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Abstract

This paper introduces a new temperature index, which can suitably
represent the underlying of a weather derivative. Such an index is
defined as the weighted mean of daily average temperatures measured
in different locations. It may be used to hedge volumetric risk, that is
the effect of unexpected fluctuations in the demand/supply for some
specific commodities – of agricultural or energy type, for example –
due to unfavorable temperature conditions.

We aim at exploring the long term memory property of the volatility
of such an index, in order to assess whether there exist some long-run
paths and regularities in its riskiness. The theoretical part of the pa-
per proceeds in a stepwise form: first, the daily average temperatures
are modeled through autoregressive dynamics with seasonality in mean
and volatility; second, the assessment of the distributional hypotheses
on the parameters of the model is carried out for analyzing the long
term memory property of the volatility of the index. The theoretical
results suggest that the single terms of the index drive the long memory
of the overall aggregation; moreover, interestingly, the proper selection
of the parameters of the model might lead both to cases of persistence
and antipersistence. The applied part of the paper provides some in-
sights on the behaviour of the volatility of the proposed index, which
is built starting from single daily average temperature time series.
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1 Introduction

Weather derivatives represent a particular kind of exotic financial contract
introduced to manage the volumetric risk caused by unfavorable weather
conditions. Since their inception, they have represented an alternative to
standard insurance contracts which mainly offer protections against extreme
weather events. Weather derivatives instead can also be used to hedge other
types of risks, including the usual uncertainty of weather conditions, which
are more likely to occur.

The main difference between weather derivatives and traditional ones is
that the underlying of the first ones is a non-tradable weather index (i.e.
rainfall, temperature, humidity or snowfall, or any other weather variable),
meaning that their primary function is to hedge the volume risk resulting
from changes in the supply/demand for goods due to adverse and unexpected
weather changes (Muller and Grandi, 2000; Geman, 2005), rather than the
price risk. Indeed, price risk can be hedged more effectively by means of
standard commodity derivatives.

In view of the considerable portion of economy vulnerable to weather,
of the increased number of concluded deals and the widened range of prod-
ucts offered, weather derivatives play an important role in integrated risk
management and diversification, especially in the North American markets
(Buckley et al., 2002).

Moreover, the last years have shown an expansion of studies on the
usage of temperatures for the hedging of natural phenomena. Probability
distributions and hypothesis testing are used for the development of models.
For instance, in (Bloch et al., 2011) – by implementing a statistical analysis
of the temperature time series – an Ornstein-Uhlenbeck process is considered
for the dynamics of the global mean temperature. Such a model is then used
as basis for a realistic new semi-empirical model for estimating the global
sea-level response.

There is also evidence of the employment of weather derivatives by com-
panies to implement business strategies for covering excess costs and re-
ducing the volatility of revenues (see e.g. Zara, 2010; Golden et al., 2007;
Yang et al., 2011). Moreover, Yang et al. (2011) focuses also on the role
of weather derivatives for diversifying portfolio investments due to the low
correlation of such products with standard financial stocks.

Thus, the exploration of weather derivatives risk is of paramount rel-
evance. In this respect, we also mention the nice paper of Stulek (2017),
which discusses how weather derivatives risk management could be seen as
a suitable device for mitigating risk in retail. The authors present a special
focus on the case of Croatian food stores.

At the moment, weather derivatives are usually structured as swaps, fu-
tures and options written on different weather indexes such as Daily Aver-
age Temperature (DAT), Cumulative Annual Temperature (CAT), Heating
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Degree Days (HDDs), Cooling Degree Days (CDDs), precipitation, snowfall
and wind. The underlying can be a single weather variable or a combination
of them.

In this work, we analyse the second type of underlying. In particular, we
consider a weather index which is defined as a linear combination of several
DATs, detected in different geographic areas. The volatility of the index
is given by the weighted mean of the volatilities of DATs. In so doing, we
are in line with the evidence suggesting that a weather derivative written
on a temperature index, i.e. a set of DATs, might contribute to hedge the
volumetric risk associated with a particular product, in a specific geographic
area (see e.g. Gülpinar and Canakoglu, 2017). Furthermore, in the proposed
model a dependence structure for the DATs is introduced, according to a
wide part of the literature (see e.g. Alexandridis and Zapranis, 2013; Benth
and Saltyte Benth, 2013 and Saltyte Benth et al., 2007).

In particular, we focus on the analysis of a relevant aspect of the risk
associated with the index, that is its long term memory (or persistence)
property. Adopting the perspective of a risk-driven agent, whose financial
decisions are assumed to be remarkably affected by the volatility of the
underlying, the risk analysis of the underlying index might provide useful
insights on the profile of the derivative itself. Moreover, the long term
memory provides a key information on how a system reacts to shocks – an
issue of paramount relevance in a very volatile context, as weather.

In analyzing the long term memory of the temperature volatility, we fol-
low the route traced by empirical studies on climate and geophysical science,
which state that the series of the temperature exhibits persistence properties
(see e.g. Syroka and Toumi, 2001; Tsonis et al., 1999).

