
SIMULATING SELF-SIMILAR VBR TRAFFIC

MALINI SUBRAMANIAM

(WEKOI0151)

A Graduation Exercise submitted to the Faculty ofComputer Science and

Information Technology University Malaya in partial fulfillment of the

requirements for the Degree of
Bachelor in Computer Science

FACULTV OF COMPUTER SCIENCE AND INFORMATION

TECHNOLOGY, UNIVERSITY MALAYA

MARCH 2004

Univ
ers

ity
 of

 M
ala

ya

(Dedicatedto my jJ_mma andjJ_ppa

Univ
ers

ity
 of

 M
ala

ya

ABSTRACT

Studies on the nature of VBR traffic have shown that VBR traffic has self­

similar characteristics. However, most
traditional network traffic models that are used

in the simulation ofVBR traffic are unable to capture these self-similar qualities. As

VBR traffic is forecasted to be a substantial portion of network traffic, it is imperative

that the self-similarity ofVBR traffic be taken into account whilst designing both

network simulators and real networks.

The aim of this project is to implement a module that will simulate self­

similar VBR traffic. The module will be implemented in an existing network

simulator: the UMJaNetSim network simulator. Users of the simulator will then be

able to generate self-similar VBR
traffic.

II

Univ
ers

ity
 of

 M
ala

ya

ACKNOWLEDGEMENTS

The completion of this project would have been impossible without the guidance

ofmy supervisor, Mr. Phang Keat Kong. I
would like to thank him for patiently guiding

me throughout these past few months. Special thanks to my moderator, Mr. Ang Tan

Fong.

I would like to thank Mr. Nithyanandan Natchimuthu for his advice and support.

Special thanks to Mr. Chow Chee Onn for his advice and guidance.

J would also like to thank my fellow group members; Wai Hong, Lee Wen, Geck

Hiang, Andrew, Chin We, Yee Boon, and Kai Yan, for all their help and support.

Last but not least, I would like to express my deepest gratitude to my family for

their love and encouragement and to my friends Giri and Manmeet for their support.

III

Univ
ers

ity
 of

 M
ala

ya

TABLE OF CONTENTS

ABSTRACT

ACKNOWLEDGEMENTS

TABLE OFCONTENTS

LISTOF FIGURES

LISTOF TABLES
Xl

LISTOF GRAPHS
Xl

CHAPTER 1 : INTRODUCTION

1.1 : Introduction

1.1.1 " Introduction to Network Simulation

1.1.2 " Introduction to VBR Video

1

1

1

1.2 : Motivation
1

1.3 : Project Objectives
2

1.4 : Project Scope
2

1.5 : Project Schedule
3

1.6 : Report Organization
3

ii

ill

IV

X

IV

Univ
ers

ity
 of

 M
ala

ya

CHAPTER 2 : LITERATURE REVIEW

2.1 : Introduction
6

2.2: Network Simulation
6

2.2.1 " Simulation
7

2.2.1.1 " Discrete-EventSimulation
8

2.2.2 " Examples ofNetwork Simulators
9

2.2.2.1 " NISTATMIHFCNetwork Simulator 9

2.2.2.2,' SimATMNetwork Simulator 10

2.2.2.3 " UMJaNetSim Network Simulator 12

2.3 Network Traffic Models
12

2.3.1 " Types ofNetwork Traffic
13

2.3.2 " Types ofNetwork Traffic Models
13

2.3.2.1 " RenewalModels
14

2.3.2.2,' Markov Models
15

2.3.2.3 " Self-Similar Traffic Models 16

v

Univ
ers

ity
 of

 M
ala

ya

CHAPTER 3 : SELF-SIMILAR TRAFFIC

3.1 : Introduction
17

3.2 : Self-similarity
17

3.3.: Self-similar Data Traffic
19

3.3.1 : Continuous-timeDefinition
20

3.3.2: Discrete-time Definition 21

3.3.3 : Hurst Parameter, H
21

3.3.4 : Long-range Dependence
22

3.3.5: Heavy-tailedDistributions
23

3.3.6 : SpectralDensity
23

3.4 : Self-similar Estimation Techniques 24

3.4.1 : RlS Plot
24

3.4.2: Variance-time Plot
25

3.4.3 : Whittle's Estimator
26

3.5 : Examples of Self-similar Data
Traffic 27

3.5.1 : Ethernet Traffic
28

3.5.2: VBR (VariableBit Rate) Video Traffic
31

3.5.2.1 : Paper 1 : "Analysis, Modeling and 31

Generation ofSelf-Simlar VBR Video

Traffic" (Garett & Willinger, 1994)

3.5.2.2: Paper 2: "Long-Range Dependence in 32

Variable-Bit-Rate Video Traffic"
(Beran et al, 1995)

VI

Univ
ers

ity
 of

 M
ala

ya

3.6 Methods of Simulating Self-similar Traffic

3.6.1 : RandomMidpointDisplacement (RMD)

3.6.2: Fast Fourier Transformation (FFT)

3.6.3 : On/OffProcesses

33

33

33

34

CHAPTER 4 : SYSTEM ANALYSIS

4.1 : Introduction

4.2 : Overview ofUMJaNetSim Simulator

4.3 : Software Requirements

4.3.1 : Java Programming Language

4.3.2 : JCreator 2.5LE

35

35

37

37

39

40
4.4 : Minimal Hardware Requirements

CHAPTER 5 : SYSTEM DESIGN

5.1 : Introduction
41

5.2 : Components of UMJaNetSim
41

5.2.1 : JavaSim
42

5.2.2 : SimComponent 42

5.2.3 : Siml'arameter 43

5.2.4 : SimClock 43

5.2.5 : Simlivent 44

5.2.6: Object Serialization and Load/Save Operations 44

Vll

Univ
ers

ity
 of

 M
ala

ya

5.3 : Simplified View of Implementation 45

5.4 : Design Issues
46

CHAPTER 6: SYSTEM IMPLEMENTATION

6.1 : Introduction
47

6.2 : Implementation Steps 47

6.3 : Method ofGenerating Self-similar Traffic
48

6.3.1 " Self-similar TrafficModule in theNISTATMIHFC 48

Network Simulator

6.4 : Implementation of VBR Self-similar Traffic Module in 49

UMJaNetSim

6.4.1 " Topology Used in UMJaNetSim with the 52

VBR Self-Similar Module as the TrafJic Source

6.4.2 " Properties of VBR Self-SimilarModule 53

6.4.3 " Self-Similar Calculation Methods 55

6.5 : Conclusion
58

CHAPTER 7 : SYSTEM TESTING

7.1 : Introduction
59

7.2 : Testing with the RIS Statistic 59

7.3 : Testing Results
61

7.4 : Conclusions
65

VIll

Univ
ers

ity
 of

 M
ala

ya

CHAPTER 8 : CONCLUSION

8.1 : Conclusion

8.2 : System's Strengths

8.3 : System's Weaknesses

8.4 : Future Enhancements

67

67

68

68

REFERENCES

APPENDIX

69

72

IX

Univ
ers

ity
 of

 M
ala

ya

LIST OF FIGURES

Figure 2.1 :Ways to study a system 7

Figure 2.2 : Simulation framework ofSimATM
11

Figure 3.1 : Cantor set with five levels of recursion 19

Figure 3.2 : Pictorial "proof' of self-similarity in Ethernet traffic 30

Figure 3.3 : Self-similarity in VBR video 32

Figure 4.1 : Overall architecture ofUMJaNetSim
36

Figure 4.2 : Screenshot of JCreator 2.5LE
39

Figure 5.1 : Components in UMJaNetSim 41

Figure 5.2 : Simplified View of Implementation 45

Figure 6.1 : VBR Self-Similar component in UMJaNetSim 0.49 50

Figure 6.2 : Topology in UMJaNetSim with VBR Self-Similar 53

module as traffic source

Figure 6.3 : VBR Self-Similar properties (unique properties ticked) 53

Figure 6.4 : Error message that appears ifHurst parameter is
not 54

within 0.5 and 1.0

Figure 6.5 : Graph displaying the changing bit rate 55

Figure 6.6 : Methods involved in generating self-similar data 56

Figure Al : 'go' Batch File Appendix

Figure A2 : cmd.exe Appendix

Figure A3 : UMJaNetSim Network Simulator Appendix

Figure A4 : Simple topology Appendix

Figure AS : Pop-up Appendix

Figure A6 : Selecting the VBR Self-Similar Application Appendix

Figure A7 :Name request Appendix

x

Univ
ers

ity
 of

 M
ala

ya

Figure A8 : Component created Appendix

Figure A9 : Error message Appendix

Figure AlO : "Connect Mode" button Appendix

FigureAll : "End Connect" button Appendix

Figure A12 : Selecting "Properties" Appendix

Figure A13 : Properties of vbrl Appendix

Figure A14 : "Manage" button Appendix

Figure A15 : Route Table Appendix

Figure A16 : Route Table updated Appendix

Figure A 17 : Properties of bte2 Appendix

Figure Al8 : "Start" button Appendix

Figure A19 : Graph displaying changing bit rate Appendix

Figure A20 : "Pause" button Appendix

Figure A21 : "Reset" button Appendix

LlST OF TABLES

Table 7.1 : Test Results 61

Table Al : Gantt chart for project schedule Appendix

LIST OF GRAPHS

Graph 7.1 : Test results on C program 62

Graph 7.2 : Test results on Java program,
mean bit rate = 100 Mbits/s

63

Graph 7.3 : Test results on Java program,
mean bit rate = 500 Mbits/s

63

Xl

Univ
ers

ity
 of

 M
ala

ya

Figure A8 : Component created Appendix

Figure A9 : Error message Appendix

Figure AlO : "Connect Mode" button Appendix

Figure All : "End Connect" button Appendix

Figure Al2 : Selecting "Properties" Appendix

Figure A13 : Properties of vbrl Appendix

Figure A14 : "Manage" button Appendix

Figure A15 : Route Table Appendix

Figure A16 : Route Table updated Appendix

Figure A17 : Properties of bte2 Appendix

Figure A18 : "Start" button Appendix

Figure A19 : Graph displaying changing bit rate Appendix

Figure A20 : "Pause" button Appendix

Figure A2l : "Reset" button Appendix

LIST OF TABLES

Table 7.1 : Test Results
61

Table AI: Gantt chart for project schedule Appendix

LIST OF GRAPHS

Graph 7.1 : Test results on C program
62

Graph 7.2 : Test results on Java program,

mean bit rate = 100 Mbits/s

63

Graph 7.3 : Test results on Java program,

mean bit rate = 500 Mbits/s

63

Xl

Univ
ers

ity
 of

 M
ala

ya

Graph 7.4 : Test results on Java program,

mean bit rate = 1000 Mbits/s

Graph 7.5 : Test results on Java program,

mean bit rate = 2500 Mbits/s

64

64

XII

Univ
ers

ity
 of

 M
ala

ya

CHAPTER 1: INTRODUCTION

1.1 : Introduction

1.1.1 : Introduction to Network Simulation

Network simulation is a technique used to simulate networks with the ultimate

objective of understanding and building better networks. There are many types of

network simulators that have/are being developed; one such simulator is

UMJaNetSim which was developed at the Faculty ofComputer Science and

Information Technology, University ofMalaya.

