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Abstract We obtain the distance between the exact and approximate distributions of par-
tial maxima of a random sample under power normalization. It is observed that the Hellinger
distance and variational distance between the exact and approximate distributions of partial
maxima under power normalization is the same as the corresponding distances under linear
normalization.
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parameterization, variational distance
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1 Introduction

Let X1, X2, . . . , Xn be independent and identically distributed (iid) random variables
with common distribution function (df) F and Mn = max(X1, X2, . . . , Xn), n ≥ 1.
Then F is said to belong to the max domain of attraction of a nondegenerate df
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H under power normalization (denoted by F ∈ Dp(H)) if, for n ≥ 1, there exist
constants αn > 0, βn > 0, such that

lim
n→∞ P

(∣∣∣∣Mn

αn

∣∣∣∣
1

βn

sign(Mn) ≤ x

)
= H(x), x ∈ C(H), (1)

the set of continuity points of H , where sign(x) = −1, 0, or 1 according as x < 0,
= 0, or > 0. The limit df H in (1) is called a p-max stable law, and we refer to [5] for
details.

The p-max stable laws. Two dfs F and G are said to be of the same p-type if F(x) =
G(A | x |B sign(x)), x ∈ R, for some positive constants A,B. The p-max stable laws
are p-types of one of the following six laws with parameter α > 0:

H1,α(x) =
{

0 if x ≤ 1,

exp{−(log x)−α} if 1 < x;

H2,α(x) =
⎧⎨
⎩

0 if x < 0,

exp{−(− log x)α} if 0 ≤ x < 1,

1 if 1 ≤ x;

H3(x) =
{

0 if x ≤ 0,

e− 1
x if 0 < x;

H4,α(x) =
⎧⎨
⎩

0 if x ≤ −1,

exp{−(− log(−x))−α} if −1 < x < 0,

1 if 0 ≤ x;
H5,α(x) =

{
exp{−(log(−x))α} if x < −1,

1 if −1 ≤ x;
H6(x) =

{
ex if x ≤ 0,

1 if 0 < x.

Note that H2,1(·) is the uniform distribution over (0, 1). Necessary and sufficient
conditions for a df F to belong to Dp(H) for each of the six p-types of p-max stable
laws were given in [5] (see also [3]).

As in [8], we define the generalized log-Pareto distribution (glogPd) as W(x) =
1 + log H(x) for x with 1/e ≤ H(x) ≤ 1, where H is a p-max stable law, and the
distribution functions W are given by

W1,α(x) =
{

0 if x < e,

1 − (log x)−α if e ≤ x;

W2,α(x) =
⎧⎨
⎩

0 if x < e−1,

1 − (− log x)α if e−1 ≤ x < 1,

1 if 1 < x;
W3(x) =

{
0 if x ≤ 1,

1 − 1
x

if 1 < x;

W4,α(x) =
⎧⎨
⎩

0 if x < −e−1,

1 − (− log(−x))−α if −e−1 ≤ x < 0,

1 if 0 < x;
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W5,α(x) =
⎧⎨
⎩

0 if x < −e,

1 − (log(−x))α if −e ≤ x < −1,

1 if −1 < x;

W6(x) =
⎧⎨
⎩

0 if x < −1,

1 + x if −1 ≤ x ≤ 0,

1 if 0 < x;
and the respective probability density functions (pdfs) are the following:

w1,α(x) = α

x
(log x)−(α+1), x ≥ e;

w2,α(x) = α

x
(− log x)(α−1), e−1 ≤ x < 1;

w3(x) = 1

x2
, x > 1;

w4,α(x) = −α

x

(− log(−x)
)−(α+1)

, −e−1 ≤ x < 0;

w5,α(x) = −α

x

(
log(−x)

)(α−1)
, −e ≤ x < −1;

w6(x) = 1, −1 ≤ x ≤ 0;

where the pdfs are equal to 0 for the remaining values of x.
See also [1] and [9] for more details on generalized log-Pareto distributions. The

von-Mises type sufficient conditions for p-max stable laws were obtained in [6].

