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Abstract

A key feature of the agent-based modeling is the understanding of the macro-

scopic behavior based on data at the microscopic level. In this respect, among

the topics of interest, one can found the long term behavior of a system and the

assessment of the presence of correlations. The study of the property of long-

term memory becomes relevant when past events continue to maintain their

influence for the future evolution of a system, and the autocorrelation is decay-

ing slowly. In turn, this is relevant for understanding the reaction of the system

to shocks, and further information on the evolution of an economic system can

be obtained by analyzing the agents populating the system itself, considering

both their heterogeneity and the outcome of their aggregation. The aim of

this paper is to review some techniques for studying the long-term memory as
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emergent property of systems composed by heterogeneous agents. Theorems

relevant to the present analysis are summarized and their application in four

structural models for long-term memory are shown. The main property of the

models is given the functional relation between their parameters and the long

memory of the time series under examination. This would allow an immediate

calibration of the model avoiding time-expensive numerical calibration proce-

dures, the estimation of their bias, and numerical instabilities. The described

approaches can be useful for further expansions and applications in economical

and financial models.

1 Introduction

The presence of long-term memory is a remarkable feature of time series, which are

eventually generated by stochastic processes, when the autocorrelation function de-

cays hyperbolically as the time lag increases. The property is relevant because of its

reaction to shocks: systems in which the dependence on past events is sufficiently

strong are going to need more time to recover from either good or bad shocks than

systems with a fast decay of the correlation. Long memory models were introduced

in the physical sciences since at least 1950, when some researches in applied statis-

tics stated the presence of long memory within hydrologic and climatologic data.

The earliest studies on this field are due to [43, 44, 53, 54, 55] among the others.

Quantitative studies on financial markets have shown the persistence properties of

the financial time series. The long-term memory has been evidenced through the

analysis of many different time series: speculative returns [14, 32], foreign exchange

rate returns [4, 45, 61] and their power transformation [31], and also in stock price

time series [3, 61, 65]. For what concerns the persistence of the prices, this property

has been tackled in the context of the agricultural futures by [67], while [24, 51] focus

on the evidence of long memory in certain stock prices and analyze also the gold mar-

ket returns. [36] show no consistent pattern of persistence in S&P 500 index futures

prices.

The microeconomic explanation of these data is far from being obvious. We are most

interested in agent based models for financial time series, and on the composition of

possible actions in the market that lead to persistence in the correlation of prices.

Specifically, we aim at reviewing some remarkable theoretical results for assessing the

presence of long-term memory. The considered approaches differ from the most part
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of literature, where the presence of long-term memory is measured through numerical

estimates [10, 11, 49, 52, 62, 68].

Beyond the mere regression on the autocorrelation function, other methods have been

developed for the numerical estimate of the long term memory, aiming at shorten-

ing the confidence intervals and improving the reliability of results: in this respect,

it is worth mentioning the Hurst exponent H , the Detrended Fluctuation Analysis

(DFA), the spectrum (within some boundaries). Literature reports also studies on

the systematic bias in the over- or under- estimate of specific procedures [7, 8, 9].

In assessing the long-term memory property, a key role is played by the presence of

heterogeneity in the agent-based model. In this respect, for what concerns the spe-

cific contest of finance, the interaction among agents leads to an imitative behavior,

that can affect the structure of the asset price dynamics. Several authors focus their

research on describing the presence of an imitative behavior in financial markets (see,

for instance, [6, 13, 16, 26]).

The traditional viewpoint on the agent-based models in economics and finance relies

on the existence of representative rational agents. Two different behaviors of agents

follow from the property of rationality: firstly, a rational agent analyzes the choices

of the other actors and tends to maximize utility and profit or minimize the risk.

Secondly, rationality consists in having rational expectations, i.e. the forecast on the

future realizations of the variables are assumed to be identical to the mathemati-

cal expectations of the previous values conditioned on the available information set.

Thus, rationality assumption implies agents’ knowledge of the market’s dynamics and

equilibrium, and ability to solve the related equilibrium equations.

[63] argues that it seems to be unrealistic assuming the complete knowledge about

the economic environment, because it is too restrictive. Moreover, if the equilibrium

model’s equations are nonlinear or involve a large number of parameters, it can be

hard to find a solution.

An heterogeneous agent systems is more realistic, since it allows the description of

agents’ heterogeneous behaviors evidenced in the financial markets [50] for a summary

of some stylized facts supporting the agents’ heterogeneity assumption). Moreover,

heterogeneity implies that the perfect knowledge of agent beliefs is unrealistic, and

then bounded rationality takes place [40].

Brock and Hommes propose an important contribution on this field [17, 18]. The

authors introduce the learning strategies theory to discuss agents’ heterogeneity in
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economic and financial models. More precisely, they assume that different types of

agents have different beliefs about future variables’s realizations and the forecast rules

are commonly observable by all the agents.

in [18] the authors consider an asset in a financial market populated by two typical

investor types: fundamentalists and chartists. An agent is fundamentalist if he/she

believes that the price of the aforementioned asset is determined by its fundamental

value. In contrast, chartists perform a technical analysis of the market and do not

take into account the fundamentals.

More recently, important contributions on this field can be found in [1, 25, 27, 35].

For an excellent survey of heterogeneous agents models see [41].

Aggregation and spreading of opinions give an insight of social interactions. Models

that allow for a opinion formation are mostly based on random interaction among

agents, and they were refined considering constraints to the social contact, as an

example modeled through scale free networks. It has already been shown that the

relevant number of social contact in financial markets is very low, being between 3

and 4 [5, 60, 66], opening the way to lattice-based models.

It is also worth citing also the interpretation of heterogeneity as diversity, in the

context of complex systems. The analysis of the diversity have become a remarkable

aspect of the decision theory for what concerning the selection of multiple elements

belonging to different families of candidates [70].

The possibility to provide theoretical results on the long-term memory of time series

generated from heterogeneous agent-based models overcomes at once the problem of

the reliability of numerical methods, the time-consuming computational time, the

need to run the algorithms many times, so to confirm the results and derive the ones

related to the mean and variance of the estimated variable, the reliability of random

variables generators, and the problem of managing many variables, that often cause

numerical instabilities. Therefore, we focus on structural models for long-term mem-

ory.

The literature on this specific subject is not wide. Some references are [15, 19, 64, 69].

The keypoint of the quoted references is to assume distributional hypothesis on pa-

rameters of models in order to detect the presence of long-term memory in time series.

It is worth citing [29], from which the present report differs: indeed, [29] is targeting

to provide a model while we propose here a review on some theoretical probabilistic

methods.
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Specifically, the theme of the detection of long-term memory is surely of interest for

economic/financial models, but yet there is a lack of theoretical estimates, directly

from the parameters of the model. This is the rational that has lead us to select

theorems and results aiming at theoretically proving the presence (or absence) of

long-term memory in models. In turn, this approach leads to conditions on model

parameters, that define the zones in which the presence of long memory is ensured,

and adds knowledge on the outcome of models, and on the composition of agents. The

present report aims at giving a critical review on the used approaches, and shows the

application of the main theorems on four different agent based models. The models

differ each from the other for the microeconomic approach, and the modeling of the

heterogeneity, even if they all refer to [35] in making forecasts on the basis of mixed

chartist/fundamentalist strategy. [20] bases on the model of [49], and generalizes it

to the study of the long-term memory of exchange rates; in [21] the maximum of

expected utility is studied, and the heterogeneity among the agents also includes mu-

tual influence and the case of dependence among their decisions; [22] also includes

the analysis of returns, through a result of [33]; [23] proposes a condition of fairness

among excess of demand and excess of supply. The presence of spot traders is an-

alyzed alongside the chartists and fundamentalist forecasts. In general, the analysis

contained in the models listed above extend some existing results [71, 72, 73] about

long-memory property arising due to the aggregation of micro units, by enlarging the

class of probability densities of agents’ parameters.

The rest of the paper is organized as follows. Section 2,3,4 and 5 collect the dis-

cussion of the theoretical results presented in [20], [21], [22] and [23], respectively.

Section 6 concludes. Section 7 is an Appendix which collects the formalization of the

mathematical concepts used throughout the paper.

2 First setting

The aim of this section is to reproduce the main results contained in [20], which refers

to long-memory for exchange rates.

2.1 The model

Consider a market populated by N agents.