1.1.2 : Introduction to VBR Video

Video services have been forecasted to be a substantial portion of emerging

broadband networks. VBR video can be divided into two classes, video conferences

and entertainment video. Video is a succession of regularly spaced still pictures

called frames. Each frame is represented in digital format by a coding algorithm and

subsequently compressed to save bandwidth.

1.2 Motivation

As mentioned in 1.1.2, VBR video will be a major part of network traffic. Statistical

source models of video traffic are needed to design networks that deliver acceptable

picture quality at minimum cost. Research has shown self-similarity is an inherent

Univ
ers

ity
 of

 M
ala

ya

characteristic of VBR traffic. Traditional traffic models are unable to capture the self­

similarity characteristics of
network traffic. Using unsuitable traffic models will

result in inaccurate simulation performance.

Simulating self-similar VBR
traffic will enable a greater understanding towards the

mechanics of both self-similarity and VBR traffic.

1.3 Project Objectives

The objective of this project is to implement a VBR traffic module into an existing

network simulator, UMJaNetSim
that uses a self-similar traffic generation method.

In order to do this, various research has to be conducted; on the concepts of self­

similarity, on the characteristics ofVBR traffic, on the structure of the network

simulator, UMJaNetSim
and on how to implement a module into the simulator.

The ultimate aim of this entire project is to study and
understand the concept of self­

similarity in today's network traffic. Implementation
of a module will also help one

understand the workings of a network
simulator.

1.4 Project Scope

The scope of the project is
as follows:

(i) Develop a VBR traffic module that generates self-similar

traffic in an existing network simulator

2

Univ
ers

ity
 of

 M
ala

ya

(ii) Allow the user to input the input data rate and self-similarity

parameter, H

(iii) Show the simulation results - the output data rate

(iv)
.

Test the outputs to see if they are indeed self-similar by way of

self-similar estimation techniques

1.5 Project Schedule

The development of the entire project consists of the following tasks:

(i) Literature Review

(ii) System Analysis

(iii) System Design

(iv) System Coding/Implementation

(v) System Testing/Evaluation

(vi) Documentation

The project schedule is depicted in a Gantt chart at the Appendix (Table AI),

J.6 Report Organization

Chapter I is the introductory chapter. The first part presents a very brief introduction

on network simulation and VBR traffic. The rest of the chapter consists of the project

motivation, project objectives, project scope, project
schedule and report

organization.

3

Univ
ers

ity
 of

 M
ala

ya

Chapter 2 is the literature review. The concept of simulation and
discrete-event

simulation is viewed. A few examples ofnetwork simulators that
have been

developed are listed. Section 2.3 lists the types of traffic in today's networks. This

section also lists the types ofnetwork traffic
models used to simulate network traffic.

The third chapter deals with the main subject of this project, self-similar traffic.
The

first section in this chapter is a short introduction, and this is followed by a definition

of self-similarity. Section 3.3 contains important terms that are frequently used when

speaking in terms of self-similar data traffic.
The following section lists three self­

similar estimation techniques. Section 3.5 discusses three studies conducted on

Ethernet and VBR video traffic that have shown that these traffic types are self­

similar in nature. The last section lists a few methods for simulating self-similar

traffic.

Chapter 4 covers the System Analysis. The first section is an introduction to the

chapter. Section 4.1 is an overview of UMJaNetSim,
the simulator into which the

VBR traffic module will be implemented. Sections 4.3 and 4.4 list the software and

hardware requirements, respectively.

The next chapter, Chapter 5, is the System Design. Section 5.1 is an introduction to

the chapter. Section 5.2 discusses the components in
UMJaNetSim. A simplified

view ofthe implementation of the VBR
module is given in Section 5.3, while the last

section, Section 5.4, looks at two important design
issues.

4

Univ
ers

ity
 of

 M
ala

ya

Chapter 6 is discusses the implementation
of the VBR self-similar module into the

system. It lists the steps taken towards the
implementation (6.2), the chosen method

for generating self-similar traffic (6.3),
the implementation into UMJaNetSim itself

and ends with a conclusion on the implementation phase (6.5).

Chapter 7 is on system testing. The first part of the chapter
is a brief introduction and

this is followed by a discussion on the testing method used. Section 7.3 lists the test

results and Section 7.4 concludes the testing.

The last chapter, Chapter 8, lists
the overall conclusion of the project as

well as the

system's strengths and
weaknesses. A I ist of future enhancements is also given.

The Appendix contains the
Gantt chart for the project schedule and a user manual.

The user manual lists the steps that need to be taken to run the simulator and self-

similar module.

5

Univ
ers

ity
 of

 M
ala

ya

CHAPTER 2 : LITERATURE REVIEW

2.1 : Introduction

This chapter is divided into three parts; a brief introduction, a section on network

simulation and a section on network traffic models.

Section 2.2 of this chapter is about network simulation. It looks at discrete-event

simulation and cites a few examples ofnetwork simulators.

Section 2.3 lists the types oftraffic in today's networks as well the different types of

models that can be used to simulate traffic.

2.2 : Network Simulation

Telecommunications and computer networks have become the basis of the world's

economic and scientific infrastructure (Hlavacs et al, 1999). Although the speed of

networks is growing faster and faster, there are still problems in sending data from

one terminal or computer to another as bottlenecks and congestion occur. It is

therefore imperative that careful planning is done when installing or upgrading large

networks. Simulation is a very important technique that can be used in planning the

capacity of networks.

6

Univ
ers

ity
 of

 M
ala

ya

2.2.1 : Simulation

Simulation is one of the most widely used operations-research and management

science techniques (Kelton & Law, 2000). It is a technique that involves computers

simulating operations of real-world facilities. The real-world facilities are usually

called systems.

Figure 2.1 (Kelton & Law, 2000) maps out the different ways to study a system. It

can be seen that simulation is mathematical model used to experiment with a model

of the system.

Experiment
with a model

of the system

Experiment
with the actual

system

/
Physical
model

Mathematical

model

Analytical
model

Simulation

Figure 2.1 : Ways to study a system

Systems can be categorized as either discrete or continuous. In a discrete system, the

state variables change instantaneously at separate points in time, whereas in a

continuous system, the state variables change continuously with respect to time.

7

Univ
ers

ity
 of

 M
ala

ya

2.2.1.1 " Discrete-Event Simulation

Discrete-Event Simulation is concerned with the modeling of the system as it evolves

over time. Discrete-event simulation models have been applied to various real-world

situations, and all these models have a number of common components:

(i) System state: This is the collection of state variables that are

necessary to describe the system at a particular time

(ii) Simulation clock: This is a variable that gives the current value

of the simulated time

(iii) Event list: A list that contains the next time when each type of

event will occur

(iv) Statistical counters: These are variables used for storing

statistical information about system performance

(v) Initialization routine: A subprogram to initialize the simulation

model at time 0

(vi) Timing routine: A subprogram that determines the next event

from the event list and then advances the simulation clock to

.

the time the event is supposed to take place

(vii) Event routine: This is a subprogram that updates the system

state when a particular type of event occurs

8

Univ
ers

ity
 of

 M
ala

ya

(viii) Library routines: This is a set of subprograms used to generate

random observations from probability distributions that were

determined as part of the simulation model

(ix) Report generator: A subprogram that computes estimates of

the desired measures of performance and produces a report

when the simulation ends. The estimates are taken from

statistical counters

(x) Main program: This is a subprogram that invokes the timing

routine to determine the next event and then transfers control to

the corresponding event routine to update the system state

appropriately. The main program checks for termination and

invokes the report generator when the simulation is over

2.2.2 : Examples ofNetwork Simulators

2.2.2.1 : NISTATMIHFC Network Simulator

This simulator was developed at the National Institute of Standards and Technology

(NIST) to provide a flexible testbed for both studying and evaluating the performance

of ATM (Asynchronous Transfer Mode) and HFC (Hybrid Fiber Coax) networks.

This tool is based on a network simulator developed at the Massachusetts Institute of

Technology (in the United States of America) that provides support for discrete-event

simulation techniques and has graphic user interface (GUI) capabilities.

9

Univ
ers

ity
 of

 M
ala

ya

NIST has developed this tool using both the C programming language and the X

Window System running on a UNIX platform. It gives the user an interactive

modeling environment with a graphical user interface.

The ATM/HFC Network Simulator allows the user to:

(i) Create different network topologies

(ii) Set the parameters of component operation

(iii) Save/load the different simulated configurations

While the simulation is running, various instantaneous performance measures can be

displayed in graphical or text form on the screen or saved to files for subsequent

analysis.

2.2.2.2 : SimA TMNetwork Simulator

SimATM is an ATM (Asynchronous Transfer Mode) network simulation

environment. Its aim is to provide researchers and designers of networks with a tool

for teaching, research, analysis and design of ATM networks (Alberti et al, 1998).

SimATM utilizes an event-driven simulation technique to achieve ATM simulation at

1Mthe cell level. It was developed in C++ to the Windows 95/NT operating system.

This simulator has extensive simulation statistical data gathering, which allows the

simulations analysis even in network transitory or stationary state. It enables the

direct comparison of simulation results with queuing system models of the queuing

theory.

