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Abstract. In this paper the motion of the plane symmetric Bricard
6R mechanism is studied. A simple method based on the dimensions
of intersecting varieties in the Study quadric is used to show that the
mechanism is mobile. The degree of the motion of the third link (the one
adjacent to the plane of symmetry) relative to the plane of symmetry is
found. The degree and genus of the motion of the third link relative to
the first link is also found. This curve in the Study quadric is given as the
intersection of the variety generated by the RR dyad formed by second
and third joints with the variety of displacements that keep the fourth
joint axis in the special linear line complex whose axis is the axis of the
first joint. Finally, the motion of the symmetry plane when the second
link is fixed is considered. The symmetry planes comprise the common
tangent planes to a pair of circularly symmetric hyperboloids.
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1 Introduction

At the end of the 19th century Bricard discovered several types of mobile 6R
mechanisms, [2]. In this work one of these types, the plane symmetric 6R, will
be studied in some detail. Many other workers have looked at this mechanism
previously, see for example [3] and [7] and references therein. The focus in this
work is a little different. The idea is to study the mechanism using simple ge-
ometrical techniques and then use knowledge from Algebraic geometry to give
very general results concerning the degree and genus of various curves associated
to the mechanism.

The mechanism under consideration consists of six revolute joints arranged
in a closed loop. The axes of the first and fourth joints lie in a plane Π, the fifth
and sixth joint axes are the reflections in Π of the third and second joint axes
respectively, see Figure 1.

Notice that, with this arrangement the axes of the second and sixth joint
will meet at a point on Π, as will the axes of the third and fifth joint. The line
joining these two intersection point must lie in Π and hence will meet (or be
coplanar with) the axes of first and fourth joints. Hence, all six joints lie in a
special line complex and are thus linearly dependant.
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Fig. 1. The Arrangement of Joints in the Plane Symmetric Bricard Mechanism. Note
that, for clarity, the links are not shown here.

2 Line in a Plane

The first task is to show that the mechanism is indeed mobile. Suppose we fix
the plane Π and the axis of the first joint in Π. If the mechanism is mobile
then the fourth joint will move but can only move in the plane Π. So we are led
to consider the set of rigid-body displacements that can move a line in such a
way that it remains in a fixed plane. This displacement subvariety will be a four
dimensional subvariety of Study quadric, call it X for the moment. It may be
parametriesed as a rotation about the line, composed with planar displacements
in Π. This can be thought of as a Segre variety X = P1 × P3. To be specific,
let Π be the xz-plane and assume that the fourth joint axis is the x-axis. That
is, `4 = i. The rigid-body motions that maintain `4 in the plane Π can be
parameterised using dual quatrnions as,

g = (α0 + α1j + α2εi+ α3εk)(c+ si)

= cα0 + sα0i+ cα1j − sα1k − sα2ε+ cα2εi+ sα3εj + cα3εk

This can be written as,

a0 = cα0 , c0 = −sα2,
a1 = sα0, c1 = cα2,
a2 = cα1, c2 = sα3,
a3 = −sα1, c3 = cα3.

In general, a P3×P1 Segre variety is defined by 6 degree 2 equations. These equa-
tions represent quadric hypersurfaces in P7 and can be expressed as requiring
the following matrix to have rank 1,

Rank

(
a0 a2 c1 c3
a1 −a3 −c0 c2

)
= 1.
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The six quadrics are given by the vanishing of the 2× 2 sub-determinants of the
matrix,

Q1 = a0a3 + a1a2 = 0, Q4 = a2c0 − a3c1 = 0,
Q2 = a0c0 + a1c1 = 0, Q5 = a2c2 + a3c3 = 0,
Q3 = a0c2 − a1c3 = 0, Q6 = c1c2 + c0c3 = 0.

Notice that, the Study quadric lies in the linear system formed by these quadrics,
QS = Q2 +Q5. The degree of this Segre variety is known to be

(
3+1
1

)
= 4, [6].

Intersecting this subvariety with the 3-dimensional subvariety P1 × P1 ×
P1 generated by the first three joints of the mechanism will produce a one-
dimensional variety in the Study quadric. This curve represents a rigid-body
motion that can be followed by the final link of the open loop chain formed from
the mechanism’s first three joints and links. Since the rigid motions keeps the
axis of the fourth joint in the plane Π, the reflection of the first four joints in Π
will produce the same motion of `4.