In order to make a forecast ∆Pi,t+1|Ii,t of the exchange rate increment ∆Pi,t+1 con-
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ditioned to the information available at time t, Ii,t, each agent i relies on a technical

analysis forecast ∆P c
i,t+1|Ii,t and on fundamentalist forecast ∆P f

i,t+1|Ii,t, conditioned

to her/his information at time t. Let us indicate by ki the individual proportion

between the two points of view of the agent i. Thus

(∆Pi,t+1|Ii,t) = ki(∆P f
i,t+1|Ii,t) + (1− ki)(∆P c

i,t+1|Ii,t),

The exchange rate of the market is given by the average of the exchange rates asso-

ciated to the agents, i.e.

Pt =

N
∑

i=1

1

N
Pi,t. (1)

The chartist approach assumes that the investor can get information by observing the

time series of the market data. In this model we consider chartist forecast composed

by two terms: for the sake of simplicity, a forecast due to the increment of market

exchange rates made by using the simplest linear model

ht−1(Pt − Pt−1)

where ht is a deterministic function of time, plus an additive term,

ᾱi(Pt−1 − Pi,t−1)

where ᾱi ∈ D[0, 1], ∀ i, that takes into account a self correction of the agent ob-

tained by the observation of the difference between the previous market price and the

previous agent forecast. Thus we have that the chartist forecast is given by

∆P c
i,t+1|Ii,t = ht−1(Pt − Pt−1) + ᾱi(Pt−1 − Pi,t−1). (2)

So we have a linear relation between the exchange rate predicted at time t + 1 and

the variation of Pt, independent from the agent, and we have an additional stochastic

shock associated to the comparison between the market situation at time t − 1 and

the forecast made by the agent at the same date.

In the fundamentalist analysis the value of the market fundamentals is known, and

so the investor has a complete information on the estimate of the exchange rate (he

understands if the exchange rate is over or under estimated). We thus have the

following relation:

∆P f
i,t+1|Ii,t = ν(P̃i,t − Pt), (3)
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where P̃i,t is a series of fundamentals observed with a stochastic error from the agent

i at time t, i.e.

P̃i,t = P̄i,t + αi,t

with αi,t = βi,tPt and βi,t ∈ D[0, 1].

The fundamental variables P̄i,t can be described by the following random walk:

P̄i,t = P̄i,t−1 + ǫt, ǫt ∼ N(0, σ2
ǫ )

Thus

∆P f
i,t+1|Ii,t = νP̄i,t + ν(βi,t − 1)Pt, (4)

We suppose furthermore that each agent may invest in foreign risky value with

stochastic interest rate ρt ∼ N(ρ, σ2
t ) and in riskless bonds with a constant inter-

est rate r. We assume that ρ > r, to meet empirical evidence.

Let us define with di,t the demand of the foreign value associated to agent i at the

date t. Thus the wealth invested in foreign riskly value is given by Pt+1di,t and,

taking into account the stochastic interest rate ρt+1, we have that the wealth grows

as (1 + ρt+1)Pt+1di,t. The remaining part of the wealth, (Wi,t − Ptdi,t) is invested in

riskless bonds and thus gives (Wi,t − Ptdi,t)(1 + r). The wealth of the agent i at time

t+ 1 is given by Wi,t+1, and it can be written by

Wi,t+1 = (1 + ρt+1)Pi,t+1di,t + (Wi,t − Pi,tdi,t)(1 + r).

The expression of Wi,t+1 can be rewritten as

Wi,t+1 = (1 + ρt+1)∆Pi,t+1di,t +Wi,t(1 + r)− (r − ρt+1)Pi,tdi,t. (5)

The utility function associated to the agent i, and conditioned to his information at

time t, is defined by:

U(Wi,t+1|Ii,t) = E(Wi,t+1|Ii,t)− µV(Wi,t+1|Ii,t),

where E and V are the usual mean and variance operators and are given by:

E(Wi,t+1|Ii,t) = (1 + ρ)∆Pi,t+1di,t +Wi,t(1 + r)− (r − ρ)Pi,tdi,t

and

V(Wi,t+1|Ii,t) = V[(1 + ρt+1)Pi,t+1](di,t)
2.
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Each agent i can change her/his demand di,t in order to maximize the expected utility,

conditioned to her/his information at the date t.

For each agent i the first order condition is

(1 + ρ)∆Pi,t+1 − (r − ρ)Pi,t − 2µV[(1 + ρt+1)Pi,t+1]di,t = 0,

and thus we obtain

di,t = bi,tPi,t + gi,t∆Pi,t+1,

with

bi,t =
ρ− r

2µV(Pi,t+1(1 + ρt+1))
,

gi,t =
ρ+ 1

2µV(Pi,t+1(1 + ρt+1))
.

Let Xi,t be the supply of foreign value for the agent i. When the market is in equi-

librium, the interest rate, that is used by the investor for the transactions, is such

that

Xi,t = bi,tPi,t + gi,t∆Pi,t+1.

thus −Xi,t/bi,t = −Pi,t − (gi,t/bi,t)∆Pi,t+1. Continuing to follow the Kirman and

Teyssiere approach we assume that

P̄i,t =
Xi,t

bi,t
.

Setting c = −(bi,t/gi,t) =
1+ρ

r−ρ
we have that

∆Pi,t+1 = −cP̄i,t + cPi,t.

By these relations we obtain:

Pi,t = (νki/c− 1)P̄i,t +
1

c
[(βi,t − 1)νki + (1− ki)ht−1]Pt+ (6)

+
1

c
[(1− ki)(ᾱi − ht−1)]Pt−1 −

1

c
(1− ki)ᾱiPi,t−1

2.2 The long memory property of the exchange rates

By the definition of Pt given by (1), we have the following result:

Proposition 2.1. Suppose that the following conditions hold:

1. βi,t = −ht−1

νki
+ ht−1

ν
+ 1;
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2. ᾱi = (1− ki)
δ

3. ki ∼ b(p, p, 1, 1),

4. p ∈ (−1, 1).

Then, for N → +∞, we have that Pt has long memory with Hurst exponent given by

H = p+1
2
.

Proof. Let L be the difference operator such that LPi,t = Pi,t−1.

Define β̂i = −1
c
(1− ki)ᾱi, α̂iǫ̂t−1 =

1
c
(1− ki)(ᾱi − ht−1).

By hypothesis 3. and Proposition 7.16 it follows that (1 − ki) ∼ b(p, p, 1, 1). There-

fore, by applying Proposition 7.16, it follows that (1 − ki)(−
1
c
) ∼ b(p, p,−1

c
, 1). For

particular choices of ᾱi we have that β̂i obeys still to a beta distribution. As an

example, this happens if ᾱi = (1− ki)
δ. In this case β̂ ∼ b(p, p,−1

c
, δ).

By hypothesis 1., then, (6) becomes:

Pi,t =
(1/c)νki + 1

1− β̂iL
P̄i,t +

α̂iǫ̂t−1

1− β̂iL
Pt−1. (7)

By definition of Pt and P̄i,t, we can write

Pt =
N
∑

i=1

1

N
[
(1/c)νki + 1

1− β̂iL
P̄i,t +

α̂iǫ̂t−1

1− β̂iL
Pt−1]. (8)

In the limit for N → ∞ and by the definition of P̄ we have

Pt = E[
(1/c)νki + 1

1− β̂iL
P̄i,t] + E[

α̂iǫ̂t−1

1− β̂iL
Pt−1] =

Pt =

∞
∑

k=1

Pt−k ǫ̂t−k

∫ 1

0

α̂

(1− β̂L)
dF (α̂, β̂)

Suppose, as a further hypothesis, that there exist a random variable α∗ ∼ D(0, 1)

with mean µ such that α̂ = (1− β̂)α∗, and α∗ is independent from β̂. Thus

Pt =

∞
∑

k=1

Pt−k ǫ̂t−k

∫ 1

0

α∗(1− β̂)β̂k−1dF (α∗, β̂) =

=

∞
∑

k=1

Pt−k ǫ̂t−k

∫ 1

0

α∗dF (α∗)

∫ 1

0

(1− β̂)β̂k−1dF (β̂) =

=:
∞
∑

k=1

akPt−k ǫ̂t−k. (9)
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Thus

ak = c1
B(p+ k − 1, p− 1)

B(p, p)
∼ c2k

−1−p (10)

This is a characteristic of a long memory process [37]. Thus we have a long memory

model I(d) with d = p and thus Hurst exponent H = p + 1
2
[31, 32, 37, 38, 42, 46,

51].

3 Second setting

In [21], we provide a mathematically tractable financial market model that can give

an insight on the market microstructure that captures some characteristics of financial

time series.