10

Univ
ers

ity
 of

 M
ala

ya

Figure 2.2 (Alberti et al, 1998) shows the simulation framework SimATM. The

simulator was developed using an event-driven simulation technique. SimATM's

kernel has a command interpreter, an event queue, an event manager and several

instances of ATM networks. The command interpreter executes commands over

many ATM networks, but only one ATM network can be simulated at anyone time.

The event queue contains the events that are waiting to be executed. These events are

taken by the event manager from the event queue and sent to their destination

equipment or application blocks inside the network under simulation. These

application blocks are able to follow events received from the event manager to the

destination element's layer or its associated queuing system, thus ending the event's

life cycle in the simulator. Simulation continues until it reaches the predetermined

maximum simulation time, or until there are no more events left to be executed in the

network's event queue.

KerTlfl!

Figure 2.2: Simulation framework ofSimATM

11

Univ
ers

ity
 of

 M
ala

ya

2.2.2.3 : UMJaNetSim Network Simulator

Developed at the Faculty of Computer Science and Information Technology of

University Malaya, UMJaNetSim is a discrete-event network simulator. The concepts

used in the development ofUMJaNetSim were adopted from the NIST ATM/HFC

Network Simulator (Section 2.2.2.1). UMJaNetSim was developed using the Java

programming language and can be run under either the QUI or non-QUI mode.

UMJaNetSim allows the simulation of various network configurations and traffic

loads. Researchers and network planners can use it to study the behavior of network

protocols. A more detailed description of the structure and the components of

UMJaNetSim is given in Chapters 4 and 5 respectively.

2.3 : Network Traffic Models

Network traffic models are used in traffic engineering to predict network performance

and to evaluate congestion control schemes. Traffic models vary in their ability to

model various correlation structures and marginal distributions (Adas, 1997). In

network simulation, it is important to use traffic models that capture the statistical

characteristics of actual traffic; models that are unable t� do this result in poor

network performance.

Subsection 2.3.1 lists the different types found in today's networks. The following

subsection, subsection 2.3.2, gives an overview of the different models that can be

used to simulate network traffic.

12

Univ
ers

ity
 of

 M
ala

ya

2.3.1 : Types ofNetwork Trafflc

There are different types of traffic in today's networks. Listed below are some types

of traffic:

(i) VBR (Variable Bit Rate) traffic

(ii) Ethernet traffic

(iii) ATM (Asynchronous Transfer Mode)

(iv) WAN (Wide Area Network) traffic

(v) Telnet traffic

(vi) FTP (File Transfer Protocol) traffic

(vii) TCP data traffic

However, it is not easy to make a strict distinction between these traffic types, as

transporting multimedia traffic will be a dominant factor in future networks (Hlavacs

et al, 1999). For example, VBR encoded video will be transported over A™ and

Ethernet networks, and multimedia traffic will be an important part of web traffic.

2.3.2 : Types ofNetwork Traffic Models

While generating artificial network traffic, streams of requests can occur on several

different levels of description. Stream S of a request is characterized by a sequence of

observations

.. 00, X (t 11-1), X (l n), X (t 11-+1), ...

at time points

.... , l 11-1 ,
/ /1, In+ I, ,

13

Univ
ers

ity
 of

 M
ala

ya

The X (t i), are usually modeled by a family of random variables with a known

probability distribution function and time index t. If the set ofpossible values (the

state space) is finite/countable, the process is called a discrete-state process and if not,

it is called a continuous-state process.

2.3.2.1 : Renewal Models

Tn a renewal process, the X(t) are independent and identically distributed but their

distribution function is allowed to be general. Independent here means that the

observation at time t does not depend on any observation in the past or future, the

autocorrelation function for all lags k f 0 is therefore equal to zero.

Renewal processes can be used to model arrivals that are strictly independent from

each other. For example:

(i) The arrival of users to a company/computer facility

(ii) The arrival of network traffic packets, if the observed network

traffic shows no autocorrelation

(iii) A stream of commands issued to an application, if no

interdependencies on past results are observed.

Examples of renewal models:

(i) Poisson Processes

(ii) Bernoulli Processes

14

Univ
ers

ity
 of

 M
ala

ya

2.3.2.2 : Markov Models

Markov processes describe dependencies between the X(t). A Markov process with

discrete state space is called a Markov chain. A set of random variables {X} is called

a discrete-time Markov chain if the probability that the next observed value (state)

will be Xn+! =j depends only on the current state x, = i and is given by Pu. The

dependency thus reaches back one unit in time and is also independent of the time the

property has spent in its current state.

Markov processes can be used to model processes where the observations depend

only on the previous observed value:

(i) User behavior: The next action is determined by the previous

action including perhaps a return value

(ii) Network or system state change/failure

(iii) Network traffic, if the observed traffic shows none or little

autocorrelation

Examples ofMarkov models:

(i) Markov Modulated Traffic models

(ii) Markov Modulated Poisson models

15

Univ
ers

ity
 of

 M
ala

ya

2.3.2.3 : Self-Similar Traffic Models

Empirical measurements of traffic have often shown the property of self-similarity.

Self-similarity can be described by the Hurst parameter, H for which:

0.5 < H < 1

H= 0.5 indicates no self-similarity, H=l indicates perfect self-similarity. If the

equality holds only for variances and autocorrelation functions, the process is called

second order self-similar.

Self-similar traffic has been observed in Ethernet and ATM traffic, Telnet and FTP

traffic, web traffic and VBR video traffic. The topic of self-similarity regarding

network traffic is discussed further in the next chapter (Chapter 3).

16

Univ
ers

ity
 of

 M
ala

ya

CHAPTER 3 : SELF-SIMILAR TRAFFIC

3.1 : Introduction

Studies on the nature of high-speed network traffic such as Ethernet LAN traffic

(Leland et al, 1995) and VBR video traffic (Garrett & Willinger, 1994), (Beran et al,

1995) have shown that these types of traffic exhibit self-similar characteristics which

are not captured by traditional traffic models such as Poisson and Markovian models.

The first section of this chapter provides a definition of the term 'self-similar'. The

following section, Section 3.3 defines important terms tl�at are closely related to self­

similarity.

Section 3.4 discusses methods used to estimate the self-similarity of given data traffic

and the succeeding section discusses two examples of self-similar data traffic;

Ethernet traffic and VBR video traffic. The last section, Section 3.6, mentions a few

methods to generate self-similar traffic.

3.2 : Self-similarity

The term 'self-similar' was first coined by Benoit B. Mandelbrot, a renowned

mathematician. The concept of self-similarity is related to the concepts of chaos

theory and fractals, and has been implemented in a variety of fields such as

astronomy and mathematics.

17

Univ
ers

ity
 of

 M
ala

ya

An occurrence that is self-similar behaves the same way when looked at different

degrees of resolution or different scales on a dimension. The Cantor set, which is

widely used in books on fractals and chaos, helps illustrate the concept of self-

simi larity (Stallings, 1998). Figure 3.1 depicts the construction of a Cantor set with

five levels of recursion. The following rules are applied:

(i) The set begins with the closed interval [0,1] which is represented by a

line segment.

(ii) The middle third of the line is removed.

(iii) The middle third of the lines created by the preceding step is removed
for each succeeding step.

The recursive process above can be also be defined as follows:

S; represents the Cantor set after i levels of recursion.

So == [0, I]

S I
== [0, 1/3] u [2/3,1]

S2 == [0, 1/9] u [2/9, 1/3] u [2/3, 7/9] u [8/9, 1]

S3;::: { [0, 1127] u [2/27, 1/9J u [2/9, 7/27] u [8/27, 1/3] u

[2/3,19/27] u [20/27, 7/9J u [8/9,25/27] u [26/27,1]}

and so on.

18

Univ
ers

ity
 of

 M
ala

ya

So

[d
��
� � � �

crJ S2

� � S3

�� n S4

It can be seen from the Cantor set that there are structures at small scales, and that

these structures repeat. A self-similar structure contains smaller replicas of itself at all

scales (Stallings, 1998). It is noted however, that these properties do not hold ad

infinitum for real-life phenomenon, and do breakdown after a certain point.

DO
DO DO
�.� �� �� ��

Figure 3.1 : Cantor set with five levels of recursion

3.3 : Self-Similar Data Traffic

Figure 3.1 gives a pattern that is reproduced exactly at different scales; it is

consequently called exact self-similarity. Exact self-similarity can be constructed for

a deterministic time series (Chow, 200 I). It is better however, to view data traffic as a

stochastic process.

There are two ways of defining stochastic processes: continuous-time definition and

discrete-time definition, and these are mentioned in subsections 3.3.1 and 3.3.2

19

Univ
ers

ity
 of

 M
ala

ya

respectively. The remaining subsections define certain important terms related to self-

similar data traffic such as the Hurst parameter, H, and long-range dependence

(LRD).

3.3.1 " Continuous-time Definition

Continuous-time definition can be defined based on a direct scaling of the continuous

time variable (Stallings, 1998). A stochastic process, x(t) is statistically similar with

parameter H (0.5 :; H:; 1) if for any real a > 0, the process a-Hx(at) has the same

statistical properties as x(t). Parameter H, the Hurst parameter, is defined in

subsection 3.3.3.

The following conditions can describe the relationship:

1. E[(x(l)] = E[x�.�t)J
a

Mean

2.
. Var[x(at)]

Var[(x(t)] = 211
a

Variance

'"I
J. Autocorrelation

An example of a process that is based on this definition is the fractional Brownian

motion (FBM) process. This process is a generalization of the more familiar

Brownian motion process.

20

Univ
ers

ity
 of

 M
ala

ya

3.3.2 : Discrete-time Definition

For a stationary time series x, an In-aggregated time series x(m) = {x, (JIll, k = 0,1, 2, .. }

can be defined by summing the original time series over adjacent and non-

overlapping blocks of size In. This can be expressed as :

1 kill

(111)=- vxk �Xi
In i=km-Im-l)

A process x is said to be exactly self-similar with parameter � (0< � < 1) if for all

In = 1,2,3, .. we have (Stallings, 1998) :

Variance

Rrlm) (k) = Rx (k) Autocorrelation

Parameter � is related to the Hurst parameter, H, whereby:

H = 1- W 12)

For a stationary process, the variance of the time average decays to zero at the rate of

1 1 m. For self-similar processes, the variance of the time average decays more

slowly.