Von Mises-type parameterization of generalized log-Pareto distributions. The
von Mises-type parameterization for generalized log-Pareto distributions is given by

V1(x) = 1 − {1 + γ log x}−1/γ ,

x > 0, (1 + γ log x) > 0, whenever γ ≥ 0, and

V2(x) = 1 − {
1 − γ log(−x)

}−1/γ
,

x < 0,
(
1 − γ log(−x)

)
> 0, whenever γ ≤ 0,

where the case γ = 0 is interpreted as the limit as γ → 0. Let v1 and v2 denote the
densities of V1 and V2, respectively. The dfs of generalized log-Pareto distributions
can be regained from V1 and V2 by the following identities:

W1,1/γ (x) =
{

0 if x < e,

V1(e
−1/γ x1/γ ) if e ≤ x, γ > 0;

W2,−1/γ (x) =
⎧⎨
⎩

0 if x < e−1,

V1(e
−1/γ x−1/γ ) if e−1 ≤ x < 1,

1 if 1 < x, γ > 0;

W4,1/γ (x) =
⎧⎨
⎩

0 if x < −e−1,

V2(−e1/γ (−x)1/γ ) if −e−1 ≤ x < 0,

1 if 0 < x, γ < 0;
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Fig. 1. Densities of glogPds

W5,−1/γ (x) =
⎧⎨
⎩

0 if x < −e,

V2(−e1/γ (−x)1/γ ) if −e ≤ x < −1,

1 if −1 < x, γ < 0.

Note that limγ→0 V1(x) = W3(x), x > 1, and limγ→0 V2(x) = W6(x), x ∈ [−1, 0].
Graphical representation of generalized log-Pareto pdfs. In Fig. 1, observe that
the pdfs v1 approach the standard Pareto pdf as γ ↓ 0, and the pdfs v2 approach the
standard uniform pdf as γ ↑ 0.

The Hellinger distance, also called the Bhattacharya distance, is used to quantify
the similarity between two probability distributions, and this was defined in terms
of the Hellinger integral introduced by [4]. In view of statistical applications, the dis-
tance between the exact and the limiting distributions is measured using the Hellinger
distance. Inference procedures based on the Hellinger distance provide alternatives to
likelihood-based methods. The minimum Hellinger distance estimation with inlier
modification was studied in [7]. In [10], the weak convergence of distributions of
extreme order statistics (defined later in Section 2) was examined.

In the next section, we study the variational distance between the exact and asymp-
totic distributions of power normalized partial maxima of a random sample and the
Hellinger distance between these. The results obtained here are similar to those in
[10].

2 Hellinger and variational distances for sample maxima

We recall a few definitions for convenience.

Weak domain of attraction. If a df F satisfies (1) for some norming constants and
nondegenerate df H , then F is said to belong to the weak domain of attraction of H .

Strong domain of attraction. A df F is said to belong to the strong domain of at-
traction of a nondegenerate df H if
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lim
n→∞ sup

B

∣∣∣∣P
(∣∣∣∣Xn:n

αn

∣∣∣∣
1/βn

sign(Xn:n) ∈ B

)
− H(B)

∣∣∣∣ = 0,

where sup is taken over all Borel sets B on R.

Limit law for the kth largest order statistic [5]. Let X1:n ≤ · · · ≤ Xn:n denote the
order statistics from a random sample X1, . . . , Xn, and for i = 1, . . . , 6, let

lim
n→∞ P

(∣∣∣∣Xn:n
αn

∣∣∣∣
1/βn

sign(Xn:n) ≤ x

)
= Hi,α(x).

Then it is well known that, for integer k ≥ 1,

lim
n→∞ P

(∣∣∣∣Xn−k+1:n
αn

∣∣∣∣
1/βn

sign(Xn−k+1:n) ≤ x

)
= Hi,α(x)

k−1∑
j=0

(− log Hi,α(x))j

j !
= Hi,α,k(x), say. (2)

Hellinger distance [10]. Given dfs F and G with Lebesgue densities f and g, the
Hellinger distance between F and G, denoted H ∗(F,G), is defined as

H ∗(F,G) =
(∫ ∞

−∞
(
f 1/2(x) − g1/2(x)

)2
dx

)1/2

. (3)

The results in this section will be proved for the p-max stable law H2,1(·), and the
other cases can be deduced by using the transformation T (x) = Ti,α(x) given by
Ti,α(x) = H−1

i,α (x)◦H2,1(x) = H−1
i,α (x), x ∈ (0, 1) with T1,α(x) = exp((− log x)−1/α),

T2,α(x) = exp(−(− log x)1/α), T3(x) = − 1
log x

, T4,α(x) = − exp(− log x)−1/α),

T5,α(x) = − exp((− log x)1/α), and T6(x) = log x.
We assume that the underlying pdf f is of the form f (x) = w(x)eg(x) where

g(x) → 0 as x → r(H) = sup{x : H(x) < 1}, the right extremity of H . Equiva-
lently, we may use the representation f (x) = w(x)(1 + g∗(x)) by writing f (x) =
w(x)eg(x) = w(x)(1 + (eg(x) − 1)), g(x) → 0 as x → r(F ). The following result
is on Hellinger distance, and its proof is similar to that of Theorem 5.2.5 of [10] and
hence is omitted.