3.1 Market price dynamics

We consider N investors trading in the market, and we assume that ωi,t is the size of

the order placed on the market by agent i at time t. This choice allows to model in-

dividual traders as well as funds managers, that select the trading strategy on behalf

of their customers. In the present analysis we consider investors getting informa-

tion from two different sources: observation of the macroeconomic fundamentals and

adjustment of the forecast performed at the previous time. Other markets character-

istics, like as the presence of a market maker, are not considered here, and they will be

studied elsewhere. Let us define with Pi,t the forecast of the market price performed

by the investor i at time t. Each of them relies on a proportion of fundamentalist P f
i,t

and of a chartist P c
i,t forecast. We can write

Pi,t = (1− βi)P
f
i,t + βiP

c
i,t, (11)

where βi are sampled by a random variable β̃ with compact support equals to [0, 1],

i.e. βi ∼ β ∈ D[0, 1], for each i = 1, . . . , N .

Parameter βi in equation (11) regulates the proportion of fundamentalist/chartist in

each agent forecast. The most βi is to 0, the most is the confidence in the return to

fundamentals. The most βi is to 1, the most the next price is estimated to be the

actual price. The shape of the distribution used for sampling the βi gives relevant

information on the overall behavior of agents.

In the fundamentalist analysis the value of the market fundamentals is known, and
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so the investor has a complete information on the risky asset (he understand over

or under estimation of price). Given the market price Pt we have the following

fundamentalist forecast relation:

P f
i,t = ν(P̃i,t−1 − Pt−1), (12)

where ν ∈ R and P̃i,t is a series of fundamentals observed with a stochastic error from

the agent i at time t, i.e.

P̃i,t = P̄i,t + αi,t,

with αi,t = ζiPt and ζi are sampled by a real random variable ζ with finite expected

value ζ̄ and independent on β̃. The fundamental variables P̄i,t can be described by

the following random walk:

P̄i,t = P̄i,t−1 + ǫt, ǫt ∼ N(0, σ2
ǫ ).

Thus

P f
i,t = νP̄i,t−1 + ν(ζi − 1)Pt−1. (13)

The chartist forecast at time t is limited to an adjustment of the forecast made by

the investor at the previous time. The adjustment factor related to the i-th agent

is a random variable γi. We assume that γi are i.i.d, with support in the interval

(1− δ, 1 + δ), with δ ∈ [0, 1]. Moreover, we suppose that

E[γi] = γ̄, i = 1, . . . , N,

and γi are independent on ζi and βi. Then we can write

P c
i,t = γiPi,t−1. (14)

We assume, that the aggregate size of the order placed by the agents at a fixed time

t depends uniquely on t. We denote it as ω̃t, and we have

ω̃t =
N
∑

i=1

ωi,t.

We assume that such aggregate size is uniformly bounded. Therefore, there exists a

couple of thresholds ω and ω such that, for each t > 0, ω < ω̃t < ω.

Market price is given by the weighted mean of trading prices associated to the agents.
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The weights are given by the size of the order. We do not consider here the bid-

ask spread, and mechanisms related to the limit order book, leaving them to future

studies. Summing up the components, we can write

Pt =

N
∑

i=1

ωi,tPi,t. (15)

Then, by (11), (60) and (15)

Pt =
N
∑

i=1

ωi,t

[

ν(1− βi)P̄i,t−1 + ν(1− βi)(ζi − 1)Pt−1 + γiβiPi,t−1

]

. (16)

3.2 Memory property: the case of independence

The scope of this section is to describe the memory property of the financial time

series Pt, in the case of absence of relations between the strategy βi, adopted by the

agent i, and the weight ωi,t of the agent i at time t.

The following result holds.

Theorem 3.1. Given i = 1, . . . , N , let βi be a sampling drawn from a random variable

β such that

E[β̃k] ∼ O(c)k−1−p + o(k−1−p) as k → +∞. (17)

Moreover, given i = 1, . . . , N , let ζi be a sampling drawn from a random variable ζ.

Let us assume that β and ζ are mutually independent.

Furthermore, suppose that there exists q > 0 such that

(E[γi])
k−1 = γ̄k−1 ∼ k−q, as k → +∞.

Then, for N → +∞ and q+p ∈ [−1
2
, 1
2
], we have that Pt has long memory with Hurst

exponent given by H = p+ q + 1
2
.

Proof. Let L be the time-difference operator such that LPi,t = Pi,t−1.

By definition of Pi,t, we have

(1− γiβiL)Pi,t = ν(1 − βi)P̄i,t−1 + ν(1− βi)(ζi − 1)Pt−1, (18)

and then

Pi,t =
ν(1− βi)

1− γiβiL
P̄i,t−1 +

ν(1− βi)(ζi − 1)

1− γiβiL
Pt−1. (19)
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By the definition of Pt and (19), we have

Pt =

N
∑

i=1

ωi,t

[ ν(1 − βi)

1− γiβiL
P̄i,t−1 +

ν(1 − βi)(ζi − 1)

1− γiβiL
Pt−1

]

. (20)

Setting the limit as N → ∞ and by the definition of P̄ , a series expansion gives

Pt = ν

∞
∑

k=1

ω̃tPt−k

∫

R

∫

R

(ζ − 1)(1− β̃)β̃k−1γ̄k−1dF (ζ, β̃). (21)

Since, by hypothesis, β̃ and ζ are mutually independent, with distributions F1 and

F2 respectively, we have

Pt = ν
∞
∑

k=1

ω̃tPt−kγ̄
k−1

∫

R

∫

R

(ζ − 1)(1− β̃)β̃k−1dF1(ζ)dF2(β̃) =

= ν

∞
∑

k=1

ω̃tPt−kγ̄
k−1

∫

R

(ζ − 1)dF1(ζ)

∫ 1

0

(1− β̃)β̃k−1dF2(β̃) =

= ν(ζ̄ − 1)

∞
∑

k=1

ω̃tPt−kγ̄
k−1(Mk−1 −Mk),

where Mk is the k-th moment of a random variable satisfying the condition (17).

Since

ω

∞
∑

k=1

Pt−k(Mk−1 −Mk) <

∞
∑

k=1

ω̃tPt−k(Mk−1 −Mk) < ω

∞
∑

k=1

Pt−k(Mk−1 −Mk)

and

Mk−1 −Mk ∼ k−p−1, (22)

then, by the hypothesis on the γi’s, we desume

γ̄k−1(Mk−1 −Mk) ∼ k−q−p−1. (23)

Therefore we have a long memory model I(d) with d = p + q + 1 and thus Hurst

exponent H = p+ q + 1
2
([31], [32], [37], [38], [51]).

Remark 3.2. We can use the Beta distribution B(p, q) for defining the random vari-

able β̃. In fact, if X is a random variable such that X ∼ B(p, q), with p, q > 0, then

X satisfies the relation stated in (17).

Remark 3.3. In the particular case γi = 1, for each i = 1, . . . , N , the long-term

memory is allowed uniquely for persistence processes. In this case it results q = 0

and, since p > 0 by definition, Theorem 3.1 assures that H ∈ (1
2
, 1].
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Remark 3.4. Structural changes drive a change of the Hurst’s parameter of the time

series, and thus the degree of memory of the process. In fact, if the chartist calibrat-

ing parameter γi or the proportionality factor between chartist and fundamentalist, βi,

vary structurally, then the distribution parameters p and q of the related random vari-

ables change as well. Therefore H varies, since it depends on q and p. Furthermore,

a drastic change can destroy the stationarity property of the time series. In fact, in

order to obtain such stationarity property for Pt, we need that p + q ∈ [−1/2, 1/2],

and modifications of q and/or p must not exceed the range.

Remark 3.5. The parameters q and p could be calibrated in order to obtain a per-

sistent, antipersistent or uncorrelated time series.

3.3 Memory property: introducing the dependence struc-

ture

This section aims to describe the long-run equilibrium properties of financial time

series, in the case in which the weights of the investors can drive the forecasts’ strate-

gies. The approach we propose allows to consider the presence of imitative behaviors

among the agents. The phenomena of the herding investors is a regularity of financial

markets. Since the empirical evidence of crises of the markets, the interests of a wide

part of the economists have been focused on the analysis of the financial systems

fragility. A part of the literature emphasized the relations between financial crises

and weak fundamentals of the economy ([2], [12] and [28]). A possible explanation of

the reasons for the fact, that asset prices does not reflect the fundamentals, can be

found in the spreading of information among investors, and in the consequent decision

to follow a common behavior.

We model the dependence structure allowing the size of the order to change the pro-

portion between fundamentalist and chartist forecasts.

Then, for each weight ωi,t, we consider a function

fωi,t
: D[0, 1] → D[0, 1] such that fωi,t

(β) = β̃, ∀ i, t. (24)

Analogously to the previous section, we formalize a result on the long-run equilibrium

properties of the time series Pt in this setting.

