and an energy resolution of 850 meV. 

Elemental quantification was performed using CasaXPS software by the analysis of the integral 

intensity of each core- level line weighed by its corresponding Scofield sensitivity factor 

available from the internal database of the software. The contact angle measurements were 

performed on flat layers of ZnO sputtered on glass by using Krüss drop shape analyser. 

Photophysical studies. Absorption measurements were carried out using Varian Cary 300 

UV-vis spectrophotometer and PL spectrum was obtained using Edinburgh Photonics Instrument 

FLS980. The excitation wavelengths of 470 nm were used for PL measurements. The PL 

lifetimes were measured by exciting the samples using 470 nm PicoQuant picosecond pulsed 

lasers and PL was detected at 770 nm using time correlated single photon counting with time 

resolution of ~200 ps.  Further experimental details can be found elsewhere. 
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QDs deposition. Freshly activated substrates of mesoporous TiO2 films (10 µm, Solaronix) or 

ZnO nanowires were immersed into 5 mM DMSO solutions of MEPA and MUPA or aqueous 

solution of 1 M MPA with 0.1 M H2SO4 for 12 h. After the removal, the substrates were 

thoroughly rinsed with a pure solvent and dried under the Ar stream. Following the 

functionalization, the substrates were immersed into the concentrated solutions of QDs in 

chloroform for 24 h following by the abundant rinsing with fresh solvent and drying. The 

sensitized substrates were coated by 10 layers of CdS by SILAR method (1 SILAR layer: 30 s 

dip in 50 mM aqueous Cd(NO3)2, rinsing with water, 30 s dip in 50 mM aqueous Na2S, rinsing 

with water). 

Solar cell fabrication and testing. ZnO nanowire substrates were scraped to have an active 

area of 0.36 cm². CuxS counter electrode was prepared from a brass sheet activated for 10 min. in 

hot (70°C) concentrated HCl followed by dropping the polysulfide electrolyte solution (1 M S, 1 

M Na2S, 0.1 M NaOH in H2O) and carefully rinsing with DI water. The cells were assembled 

using Surlyn film (Solaronix, Switzerland) as a spacer; No mask was used, the active cell area 

was 0.36 cm². Photovoltaic characteristics of the solar cells were evaluated using simulated AM 

1.5 sunlight with an output power of 100 mW cm². 
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