Moreover, it is worth recalling that long memory is strictly intercon-
nected to the so-called Joseph effect (see the breakthrough paper by Man-
delbrot and Wallis, 1968 but also Eliazar and Klafter, 2005). For what
concerns specifically weather derivatives, the matter is that in an increas-
ingly interconnected world, the long term memory of the aggregate (weather
indices) may help in driving the overall super-national productions, distri-
bution, foresee the need of good and services, alongside estimate of the
occurrence of extreme events and readiness of response. In this respect, we
notice that the estimate of the underlying is a key point for the estimate of
the related derivative.

In general, the informative content of temperature long term memory
in terms of financial modelling is clear. It is worth mentioning Brody et
al. (2002) and Benth (2003) who introduce a Ornstein-Uhlenbeck stochastic
process driven by a Fractional Brownian Motion for the daily-mean temper-
ature evolution, in the context of weather derivatives. In so doing, the long
term property of the considered series is taken into account.

The long term memory represents an important property of time series
– even those generated by stochastic processes – and is associated with
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the hyperbolic decay of the autocorrelation function with respect to time
lag. Thus, the long term memory can provide information on how strongly
systems depend on past realizations and, consequently, how fast they recover
from good or bad shocks.

In the framework of risk models, the long memory of prices volatility
might be employed for explaining the deviations from linear models for per-
forming forecast on future prices (see e.g. Bouchaud et al., 2004; Lillo et al.,
2005). Thus, our model contributes by one side to the challenging theme of
future weather derivatives price forecast and, by the other side, to the field
of weather dynamics macrostructural statistical properties.

The earliest studies on long term memory appeared in the context of
hydrogeological data, and are due to Hurst (1951 and 1957), Mandelbrot
and Wallis (1968), McLeod and Hipel (1978), Smith and Harris (1987),
among others.

In this framework, also financial markets and financial time series have
been explored. The persistence property has been shown to be one of the
features of many financial time series: speculative returns (Bollerslev and
Mikkelsen, 1996; Ding and Granger, 1996), foreign exchange rate returns
along with their power transformations (Ivanova and Ausloos, 1999; Ausloos
and Ivanova, 2000; Reboredo et al. 2013; Ding and Granger, 1996), stock
prices (Vandewalle and Ausloos, 1998; Ausloos and Ivanova, 1999; Reboredo
et al. 2013). In the specific case of commodity prices, it is worth to mention
the contributions of Wei and Leuthold (2000) on agricultural futures, Zhao
et al. (2015) on oil prices and Cheung and Lai (1993) and Lo (1991) on gold
market returns.

In this paper, we focus on a theoretical approach for assessing the long
term memory property of a temperature index. To this aim, we analyze the
stochastic process describing the riskiness of such an index. In particular,
we explore the probabilistic requirements that must be satisfied by the pa-
rameters of the considered process for deriving the presence of the long term
memory property.

The approach we follow is radically different from the one used by most
of the papers in this field since, commonly, the persistence property of a
time series is assessed through numerical procedures (see e.g. Bianchi et al.,
2013, Lux and Ausloos, 2002, Markovich and Kilpi, 2009).

We advance a theoretical proposal, bringing this paper out of the frame-
work of the nonparametric empirical analysis. Specifically, we are able to
check long term memory for series described by time-dependent evolutive
models without the need of collecting data.

The temperature index proposed here is a weighted average of DATs.
Therefore, we analyze the long term memory of its volatility similarly to
an agent-based model. This approach is particularly suitable to describe
different sources of heterogeneity among interacting elements and, hence, to
capture the heterogeneity of the different paths of temperatures composing
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the averaged weighted index, so that here the role of agents is played by
temperatures.

Some examples of agent-based models in financial markets can be found
in: Brock and Hommes (1997, 1998) and Hommes (2001). It is also impor-
tant to mention Bunn and Oliveira (2003), and Zambrano and Olaya (2016)
which – as we do here – deal with an agent-based model for commodity
markets through simulations. By a different perspective, the presence of
several units capturing different geographical locations of temperature mea-
surements points to spatial evolutive models for weather derivatives (see e.g.
Saltyte Benth et al., 2007; Hardle and Osipenko, 2011 and Saltyte Benth
and Saltyte, 2011).

The usefulness of a theoretical assessment of the long-term memory of
time series is twofold: first, the theoretical approach allows to overcome com-
putational complexity related with numerical procedures and consequent
estimation errors; second, the mathematical estimation of the Hurst expo-
nent leads to undisputable results, not affected by parameters selections and
characteristics of the considered sample.

In this work, we have been inspired by some contributions on the theoret-
ical estimation of the Hurst exponent generated by stochastic processes (see
e.g. Foellmer, 2005; Kirman and Teyssiere, 2005; Cerqueti and Rotundo,
2012; Zaffaroni, 2007, and the review proposed by Cerqueti and Rotundo,
2015). According to the above mentioned contributions, we discuss the dis-
tributional hypotheses of the parameters of a temperature index to verify
the presence of long term memory in its volatility. Since such an index is a
weighted aggregation of univariate DATs, we apply a very important result
due to Granger (1980). It allows to derive the persistence properties of an
index by the knowledge of the ones associated with its single components.