Theorem 3.6. Given i = 1, . . . , N , let βi be a sampling drawn from a random variable

β̃ ∈ D[0, 1].

14



Fixed ωi,t, let fωi,t
be a random variable transformation defined as in (24) such that

E[{fωi,t
(β)}k] = E[β̃k] ∼ O(c)k−1−p̃ + o(k−1−p̃) as k → +∞. (25)

Moreover, given i = 1, . . . , N , let ζi be a sampling drawn from a random variable ζ,

where β̃ and ζ are mutually independent.

Furthermore, suppose that there exists q > 0 such that

(E[γi])
k−1 = γ̄k−1 ∼ k−q, as k → +∞.

Then, for N → +∞ and q+ p̃ ∈ [−1
2
, 1
2
], we have that Pt has long memory with Hurst

exponent given by H = p̃+ q + 1
2
.

Proof. The proof is similar to the one given for Theorem 3.1.

Remark 3.7. Remark 3.2 guarantees, that the fωi,t
can transform X ∼ B(p, q) in

fωi,t
(X) ∼ B(p̃, q̃). Therefore, the changing of the strategy used by the investors,

driven by the weights ω’s, can be attained by calibrating the parameters of a Beta

distribution.

We use the B(p, q) distribution because of its statistical properties and of the several

different shapes that it can assume depending on its parameters values. In the partic-

ular case p = 1, q = 1 it is the uniform distribution. If βi are sampled in accord to

a uniform distribution then there is no prevailing preference on the strategy, and so

between either chartist or fundamentalist approach. If βi are sampled in accord to a

random variable β̃, β̃ ∼ B(p, p), p > 1 then this means that agents opinion agree on

mixture parameter values close to the mean of β. If the distribution is U-shaped, this

means that there are two most agreeable strategies.

The main result of this paper is the theoretical proof of the degree of long memory

of market price due to traders that have a specific weight in the formation of market

price. Since H = 1/2 is taken into account in the theoretical model, the long-run

equilibrium properties of uncorrelated processes represents a particular case.

4 Third setting

In [22], we focus on the long memory of prices and returns of an asset traded in a

financial market.
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4.1 The model

The basic features of the market model, that we are going to set up, are the existence

of two groups of agents, with heterogeneity inside each group.

Let us consider a market with N agents that can make an investment either in a risk

free or in a risky asset. Furthermore, the risky asset has a stochastic interest rate

ρt ∼ N(ρ, σ2
t ) and the risk free bond has a constant interest rate r. We suppose that

ρ > r for the model to be consistent.

Let Pi,t be the estimate of the price of the risky asset done by the agent i at time

t. The change of the price at time t + 1 forecasted by the i-th agent, conditioned to

her/his information at time t, It, is given by ∆Pi,t+1|Ii,t .

Let us assume that the market is not efficient, i.e. we can write the following rela-

tionship:

E(Pt+1|It) = ∆Pt+1|It + Pt. (26)

In this model, we suppose that the behavior of the investors is due to an analysis

of the market data (by a typical chartist approach) and to the exploration of the

behavior of market’s fundamentals (by a fundamentalist approach). Moreover, the

forecasts are influenced by an error term, common to all the agents:

(∆Pi,t+1|Ii,t) = (∆P c
i,t+1|Ii,t) + (∆P f

i,t+1|Ii,t) + ut, (27)

where (∆P c
i,t+1|Ii,t) is the contribute of the chartist approach, (∆P f

i,t+1|Ii,t) is associ-

ated to the fundamentalist point of view and ut is a stochastic term representing an

error in forecasts.

As a first step we assume that all the agents have the same weight in the market and

that the price Pt of the asset in the market at time t is given by the mean of the asset

price of each agent at the same time. So we can write

Pt =
1

N

N
∑

i=1

Pi,t. (28)

The chartists catch information from the time series of market prices. The forecast of

the change of prices performed by the agent i is assumed to be given by the following

linear combination:

∆P c
i,t+1|Ii,t = α

(1)
i (Pi,t − Pi,t−1) + α

(2)
i (Pt − Pt−1), (29)

with α
(1)
i , α

(2)
i ∈ R, ∀ i. Formula (29) captures the idea of a stochastic relationship

providing the estimate changes of prices by relying on a linear combination of the two
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previous price’s forecasts, each of them adjusted to the actual market prices got at

the relative time.

The fundamentalist approach takes in account the analysis made by the investors on

the fundamental values of the market.

The fundamental variables P̄i,t can be described by the following random walk:

P̄i,t = P̄i,t−1 + ǫt, ǫt ∼ N(0, σ2
ǫ ). (30)

The fundamental prices observed by the agent i at time t, P̃i,t, are assumed to be

biased by a stochastic error:

P̃i,t = P̄i,t + ᾱi,t

with ᾱi,t = βiPt, where βi, i = 1, . . . , N , are parameters drawn by sampling from

the cartesian product (1 − ξ, 1 + ξ)N , ξ > 0, equipped with the relative product

probability measure. The definition of ᾱi,t takes into account the fact that the error

in estimating depends on the adjustment performed by each agent of the market price.

More precisely, the observation of the fundamental prices is affected by the subjective

opinion of the agents on the influence on the fundamental of the market price. If

βi > 1, then agent i guesses that market price is responsible of an overestimate of the

fundamental prices. Otherwise, the converse consideration applies.

Moreover, the forecasts of the fundamentalist agents is based on the fundamental

prices and his/her forecast on market prices at the previous data. So we can write

∆P f
i,t+1|Ii,t = ν(P̃i,t − Pt), (31)

with ν ∈ R. Thus

∆P f
i,t+1|Ii,t = νP̄i,t + ν(βi − 1)Pt. (32)

Let us define di,t to be the demand of the risky asset of the agent i at the date t. Thus

the wealth invested in the risky asset is given by Pt+1di,t and, taking into account the

stochastic interest rate ρt+1, we have that the wealth grows as (1+ ρt+1)Pt+1di,t. The

remaining part of the wealth, (Wi,t − Ptdi,t) is invested in risk free bonds and thus

gives (Wi,t − Ptdi,t)(1 + r) [20].

The wealth of the agent i at time t + 1 is given by Wi,t+1, and it can be written as

Wi,t+1 = (1 + ρt+1)Pi,t+1di,t + (Wi,t − Pi,tdi,t)(1 + r).

The expression of Wi,t+1 can be rewritten as

Wi,t+1 = (1 + ρt+1)∆Pi,t+1di,t +Wi,t(1 + r)− (r − ρt+1)Pi,tdi,t (33)
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Each agent i at time t optimizes the mean-variance utility function

U(Wi,t+1) = E(Wi,t+1)− µV(Wi,t+1).

Thus:

E(Wi,t+1|Ii,t) = (1 + ρ)(∆Pi,t+1|Ii,t)di,t +Wi,t(1 + r)− (r − ρ)Pi,tdi,t

and

V(Wi,t+1|Ii,t) = V[(1 + ρt+1)(Pi,t+1|Ii,t)](di,t)
2.

Each agent i maximizes her/his expected utility with respect to his demand di,t,

conditioned to her/his information at the date t. For each agent i the first order

condition is

(1 + ρ)(∆Pi,t+1|Ii,t)− (r − ρ)Pi,t − 2µV[(1 + ρt+1)(Pi,t+1|Ii,t)]di,t = 0,

By the first order conditions we obtain

di,t = bi,tPi,t + gi,t(∆Pi,t+1|Ii,t)

with

bi,t =
ρ− r

2µV((Pi,t+1|Ii,t)(1 + ρt+1))
; gi,t =

ρ+ 1

2µV((Pi,t+1|Ii,t)(1 + ρt+1))
.

Let Xi,t be the supply function at time t for the agent i. Then

Xi,t = bi,tPi,t + gi,t(∆Pi,t+1|Ii,t). (34)

Let us denote

γi,t =
Xi,t

bi,t
, c =

1 + ρ

r − ρ
=

gi,t
bi,t

, λi :=
−cα

(2)
i

1 + cα
(1)
i

. (35)

By (27), (29), (32) and (34) we get:

Pi,t =
1

1 + c
·
1− λi

1− λiL

(

γi,t − cνP̄i,t

)

−
c

1 + c
·
1− λi

1− λiL
ut−

−
c

1 + c
·
1− λi

1− λiL

[

ν(βi − 1)− αi

]

Pt −
λi

1− λiL
Pt−1, (36)

where L is the backward time operator.