The above argument demonstrates the mobility of the mechanism since the
intersection is a curve. The degree of the motion of the third link as a curve in
the Study quadric can also be found. In [10] it was shown that the set of rigid-
body displacements that maintain a given line in a fixed linear line complex
is the intersection of the Study quadric with another quadric hypersurface in
P7. Now consider a pair of lines `a and `b, both in Π and meeting at a point
#»p . The displacement variety of group elements that maintain `4 in the special
linear line complex with axis `a will be denoted Qa and similarly Qb for the
variety of displacements that maintain `4 in the special line complex determined
by `b. Recall, that a special linear line complex is the set of all lines meeting or
parallel to the axis of the complex. Now the intersection of these three quadrics
QS ∩Qa ∩Qb, is clearly a four dimensional variety that contains the variety we
are interested in X ⊂ QS ∩ Qa ∩ Qb. As a four-dimensional subvariety of P7,
QS ∩Qa ∩Qb is a complete intersection and hence will have degree 8. However,
as a subvariety of the Study quadric it has homology class 4σ4, where σ4 is the
generator for homology in dimension 4, see [11]. Now X is only one component of
this variety, there is another component. The other component of QS ∩Qa ∩Qb
consists of the group elements that maintain the incidence between `4 and #»p , the
intersection point of `a and `b. This component can also be seen to be isomorphic
to the Segre variety P3 × P1, call it Y say. So QS ∩ Qa ∩ Qb = X ∪ Y , both X
and Y have degree 4 and hence their homology class in Qs must both be 2σ4.

Next look again at the first three joints, they form a P1 × P1 × P1 Segre
variety, This variety has homology class 2σA + 4σB in the Study quadric, see
[9]. So if we intersect the two varieties X and P1×P1×P1, the homology of the
resulting curve will be,

2σ4 ∩ (2σA + 4σB) = (2× 2 + 2× 4)σ1 = 12σ1.

In dimension 1, the homology class σ1 coincides with the degree and so we can
conclude that the degree of this motion will be 12 in general.

There is a special case to consider. Suppose the first three joins of the mech-
anism, (and hence the final three also), have the design parameters of a Bennett
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linkage, see [9]. In this case the variety of displacements that the third link can
perform is given by the complete intersection of the Study quadric with an-
other quadric hypersurface and a P5. The homology of this subvariety is thus
2σA + 2σB and so the degree of the motion followed by the third link, relative
to the symmetry plane is,

2σ4 ∩ (2σA + 2σB) = (2× 2 + 2× 2)σ1 = 8σ1.

That is, the motion is represented by a degree 8 curve in the Study quadric.
Finally here, notice that the varieties X and Y introduced above can be

generated by mechanical linkages, a spherical joint and a prismatic joint for Y
and a planar (E) joint linked to a revolute joint for X. For the last case here,
the axis of the revolute joint must be parallel to the plane of the planar joint.

3 Fixed First Link

In the previous section the motion of the third link of the mechanism was found
relative to the fixed plane Π. It is more usual to look at the relative motion of
one link relative to another link, most commonly, the motion of a link relative
to the opposite link in the loop. Here, the motion of the third link relative to
the first will be investigated.

Fixing the first link means fixing the first and second joints. The plane Π
can now rotate about the first joint. The fourth joint must still remain in Π but
now as Π moves we can see that `4 will remain in the special line complex with
axis `1. Note that this motion can be mechanically generated by a UPU linkage,
see [8]. As mentioned in the previous section, the variety of rigid-body motions
that keep a line in a fixed linear line complex is given by the intersection of the
Study quadric with another quadric hypersurface.

On the other hand, the motion of the third link must also lie in the dis-
placement subvariety generated by the second and third joints. This is an RR
dyad and from [11], the group elements produced by such a linkage are given
by the intersection of the Study quadric with a P3. So the motion of the third
link relative to the first is given by the intersection of a pair of quadrics with a
P3. Intersecting each quadric with the P3 gives a 2-dimensional quadric lying in
the P3. The intersection of two quadrics in a P3 is, in general, an elliptic quartic
curve, [6].

To investigate this more closely, the lines `1, . . . `4 will be written as dual
quaternions as,

`i = ωi + εvi = (ωixi+ ωiyj + ωizk) + ε(vixi+ viyj + vizk).

As 8-component vectors the lines will be written in partitioned form as,

`i =


0

#»ω i
0

#»v i

 .
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Now from [10], the quadric defining the displacement variety that keeps `4
in the special linear line complex defined by `1 can be written as,

gTQg = 0

where g = (a0, a1, a2, a3, c0, c1, c2, c3)T is the column vector of homogeneous
coordinates in P7. In partitioned form the 8 × 8 symmetric matrix Q can be
written as,

Q =

(
Ξ Υ
Υ 0

)
where,

Ξ =

(
0 ( #»ω 1 × #»v 4 + #»v 1 × #»ω 4)T

( #»ω 1 × #»v 4 + #»v 1 × #»ω 4) V4Ω1 +Ω1V4 +Ω4V1 + V1Ω4

)
,

and

Υ =

(
0 ( #»ω 1 × #»ω 4)T

( #»ω 1 × #»ω 4) Ω1Ω4 +Ω4Ω1

)
,

where, Ωi is the 3×3 anti-symmetric matrix corresponding to the vector #»ω i and
Vi corresponds to the vector #»v i, see [10].