The applied part of the paper proceeds in a stepwise form. First, via a
time series approach, we focus on the DAT dynamics of four cities located
in the Eastern area of US: Baltimore, Boston, Cincinnati and Philadelphia.
To capture seasonality, truncated Fourier series have been included in both
mean and volatility. In the attempt of incorporating the stylized facts of
temperature data, autoregressive models for conditional variance have been
also considered. The proposed time series approach allows to take into
account the noticeably differences in seasonal fluctuations observed among
cities, both in terms of amplitude and frequency. Secondly, we build the tem-
perature index and estimate the Hurst coefficient of its conditional volatility,
which is obtained as weighted average of the conditional volatility of each
DAT time series.

The paper is structured as follows. Section 2 discusses the model for
daily average temperatures and defines the index which can be considered
as the underlying of a weather derivative. Section 3 presents the theoretical
approach for assessing the long term memory property of the volatility of
the temperature index. Section 4 analyzes the theoretical result. Section 5
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presents an analysis based on observed data and Section 6 concludes.

1.1 Daily Average Temperature: a brief review of literature

DATs dynamics are characterized by predictable trends and seasonality, es-
pecially over longer horizons. This implies that temperatures are approxi-
mately predictable in the short run and random around historical averages
in the long run. From the perspective of DATs modeling, it is possible to
identify several approaches (we refer to Shiller et al., 2012, for a review). One
of the possible alternatives is represented by the Index Modelling approach,
focusing on the distribution of weather indices. A few papers suggest that
this approach yields stable estimations if the distribution can be estimated
relatively well (Dorfleitner and Wimmer, 2010). Geman and Leonardi (2005)
study the statistical properties of both HDD and Accumulate HDD indices,
and conclude that modeling directly the HDDs is not appropriate. Davis
(2001) models the Accumulate HDD index by using a log-normal diffusion
and concludes that this approach affects the estimates by ±10%.

Under a different approach, one can focus on dynamic models for DATs,
so that the estimated models can be used to derive the indices. This second
approach is the one used in this paper.

In principle, using DAT models can lead to a more accurate estimation
than directly modelling temperature indices, since they make a complete
use of available historical data. Moreover, when using index modeling, a
different process must be estimated for each index. However, it is worth
to mention that deriving accurate models for DATs is not straightforward
since observed data show seasonality and evidence of long memory in the
autocorrelation, so that small misspecifications of the model can lead, for
instance, to large errors in the pricing of temperature-based weather deriva-
tives (Alexandridis and Zapranis, 2013).

In literature, several processes have been proposed for modeling DATs.
Moreno (2000) uses discrete-time mean reverting processes in which the
volatility is adjusted via an arbitrarily-chosen sinusoidal function. This al-
lows to take into account the seasonal component of the volatility, i.e. the
volatility of temperature during summer is assumed to be different from that
during winter. To capture the unique characteristics of DATs, Cao and Wei
(2004) and Cao et al.(2004) use a discrete process which is built on five as-
sumptions on DATs: follow a predicted cycle; move around a seasonal mean;
are affected by global warming and urban effects; appear to have autoregres-
sive changes and their volatility is higher in winter than in summer. Franses
et al. (2001) consider a GARCH model (Engle, 1982; Bollerslev, 1986).
Campbell and Diebold (2005) extend the ideas proposed by Cao and Wei
(2004) and Franses et al. (2001), and consider a model for DATs in which
the conditional mean dynamics include a trend, together with seasonal and
cyclical components. They use a simple low-ordered polynomial determin-
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istic trend, while cyclical dynamics are captured by using autoregressive
lags. To model seasonality, the Authors introduce a low-ordered Fourier
series whose benefits are twofold. It produces a smooth seasonal pattern,
which accords with the basic intuition that the progression through differ-
ent seasons is gradual rather than discontinuous, and promotes parsimony,
which enhances numerical stability in the estimates. Campbell and Diebold
(2005) also consider conditional variance dynamics, with contributions com-
ing from both cyclical and seasonal components. The seasonal component
of volatility is approximated by a Fourier series, while the cyclical one is ap-
proximated by a non linear GARCH process. The idea of modelling DATs’
volatility using GARCH is retaken also by Taylor and Buizza (2004, 2006).

2 The model

In this paper we move from the contributions mentioned in the previous
Section. To model each single DAT composing the temperature index, we
introduce a stochastic process assumed to be defined in a filtered probability
space (Ω,F ,F = (Ft)t, P ).

The mean dynamics are calibrated by using P autoregressive lags. Each
DAT, Ti, under the assumption of normality in the residuals, is formalized
as follows:

Ti(t) = Fi,t +
P∑
p=1

φi,pTi,t−p + εi,tzt, (1)

where (εi,t)t is an i.i.d. process with finite mean and variance σ2ε , (zt)t
is independent from (εi,t)t and such that zt ∼ N(0, 1), for each t; (φi,p)i,p is
a P × N matrix of real numbers and (Fi,t)i,t is a deterministic seasonality
function, which can be written as a truncated Fourier series as follows:

Fi,t = µi +

Li∑
l=1

(
ai,lcos

(
2πl

di(t)

365

)
+ bi,lsin

(
2πl

di(t)

365

))
, ∀ i, t (2)

where Li ∈ N is a truncation parameter, for each i = 1, . . . , N , the a’s
and the b’s are real numbers and the d’s are deterministic functions.