Condition (28) and equation (36) allow to write the market price as

Pt =
1

N

N
∑

i=1

{ 1

1 + c
·
1− λi

1− λiL

(

γi,t − cνP̄i,t

)

−
c

1 + c
·
1− λi

1− λiL
ut−

−
c

1 + c
·
1− λi

1− λiL

[

ν(βi − 1)− αi

]

Pt −
λi

1− λiL
Pt−1

}

. (37)
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4.2 Long-term memory of prices

This section shows the long-term memory property of market price time series. Equa-

tion (37) evidences the contribution of each agent to the market price formation.

Each agent is fully characterized by her/his parameters, and it is not allowed to

change them. Parameters are independent with respect to the time and they are

not random variables, but they are fixed at the start up of the model in the overall

framework of independent drawings.

The heterogeneity of the agents is obtained by sampling αi, i = 1, . . . , N from the

cartesian product RN with the relative product probability measure. No hypotheses

are assumed on such a probability up to this point.

In order to proceed and to examine the long-term memory property of the aggregate

time series, the following assumption is needed:

Assumption (A)

αi = ν(βi − 1) < −
1

c
. (38)

This Assumption thus introduces a correlation in the way in which actual prices Pt

play a role in the fundamentalists’ and chartists’ forecasts, and meets the chartists’

viewpoint that market prices reflect the fundamental values. Moreover, a relationship

between the parameters of the model describing the preferences and the strategies of

the investors, αi and ν, and the interest rates of the risky asset and risk free bond

(combined in the parameter c) is evidenced.

By a pure mathematical point of view, since ρ > r (and, consequently, c < −1), the

variation range of αi is, in formula (38), respected.

We assume that Assumption (A) holds hereafter.

By (37) and (38), market’s price can be disaggregated and written as

Pt =
1

N
·

1

1 + c

N
∑

i=1

1− λi

1− λiL
γi,t −

1

N
·

c

1 + c

N
∑

i=1

1− λi

1− λiL
ut−

−
1

N
·

cν

1 + c

N
∑

i=1

1− λi

1− λiL
P̄i,t −

1

N

N
∑

i=1

λi

1− λiL
Pt−1 =: A1

t + A2
t + A3

t + A4
t , (39)

and λi ∈ (0, 1), for each i = 1, . . . , N .

Equation (39) fixes the role of the parameters of the model in the composition of the

price.

The components of Pt have precise meaning.

A1
t is the idiosyncratic component of the market, and it gives the impact of the supply
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over market’s prices, filtered through agents’ forecasts parameters.

A2
t describes the common component of the market. In fact, A2

t represents the portion

of the forecast driven by an external process independent by the single investor.

A3
t is a term typically linked to the perception of the fundamentals’ value by the

agents.

A4
t , finally, takes in account that the behavior of the investors at time t in strongly

influenced by the situation of the market’s price observed at time t− 1. The analysis

of the previous results is subjectively calibrated, and this fact explains the presence

in this term of a coefficient dependent on i.

The theoretical analysis of the long-term memory of the time series (39) is carried on

through two steps:

• long memory is detected for each component of Pt;

• the terms are aggregated.

Before stating the main result on the disaggregated long memory property of the

components of Pt, we need to briefly analyze A3
t .

By the definition of P̄ given in (30), we can rewrite A3
t as

A3
t =

1

N

N
∑

i=1

−c

1 + c

1− λi

1− λiL

[

t−1
∑

j=0

ǫt−j + P̄i,0

]

, (40)

where ǫ ∼ N(0, σ2
ǫ ) and {P̄i,0}i=1,...,N is a set of normal random variable i.i.d. with

mean 0 and variance σP̄ , for each i = 1, . . . , N .

The stability of the gaussian distribution implies that

t−1
∑

j=0

ǫt−j + P̄i,0 =: Γt ∼ N(0, σ2
Γ). (41)

In particular, Γt is a stationary stochastic process.

By (40) and (41), we can write

A3
t =

1

N

N
∑

i=1

−c

1 + c

1− λi

1− λiL
Γt, (42)

The long memory property is formalized in the following result.

Theorem 4.1. Let us assume that there exists a, b ∈ (0,+∞) such that λi ∈ [0, 1]

and λi are sampled by a B(a, b) distribution.

Fixed i = 1, . . . , N , let γi,t be a stationary stochastic process such that

E[γi,t] = 0, ∀ i ∈ {1, . . . , N}, t ∈ N; (43)
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E[γi,uγj,v] = δi,jδu,vσ
2
γ , ∀ i, j ∈ {1, . . . , N}, u, v ∈ N.1 (44)

Moreover, let us assume that ut is a stationary stochastic process, with

E[ut] = 0;

E[usut] = δs,tσ
2
u. (45)

Fix r = 1, 2, 3, 4. Then, as N → +∞, the long-term memory property for Ar
t holds,

with Hurst’s exponent Hr, in the following cases:

• b > 1 implies Hr = 1/2:

• b ∈ (0, 1) and the following equation holds:

+∞
∑

h=−∞

E[Ar
tA

r
t−h] = 0, (46)

imply Hr = (1− b)/2. In this case it results Hr < 1/2, and the process is mean

reverting.

Proof. We prove the result for A1
t .

First of all, we need to show that

E

[

A1
tA

1
t−h

]

∼ h−1−b, as N → +∞. (47)

Let us examine A1
tA

1
t−h.

A1
tA

1
t−h =

1

N2(1 + c)2

N
∑

i=1

1− λi

1− λiL
γi,t

N
∑

j=1

1− λj

1− λjL
γj,t−h =

=
1

N2(1 + c)2

N
∑

i=1

(1− λi)
[

∞
∑

l=0

(λiL)
l
]

γi,t ·
N
∑

j=1

(1− λj)
[

∞
∑

m=0

(λjL)
m
]

γj,t−h.

The terms of the series are positive, and so it is possible to exchange the order of the

sums:

A1
tA

1
t−h =

1

(1 + c)2

∞
∑

m=0

∞
∑

l=0

1

N2

N
∑

i=1

N
∑

j=1

(1− λi)λ
l
i(1− λj)λ

m
j γi,t−mγj,t−h−l. (48)

In the limit as N → +∞ and setting x := λi, y := λj , (48) becomes:

A1
tA

1
t−h =

1

(1 + c)2

∞
∑

m=0

∞
∑

l=0

∫ 1

0

∫ 1

0

(1− x)xl(1− y)ymγx,t−mγy,t−h−ldF (x, y), (49)

1δi,j is the usual Kronecker symbol, e.g. δi,j = 1 for i = j; δi,j = 0 for i 6= j.
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where F is the joint distribution over x and y.

Taking the mean w.r.t. the time and by using the hypothesis (44), we get

E

[

A1
tA

1
t−h

]

=
1

(1 + c)2

∞
∑

m=0

∞
∑

l=0

∫ 1

0

∫ 1

0

(1− x)xl(1− y)ymδx,yδm,l+hσ
2
γdF (x, y) = (50)

=
1

β(a, b)
·

σ2
γ

(1 + c)2

∞
∑

l=0

∫ 1

0

(1− x)1+bx2l+h+a−1dx. (51)

By using the distributional hypothesis on λi, for each i, we get

E

[

A1
tA

1
t−h

]

=
1

β(a, b)
·

σ2
γ

(1 + c)2

∞
∑

l=0

Γ(h+ a+ 2l)Γ(b+ 2)

Γ(h+ a + b+ 2l + 2)
∼

∼
1

β(a, b)
·

σ2
γ

(1 + c)2
h−1−b. (52)

Now, the rate of decay of the autocorrelation function related to A1 is given by (52).

By using the results in [59] on such rate of decay and the Hurst’s exponent of the

time series, we obtain the thesis.

4.2.1 Aggregation of the components

In this part of the work we want just summarize the results obtained for the disag-

gregate components of the market’s forecasts done by the investors.

Theorem 4.2. Suppose that λi are sampled by a B(a, b) distribution, for each i, with

b ∈ R.

Then, for N → +∞, we have that Pt has long memory with Hurst’s exponent H given

by

H = max
{

H1, H2, H3, H4

}

, (53)

Proof. It is well-known that, if X is a fractionally integrated process or order d ∈

[−1/2, 1/2], then X exhibits the long-term memory property, with Hurst’s exponent

H = d + 1/2. Therefore, using Proposition 7.11 and Theorem 4.1, we obtain the

thesis.