Theorem 1. Let H be a p-max stable law as in (1), and F be an absolutely continuous
df with pdf f such that f (x) > 0 for x0 < x < r(F ) and f (x) = 0 otherwise. Assume
that r(F ) = r(H). Then

H ∗(F n,H) ≤
{∫ r(H)

x0

(
nf (x)

w(x)
− 1 − log

(
nf (x)

w(x)

)
dH(x)

+ 2H(x0) − H(x0) log H(x0)

)}1/2

+ c

n
, (4)

where c > 0 is a universal constant.

Theorem 2. Suppose that H is a p-max stable law as in (1), and w(x), Ti,α(x) be the
corresponding auxiliary functions with w(x) = h(x)/H(x) and Ti,α(x) = H−1

i,α (x),
where h denotes the pdf of H . Let the pdf f of the df F have the representation
f (x) = w(x)egi(x), T (x0) < x < r(Hi), for some i and = 0 if x > r(Hi), where
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0 < x0 < 1, and let gi satisfy the condition

∣∣gi(x)
∣∣ ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

L(log x)−αδ if i = 1,

L(− log x)αδ if i = 2,

L 1
xδ if i = 3,

L(− log(−x))−αδ if i = 4,

L(log(−x))αδ if i = 5,

Lxδ if i = 6,

(5)

where L, δ are positive constants. If Fn(x) = F(An|x|Bnsign(x)) with

An =

⎧⎪⎨
⎪⎩

1 if i = 1, 2, 3, 4,

n if i = 5,

1/n if i = 6,

and Bn =

⎧⎪⎨
⎪⎩

n−1/α if i = 2, 4,

n1/α if i = 1, 3,

1 if i = 5, 6,

then

H ∗(Fn,H
) ≤

{
Dn−δ if 0 < δ ≤ 1,

Dn−1 if δ > 1,

where D is a constant depending only on x0, L, and δ.

Proof. Without loss of generality, we may assume that H = H2,1. The other cases
can be deduced by using the transformation T (x) = Ti,α(x). We apply Theorem 1
with x0,n = xn

0 , 1
2 < x0 < 1. Note that the term 2H2,1(x

n
0 )−H2,1(x

n
0 ) log H2,1(x

n
0 ) =

xn
0 − xn

0 log xn
0 can be neglected. Putting fn(x) = f (x1/n)/n, since g is bounded on

(x0, 1), we have from (4)

H ∗(Fn,H
) ≤

{∫ 1

xn
0

(
nfn(x)

w2,1(x)
− 1 − log

(
nfn(x)

w2,1(x)

))
dH2,1(x)

}1/2

+ c

n
.

Then ∫ 1

xn
0

(
nfn(x)

w2,1(x)
− 1 − log

(
nfn(x)

w2,1(x)

))
dH2,1(x)

=
∫ 1

xn
0

(
f (x1/n)

w2,1(x)
− 1 − log

(
nf (x1/n)

w2,1(x)

))
dH2,1(x)

=
∫ 1

xn
0

(
eh(x1/n) − 1 − h

(
x1/n

))
dx

≤
(

1

2
+ L(− log x

1/n

0 )

3! + · · ·
) ∫ 1

xn
0

(
h
(
x1/n

))2
dx

≤ D∗
∫ 1

0

(
h
(
x1/n

))2
dx
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≤ D∗ L2

2

∫ 1

0

(− log x1/n
)2δ

dx

= D∗ L2

2
n−2δ

∫ ∞

0
e−yy2δdy

= D∗ L2

2
n−2δΓ (2δ + 1),

and H ∗(F n
n ,H(x)) ≤ (D∗ L2

2 n−2δΓ (2δ+1))1/2+ c
n

= (D∗
2 )1/2Ln−δ(Γ (2δ+1))1/2+

cn−1. Hence,

H ∗(Fn,H
) ≤

{
Dn−δ if 0 < δ ≤ 1,

Dn−1 if δ > 1,

where D = (D∗
2 )1/2L

√
Γ (2δ + 1) is a constant depending only on x0, L, and δ, and

Γ is the gamma function.

Theorem 4 below gives the variational distance between exact and approximate
distributions of power normalized partial maxima. To prove the result, we use the
next result, the proof of which is similar to that of Theorem 5.5.4 of [10] and hence
is omitted.

Theorem 3. Let Hj , j = 1, . . . , 6, denote the p-max stable laws as in (1), and H =
Hj,α,k denote the limit laws of the power normalized kth largest order statistic as
in (2). Let F be an absolutely continuous df with pdf f such that f (x) > 0 for
x0 < x < r(F ). Let r(F ) = r(H) and w(x) = h(x)/H(x) on the support of H ,
where h is the pdf of H . Then

sup
B

∣∣P ((
Xn:n, . . . , Xn−k+1:n

) ∈ B
) − Hk(B)

∣∣
≤

( k∑
j=1

∫ r(H)

x0

(
nf (x)

w(x)
− 1 − log

(
nf (x)

w(x)

))
dHj (x) + Hk(x0) + kHk−1(x0)

+
k−1∑
j=1

∫
xj >x0,xk<x0

log

(
nf (xj )

w(xj )

)
dHk(x)

)1/2

+ ck

n
.