Notice that the presence of the common factor zt guarantees the existence
of a dependence structure among the DATs.

We highlight here that the assumed distribution for the DAT’s in for-
mula (1) is rather general and is in line with the contributions mentioned
in Subsection 1.1. Specifically, due to empirical evidence, we assume the
presence of a seasonality term for each temperature series. Such a term is
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captured by a Fourier series, which is the standard mathematical device used
for describing waves and seasonality. Moreover, we consider an autoregres-
sive discrete-time model, which is widely employed in this context. Finally,
we reasonably assume that DAT’s are mutually dependent, as the common
factor term suggests.

It is worth to recall here that DATs shows some kind of seasonality since
variance turns out to be higher during winter times (Cao and Wei, 2004;
Campbell and Diebold, 2005). For this reason, we model the conditional
variance via a low-ordered Fourier series. Moreover, DATs exhibit some of
the stylized facts common to financial asset returns, i.e. volatility clustering
and fat tails.

Therefore, we assume that:

ε2i,t = si,t + βi + ηiε
2
i,t−1 + Si,t + γt, (3)

where:

si,t =

Ji∑
j=1

(
ci,j cos

(
2πj

di (t)

365

)
+ fi,j sin

(
2πj

di (t)

365

))
with a truncation parameter Ji ∈ N, for each i = 1, . . . , N , real numbers

c’s and the f ’s and deterministic functions d’s .
Furthermore, βi ∈ R is the intercept, (Si,t)t and (γt)t are i.i.d. stochastic

processes with zero mean, representing the two sources of random noises
– the former one of idiosyncratic nature, i.e. dependent on the specific
temperature Ti; the latter of common nature, i.e. dependent only on time
– while ∀i, ηi is a random variable with support (0, 1) and represents the
coefficient of the autoregressive term, for each i = 1, . . . , N .
The index we propose is a linear combination of the T ’s. Such a combination
is selected in such a way that the risk of the new index is a weighted mean of
the risk of the single components (see formula (5) for more details on this).
We denote it, at time t, by A(t), so that:

A(t) =

N∑
i=1

wiTi(t), (4)

where wi ∈ [0, 1] for each i = 1, . . . , N , and
∑N

i=1w
2
i = 1.

Remark 2.1. The proposed index is more general than the standard uni-
variate ones, since the unidimensional case can be derived from the multi-
dimensional one by taking all the weight w’s equals to zero exept one.
Moreover, it is important to note that introducing a basket of DATs allows a
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high level of flexibility in the selection of the geographical area for which we
want to measure the risk of unexpected changes in temperatures. Therefore,
the proposed index allows an effective control of the volume risk level in the
geographical area of interest.

The normalizing condition on the squared w’s meets the requirement
on the risk of the index, which is built as a weighted mean. In fact, the
conditional variance of A(t) given the information set at time t− 1 is given
by:

V ar
(
A(t)

∣∣∣Ft−1) =

= V ar

 N∑
i=1

wi

 P∑
p=1

φi,pTi,t−p + Fi,t + εi,tzt

 ∣∣∣Ft−1
 =

N∑
i=1

w2
iE
(
ε2i,t

∣∣∣Ft−1) ,
(5)

where E is the expected value operator.
Equation (5) states that the N random variables ε21,t, . . . , ε

2
N,t are quantities

contributing in determining the volatility of index A(t) .
Moreover, rather than considering the ε2’s, we aim at analyzing the volatility
of the index A when the seasonality term is removed from the volatilities
of each single DAT composing the index. Indeed, after eliminating the
seasonality dependent variance from the residuals of each component, the
autocorrelation of residuals became smaller and does not exhibit a clear
seasonal pattern.

This means that we consider

ε̃2i,t = ε2i,t − si,t, ∀ i, t. (6)

Specifically, we need to look at the random variable

Rt =

N∑
i=1

w2
i ε̃

2
i,t, (7)

whose expected value conditional to Ft−1 is the volatility of A(t). In fact,
the volatility of the index remains unchanged when ε2i,t is replaced by ε̃2i,t as
in (6), in that

E
(
ε̃2i,t

∣∣∣Ft−1) = E
(
ε2i,t

∣∣∣Ft−1) .
3 The assessment of long-term memory

In order to theoretically derive the properties of long-term memory of each
DAT, we now introduce the time-lag operator L, so that Lxt = xt−1 for a
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generic stochastic process (xt)t. Equation (3) can be rewritten accordingly
as follows:

(1− ηiL)ε̃2i,t = βi + Si,t + γt, (8)

hence

ε̃2i,t =
βi

1− ηiL
+

Si,t
1− ηiL

+
γt

1− ηiL
. (9)

Thus,

Rt =

N∑
i=1

w2
i

βi
1− ηiL

+

N∑
i=1

w2
i

Si,t
1− ηiL

+

N∑
i=1

w2
i

γt
1− ηiL

=: R
(β)
t +R

(S)
t +R

(γ)
t .