3.3.3: Hurst Parameter, H

The Hurst parameter, H, IS the parameter of self-similarity. It was named after H.E.

Hurst, a hydrologist, who studied the water-flow behavior of different rivers.

The Hurst parameter represents the degree of self-similarity in the observed traffic. If

the value of the Hurst parameter is between 0.5 and I, the traffic is said to be self-

21

Univ
ers

ity
 of

 M
ala

ya

similar (Ramakrishnan, 1999). The nearer H is to 1, the more self-similar the traffic,

while a value ofH = 0.5 indicates the absence of self-similarity. To be more precise,

H is a measure of the persistence of a statistical phenomenon and is a measure of the

length of the long-range dependence of stochastic processes (Stallings, 1998).

3.3.4 : Long-range Dependence

Long-range dependence is a very significant property of self-similar processes. It

reflects the existence of clustering and bursty characteristics at all time scales - which

are the persistent characteristics of self-similar processes.

Long-range dependence is defined in terms of the autocovariance C(T) as T increases.

The autocovariance ofmany processes rapidly decays with T. For example, a short­

range dependent process satisfies the condition that its autocovariance decays at least

as fast as exponentially (Stallings, 1998) :

C(k) � a
Ikl

as Ikl � 00, 0 < a < 1

where � denotes that the two expressions on the two sides are asymptotically

proportional to each other.

A long-range dependent process, on the other hand, exhibits a hyperbolically

decaying autocovariance :

C(k) � Ikl 'Il as Ikl � 00, 0 < fJ < 1

� is related to the Hurst parameter, H, where H = 1- (�/2).

22

Univ
ers

ity
 of

 M
ala

ya

3.3.5 tlleavy-tailedDistributions

Heavy-tailed distributions and long-range dependence are very closely related. A

random variable Z has a heavy-tailed distribution if

Pr{Z> x} � ex-a, x ----+ 00,

where 0 < a < 2 is called the tail index (or shape parameter), and e is a positive

constant. The tail of the distribution decays hyperbolically (Willinger & Park, 2000).

An example of a heavy-tailed distribution is the Pareto distribution, which has been

observed in various phenomena. The tail of the Pareto distribution decays much

slower than exponential; and thus the term heavy tail (Stallings, 1998) .
.

.

3.3.6 : Spectral Density

In the frequency domain, an equivalent formulation of long-range dependence can be

stated. ln more specific terms, the power spectral density obeys a power law near the

ongin:

S(ro) � _1_ as ro ----+ 0, 0 < y < 1
I ro I Y

The spectral density for a discrete-time stochastic process is defined as :

'"

S(to) = I R(k)e -jkw

k=-<YJ
y = 1 - f3 = 2H -1

For short-range dependence (SRD) processes, the power spectral density remains

f n i te as ro ----+ O.

23

Univ
ers

ity
 of

 M
ala

ya

3.4 : Self-Similar Estimation Techniques

This section discusses a few ways of testing for and estimating the degree of self-

similarity of a given time series of data by estimating the Hurst parameter, H.

3.4.1 : RlS Plot

This is a graphical method of estimating the Hurst parameter and is based on the

rescaled adjusted range statistics R/S, which was originally introduced by H.E.

Hurst. For a stochastic process x(t) defined at discrete time instances

{XI, t = 0, 1, 2, }, the rescaled range of x(t) over a time interval N is defined as the

ratio RIS:

where M(N) is the sample mean over the time period N :

M(N) = _!_fXiN /=1

In the ratio above, the numerator is a measure of the range of the process. The

denominator is the sample standard deviation. For a self-similar process, the ratio has

the following characteristic for a large value of N:

with H> 0.5

24

Univ
ers

ity
 of

 M
ala

ya

The equation above can be written again as :

log[R / S] � H log(N) - H log(2)

If log [R / Sj versus N is plotted on a log-log graph, the result should fit a straight line

with slope H.

3.4.2,' Variance-time Plot

The variance-time plot is another graphical method of estimating the Hurst parameter,

H. For an aggregated time-series, X(II7) of a self-similar process, the variance is as

follows (for a large value ofm) :

V ((III)) Var(x)
arx �--

mP

and the self-similarity parameter, H = 1- (f3/2). The equation above can written as:

loglVar (X(III))] � 10g[Var(x)] - � log(m)

10g[Var(x)] is a constant that is independent ofm, and therefore if Var (x(m)) versus m

is plotted on a log-log graph, the result should be a straight line with a slope of - �.

The plot can be generated easily from data series x(t) by generating the aggregate

process at different levels of aggregation m and then computing the variance. Slope

values between -1 and 0 suggest self-similarity.

25

Univ
ers

ity
 of

 M
ala

ya

3.4.3 : Whittle's Estimator

Whittle's estimator is a non-graphical method that provides confidence intervals. In

this technique, it is assumed that the process is actually self-similar. It gives an

estimate of the Hurst parameter with a certain confidence (Ramakrishnan, 1999).

The autocorrelation and spectral density are defined as :

R(k) = E [x(t)x(t+ k)]
0')

S(co) = I R(k)e -jkUl

k=-O')

If it is assumed that the process is ergodic in correlation, then the autocorrelation can

be estimated by:

IN-IR N (k) = - I X(n + k)X(n)
N 1/=0

Since the spectral density S(w) is the Fourier Transform of the autocorrelation

function (R(k)), aFourier operation on the estimate of the autocorrelation function

will produce a good estimate of the spectral density.

The spectral density of a stochastic process x(t) defined at discrete time instances {XI,

t = 0, 1, 2, .. } can be estimated by a Fourier series operation over a time period N, as

shown below:

This is known as the periodogram (or intensity function).

26

Univ
ers

ity
 of

 M
ala

ya

If an observed time series is assumed to be self-similar (w�th parameter H) and a

particular form such as the fractional Brownian motion process is chosen, then the

spectral density can be represented as S((I), H). The valu� of the Hurst parameter, His

unknown but the form of the density is known. H can then be estimated by finding

the value ofH that minimizes the following expression:

This is known as the Whittle estimator.

This method can also estimate a sample variance so that confidence intervals can be

computed. The sample variance:

[
J

]-1� a 10 S (I)(J)
-

Var(H)�4n r(!H () drn

As mentioned previously, the Whittle estimator is different from the RlS plot and the

variance-time plot as it assumes that the time series is a self-similar process.

3.5 : Examples of Self-Similar Data Traffic

Studies on the patterns of real-world data traffic have shown self-similar

characteristics. This section discusses studies done on Ethernet traffic and VBR video

traffic.

27

Univ
ers

ity
 of

 M
ala

ya

3.5.1 : Ethernet Traffic

The paper "On the Self-Similar Nature of Ethernet Traffic" (Leland et al, 1995) was a

big breakthrough on the study of the behavior of Ethernet LAN traffic, as it showed

that the traffic was self-similar and that traditional traffic models were unable to

capture this characteristic. Rigorous statistical analysis was conducted on hundreds of

millions of high quality Ethernet traffic measurements which were collected

between 1989 and 1992.

The main conclusions of the research:

(i) Ethernet LAN traffic is statistically self-similar, regardless of when

and where the data during the four-year period was collected.

(ii) The degree of self-similarity, in terms of H, is a function of the overall

utilization of the Ethernet and can be used to measure the "burstiness"

of the data traffic.

(iii) Major components of the Ethernet LAN traffic(such as external LAN

traffic) share the same self-similar characteristics as overall LAN

traffic.

Figure 3.2 offers "pictorial proof' of self-similarity in Ethernet LAN traffic. The data

displayed in the graphs was obtained from 27 consecutive hours ofmonitored

Ethernet traffic (taken in August 1989). The features of the graphs in Figure 3.2 are

listed below:

(i) Figure 3.2 depicts a sequence of simple plots of the packet counts (the

number of packets per time unit) for five different choices of time

units.

28

Univ
ers

ity
 of

 M
ala

ya

(ii) Beginning with a time unit of 100 seconds (graph (a)), each

subsequent plot is obtained from the previous one by increasing the

time resolution by a factor of 10, and by concentrating on a randomly

chosen subinterval (as indicated by the darker shade). The time unit

corresponding to the finest time scale is 10 milliseconds (graph (e)).

(iii) It can be observed that all the plots look very "similar" to one another

in a distributional sense.

(iv) Looking at the scaling property (y-axis) and the absence of a natural

length of a "burst" : it can be seen that atevery time scale ranging

from milliseconds to minutes to hours, bursts consist of bursty

subperiods followed by less bursty subperiods.

The scale invariant (iv) or "self-simliar" feature of Ethernet traffic that can be

observed from the graphs in Figure 3.2 is extremely different from traditional traffic

models that have long been in use. The "pictorial proof' of the self-similar nature of

Ethernet traffic motivates the use of self-similar stochastic processes for traffic

modeling.

29

Univ
ers

ity
 of

 M
ala

ya

;:
:J

�
t: 4'):0
'J:::

J! ,1):(1
�

o

[;mfj Lini>, Unl" iO S�:Of1ds (0)

c El:O
:J

� (:/(1e

t �coII

.2 L1:(l
&

0

[I 10n z»))) .i[l) 5Gn �)J '?((i SW gOD K!Xl

1 m�" Unls Unl' i S�:Of1d ffl.)
V',

1(0

5 i{)

� OJ
� �o
]

,0�
(r

(! 100 21.1 :m 4((1 5DO i1)J 1(1) oco yeO l(1JJ

fil1>:! Unls,lJnl' (II &-:wo (d:,

Figure 3.2 : Pictorial "proof' of self-similarity in Ethernet traffic

(I 10n .m l)) �((I 51.:0 6((1 1\fJ Em [;((1 1 DO)

HI!UI'C I (ll')-{c). Pictorial "proof of ��lr-5'ilT1ibrit)':
Eth�rn�t tJ.�rtic I packets per time unit tor tbe August
',�I) It, eel, n 5 different time scales. (Ditf�rt:nt gnl)'
lew Is are used II) ident i fy the same segment s of trnlfic
on the ditferent time �C'�C,.I

30

Univ
ers

ity
 of

 M
ala

ya

3.5.2,' VBR (Variable Bit Rate) Video Traffic

3.5.2.1 " Paper 1 " "Analysis, Modeling and Generation ofSelf-Similar VBR

Video Traffic" (Garett & Willinger, 1994)

A statistical analysis of a 2-hour long empirical sample of VBR video was conducted

by the researchers. The sample was obtained by applying a simple intraframe video

compression code to an action movie, Star Wars. The movie represents a realistic

full-length sample of entertainment video with a diverse mixture ofmaterial ranging

from low complexity/motion scenes to those with high action.