Remark 4.3. Theorem 4.2 provides the long-term memory measure of Pt. The range

of the Hurst’s exponent includes as particular case H = 1/2, that correspond to

brownian motion. Thus the model can describe periods in which the efficient market

hypothesis is fulfilled as well as periods that exhibit antipersistent behavior. Moreover,
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the long-term memory property can not be due to the occurrence of shocks in the

market. This finding is in agreement with the impulsive nature of market shocks, not

able to drive long-run equilibria in the aggregates.

4.3 Long-term memory of returns

This section aims at mapping the long memory exponent of price time series gener-

ated by the model into long memory of log-returns. In order to achieve this goal,

the effect of log-transformation of a long-memory process has been analyzed. [33]

provides theoretical results on the long memory degree of nonlinear transformation

of I(d) processes only if the transformation can be written a finite sum of Hermite

polynomials. Therefore they cannot be used for examining log-returns, which the

logarithms is involved in.

The same authors provide further results through numerical analysis. Let Xt be I(d),

Yt = g(Xt) with g(·) a transcendental transformation. Numerical estimates of the

degree of long memory of Yt, d
′, suggest the following behaviour:

1. −1
2
< d < 0 antipersistence is destroyed by non-odd transformations, hence

d′ = 0;

2. d = 0 uncorrelated processes remain uncorrelated under any transformation:

d′ = 0;

3. 0 < d < 1
2
stationary long memory processes. The size of the long memory of

stationary long memory processes (0 < d < 1
2
) diminishes under any transfor-

mation (d′ ≤ d). The higher is the Hermite rank of the transforming function,

the bigger is the decrease, even if none of the functions examined can be writ-

ten as a finite sum of Hermite polynomials. If the transforming function has

Hermite rank J and it can be written as a finite sum of Hermite polynomials,

then d′ = max{0, (d− 0.5)J + 0.5}. Therefore, if J = 1, then d′ = d;

4. d ≥ 1
2
nonstationary processes. The size of the long memory diminishes under

any transformation. d′ ≤ d

Remark 4.4. From the usual results on differencing, we remark that if log(Pt) is

I(d) then the log-returns time series rt = log(Pt)− log(Pt−1) is d
′ = d− 1.

We can state the following
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Theorem 4.5. If the price history is I(d), then returns are I(d’), where

1. if −1/2 < d ≤ 0, then d′ = −1

2. if 0 < d < 1/2, then d′ = d− 1

3. (d > 1/2) the degree of long memory diminishes, but no analytical expressions

are available.

Theorem 4.5 leads to two simple important consequences.

Corollary 4.6. Uncorrelated returns (d′ = 0) are obtained if d = 1.

Corollary 4.7. Long memory in returns (d′ > 0) is obtained if d > 1.

5 Fourth setting

In [23] we model the evolution of an economic system through the agents populating

the system itself. In this regard, it is worth to focus attention to the important role

played by the diversity between units.

5.1 The model

The basic features of the market model we are going to set up, are the existence of

two groups of agents, with heterogeneity inside each group.

Let us consider a market with N agents who can invest either in a risk-free or in a

risky asset. The risk free bond has a constant interest rate r ∈ (0, 1).

Let Pt the price of the risky asset and Pi,t the estimate of it carried out by the agent i

at time t. The change of the price at time t+1 forecast by the i-th agent, conditioned

to her/his information at time t, Ii,t, is given by ∆Pi,t+1|Ii,t .

We assume that the market is not efficient, i.e. we can write the following relationship:

E(Pt+1|It) = ∆Pt+1|It + Pt (54)

where It is the information available up to time t.

The behavior of the investors is due to analysis of the market data (using a typical

chartist approach) and to the exploration of the behavior of market fundamentals
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(using a fundamentalist approach). Moreover, the forecasts are influenced by an

error term, common to all the agents:

(∆Pi,t+1|Ii,t) = (∆P c
i,t+1|Ii,t) + (∆P f

i,t+1|Ii,t) + ut, (55)

where (∆P c
i,t+1|Ii,t) is the contribution of the chartist approach, (∆P f

i,t+1|Ii,t) is asso-

ciated to the fundamentalist point of view and ut is a stochastic term representing an

error in forecasts, i.e. ut is i.i.d. with mean 0 and variance σ2
u.

As a first step, we assume that all the agents have the same weight in the market

and that the price Pt of the asset in the market at time t is given by the mean of the

asset price of each agent at the same time. So we can write

Pt =
1

N

N
∑

i=1

Pi,t. (56)

Equation (56) is a type of market clearing price condition.

We now describe the price formation mechanism of the agents.

The chartists glean information from the time series of market prices. The i-th agent’s

price change forecast is assumed to be given by the following linear combination:

∆P c
i,t+1|Ii,t = α

(1)
i (Pi,t − Pi,t−1) + α

(2)
i Pt, (57)

with α
(1)
i , α

(2)
i ∈ [0,+∞), ∀ i = 1, . . . , N . Formula (57) encapsulates the idea of a

stochastic relationship providing the estimated change in prices by relying on a linear

combination of the two previous price forecasts, adjusted to the actual market price

obtained at the relative time.

The fundamentalist approach takes the analysis made by the investors about market

fundamental value into account.

The fundamental variables P̄i,t can be described by the following random walk:

P̄i,t = P̄i,t−1 + ǫt, ǫt ∼ N(0, σ2
ǫ ). (58)

The fundamental prices observed by the agent i at time t, P̃i,t, are assumed to be

biased by a stochastic error:

P̃i,t = P̄i,t + ᾱi,t,

with ᾱi,t = βiPt, where the n-ple (β1, . . . , βN) is drawn by sampling from the cartesian

product (1−ξ, 1+ξ)N , ξ > 0, equipped with the relative product probability measure.

The definition of ᾱi,t takes into account the fact that the error in estimating depends
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on the adjustment performed by each agent of the market price. More precisely, the

observation of the fundamental prices is affected by the subjective opinion of the

agents about the influence of the market price on the fundamental. If βi > 1, then

agent i guesses that the market price is responsible for an overestimate of fundamental

prices. Otherwise, the converse situation applies.

Moreover, the forecasts of the fundamentalist agents are based on fundamental prices

and their forecasts about market prices at the previous data. So we can write

∆P f
i,t+1|Ii,t = ν(P̃i,t − Pt), (59)

with ν ∈ R. Thus

∆P f
i,t+1|Ii,t = νP̄i,t + ν(βi − 1)Pt. (60)

Remark 5.1. By comparing (57) and (60), it must be α
(2)
i = ν(βi − 1). We state

this condition for the remaining part of the paper.

Let us define di,t to be the demand of the risky asset of the agent i at the date t.

The estimated wealth of the agent i at time t + 1 is given by Wi,t+1, and it is given

by:

Wi,t+1 =

(

1 +
Pi,t+1 − Pi,t

Pi,t

)

Pi,tdi,t + (Wi,t − Pi,tdi,t)(1 + r). (61)

By (61), the expression of Wi,t+1 can be rewritten as:

Wi,t+1 = ∆Pi,t+1di,t +Wi,t(1 + r)− rPi,tdi,t. (62)

Each agent i at time t optimizes the mean-variance utility function

U(Wi,t+1|Ii,t) = E(Wi,t+1|Ii,t)− µV(Wi,t+1|Ii,t),

where V is the usual variance operator, and thus:

E(Wi,t+1|Ii,t) = (∆Pi,t+1|Ii,t)di,t +Wi,t(1 + r)− rPi,tdi,t

and

V(Wi,t+1|Ii,t) = V(Pi,t+1|Ii,t)(di,t)
2.

Each agent i maximizes her/his expected utility with respect to her/his demand di,t,

conditioned to her/his information at the date t. For each agent i the first order

condition is

(∆Pi,t+1|Ii,t)− rPi,t − 2µV[(Pi,t+1|Ii,t)]di,t = 0,
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By the first order conditions we obtain

di,t = bi,tPi,t + gi,t(∆Pi,t+1|Ii,t)

with

bi,t =
−r

2µV((Pi,t+1|Ii,t))
; gi,t =

1

2µV((Pi,t+1|Ii,t))
.

Let Xi,t be the supply function at time t for the agent i. We have the following

equilibrium relation:

Xi,t = bi,tPi,t + gi,t(∆Pi,t+1|Ii,t). (63)

Let us denote

γi,t =
Xi,t

bi,t
, c = −

1

r
=

gi,t
bi,t

, λi :=
−cα

(2)
i

1 + cα
(1)
i

. (64)

By (55), (57), (60) and (63) we get:

Pi,t =
1

1 + c
·
1− λi

1− λiL

{

γi,t − cνP̄i,t − ut

}

, (65)

where L is the backward time operator, i.e. LPi,t = Pi,t−1.