(10)
Each component of Rt in equation (10) has a precise meaning.

In particular, R
(β)
t represents the contribution to the volatility of the weather

index independent from time and associated with the intercepts β’s; (R
(S)
t )t

is the idiosyncratic component of the volatility, and collects all the idiosyn-

cratic random noises associated with the risks of each single DATs; (R
(γ)
t )t

is associated with the common stochastic noise independent from the index
i.
The long-term memory property of the time series (Rt)t will be explored by
implementing a two-step procedure:

• first, we detect the persistence property of any single component of
(Rt)t;

• second, we perform an aggregation of components to assess the value
of the Hurst exponent of the entire series (Rt)t.

Remark 3.1. The long term memory is a property related to the time com-
ponents of a series, even if it is generated by a stochastic process. Thus,

it is evident that (R
(β)
t )t cannot concur in assessing the long term memory

property of the process (Rt)t, and such a term does not appear in the single
components analysis.

In the next theorem, we provide a theoretical estimate of the Hurst ex-

ponent associated with the component (R
(S)
t )t, under suitable probabilistic

conditions. To our purpose, we adopt the following:

Notation 3.2. We denote the beta distribution with parameters a, b ∈
(0,+∞) by B(a, b) distribution.
The density function of a B(a, b) distribution is

f(x) =
1

β(a, b)
(1− x)b−1xa−1,
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where β(a, b) is the normalizing constant.

Theorem 3.3. Let us assume that there exists a ∈ (0,+∞) and b ∈ (0, 2)
such that ηi are sampled by a B(a, b) distribution, for each i = 1, . . . , N .
Fixed i = 1, . . . , N , let (Si,t)t be a stationary stochastic process such that

E[Si,t] = 0, ∀ i ∈ {1, . . . , N}, t ∈ N (11)

and

E[Si,uSj,v] =

{
σ2S , if i = j and u = v;
0, otherwise.

(12)

Then, as N → +∞, the long-term memory property for R
(S)
t holds, with

Hurst exponent HS = 1− b/2.

Proof. First of all, we need to show that

E
[
R

(S)
t R

(S)
t−h

]
∼ h−b, as N → +∞, h→ +∞. (13)

Let us fix t > 0, h > 0 and examine R
(S)
t R

(S)
t−h.

R
(S)
t R

(S)
t−h =

N∑
i=1

w2
i

1

1− ηiL
Si,t

N∑
j=1

w2
j

1

1− ηjL
Sj,t−h =

=

N∑
i=1

w2
i

[ ∞∑
l=0

(ηiL)l
]
Si,t ·

N∑
j=1

w2
j

[ ∞∑
m=0

(ηjL)m
]
Sj,t−h.

The terms of the series are positive, and so it is possible to exchange the
order of the sums:

R
(S)
t R

(S)
t−h =

∞∑
m=0

∞∑
l=0

N∑
i=1

N∑
j=1

w2
iw

2
jη
l
iη
m
j Si,t−lSj,t−h−m. (14)

In the limit as N → +∞ and setting x := ηi, y := ηj , (14) becomes:

R
(S)
t R

(S)
t−h ∼

∞∑
m=0

∞∑
l=0

∫ 1

0

∫ 1

0
xlymSx,t−lSy,t−h−mdF (x, y), (15)

where F is the joint distribution over x and y.
By applying the expected value operator and by using the hypotheses on
the η’s and the S’s, we get:

E
[
R

(S)
t R

(S)
t−h

]
∼ 1

β(a, b)
σ2S

∞∑
m=0

∫ 1

0
(1− x)b−1x2m+h+a−1dx =

11



1

β(a, b)
· σ2S

∞∑
m=0

Γ(2m+ h+ a)Γ(b)

Γ(2m+ h+ a+ b)
. (16)

By Stirling formula, as h→ +∞, we have that:

Γ(2m+ h+ a)

Γ(2m+ h+ a+ b)
∼

∼
√

2π(2m+ a+ h+ b)√
2π(2m+ a+ h)

(
2m+ h+ a

e

)2m+h+a(2m+ h+ a+ b

e

)−(2m+h+a+b)

∼

∼ (2m+ h+ a)2m+h+a

(2m+ h+ a+ b)2m+h+a+b
=

(
2m+ h+ a

2m+ h+ a+ b

)2m+h+a

·(2m+h+a+b)−b =

=

(
1− b

2m+ h+ a+ b

)(2m+h+a+b)−b
·(2m+h+a+b)−b ∼ e−b ·1·h−b (17)

Hence, by (16) and (17), the rate of decay of the autocorrelation function

related to R
(S)
t is −b as h goes to infinity. By using Rangarajan and Ding

(2000), we obtain that the component R
(S)
t has long term memory with

Hurst exponent HS = 1− b/2.

Next result provides the estimation of the Hurst exponent for the com-
ponent associated with the common random noise of the volatility of the
temperature index.