The main findings of the analysis were:

(i) The tail behavior of the marginal bandwidth distribution can be

accurately described using "heavy tailed" distributions.

(ii) The autocorrelation of the VBR video sequence decays hyperbolically,

which is equivalent to long-range dependence and can be modeled

using self-similar processes.

Figure 3.3 is also "pictorial proof' of self-similarity. Three processes formed by

aggregating frames over blocks of size 100, 500 and 1000 frames are compared. The

graphs in Figure 3.3 not only retain significant correlations, but are similar in

appearance.

31

Univ
ers

ity
 of

 M
ala

ya

Figure 3.3 : Self-similarity in VBR video

3.5.2.2,' Paper 2,' "Long-Range Dependence
in Variable-Bit-Rate

Video Traffic" (Beran et aI, 1995)

20 large sets of actual VBR video data were analyzed. These sets were generated by a

variety of different codecs and they represented a wide range of different scenes. The

main findings were:

(i) Long-range dependence is an inherent feature of VBR
video traffic,

and is a feature that is independent of scene (video phone, video

conference or picture video).

(ii) The long-range dependence allowed the researchers to clearly

distinguish between their measured data and traffic generated by the

VBR source models that were currently being used.

32

Univ
ers

ity
 of

 M
ala

ya

3.6 : Methods of Simulating Self-Similar Traffic

There are many methods of simulating self-similar traffic.
This section covers three

such methods, namely Random Midpoint Displacement, Fast Fourier Transform and

OnlOfT Processes.

3.6.1 : RandomMidpointDisplacement (RMD)

The Random Midpoint Displacement (RMD) method can be used to create Fractional

Brownian Motion (FBm). FBm can be used to model the sum or integral of self­

similar traffic (as observed in network buffers, files sizes of video streams, etc). Its

increments or derivatives can yield the self-similar fractional Gaussian noise (FGN).

The RMD method :

(i) Begin with two end-points

(ii) One point is added in the middle of these two points, and it is

displaced with a random term (which depends on the Hurst parameter,

H)

(iii) Points are added between all existing points and they are displaced

with random terms, until the desired number ofpoints has been

generated.

3.6.2: Fast Fourier Trans/ormation (FFT)

This method of simulating self-similar traffic has shown to be fast and reliable. The

strategy behind this method is to construct a sequence of complex values that

33

Univ
ers

ity
 of

 M
ala

ya

correspond to the power spectrum of fractional Gaussian noise (FGN). The inverse

discrete Fourier transform (IDTFT) can then be used to obtain the time-domain

counterpart of this power spectrum.
Since autocorrelation and power spectrum form a

Fourier pair, it is guaranteed that the resulting process has the autocorrelation

properties or self-similar properties of an
FGN process.

3.6.3 : On/OffProcesses

A large number of superimposed heavy
tailed OnlOff processes can produce self­

similar traffic (Hlavacs et al, 1999). An OnlOffprocess is
either in state On or Off.

A time series can be constructed by observing the number ofOn-processes at any

time point. IfOn-times and Off-times
are drawn from a heavy tailed distribution with

parameters <XI and <X2, the observed stochastic process is a self-similar fractional

Gaussian noise process with H
= (3 -min(<xJ, <X2))'

OnlOff processes can be used to create network traffic at the packet level, or streams

of requests at a higher level (for example, transferring
files over the network).

34

Univ
ers

ity
 of

 M
ala

ya

CHAPTER 4: SYSTEM ANALYSIS

4.1 : Introduction

System analysis is a very crucial part of the development of any project.
Without

proper planning, installation of a system
or module will lead to problems with

implementation. The simulation of self-similar
VBR traffic will be implemented as a

module in the UMJaNetSim network simulator. It is therefore very important to

analyze the existing structure ofUMJaNetSim.

Section 4.2 gives an overview of the structure of the UMJaNetSim network simulator.

The software requirements of the project are listed in Section 4.3. This section also

includes the benefits of selecting the Java programming language and Jereator as the

[DE (Integrated Development Environment) for developing the module. The last

section lists the hardware requirements of the implementation.

4.2 : Overview UMJaNetSim Simulator

Listed below are the basic concepts of the UMJaNetSim network simulator:

(i) It is a discrete-event model

(ii) It has a central simulation engine with a centralized event manager

(iii) The simulation scenario is made up of a finite number of

interconnected components (simulation object), each with a set of

parameters (component properties)

35

Univ
ers

ity
 of

 M
ala

ya

(iv) Simulation execution involves components sending messages to one

another. Messages are sent by scheduling an event which will occur at

a later time for the target component

The concepts listed above are adopted from the NIST ATM/HFC Network Simulator.

With this architecture, the simulator can simulate virtually "anything" that can be

modeled by a network of components that send messages to one another.

Figure 4. J is taken from the UMJaNetSim programmer guide. The simulation engine

is the sole event manager and is responsible for the managing of all the user interface

elements. It also provides convenient methods for file saving and data logging, as

well as other tools. The programmer is responsible for the development of simulation

components that directly represent the system that is to be simulated.

Simulation Engine

E\\"-l1t CUI liO & (I..'li.sc.

iV1 a 11;1 g�menl 1V1 ana gt>Il1C III Tools

H- I • a

1 • 1 , , r

Simulation T)1'01081'

S unulation Sirlllrl.1lioll

Compone III Compunen t

Figure 4.1 : Overall architecture of UMJaNetSim

36

Univ
ers

ity
 of

 M
ala

ya

4.3 : Software Requirements

The software listed below includes the programming language used as well the

software used for the documentation of the project.

(i) Microsoft Windows XP Professional Version 2002: Operating System

(ii) JavaJII 2 StandardEdition Runtime Environment: programming

language

(iii) .JCreator 2.5LE: IDE (Integrated Development Environment) used

alongside the Java programming language

(iv) Breezyswing and Terminal 10: BreezySwing is a package of Java

classes that simplifies the creation of a graphical user interface and the

handling of interface events. It was used in the RS program (the RS

program was used to test the self-similar data) to format the output

(v) Microsoft Word 2000: used for documentation

(vi) MicrosoftProject Professional 2002: used for
documentation

4.3. J : Java Programming Language

Java was introduced by Sun Microsystems in 1995. It was chosen to develop the

UMJaNetSim network simulator because it fulfills vital features ofnetwork

simulators. Java is an object-oriented programming language, and this is beneficial

because the essential features of a network simulator are built in an object-oriented

approach. Java is a powerful and rich language and it provides important concepts of

object-oriented programming such as class hierarchy, inheritance, polymorphism and

encapsulation.

37

Univ
ers

ity
 of

 M
ala

ya

The programs created in Java are portable in a network. The source program is

compiled into what Java calls bytecode, which can be run anywhere in a network on a

server or client that has a Java virtual machine. The Java virtual machine interprets

bytecode into code that will run on real computer hardware, which means that

individual computer platform differences such as instruc.tion lengths can be

recognized and accommodated locally just as the program is being executed. This

allows the network simulator to be run on any platform without doing any

modifications to the program.

The Java programming language was expressly designed for use in the distributed

environment system of the Internet. This allows the simulator to be used across the

Internet by using a compatible Java browser.

Multithreaded operations are an important feature of network simulators. Java has

built-in support for multithreading. This permits paralleloperations
of objects within

the simulator.

Java code is also robust, which means that unlike programs written in C++, Java

objects can contain no references to data external to themselves or other known

objects. This characteristic ensures that an instruction cannot contain the address of

data storage in another application or in the operating system itself, either ofwhich

would cause the program or even the operating system to terminate or "crash".

38

Univ
ers

ity
 of

 M
ala

ya

4.3.2 : JCreator 2.SLE

JCreator is a powerful IDE (Integrated Development Environment) for Java

technologies. It provides the user with templates, Class browsers, a

debugger interface, syntax highlighting, wizards and a fully customizable user

interface.

Users can directly compile or run their Java programs without having to

activate the main document first. JCreator will automatically find the file with

the main method or the html file holding the applet,.and then start the

appropriate tool.

Users can also create their own tools for calling Java Development Kit (JDK)

applications such as the compiler, interpreter or applet viewer. JCreator also

supports multiple compiler tools that can be switched with the runtime

configuration dialogue box on the "Build" menu. Figure 4.2 shows a

screenshot of JCreator 2.5LE.

39

Univ
ers

ity
 of

 M
ala

ya

� JCrealOr . [edl] 'I]
� [ile (dit 2earch Ylew E.rolect �uild Iools �onflgure Wlndow t1etp

For Help, press F1
Ln 1. Col 1.O,.r1 !

...

DOS

Figure 4.2 : Screenshot of JCreator 2.SLE

4.4 : Minimal Hardware Requirements

Listed below are the hardware requirements:

(i) Intel Pentium III processor

(ii) 733Mhz

(iii) 640MB ofRAM

40

Univ
ers

ity
 of

 M
ala

ya

CHAPTER 5 : SYSTEM DESIGN

5.1 : Introduction

In order to design and implement a module in UMJaNetSim, the components of the

simulator and their various functions need to be understood. Section 5.2 gives an

overview of the components in UMJaNetSim. Section 5.3 displays an easy

understanding of the workings of the module that will be implemented, and Section

5.4 highlights two important issues in the design of the module.

5.2 : Components of UMJaNetSim

In order to design and implement the VBR module in UMJaNetSim, it is vital to

understand the existing components ofUMJaNetSim. Figure 5.1 shows the

components and their hierarchy in UMJaNetSim.