Condition (56) and equation (65) allow us to write the market price as

Pt =
1

N

N
∑

i=1

[ 1

1 + c
·
1− λi

1− λiL

{

γi,t − cνP̄i,t − ut

}]

. (66)

The parameter λi is particularly relevant in describing the heterogeneity of the agents.

Indeed, it provides information on the technical analysis of the market performed by

the i-th agent. As we will see below, the λ’s play a central role in determining the

persistence properties of the price.

5.2 Diversity and long-term memory

This section shows the long-term memory property of market price time series. In

particular, we focus on the theoretical conditions on the parameters distribution and

on the stochastic processes that are needed for long memory.

In order to proceed, the following technical assumption is needed:

Assumption 5.2. α
(2)
i < r.

The relation between the indices i and t in defining the process γi,t is outlined in

the following Assumption.
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Assumption 5.3. There exist N random variables w1, . . . , wN and a stochastic pro-

cess zt, independent on ut, such that:

• E[wj ] = ω̄ ∈ R, for each j = 1, . . . , N ;

• wi is independent on λi, for each i = 1, . . . , N ;

• zt are i.i.d., with mean 0 and variance σ2;

• for each i = 1, . . . , N and t ≥ 0, it results γi,t = zt · wi.

Assumption 5.3 states that in our model the excess of demand compensates, on

average, the excess of supply. The diversity in our model mirrors in the distributional

hypotheses on the agent-based random variables λ’s. As already stressed above, the

parameter λi provides a description of the forecast rule used by the i-th agent when

wearing a chartist hat. In this respect, homogeneity means that λi are identically

distributed, while heterogeneity holds otherwise.

In determining the distributional hypothesis on the λ’s, we basically take into account

two types of investors: impulsive traders and long run traders. The former type of

agents performs an analysis of the market, following a chartist approach, only in rare

situation. The latter type of agents deals with a technical analysis of the market

continuously in time.

We initially analyze homogeneity among agents, and then move to heterogeneity.

The first result concerns the case of a very general two-parameter distribution, able

to describe several types of agents as the value of the parameters varies.

Theorem 5.4. Let us assume that there exists a, b ∈ (0,+∞) such that λi are sam-

pled by a B(a, b) distribution, for each i = 1, . . . , N .

Then, as N → +∞, the long-term memory property for Pt holds, with Hurst’s expo-

nent HB ≤ 1/2.

Proof. To prove the result, we need to rewrite the process Pt as the sum of three

components:

Pt = Γ1
t + Γ2

t + Γ3
t , (67)
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where










































Γ1
t =

1
N(1+c)

N
∑

i=1

1− λi

1− λiL
γi,t;

Γ2
t =

−cν
N(1+c)

N
∑

i=1

1− λi

1− λiL
P̄i,t;

Γ3
t = − 1

N(1+c)

N
∑

i=1

1− λi

1− λiL
ut.

(68)

By definition of the model, the processes Γ’s are independent. Hence, we can analyze

separately the long-term memory property of the Γ’s.

Denote as λ and w the random identically distributed random variables λi and wj.

Furthermore, denote as F the joint cumulative distribution function of (λ, w) and FΛ

be the marginal distribution of λ.

In the limit for N → ∞ we have

Γ1
t = lim

N→+∞

1

N(1 + c)

N
∑

i=1

1− λi

1− λiL
γi,t = −

1

1 + c

∫ 1

0

1− λ

1− λL
wztdF (λ, w) =

= −
1

1 + c
ω̄

∫ 1

0

1− λ

1− λL
ztdFΛ(λ) = −

1

1 + c
ω̄

∫ 1

0

(1− λ)
∞
∑

k=0

(λL)kztdFΛ(λ) =

= −
1

1 + c
ω̄

∞
∑

k=0

∫ 1

0

(1−λ)λkzt−kdFΛ(λ) = −
1

1 + c
ω̄

∞
∑

k=0

[

∫ 1

0

(1−λ)λkdFΛ(λ)
]

zt−k =:
∞
∑

k=0

akzt−k,

(69)

where

ak ∼

∫ 1

0

(1− λ)λk−1dFΛ(λ) = E[λk]− E[λk+1].

Since λ ∼ B(a, b), we have:

ak ∼ k−b−2. (70)

Therefore, Γ1
t faces the same asymptotic behavior of an I(d) process, with d = −b−1.

Since b > 0, we have that Γ1
t can be represented as an integrated process of order

d < −1. Hence, Γ1
t does not have the long-term memory property.

For what regards the process Γ3
t , fixed h > 0, we have

E

[

Γ3
tΓ

3
t−h

]

= E

[ 1

N
·

−c

1 + c

N
∑

i=1

1− λi

1− λiL
ut ·

1

N
·

−c

1 + c

N
∑

j=1

1− λj

1− λjL
ut−h

]

=

= E

[ c2

(1 + c)2

∞
∑

m=0

∫ 1

0

(1− λ)λmut−mdF (λ)

∞
∑

l=0

∫ 1

0

(1− µ)µlut−h−ldF (µ)
]

=
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=
1

β(a, b)
·

c2σ2
u

(1 + c)2

∞
∑

l=0

∫ 1

0

(1− λ)1+bλ2l+h+a−1dλ =

=
1

β(a, b)
·

σ2
u

(1 + c)2

∞
∑

l=0

Γ(h+ a + 2l)Γ(b+ 2)

Γ(h + a+ b+ 2l + 2)
∼

1

β(a, b)
·

σ2
u

(1 + c)2
h−1−b. (71)

Then, [59] assures that: as N → +∞, the long-term memory property for Γ3
t holds,

with Hurst’s exponent H3 as follows:

• b > 1 implies H3 = 1/2:

• b ∈ (0, 1) and the following equation holds:

+∞
∑

h=−∞

E[Γ3
tΓ

3
t−h] = 0, (72)

imply H3 = (1 − b)/2. In this case it results H3 < 1/2, and the process Γ3
t is

mean reverting.

Since

P̄i,t =

t−1
∑

j=0

ǫt−j + P̄i,0,

then P̄i,t is a stationary process, and the arguments carried out for Γ3
t can be replicated

to state that the long memory property holds for Γ2
t asN → +∞. The Hurst exponent

is H2.

By [37], we have that

HB = max{H2, H3}. (73)

As the parameters of the Beta distribution vary, several types of continuous-time

traders may be described. Furthermore, the proof of Theorem 5.4 evidences that

the distributional hypothesis on λ may be relaxed. The following Corollary states

immediately:

Corollary 5.5. Assume that:

E[λk
i ] ∼ O(c)k−1−b + o(k−1−b) as k → +∞. (74)

Then, as N → +∞, the long-term memory property for Pt holds, with Hurst’s expo-

nent HB ≤ 1/2.
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We now move from homogeneity to agents gathered in several groups. Each group

has its own impact on the market and exhibits organized heterogeneity among its

components.

By a mathematical perspective, this assumption is equivalent to the study of the

aggregate of a mixture of absolute continuous distributions for the parameters λ’s.

More precisely, we introduce a group of investors that concentrate their attention

in a small set of events, i.e. the behavior of these agents is given by not assuming

a position for the most part of the market traffic, and take part heavily in some

particular and rare situations. We formalize this kind of behavior by using Dirac

measures δx(y) as follows:

δx(y) =















1, for x = y,

0, for x 6= y.

Theorem 5.6. Consider b1, . . . , bk ∈ (0,+∞) and A1(N), . . . , Ak(N) ⊆ {1, . . . , N}

such that λi are sampled by B(a, bj) distribution, for each i ∈ Aj(N), j = 1, . . . , k.

Moreover, consider dk+1, . . . , dn ∈ (0, 1) and Ak+1(N), . . . , An(N) ⊆ {1, . . . , N} such

that λi ∼ δdi, for each i ∈ Aj(N), j = k + 1, . . . , n.

Assume that there exists pj ∈ (0, 1) such that

lim
N→+∞

cardAj(N)

N
= pj , ∀ j = 1, . . . , n.

Furthermore, assume that λi are sampled by independent random variables.

Then, as N → +∞, Pt has the long-term memory, with Hurst’s exponent HD ≤ 1/2.

Proof. The process Pt can be disaggregated as follows:

Pt =

k
∑

j=1

Φj
t +

n
∑

j=k+1

Ψj
t , (75)

where


















Φj
t =

1
N

∑

i∈Aj(N)

[ 1

1 + c
·
1− λi

1− λiL

{

γi,t − cνP̄i,t − ut

}]

, j = 1, . . . , k;

Ψj
t =

1
N

∑

i∈Aj(N)

[ 1

1 + c
·
1− λi

1− λiL

{

γi,t − cνP̄i,t − ut

}]

, j = k + 1, . . . , n.
(76)

In order to proceed, we need to study the behavior of the k−th moments of the Dirac

distribution, with k ∈ N.
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A direct computation gives:

E

[

(δx)
k
]

=

∫ +∞

−∞

ξkδx(ξ)dξ = xk.