Theorem 3.4. Assume that {γt}t≥0 is a stochastic process with i.i.d. terms,
such that E[γt] = 0 and V ar[γt] = σ2, for each t ≥ 0.
Moreover, let us assume that there exists a ∈ (0,+∞) and b ∈ (1/2, 3/2)
such that ηi are sampled by a B(a, b) distribution, for each i = 1, . . . , N .

Then, for N → +∞, we have that {R(γ)
t }t≥0 has long term memory, with

the Hurst exponent Hγ = 3/2− b.

Proof. In the limit for N →∞ we have

R
(γ)
t ∼ lim

N→+∞

N∑
i=1

w2
i ·

1

1− ηiL
γt =

=

∫ 1

0

1

1− ηL
γtdF (η) =

∫ 1

0

∞∑
k=0

(ηL)kγtdF (η) =

=
∞∑
k=0

∫ 1

0
ηγt−kdF (η) =

∞∑
k=0

[∫ 1

0
ηkdF (η)

]
γt−k =:

∞∑
k=0

akγt−k, (18)

where

ak =

∫ 1

0
ηkdF (η) = E[ηk].
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By the distributional assumption on the η’s, we have

ak =
1

β(a, b)

∫ 1

0
(1− x)b−1xa+k−1dx =

Γ(a+ k)Γ(b)

Γ(a+ k + b)
. (19)

By (17) and (19), we have

ak ∼ k−b as k → +∞. (20)

Granger (1980) and (20) assure that {R(γ)
t }t≥0 is an integrated process of

order d = 1− b. Thus, since b ∈ (1/2, 3/2), one gets that {R(γ)
t }t≥0 has long

term memory, with Hurst exponent given by Hγ = 3/2− b.

We are now ready to assess explicitly the long term memory property of
the series {Rt}t≥0. At this aim, we adapt to our specific context a result
due to Granger (1980).

Theorem 3.5. Suppose that ηi are sampled by a B(a, b) distribution, with
a ∈ (0,+∞) and b ∈ (1/2, 3/2), for each i = 1, . . . , N .
Then, for N → +∞, we have that {Rt}t≥0 has long memory with Hurst
exponent H given by

H =


Hγ , for b ∈ (1/2, 1);
1/2, for b = 1;
HS , for b ∈ (1, 3/2).

(21)

Proof. Since {R(S)
t }t≥0 and {R(γ)

t }t≥0 are independent processes, then we
are in the position of using Granger (1980), so that

H = max
{
HS , Hγ

}
. (22)

By Theorems 3.3 and 3.4, a straightforward computation gives the thesis.

It is worth to note that the Hurst exponent depends on the distribution of
the η’s. Specifically, the selection of the parameter b in the Beta distribution
leads to different shapes for the density function of the η’s. This evidence
will be the focus of next section.

4 Analysis of the results

This section presents some comments on the results obtained in the previous
section.
Theorem 3.5 states that the long term memory of the volatility of the index
A(t) can be obtained under the condition that ηi follows a B(a, b) distri-
bution, where a is a generic positive constant while b ∈ (1/2, 3/2), for each

13



i = 1, . . . , N . Furthermore, such a Theorem states that the Hurst exponent,
H, varies with the parameter b. Specifically, the long term memory of the
process (Rt)t is driven by the idiosyncratic term or the common term, on
the basis of the value of b. It could also appear that the process is pure
randomness, i.e. H = 1/2, when b = 1.
Formula (21) assures that H ∈ (1/4, 1/2) for b ∈ (1, 3/2), and H ∈ (1/2, 1)
for b ∈ (1/2, 1). Furthermore, H decreases with respect to b. The range of
variation of H explains that the process (Rt)t is persistent for b ∈ (1/2, 1)
and becomes antipersistent for b ∈ (1, 3/2). The degree of persistence re-
duces as b increases.
Persistence and antipersistence are opposite concepts, but allow to make
forecasts on the long run evolution of the volatility of the temperature in-
dex. In few words, persistence means that the history is repeating itself
and, in the long run, the riskiness of the index follows the same tendency
observed in past realizations. Differently, antipersistence is associated with
a reversion of the behavior of the historical trajectory of volatility, and an
opposite tendency should be expected. The case of H = 1/2 is the one
related to uncorrelated data.
The meaning of the parameter b is highly relevant. Indeed, the hypotheses
on the η’s describe an autoregressive coefficient whose distribution captures
different cases.
We show here three cases, by selecting three values of the parameter a:
a = 1/2, 1, 5. The corner cases for b are shown, so that b = 1/2, 1, 3/2.
The resulting cases are nine in number. The shapes of the resulting density
functions of the Beta distribution B(a, b) are illustrated in Figure 1 - panels
a-j.

INSERT FIGURE 1 ABOUT HERE
Caption: Density functions of the Beta distribution B(a, b) with different

values of the parameters: a = 1/2, 1, 5; b = 1/2, 1, 3/2.