SimProvider

Siml'anel
SimClock

·1 SimMeter

inherits

SimNetworkf.omp

SimParamVCOATable

Figure 5.1 : Components in UMJaNetSim

41

Univ
ers

ity
 of

 M
ala

ya

5.2.1 : JavaSim

JavaSim is the main class in UMJaNetSim that contains everything in the simulator.

It provides the event manager that handles event-passing among all components.

Some of the services provided by JavaSim are as follows:

(i) It provides the current simulation time in ticks

(ii) It provides a list of all existing SimComponent

(iii) It provides communication between components involved in the

creation of a SimEvent

5.2.2 : SimComponent

This is the most important component in the simulator and it has to be understood in

order to create new components. Every network component in the simulation MUST

inherit SimComponent. SimComponent has many features, a few ofwhich are listed

below:

(i) Name: The component name is given during creation, and cannot be

changed after that. The gettlamet) method returns the name.

(ii) Neighbor Connection Operations: A connection between two

components is established by making each component a neighbor of

the other. Every component has ajava. uiil. List named neighbors that

contains a list of all other components that become a neighbor.

42

Univ
ers

ity
 of

 M
ala

ya

(iii) Parameter List Handling: Nearly every component has at least a few

parameters which can be set by the user or can show something to the

user such as the component status or simulation results. These

parameters should be implemented as subclasses of the SimParameter

(please refer to subsection 5.2.3) class in order to obtain features e.g.

logging and on-the-t1y graph-display.

The SimComponent component itself should not be
instantiated as it only provides

the skeleton for an actual component. A new component has to extend

SimComponent and override its various methods in order to react to simulation

events and other simulation operations.

5.2.3,' Siml'arameter

Each SimComponent can have internal parameters, which are neither shown nor

accessible to users, or external parameters, which can be shown and are accessible to

users. All external parameters, however, MUST inherit SimParameter. By extending

SimParameter, logging and meter display features can be obtained automatically.

5.2.4 " SimClock

The simulation time of UMJaNetSim is based on "ticks". The duration of a tick is

configurable in the simulator and by default a tick is equivalent to 10 nanoseconds.

SimClock provides methods for the conversion between simulation ticks and real

time.

43

Univ
ers

ity
 of

 M
ala

ya

5.2.5 : SimEvent

SimEvent defines simulation events. The SimComponent communicate with each

other by enqueuing SimEvent objects for the target components.

To illustrate the use of SimEvent, the following example is used. If component A

wants to send a packet to component B, component A creates a SimEvent that

specifies B as its destination and enqueues the event. The SimEvent object contains a

time so that this event is fired at exactly the specified time. Component B will then be

able to react to the event.

There are two types of events; public (well-known) events and private events. A

SimComponent can enqueue events for itself and another SimComponent. Private

events can only be enqueued for itself, but public events can be enqueued for either

itself or for another SimComponent. All private events are defined within the

particular SimComponent source itself:
whereas all public events are defined in the

SimProvider object.

5.2.6: Object Serialization and Load/Save Operations

UMJaNetSim uses object serialization as a form of light-weight persistence as this

allows accurate saving and restoring of simulation states without much effort from

the component developers. There are however, certain rules that need to be followed

and they are briefly mentioned below:

(i) Every SimComponent and SimParameter must be Serializable

(ii) GUI (Graphic User Interface) members MUST NOT be serialized

44

Univ
ers

ity
 of

 M
ala

ya

(iii) Extra care must be taken when using static variables - as they are not

serialized, their values are not saved.

5.3 : Simplified View of Implementation

This section looks at a simplified view of the implementation of the VBR module

which generates self-similar traffic (Figure 5.2).

User Input
Output

- Mean bit rate
. Simulator ..

- Current bit rate
, �

- Hurst parameter, H
that changes with
time

Figure 5.2 : Simplified View of Implementation

With the VBR module:

(i) The user inputs the mean bit rate and the Hurst parameter, H. As

mentioned in Chapter 3 (3.3.3), the range of the Hurst parameter is:

0.5 < H < 1

(ii) Using a self-similar simulation method (please refer to Chapter 3,

section 3.6), the simulator uses the input and calculates the output

which is the current bit rate that changes with time

45

Univ
ers

ity
 of

 M
ala

ya

The testing stage involves evaluating the output bit rate obtained to see whether or

not it is self-similar (please refer to Chapter 3, section 3.� for self-similar estimation

techniques).

5.4 : Design Issues

Listed below are two important design issues in the design of the VBR traffic

module:

(i) User Interface: The GUI interface is user-friendly ; it is clear and the

words used are self-explanatory.

(ii) Extensibility: The module implemented is easy to modify and

enhance. This will promote the improvisation of the module.

46

Univ
ers

ity
 of

 M
ala

ya

CHAPTER 6 : SYSTEM IMPLEMENTATION

6.1 : Introduction

The self-similar traffic source module was implemented in UMJaNetSim version 0.49

as an application component and this chapter discusses the implementation of the

module. This chapter is divided into five main sections, the first being the

introduction. Section 6.2 Jists the steps taken in the implementation of the self-similar

module. Section 6.3 contains a brief discussion on the method used to generate

traffic, and Section 6.4 covers the implementation in UMJaNetSim 0.49 itself.

Section 6.5 is a brief conclusion of this chapter.

6.2 : Implementation Steps

Listed below were the steps taken in the implementation of the self-similar module.

(i) The method of generating self-similar traffic was chosen - the Fast

Gaussian Noise based on Vern Paxson's paper (Paxson, 1995)

(ii) The NIST ATM/HFC Simulator (written in C) had a traffic source

module that generated self-similar traffic, and it was based on the

paper written by Vern Paxson. The code for self-similarity was

therefore in the simulator but it was comprised ofmany sub-programs.

The sub-programs (written in C) were analyzed and compiled into a

single standalone program.

47

Univ
ers

ity
 of

 M
ala

ya

(iii) The accuracy of the standalone C program in generating self-similar

traffic was tested using the R/S statistic.

(iv) As the C program proved to be relatively reliable, it was translated to

Java.

(v) The completed Java program was then tested for its accuracy using the

RIS statistic.

(vi) Once the Java program was found to be capable ofproducing self­

similar traffic, it was integrated into the UMJaNetSim (version 0.49)

network simulator. A self-similar module was created in UMJaNetSim

and the self-similar methods were integrated to it.

6.3 : Method ofGenerating Self-similar
Traffic

The algori thm presented by Vern Paxson in his paper (Paxson, 1995) is based on

synthesizing sample paths that have the same power spectrum as fractional Gaussian

noise (FGN). The sample paths were then used in simulations as traces of self-similar

network traffic. The algorithm is a fast approximation of the power spectrum of an

FGN process; the approximation
also has applications for fast estimation of the

strength of long-range dependence (Hurst parameter) present
in network arrival

processes.

6.3.1 " Self-simi/ar Traffic Module
in the NISTATMIHFCNetwork Simulator

The method used by Vern Paxson generated both positive and negative values.

However, in the NIST ATM/HSC Network Simulator, a few changes were made to

48

Univ
ers

ity
 of

 M
ala

ya

the original code so that only positive values were produced. This is because the

values represent the bit rate
which can only be positive.

In the NIST ATM/HSC Network Simulator, the FGN sample path X(k), with zero

mean and variance 01\2, was scaled using the linear transformation:

A(k) = m + m*X(k) / (c* 0)

where:

m is the Mean Bit Rate specified the user

c is a scaling parameter set to 2 to ensure that 95% of the values of

A(k) (which has a normal Gaussian distribution) will belong
to the

interval [0, 2*m]

After the transformation
stated above, the negative values are set to zero and the

values that are larger than 2*m are set to 2*m so that all the values of the new trace

are within the interval [0,2*m]. Each rate of the trace is used to calculate the number

of cell arrivals during one bin, whose duration is specified by the user.

6.4 : Implementation of
VBR Self-Similar Module in UMJaNetSim

The VBR Self-similar traffic generator/traffic
source module was implemented in

UMJaNetSim version 0.49 as an application component (please refer to Figure 6.1).

49

Univ
ers

ity
 of

 M
ala

ya

Elle Ed" IDOls lMmlow tlelp

Figure 6.1 : VBR Self-Similar component in UMJaNetSim 0.49

The component name (in bold) was defined in the SimProvider and this is depicted in

the following extract from SimProvider:

private static final String [][] cornps
= {

{ "ATM Generic","ATM Switch","GenericATMSwitch" },

{ "ATM LSR", "A™ Switch", "ATMLSR" },

{ "BTE Generic", "BTE", "GenericBTE" },

{ "IP BTE", "BTE", "IPBTE" },

{ "Generic Link", "Link",
"GenericLink" },

{ "IP CBR Application", "Application", "CBRIPApp" },

{ "CBR Application", "Application", "CBRApp" },

{ "IP VBR Application", "Application", "VBRIPApp" },

{ "VBR Application", "Application", "VBRApp" },

{ "fP Batch Application", "Application", "BatchIPApp" },

{ "VBR Self-Similar Application", "Application", "VBRSelfSimilar"}

II {"TCP Application", "Application", "TCPApp" },

II {"fP TCP Application", "Application", "TCPIPApp" }
) .

j,

50

Univ
ers

ity
 of

 M
ala

ya

The component constant for the VBR Self-similar module was also defined in

SimProvider as follows:

static final int VBRSS
_

APP = 12;

The important methods declared in VBRSelfSimilar were:

VBRSelfSimilar(String name,int c,int t,JavaSim aSim,java.awt.Point loc) {
super(name,c,t,aSim,loc);
randgen=new java.util.Random();
cn_create();
}

The self-similar module is very similar to the existing CBR and VBR modules in the

simulator and therefore shares the same basic properties such as:

(i) The neighbour operations:

boolean isCOImectable (SimComponent comp);
void addNeighbor (SimComponent comp);
void removeNeighbor (SimComponent comp);
void removebleighborsrjava.util.List comps);

(ii) The Copy Operation:

void copy (SimComponent comp);

(iii) The initial/reset operations:

void reseu);
void start();
void rcsumet);

51

Univ
ers

ity
 of

 M
ala

ya

In order to provide a customized image for the VBRSelfSimilar component, the

following method was invoked:

Image getlmaget) {
if(image==null) {
//prepare the default image (name in a box)
image=theSim.createlmage(DEFAULT_

WIDTH,DEFAULT
_
HEIGHT);

Graphics g=image.gcniraphicst);
g.setColor(Color.pink);
g.fiI13DRect(O,O,DEFAULT_WIDTI--i,DEFAULT_HEIGHT,true);

}
return image;
}

The color of the VBR Self-similar component was chosen to be pink.