The motion of the final link of the RR dyad can be parametrised by the sines
and cosines of the joint angles

g = (cos
θ2
2

+ sin
θ2
2
`2)(cos

θ3
2

+ sin
θ3
2
`3).

If we abbreviate cos θi2 to ci and sin θ2
2 to si, the above equation can be expanded

to,
g = c2c3 + c2s3`3 + s2c3`2 + s2s3`2`3.

The parametrisation can be written in partitioned 8-vector form as,

g =


c2c3 − s2s3( #»ω 2 · #»ω 3)

s2c3
#»ω 2 + c2s3

#»ω 3 + s2s3
#»ω 2 × #»ω 3

s2s3( #»ω 2 · #»v 3 + #»v 2 · #»ω 3)
s2c3

#»v 2 + c2s3
#»v 3 + s2s2( #»ω 2 × #»v 3 + #»v 2 × #»ω 3)


The variety determined by the parameterisation satisfies the equation for the
Study quadric and the 3-plane mentioned above. So substituting this into the
quadric above, gTQg = 0, will give an equation for the elliptic quartic curve:(

21TQ`3c3s3 + `T3Q`3s
2
3

)
c22

+ 2
(
1TQ`2c

2
3 + (1TQ`2`3 + `T2Q`3)c3s3 + `T3Q`2`3s

2
3

)
c2s2(

`T2Q`2c
2
3 + 2`T2Q`2`3c3s3 + (`2`3)TQ`2`3s

2
3

)
s22 = 0,

where 1 is the 8-vector corresponding to the dual quaternion 1. Notice that,
1TQ1 = 0. Now if we divide this equation through by s22s

2
3 and then replace

c2/s2 by λ and c3/s3 by µ, the above equation can be written in the form,

a(µ)λ2 + 2b(µ)λ+ c(µ) = 0,
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where

a(µ) = 21TQ`3µ+ `T3Q`3,

b(µ) = 1TQ`2µ
2 + (1TQ`2`3 + `T2Q`3)µ+ `T3Q`2`3,

c(µ) = `T2Q`2µ
2 + 2`T2Q`2`3µ+ (`2`3)TQ`2`3.

In general, it is possible to solve for λ in terms of µ by using the familiar formula
for solving quadratic equations. The appearance of a square root in the solution
confirms that the curve is not rational in general. However, if the discriminant of
the quadratic vanishes identically, then we do obtain a rational parameterisation
of the curve. A rational quartic curve in P3 must have a singularity, hence the
condition for the curve to be rational is the same as the condition for it to have
a singularity. This is a very similar situation to the Grashof condition for planar
4-bar mechanisms, see [4]. The discriminant of the quadratic is a quartic in µ,

b(µ)2 − a(µ)c(µ) = ∆4µ
4 +∆3µ

3 +∆2µ
2 +∆1µ+∆0,

The coefficients are functions of the design parameters of the mechanism,

∆4 =
(
1TQ`2

)2
,

∆3 = 2
(
1TQ`2

)(
1TQ`2`3

)
+ 2
(
1TQ`2

)(
`T2Q`3

)
− 2
(
1TQ`3

)(
`T2Q`2

)
,

∆2 = 2
(
1TQ`2

)(
`T3Q`2`3

)
+
(
1TQ`2`3

)2
+ 2
(
1TQ`2`3

)(
`T2Q`3

)
+
(
`T2Q`3

)2
− 4
(
1TQ`3

)(
`T2Q`2`3

)
−
(
`T2Q`2

)(
`T3Q`3

)
,

∆1 = 2
(
1TQ`2`3

)(
`T3Q`2`3

)
+ 2
(
`T2Q`3

)(
`T3Q`2`3

)
− 2
(
1TQ`3

)(
(`2`3)TQ`2`3

)
− 2
(
`T3Q`3

)(
`T2Q`2`3

)
,

∆0 =
(
`T3Q`2`3

)2
−
(
`T3Q`3

)(
(`2`3)TQ`2`3

)
.

Where, for example, 1TQ`2 = #»ω 2 · ( #»ω 1 × #»v 4) + #»ω 2 · ( #»v 1 × #»ω 4) + #»v 2 · ( #»ω 1 ×
#»ω 4). The geometric meaning of this term vanishing can be found by considering
coordinates with origin at #»p , the common point of the two lines `1 and `4 in Π.
By choosing this point as origin both #»v 1 = #»v 4 =

#»
0 and the condition becomes,

#»v 2 · ( #»ω 1 × #»ω 4) = 0. Now, since #»ω 1 × #»ω 4 is normal to Π we can see that the
condition implies that the plane defined by the line `2 and #»p must be normal to
Π.