For each i = 1, . . . , N , the distribution of the ηi provides information
on how the t-th realization of the series (ε̃2i,t)t depends on the t− 1-th one.
A distribution concentrated around zero (one) is associated with a small
(large) impact of the previous realization of the process for determining the
current one.
The case a = b = 1 (panel d) coincides with the uniform distribution. A
symmetric density function appears also in the case of a = b = 1/2 (panel
h) – even if the extremes 0 and 1 are in this case more probable than the
values in the center of the intervals. These two cases are associated with a
fair distribution among the high and low values of the variation ranges of
the Beta distributions, but in the second case the intermediate values are
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assumed with a low probability.
The cases a = 5, b = 1, a = 5, b = 1/2 and a = 1, b = 1/2 (panels a, b
and e, respectively) exhibit a common behavior, with a rapid growth of the
density function and high probabilities of taking values close to one. Such a
tendency can also be appreciated when a = 5, b = 3/2 (panel c), even if in
a less visible way. In this specific case, there is an internal global maximum
of the density function in a point rather close to one.
The converse situation appears when a = 1, b = 3/2 and a = 1/2, b = 3/2
(panels f and j, respectively), where we observe a high probability for values
close to zero. However, such a behavior is more evident in the latter case,
while in the former the density function follows a concave path.
The cases discussed above let us conjecture that low values for a could be
more likely associated with the antipersistence of the series when the (t−1)-
th term plays a not so relevant role in identifying ε̃2i,t, while high values for

a are more likely associated with the persistence and high impact of ε̃2i,t−1
on ε̃2i,t. This is a nice result suggesting also future empirical developments.

5 An analysis based on observed data

In this Section, via a time series approach, we focus on the DAT dynam-
ics of four cities located in the Eastern area of United States: Baltimore,
Boston, Cincinnati and Philadelphia. As discussed in Section 2, truncated
Fourier series have been included in both mean and volatility to capture
seasonality. Furthermore, in the attempt of incorporating the stylized facts
of temperature, autoregressive models for the mean and conditional variance
have been also considered (see Equations 1-3). The DATs’ dynamics of the
aforementioned cities are calibrated on the historical series provided by the
MET Office (UK), for the period going from January 1st, 1997 to January
31st, 2006. The time series have been converted from Fahrenheit to Celsius.
As shown in Section 2, the seasonal mean for each DAT series Ti(t) is mod-
eled by equation (1). The seasonality function Fi,t is written as a low-ordered
Fourier series of period 2π and integrable in the interval [−π, π]. This allows
to decompose any periodic signal into the sum of a set of simple oscillating
functions, producing a smooth progression of temperatures through seasons
and making the model very parsimonious. In Table 1 the fitted parameters
of the mean model, all significant at 5% level, for the seasonality functions,
Fi,t, are presented. For each DAT, according to the Akaike and Schwartz
Information criteria, all the truncation parameters Li were set equal to 8.
In Figure 1 the fitted Fourier series against raw data are shown.

INSERT TABLE 1 ABOUT HERE.
Caption Fitted parameters for the seasonality function, Fi,t.
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INSERT FIGURE 2 ABOUT HERE.
Caption DATs of Baltimore, Boston, Cincinnati and Philadephia together

with the seasonal function from 1/1/1997 through 1/31/2006.

Apart from seasonality, the cyclical dynamics are calibrated by using
an autoregressive process with P lags, under the assumption of normality
in the residuals, as in Equation (1). The models are calibrated on the de-
seasonalized DATs by using MLE. The selection of the most adequate P is
carried out by using both the Akaike and Schwartz information criteria.
Table 2. reports the regression parameters and, between brackets, the t-
Statistics, for each of the four considered DAT time series.

INSERT TABLE 2 ABOUT HERE
Caption Fitted regression parameters of AR(P ) model.

The partial autocorrelation functions of the deseasonalized DAT time series
are plotted in Figure 3, showing that AR(3) models for each of the four
considered US time series are the most suitable ones.

INSERT FIGURE 3 ABOUT HERE
Caption Partial autocorrelation functions of the deseasonalized DAT time

series.

By (3), we can estimate the conditional variances E
(
ε2i,t|Ft−1

)
in (5)

through a MLE procedure for all the considered DATs. In Figure 4 the
estimated conditional variances for all the DAT time series are shown.

INSERT FIGURE 4 ABOUT HERE
Caption Estimated Conditional Variance for each DAT series.

We computed the variance of the index as in Equation (5), equally
weighting the estimated conditional volatility for each DAT time series. In
order to perform the numerical estimates of the Hurst exponent H, we used
the subroutine fastdfa.m (Little et al., 2006), which implements the De-
trended Fluctuation Analysis (DFA). The problem of the error of the es-
timate of DFA and its dependence on the length of the time series is well
known (Weron, 2002). Table 1 in (Weron, 2002) reports the standard de-
viation of time series with several lengths. We work with time series with
length 3, 652. The closest lengths examined in (Weron, 2002) are 2,048 and
4,096, with standard deviations equal to 0.0355 and 0.0278, respectively. To
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refine the estimate we calculated the confidence interval running the subrou-
tine fastdfa 100,000 times on random time series with length 3,000, that is
approximately the length of our sample. The standard deviations is 0.0306,
and 99% of the values fall in (0.41, 0.59).
In the empirical analysis, we follow a stepwise approach. First, we run
the subroutine on each single estimated conditional variance and found the
Hurst exponents equal to: 0.57 (Baltimora), 0.55 (Boston), 0.54 (Cincin-
nati), 0.59 (Philadelphia). Considering the error estimate, they all fall in
the H = 0.5 confidence interval.
Secondly, we computed the volatility of the index as in Equation (5) that is
a equally weighted mixture of each conditional variance series. The resulting
estimated Hurst exponent is H = 0.57. Therefore, the empirical procedure
allows to provide an estimation of the long term memory of the aggregated
temperature index on the basis of its weighted components.