Theorem 4. Let Hj , j = 1, . . . , 6, denote the p-max stable laws as in (1) and
w(x), Ti,α be the corresponding auxiliary functions with w(x) = h(x)/H(x) and
Ti,α(x) = H−1

i,α (x). Let the pdf f of the absolutely continuous df F satisfy the repre-

sentation f (x) = w(x)egi(x), T (x0) < x < r(H), for some i and = 0 if x > r(H),
where 1/2 < x0 < 1, and gi satisfy the condition given in (5). Then

sup
B

∣∣∣∣P
{(∣∣∣∣Xn−j+1:n

An

∣∣∣∣
1/Bn

sign(Xn−j+1:n)
)k

j=1
∈ B

}
− Hk(B)

∣∣∣∣
≤ D

(
(k/n)δk1/2 + k/n

)
,

where D is a constant depending on x0, L, and δ, and An and Bn are defined in
Theorem 2.
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Proof. We prove the result for the particular case H = H2,1. Applying Theorem 3
with x0,n = xn

0 , 1
2 < x0 < 1, we get

sup
B

∣∣P ((|Xn:n|nsign(Xn:n), . . . , |Xn−k+1:n|nsign(Xn−k+1:n)
) ∈ B

) − Hk(B)
∣∣

≤
( k∑

j=1

∫ r(H)

xn
0

(
nfn(x)

w2,1(x)
− 1 − log

nfn(x)

w2,1(x)

)
dHj (x) + Hk(x

n
0 ) + kHk−1(x

n
0 )

+
k−1∑
j=1

∫
xj >xn

0 ,xk<xn
0

log
nfn(xj )

w2,1(xj )
dHk(x)

)1/2

+ ck

n
.

Note that Hk(x) = O((k/x)m) uniformly in k and 0 < x < 1 for every positive
integer m. Moreover, since h is bounded on (x0, 1), we have

k∑
j=1

∫ r(H)

xn
0

(
nfn(x)

w2,1(x)
− 1 − log

(
nfn(x)

w2,1(x)

))
dHj (x)

=
k∑

j=1

∫ 1

xn
0

(
f (x1/n)

w2,1(x)
− 1 − log

(
f (x1/n)

w2,1(x)

))
hj (x)dx

=
k∑

j=1

∫ 1

xn
0

(
eh(x1/n) − 1 − log

(
eh(x1/n)

))
hj (x)dx

=
k∑

j=1

∫ 1

xn
0

(
1 + h

(
x1/n

) + · · · − 1 − h
(
x1/n

))
hj (x)dx

≤
(

1

2
+ L(− log x

1/n

0 )

3! + · · ·
) k∑

j=1

∫ 1

xn
0

(
h
(
x1/n

)2) (− log x)j−1

(j − 1)! dx

≤
(

1

2
+ L(− log x

1/n

0 )

3! + · · ·
) k∑

j=1

∫ 1

0

(
h
(
x1/n

)2) (− log x)j−1

(j − 1)! dx

≤
(

1

2
+ L(− log x

1/n

0 )

3! + · · ·
) k∑

j=1

∫ 1

0

L2(− log x1/n)2δ

2

(− log x)j−1

(j − 1)! dx

=
(

1

2
+ L(− log x

1/n

0 )

3! + · · ·
)

L2

2

k∑
j=1

n−2δ

Γ (j)

∫ 1

0
(− log x)2δ+j−1dx

= D∗
k∑

j=1

n−2δ

Γ (j)

∫ ∞

0
e−yy2δ+j−1dx

= D∗n−2δ
k∑

j=1

Γ (2δ + j)

Γ (j)
,

where Γ is the gamma function. Now, note that (see, e.g., [2], p. 47)
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k∑
j=1

Γ (2δ + j)

Γ (j)
≤ D′

k∑
j=1

j2δ.

Therefore,

D∗n−2δ
k∑

j=1

Γ (2δ + j)

Γ (j)
≤ D∗D′n−2δ

k∑
j=1

j2δ ≤ D∗∗n−2δk2δ+1,

where D∗∗ = D∗D′. Hence,

sup
B

∣∣P ((
Xn

n:n, . . . , Xn
n−k+1:n

) ∈ B
) − Hk(B)

∣∣
≤ (

D∗∗n−2δk2δ+1)1/2 + ck/n = D
(
(k/n)δk1/2 + k/n

)
,

proving the result.
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