Space precludes a full analysis of the five conditions above. Note, however,
that singularity is a precondition for the elliptic quartic to degenerate into two or
more rational components. The possible degenerations of this mechanism have
been recently studied in [3] and [7].
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A little more can be said about the case where the discriminant does not
vanish identically. In general, the discriminant is a quartic in the variable µ. Such
a quartic can have 0, 2 or 4 real roots. Solving for λ in terms of µ gives a map
from the configuration curve of the mechanism to θ2, or more precisely cot(θ2/2).
Away from the roots of the discriminant, this map is clearly 2-to-1. Recalling
that the configuration curve is an elliptic quartic, Harnack’s theorem indicates
that the curve can have up to 2 real ovals. That is, the curve can have one or
two disjoint real components. In terms of the plane symmetric mechanism this
means that it may have one or two disjoint modes of operation. Since the modes
are disjoint, to get from one mode to the other the mechanism will have to be
disassembled and reassembled in the other mode. Hence these are often refered
to as assembly modes of the mechanism. This phenomenon occurs in planar
and spherical 4-bar mechanism where both 1 assembly mode and 2 assembly
mode mechanisms are possible, see [4]. If the discriminant has four real roots
then the configuration curve must have two real ovals and moreover the second
joint, directed along `2 will not rotate fully in either assembly mode, such a
joint is usually called a rocker. When the discriminant has only 2 real roots the
configuration curve has just one assembly mode and the second joint is still a
rocker. If the discriminant doesn’t have any real roots, then the second joint
must be a crank, meaning that it is fully rotatable. However, in this case extra
information is required to tell whether the curve has one or two assembly modes.
More details on these ideas can be found in [5], but essentially the roots of the
discriminant correspond to ramification, or branch points of the map from the
configuration curve to the P1 determined by the second joint angle. Note also, the
intersection of quadric surfaces in space is also of interest in Computer Graphics
and CAD and the above analysis has also been considered in [12].

4 Second Link Fixed

Although the mechanism is plane symmetric so far the possibility that one of
the links performs a plane symmetric motion has not been considered. Fixing
the second link of the mechanism it is clear that fifth link will perform a plane
symmetric motion, the reflection of the second link in Π. In this section the
motion of Π as the mechanism moves will be considered.

If the second link is fixed then the second and third joint axes are fixed. So
the axes of the first joint `1 will rotate about the axis of the second joint to
form a regulus of a one-sheeted hyperboloid of revolution. Likewise, `4 forms
such a regulus about `3. Now, as the mechanism moves the symmetry plane Π
will contain both joint axes `1 and `4. If a plane contains a line from a regulus
of a hyperbolid then it must also contain a line from the other regulus on the
hyperboloid, so that the intersection has degree 2. Hence, such a plane must be
tangent to the hyperboloid at some point. So we can see that, as the mechanism
moves the plane Π is always a common tangent to the two hyperboloids formed
by the lines `1 and `4. To study planes in P3 it is usual to consider plane as point
in a dual P3. The tangent planes to a quadric surface form a quadric surface in
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the dual P3. If the quadric surface is given by an equation of the form,

#»r TM #»r = 0,

where M is a symmetric 4×4 matrix and #»r T = (x, y, z, w) are the homogeneous
coordinates of P3. Then the equation satisfied by the “points” in the dual P3

will be, (
#»q ∗
)T

Adj(M) #»q ∗ = 0,

where #»q ∗ are the coordinates of a plane in the dual space and Adj(M); the
adjugate matrix of M .

The common tangent planes to a pair of hyperboloids can be seen to be
represented by the intersection of a pair of quadric surfaces in the dual P3. As
above, this is, in general an elliptic quartic curve.

5 Conclusion

The above is of necessity, rather sketchy. Nevertheless the work contains some
observations which would appear to be novel. In particular, the identification
of the configuration curve of the mechanism as an elliptic quartic curve and
the determination of the motion of the symmetry plane as an elliptic quartic
in the dual P3. These ideas prompt several questions about these mechanisms;
are there designs of plane symmetric Bricard 6Rs with 2 assembly modes? The
1-parameter family of planes determined by Π as the mechanism moves will be
the envelope of a plane curve, what is the degree of this curve and how does it
lie in relation to the mechanism?
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J., Merlet JP. (eds) Advances in Robot Kinematics 2016. Springer Proceedings in
Advanced Robotics, vol 4, pp 139–147. Springer, Cham

9. J.M. Selig, 2014, “Some remarks on the RRR linkage”, in Advances in Robot Kine-
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