Therefore, the terms related to the processes Ψ’s do not contribute to the long memory

of the process Pt.

By Theorem 5.4, we have that the process Φj
t has an Hurst exponent Hj ≤ 1/2. Since

the λ’s are independent and by [37], we obtain that

HD = max{H1, . . . , Hk} ≤ 1/2, (77)

and this completes the proof.

6 Conclusions

We have shown the usage of the aggregation technique proposed in [37] for the theo-

retical proof of the long-term memory of the aggregate in financial markets populated

by heterogeneous agents. The agents are supposed to drive actively the price forma-

tion of an asset, and heterogeneity mirrors in the way to make forecasts (chartist

and fundamentalist) and in the way to technically analyze the market (distribution

of the parameters). We extend some results present in the literature about the arise

of the long memory property due to the aggregation of independent micro units. We

provide a number of results: on the long-term memory of the aggregate, on the rele-

vance of differences of contributions of agents to the long-term memory, amd on their

heterogeneity. In this regard, it is worth focusing on the role played by the diversity

between units. The analysis of the diversity has become a remarkable aspect of the

decision theory for what concerning the selection of multiple elements belonging to

different families of candidates. In some other contexts, diversity rules the connection

among heterogeneous agents to share information and collaborate or compete. In this

respect, the diversity may also be an indicator of the performance of the strategies in

a dynamic optimization framework.

7 Appendix: Mathematical definitions

This sections summarizes the main definition and theorems that we used for the proofs

in our models.
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7.1 Long-term memory

The memory is defined “long-term” or, simply, “long” if the decay of the correlation

is slow. In details:

Definition 7.1. A stationary process {Xt} is called stationary process with long mem-

ory if its autocorrelation function ρ(k) has asymptotically the following hyperbolic rate

of decay:

ρ(k) ∼ L(k)k2d−1, as k → ∞ (78)

where d ∈ (−1/2, 1/2) and L(k) is a slowly varying function, i.e. L(λk)/L(k) → 1

as k → ∞, ∀λ > 0.

The parameter d summarizes the degree of long range dependence of the series.

If −0.5 < d < 0 the series is mean reverting; if d = 0 there is no correlation between

the data and {Xt} is a short memory process. If 0 < d < 0.5, the correlation function

decays slowly with the lag k and the time series has a long range correlation, or

long memory property [20].

The term slow, referred to the decay of the autocorrelation function, must be intended

as compared to the autocorrelation function of a short memory process, that decays

to zero at an exponential rate.

The definition is extended to the time series {xt} generated by {Xt}.

The parameter d is related to the Hurst’s exponent H , and this provides methods for

its estimate.

Definition 7.2. Given a time series {xt} Hurst’s exponent H describes the degree

of dependence among the increments of the analyzed process. It can be defined as

follows:

E(xt+τ − xt)
2 ∼ cτ 2H

Several methods are available for its estimate [49, 51] and H = d+ 1
2
.

Spectral analysis can provide an estimate for H . The spectral density of a covariance

stationary time series {Xt} is given by

f(λ) = γ(0) + 2

∞
∑

h=1

γ(h)cos(λh)

where γ(h) = Cov(Xt, Xt−h) is the autocovariance function.

The spectrum of stationary processes with long range memory can be approximated
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in the neighborhood of the zero frequency as

S(f) ∝ f−α, 1 < α < 3, f → 0+

The following relation holds: H = α−1
2

[56, 57].

7.2 Fractionally integrated processes

Definition 7.3. [Integrated process of order d]

Suppose that {xt} is a zero-mean time series generated from a zero-mean, variance

σ2 white noise series {ǫt} by use of the linear filter a(L), where L is the backward

operator, so that xt = a(L)ǫt, Lkǫt = ǫt−k, and that a(L) may be written a(L) =

(1− L)−da′(L), where a′(z) has no poles or roots at z = 0. Then {xt} will be said to

be integrated of order d and denoted {xt} ∼ I(d).

To avoid a cumbersome notation, we will refer briefly to xt ∼ I(d) as for an integrated

process {xt} of order d.

Note that d need not be an integer [37]; d is also called the fractional degree of

integration of the process.

[37] gives the following remark.

Remark 7.4. If xt is an integrated process of order d and xt =
∑

∞

j=0 bjǫt−j then

bj =
Γ(j+d)

Γ(d)Γ(j+1)
, j ≥ 1.

Therefore, this leads to the equivalent definition:

Definition 7.5. (Integrated process of order d) A time series {Xt} is called fraction-

ally integrated with differencing parameter d (xt ∼ I(d)) , if

xt =

∞
∑

j=0

bjǫt−j , with bj =
Γ(j + d)

Γ(j + 1)Γ(d)

and ǫt ∼ i.i.d.(0, σ2)

The following result has been proved in [38].

Theorem 7.6. If xt = (1−L)−dǫt, then cov(xt, xt−k) =
σ2
ǫ

2π
sin(πd) Γ(k+d)

Γ(k+1−d)
Γ(1− 2d),

provided d < 1
2
. The variance of xt increases ad d increases and is infinite for d ≥ 1

2
.

By Theorem 7.6 and [37] we have:
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Corollary 7.7. ρk = corr(xt, xt−k) =
Γ(1−d)
Γ(d)

Γ(k+d)
Γ(k+1−d)

, for d < 1
2
and d 6= 0.

Remark 7.8. Of course ρk = 0 if k > 0 and d = 0, which is the white noise case.

Remark 7.9. Using the fact, derived from Sterling’s theorem, that Γ(j+a)
Γ(j+b)

is well

approximated by ja−b, it follows that ρj ≃ A1j
2d−1, bj ≃ A2j

d−1, where A1 and A2

are appropriate constraints . Hence, if d > 0, then the series xt possesses the long-

memory property.

The algebra of integrated series is quite simple. By continuing to follow [37]:

Proposition 7.10. If Xt is an integrated process of order dX , and an integrating

filter is applied to it, to form Yt = (1 − L)−d′Xt, then Yt is an integrated process of

order dY = dX + d′.

The following result is proven in due to [37] as well:

Proposition 7.11. If Xt and Yt are independent integrated processes of order, re-

spectively, dX and dY , then the sum Zt := Xt + Yt is an integrated process of order

dZ, where

dZ = max
{

dX , dY

}

.

7.3 Beta distribution and its properties

Definition 7.12. If Z is an ordinary beta-distributed random variable with support

[0, 1], the probability density function of Z is

p(z) =
1

β(a, b)
za−1(1− z)b−1, 0 ≤ z ≤ 1, (79)

where a e b are positive parameters and

β(a, b) =

∫ 1

0

za−1(1− z)b−1dz.

We refer to this distribution as B(a, b).

Proposition 7.13. If X ∼ B(a, b), then the random variable Y = 1 − X is a beta

random variable with law B(b, a).

Let us now consider C > 0, h ∈ R and a new random variable X which is related

to Z through the power transformation

Z =

(

X

C

)h

or X = CZ
1

h (80)

By the transformation in (80) we can define a generalization of the beta distribution.

35



Definition 7.14. The random variable x defined by (80) has a beta generalized dis-

tribution b(a, b, C, h) if its probability density function is defined by

f(x) =
|h|

β(a, b)C
(
x

C
)ah−1[1− (

x

C
)h]b−1 (81)

where 0 ≤ x ≤ C.

The moment Mn of order n for X is given by

Mn = Cn
β(a+ n

h
, b)

β(a, b)
= Cn

Γ(a+ b)Γ(a + n
h
)

Γ(a+ b+ n
h
)Γ(a)

. (82)

Remark 7.15. A standard beta random variable is also a generalized beta random

variable with parameters h = C = 1. Thus the properties of the beta standard random

variable can be extended to the beta generalized random variable.

The beta generalized distribution is close with respect to the class of power trans-

formations.

Proposition 7.16. Let X ∼ b(a, b, C, h) and consider

Y = rXs, (83)

where r, s ∈ R. Then Y ∼ b(a, b, rCs, h
s
).

Remark 7.17. Given X ∼ b(a, b, C, h), Proposition 7.16 implies that,

λX ∼ b(a, b, λC, h)

and

Xη ∼ b(a, b, Cη,
h

η
).
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