6 Conclusions

The paper considered the construction of a temperature index which can
represent the underlying of a weather derivative. The main aim is to analyze
the long term memory of the volatility of the proposed index. The usefulness
of such an index lies, not only in its ability of controlling volume risk, but,
for instance, also in providing an overall description of the temperatures in
particular geographical areas. The analysis on the long term memory of the
conditional volatility is based on the Hurst exponent and a key role is played
by the Beta distribution of the coefficients, that has been selected because it
can meet many different shapes. The distribution of the spatial coefficients
influences the long term memory of the aggregate.

Indeed, the main theorem shows the range of values leading to short
term memory, persistence, or antipersistence. Further developments of the
present work include both theoretical and applied analysis.

From a theoretical point of view, models for the exploration of other
different stylized facts of the temperature index may be considered. In this
respect, for instance, the presence of regimes in the index dynamics can be
explored. Such line of research could be quite relevant for commodities, since
it can be foreseen a dependence of the long term behavior of the volatility
of the index on the switching probabilities of each single component.
As it is shown by the application of the theoretical results on the observed
data, the proposed approach may lead to scenario analysis based on the
most feasible distribution of the coefficients, to the final aim of improving
the estimate of risk through the long-run dependence.
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R., 2013. How fast do stock prices adjust to market efficiency? Evidence
from a detrended fluctuation analysis. Physica A 392, 1631-1637.

[50] Saltyte Benth, J., Benth, F.E., Jalinskas, P., 2007. A Spatial-temporal
Model for Temperature with Seasonal Variance. Journal of Applied
Statistics, 34(7), 823-841.

[51] Saltyte Benth, J., Saltyte, L., 2011. Spatial-temporal model for wind
speed in Lithuania. Journal of Applied Statistics, 38(6), 1151-1168.

[52] Schiller F., Seidler G., Wimmer M., 2012. Temperature models for pric-
ing weather derivatives. Quantitative Finance 12, 489-500.

21



[53] Smith, W., Harris, C.M., 1987. Fractionally differenced models for wa-
ter quality time series. Annals of Operations Research 9(1), 399-420.

[54] Stulec, I., 2017. Effectiveness of weather derivatives as a risk manage-
ment tool in food retail: The case of Croatia. International Journal of
Financial Studies, 5(1), 2.

[55] Syroka, J.I., Toumi, R., 2001. Scaling and persistence in observed and
modelled surface temperature. Geophys. Res. Lett. 28, 3255-3259.

[56] Taylor J.W., Buizza R., 2004. A comparison of temperature density
forecasts from GARCH and atmospheric models. Journal of Forecasting
23, 337-355.

[57] Taylor J.W., Buizza R., 2006. Density forecasting for weather derivative
pricing. International Journal of Forecasting 22, 29-42.

[58] Tsonis, A.A., Roebber, P.J., Elsner, J.B. 1999. Long-range correlations
in the extratropical atmospheric circulation: origins and implications.
J. Clim. 12, 1534-1541.

[59] Vandewalle, N., Ausloos, M., 1998. Spareness and Roughness of Foreign
Exchange Rates. International Journal of Modern Physics C 9, 711-720.

[60] Wei, A., Leuthold, R.M., 2000. Agricultural Futures Prices and Long
Memory Processes. OFOR Working Paper No. 00.04. Available at
SSRN: http://ssrn.com/abstract=229795 or doi:10.2139/ssrn.229795.

[61] Weron, R., 2002. Estimating long-range dependence: finite sample
properties and confidence intervals. Physica A: Statistical Mechanics
and its Applications, 312(1):285-99.

[62] Yang, C.C., Li, L.S., Wen, M.M., 2011. Weather risk hedging in the
European markets and international investment diversification. The
Geneva Risk and Insurance Review, 36(1), 74-94.

[63] Zaffaroni, P., 2007. Memory and aggregation for models of changing
volatility. Journal of Econometrics 136, 237-249.

[64] Zambrano, C. and Olaya, Y., 2016. An agent-based simulation approach
to congestion management for the Colombian electricity market. Annals
of Operations Research, doi:10.1007/s10479-016-2222-4.

[65] Zara, C., 2010. Weather derivatives in the wine industry. International
Journal of Wine Business Research, 22(3), 222-237.

[66] Zhao, Y., Chang, S. and Liu, C., 2015. Multifractal theory with its ap-
plications in data management. Annals of Operations Research 234(1),
133-150.

22