6.4.1 : Topology Used in UMJaNetSim with the VBR Self-SimilarModule as the

Traffic Source

Figure 6.2 shows the topology used with the VBR Self-similar module as the traffic

source. The VBR Self-similar module is connected to a BTE (Broadband Terminal

Equipment) which in turn is connected to a link. The link is connected to an ATM

Generic switch. Traffic generated at the module is received at the BTE on the 'other

side' of the switch.

52

Univ
ers

ity
 of

 M
ala

ya

Elle �I," Ioots �tldOW !ielp

,/
,/

Figure 6.2 : Topology in UMJaNetSim with VBR Self-Similar module as traffic source

6.4.2 : Properties of VBR Self-SimilarModule

t3

[1
�,

1&0.0:

1\/1 Hurst Parameter, H (0.5<H<1.0) [�.7 _j
start time (usecs) I 0 1
Number ofMBits to be sent t. 0.0 1
Repeat count (-1=inO 10 I
Delay between calls (usecs) [1000000 I
Ral')dom data size 0

Random delaybet. calls 0

Enable starting delay 0

Random destination �

Use name as seed 0

Port number BDestination NSAP

Destination port number �_j
DO Calls attempted 0

OIJ Calls accepted 0

00 Incoming Calls 0

DO Totallncoming Calls 0

0 Current Bit Rate (MBits/s) 0.0 ...

Figure 6.3: VBR
Self-Similar properties (unique properties ticked)

53

Univ
ers

ity
 of

 M
ala

ya

The self-similar module implemented has its own unique properties (Figure 6.3) :

(i) Mean Bit Rate (MBits/s) : This value is obtained from the user. The

mean bit rate is used for the self-similar calculation.

(ii)' Hurst parameter, H: The Hurst parameter is initially defaulted to 0.7

but can be set to any value between 0.5 and 1.0. If the user however,

inputs a value that is not in this boundary, the Hurst parameter is

reverted to 0.7 with an error message appearing on the screen (Figure

6.4).

(iii) Current Bit Rate (MBits/s) : The current bit rate is the bit rate at a

given time and it is constantly changing. The current bit rate is derived

from the self-similar calculation and its value depends on both the

Mean Bit Rate and the Hurst parameter. If the Current Bit Rate check

box is ticked during simulation, a graph displaying the changing bit

rate will appear on the screen (Figure 6.5).

Figure 6.4 : Error message that appears ifHurst parameter is not within

0.5 and 1.0

54

Univ
ers

ity
 of

 M
ala

ya

Figure 6.5: Graph displaying the changing bit rate

6.4.3 : Self-Similar Calculation Methods

In the void startO method, the SelfSimilarGenerateFourier method is called with the

following statement:

SelfSimilarGenerateFourier(12,hurst_parameter.getValueO, en _

bit rate.getvaluen.z);

The statement is expJained as follows:

(i) 12 : this value determines the number of 'points' or self-similar values that

will be generated. The number of values will be 4096 or 212. The number

of points is defined as n

(ii) hurst_parameter.getValueO gets the value of the Hurst parameter

(iii) cl1_bit_rate.getValueO gets the value of the Mean Bit Rate

(iv) 2 is the scaling factor. The scaling factor is used in the calculation and is

always two (based on Vern Paxson's paper).

55

Univ
ers

ity
 of

 M
ala

ya

Figure 6.6 shows the methods involved in generating self-similar data.

ComplexNumber.java

start

Figure 6.6 : Methods involved in generating self-similar data

In the calculation, complex numbers which consist of real numbers and imaginary

numbers are used. The numbers are stored using a separate class called

ComplexNumber.

The SelfSimilarGenerateFourier method calls the fgnSpectrum method. fgnSpectrum

returns an approximation of the power spectrum for fractional Gaussian noise at the

given frequencies lambda and Hurst parameter. Lambda is defined as :

lambda +- (i + 1) *Pi / le

56

Univ
ers

ity
 of

 M
ala

ya

where Ie = n/2

i = increases from 0 to le-l

fgnSpectrum calls upon methods fgnBest and lgamrna. Lgamma is a log gamma

function. fgnBest is an internal routine that is used in computing the approximation to

the power spectrum. As part
of its calculation, SelfSimilarGenerateFourier also calls

upon method randomSim. randomSim returns a 31-bit random number.

Inverse fast Fourier transform has to be performed on the real and imaginary numbers

defined in order obtain the approximate FGN sample path. The method ifft is

therefore called. The method ifft used in the simulator is different from that used in

the C program as the C program code relied heavily on the use ofpointers.

The self-similar data generated in the UMJaNetSim self-similar module was altered

slightly to suit the system. This is because the original s�lf-similar calculation yields

values that are equal to zero. The interval in sending cells in the simulator depends on

the current bit rate (as shown in the statement below) :

long interval=SimClock.USec2Tick(
424.0/currentBitRate[arrayCurrent]);

Should the currentBitRate at a given time be equal to zero, this would result in a

system error as it involves a division with zero. The value of the current bit rate is

therefore set to 1. As this would effect the 'self-similarity' of the data, the testing

(Chapter 7) for self-similarity
is conducted on the results of the standalone Java

program instead of the results yielded by the simulator. .

57

Univ
ers

ity
 of

 M
ala

ya

As mentioned previously, the self-similar
calculation only provides values for 4096

points, and if large amounts of
data need to be sent, 4096 values will be insufficient.

It is for this reason that the self-similar values
that are generated and stored in the

array currentBitRate (which represents the current bit rate) are reused once the 4096111

array has been reached.

6.5 : Conclusion

The most difficult part of the implementation
process of this project was the

conversion of the C code to Java. The C program relied heavily on the use of

pointers, and this made the translation more challenging. As mentioned in the

previous section, a few changes were made to the self-similar calculation that was

implemented in the UMJaNetSim
simulator and it is for this reason testing for the

accuracy of self-similarity
was conducted on the standalone Java program and not the

simulator itself.

58

Univ
ers

ity
 of

 M
ala

ya

CHAPTER 7 : TESTING

7.1 : Introduction

This chapter is divided into four sections. The first part is an introduction. Section 7.2

discllsses the method of testing. Section 7.3 lists the test results and the last section ,

section 7.4, lists the conclusions made based on the test results.

7.2 : Testing with the RIS Statistic

The RIS statistic was chosen as the method of testing to test the self-similar program in C

as well the standalone program written in Java. The RlS test program, in Java, was

written by Nithyanandan
Natchimuthu and is based on concepts in a book entitled

"Statistics for Long-Memory
Processes" by Jan Beran (Beran, 1994).

The output values which
are to be tested have to be written to a text file. The text file has

to be in the same location as the RlS program. The RlS program is compiled with the

following statement:

javac RS.java

Once the compilation is successful, the
RlS program is execute� with the following

statement:

java RS {filename} {t_multiple} {k
rnultiple} {minData}

{maxData} {t_max} {k_mx}
optionall}

59

Univ
ers

ity
 of

 M
ala

ya

For the testing, the following values were used:

java RS outpur.txt 200 50 0 0 0 0 1

(i) "output.txt'' is the name of the text file which stores the values that are to be

tested for self-similarity

(ii) t_multiple is the difference
between the number of times the main loop in the

code is run and the total number ofpoints. The smaller the
value oft_multiple,

the more 'detailed' the estimation

(iii) k multiple. 50 is the value used in testing. This means that estimation occurs

every 50 points. As the total number of points is 4096, 50 is a suitable

number.

(iv) minData is the point on the list of values where the estimation begins. A value

of0 means that the estimation
should begin with the 'first point

(v) maxData is the point on the list of values where the estimation ends. A value

of 0 means that the estimation
will end on the last point of the list

(vi) t_max
= 0 gives the full RlS statistic, anything else would truncate at the

given t_max

(vi i) Optional {O} gives only
the Hurst parameter, any other integer gives the RJS

statistic and the Hurst parameter.

60

Univ
ers

ity
 of

 M
ala

ya

7.3 : Testing Results

Testing with the RlS program was conducted on both the original C program and the

standalone Java program. As mentioned
in the previous chapter, testing with the RlS

statistic was done on the standalone Java program
and not the simulator as the

simulator's

self-similar calculation was slightly altered, and this
would have had an effect on the

results.

Testing was conducted with varying values of the Hurst parameter (nine values), ranging

from 0.55 to 0.95 and with varying mean bit rates (100 MBits/s, 500 MBits/s,
1000

MBits/s and 2500 MBits/s). The values of t_multiple and k_multiple
were fixed to 200

and 50 respectively. Table 7.1 displays the results:

Input
Output Hurst parameter

Hurst 100 MBits/s 500 MBits/s 1000 MBits/s 2500 MBits/s

parameter Java C Java C Java C Java C

0.55 0.424 0.631 0.565 0.631 0.602 0.631 0.634 0.631

0.60 0.614 0.686 0.595 0.686 0.642 0.686 0.674 0.686

0.65 0.703 0.741 0.689 0.741 0.639 0)41 0.657 0.741

0.70 0.748 0.795 0.780 0.795 0.719 0.795 0.786 0.795

0.75 0.783 0.849 0.796 0.849 0.751 0.849 0.780 0.849

.-

0.80 0.812 0.900 0.768 0.900 0.850 0.900 0.788 0.900

0.85 0.851 0.946 0.934 0.946 0.846 0.946 0.923 0.946

0.90 0.884 0.986 0.988 0.986 0.869 0.986 0.898 0.986

0.95 0.908 1.019 0.984 1.019 0.870 1.019 0.975 1.019

Figure 7.1 : Test results

Based on the table, it can be concluded that the output Hurst parameter
for the C program

is exactly the same at a given input Hurst parameter
at varying mean bit rates. For

61

Univ
ers

ity
 of

 M
ala

ya

example, at the given input Hurst parameter of0.60, the output Hurst parameter
for the C

program is 0.686 regardless of the mean bit rate. Put in another way, the output Hurst

parameter is only dependent on the Hurst input and not the mean bit rate. Consequently,

only one graph is sufficient to display the results. Graph 7.1 displays the results of the

testing on the C program outputs. The graph y = x is also drawn for comparison's sake.

Test Results on C program

... 1.2
Ql

a; 1
E
ra

� 0.8
c.

1i) 0.6
...

::J
I 0.4
+'

::J

% 0.2
o

0

Input Hurst parameter
I

____ C program:
J

Graph 7.1 : Test results on C program

The following graphs display the results of the testing on the Java program at varying

mean bit rates. Each graph contains the function "y = x" for the sake of comparison.

62

Univ
ers

ity
 of

 M
ala

ya

Test Results on Java program,

Mean Bit Rate =100 Mbits/s

....
I Q)

.....

E 0.8
ClI
....

1 s 0.6
.....

I (/)

5 0.4
I

'5
a. 0.2
.....

::J

o
0 �

�

.0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

Input Hurst parameter -y=x

.--a-- Java program
I

Graph 7.2 : Test results 011 Java program, mean bit rate = 100 Mbits/s

Test Results on Java program,

Mean Bit Rate = 500 Mbits/s

1.2
....

Q)
.....

Q)

E

� 0.8
a.

U) 0.6
....

::J
I 0.4
'5

S 0.2
o

0 L-
------�

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

Input Hurst parameter -y=x

-II- Java program

Graph 7.3 : Test results 011 Java program, mean bit rate = 500 Mbits/s

63

Univ
ers

ity
 of

 M
ala

ya

...

(1)
....

E 0.8
ra
...

I � 0.6
....

III

I 5 0.4
I
....

:J

E- 0.2
:J

o
0

Test Results on Java program,

Mean Bit Rate = 1000 Mbits/s

Graph 7.4 : Test results 011 Java program, mean bit rate = 1000 Mbits/s

...

(1)

� 1.2

� 1
...

� 0.8

(i) 0.6
...

i 0.4

S 0.2
E- a
:J
o

I
- ... -

---
-.--._

.. --------1

I

---_

...

.-----_._----------_.j

I
0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

Input Hurst parameter -y=x

--.-- Java program

Test Results on Java program,

Mean Bit Rate = 2500 Mbitsls

Input Hurst parameter
-y=x

___ Java program

Graph 7.5 : Test results on Java program, mean
bit rate = 2500 Mbits/s

I
,

I

I
I
I

64

Univ
ers

ity
 of

 M
ala

ya

7.4 : Conclusions

As mentioned in the previous section, the output values for
the C program are the same

regardless of the mean bit rate. For the Java program however, the results are always

different. Part of the reason the values of the C program are the same and the ones for are

Java are different is that the randt) function used in the C program is not truly random as

it generates pseudo-random numbers. Calling the randt) function repeatedly produces a

sequence of numbers that appears
to be random but the sequence repeats itself each

time

the program is executed.

While the Java output values are usually closer to the input value compared to the C

output values, the C output values are more
'uniformed'. The output values for the C

program are bigger than the input values, but they increase linearly. The output values for

the Java program however are unpredictable:
sometimes the output is bigger than the

input, sometimes it is smaller. The
values tend to get more accurate as the mean bit rate

increases. The C program is therefore more predictable compared to the Java program.

The di fference in the results of the two programs is also partly caused by the different

method in which the inverse fast Fourier transform function is applied. The method used

in the Java program is slightly different than the one in the C program. This is because

the C program relied heavily on the use ofpointers and as the Java programming

language does not support the use of pointers, there could be no 'direct translation' of

code.

65

Univ
ers

ity
 of

 M
ala

ya

Based on the results, it can be concluded that the Java program can produce self-similar

traffic, although not with 100% accuracy. It has to be also noted that the RlS statistic is a

heuristic approach and the results are an estimation and not completely accurate.

66

Univ
ers

ity
 of

 M
ala

ya

CHAPTER 8 : CONCLUSION

8.1 : Conclusion

The VBR Self-similar module is able to function in UMJaNetSim 0.49, eventhough

the traffic generated is not 100% self-similar. This last chapter discusses the system's

strengths and weaknesses, as well as possible
enhancements that can be made in the

future.

8.2 : System's Strengths

The FGN method of generating self-similar data is a fast method. The self-similar

calculation code was integrated directly into the VBR Self-similar module, and this

makes it easier to implement it in future versions ofUMJaNetSim.

The "Current Bit Rate" property
in the VBR Self-similar module allows users to view

the changing values and therefore see firsthand the self-similar nature of the data

generated.

Running the module is also easy as there is only an additional parameter to be set (the

I lurst parameter).

67

Univ
ers

ity
 of

 M
ala

ya

8.3: System's Weaknesses

The self-similar module has a few weaknesses. As the RJS statistic is a heuristic

method of testing, it can sometimes be unreliable

As mentioned in previous chapters, the self-similar calculation yields values that are

equal to zero. These zero values cannot be used in the simulator as it would lead to a

division with zero. The zero values were consequently set to 1. This 'resetting' of

values leads to an inaccuracy in the self-similarity of the data.

The Java program is not 100% accurate. The test results were rather unpredictable.

Also, as mentioned in Section 6.3.l., the values of the self-similar data were

'bounded' so that they were between 0 and 2*m (mean bit rate). Setting boundaries

on the data does have an effect on its self-similarity.

8.4 : Future Enhancements

Listed below are future enhancements that can be made to the module:

(i) Overcome the 'zero divisional' problem so that the self-similarity of data

generated in the simulator is more accurate.

(ii) Incorporate the RJS program or another method of testing into the

simulator itself so the accuracy of self-similarity can be viewed while

running the simulator

68

Univ
ers

ity
 of

 M
ala

ya

(iii) Integrate the self-similar VBR module into the latest version of

UMJaNetSim; UMJaNetSim version 0.66

(iv) Disallow the user from entering an invalid Hurst parameter as soon as the

invalid parameter in entered instead of until the simulator starts running

69

Univ
ers

ity
 of

 M
ala

ya

REFERENCES

Books

I. STALLINGS, W., 1998. High-Speed Networks: TCP/IP andATMDesign

Principles. New Jersey: Prentice-Hall International, Inc.

2. DEITEL, H.M. AND DElTEL, PJ., 2003. Java How To Program. s" ed.

New Jersey: Pearson Education, Inc.

3. KELTON, W. D. AND LAW, A.M., 2000. Simulation .Modelling and

Analysis. 3rd ed. McGraw-Hill International Series.

4. HEYMAN, D.P. AND LAKSHMAN, T.V., 2000. Long-Range Dependence

and Queuing Effects for VBR Video. In : PARK, K. AND WILLINGER, W.,

eds. Self-Similar Network Traffic and Performance
Evaluation. United States

ofAmerica: John Wiley & Sons, Inc., 285-318.

5. CORNER, M., GOLMTE, N., KOENING, A.,
SAINTILLAN, Y. AND SU,

D., 1998. The NISTATMlHFC
NetworkSimulator. U.S. Department of

Commerce,(NISTIR 5703R 1).

6. BERAN,.I., 1994. Statistics/or Long-Memory
Processes. Chapman & Hall.

Theses

I. CHOW, CO; 2000. Traffic Prediction
andABR Congestion Control/orATM

Networks UsingArtificial Neural
Network. Thesis (Master). University of

Malaya.

2. TAN, K.H., 200 I. Fuzzy APPD
in ATMNetwork. Thesis (Undergraduate).

University ofMalaya.

Articles/Journals

J. HLAV !\CS, I-I., KOTS[S, G.
AND STEINKELLNER, C., 1999. Traffic

Source Modelling. University of
Vienna.Technical Report No. TR-99101.

2. ALBERTI, A., NETO, A., KLEIN,.I.
AND MENDES S.M., 1998. SimATM:

A 11 A TIlt!NetworkSimulation
Environment. Brazil. (DECOM-

FEE /UNICAMP)

3. RAMAKRISHNAN, P., J 999. Self-Similar Traffic Models.
Center for

Satellite and Hybrid Communication Networks, CSHCN
T.R. 99-5.

70

Univ
ers

ity
 of

 M
ala

ya

4. ADAS A., 1997. Traffic Models in Broadband Networks. IEEE
Communications Magazine, July 1997,82-89.

5. LELAND, W.E., TAQQU, M.S., WILLINGER, W. AND WILSON, D.V.,
1995. On the Self-Similar Nature ofEthernet Traffic. Computer
Communication Review, 203- 213. Available from:

http//www.acm.org/sigcomm/ccr.archive/] 995/jan95/ccr-950 I-leland.pdf
[Accessed 9 August 2003].

6. GARETT, M.W. AND WILLINGER, W. Analysis, Modeling and Generation

of Self-Similar VBR Video Traffic. ACMSigComm, September 1994.

7. BERAN,.1., SHERMAN, R., TAQQU, M.S. AND WILLINGER, W. Long
Range Dependence in Variable-Bit-Rate Video Traffic. IEEE Transactions on

Communications, Vol. 43, No. 2/3/4, February, March, April, 1995, 1566-
1579.

8. PAXON, V. Fast, Approximate Synthesis ofFractional Gaussian Noisefor
Generating Self-Similar Network TrajJic. Laurence Berkeley Laboratory,
Berkeley, LBL-36750, April 1995.

Other

I. JaNetSim 0.63 : Programmer's Guide. March 2002, Makmal Sistem

Rangkaian, University of Malaya.

71

Univ
ers

ity
 of

 M
ala

ya

APPENDIX

The first part of the Appendix consists of the Gantt chart for the project schedule (this

is on the following page, Table A I).

The second part of the Appendix consists
of the User Manual which is a guide to set

up a simple topology in UMJaNetSim 0.49 with the VBR Self-Similar module as the

traffic source.

72

Univ
ers

ity
 of

 M
ala

ya

10
1
TaskName I Duration I Start I July I Auaust I September I October I November I December I JanuarvJune

1--
---- .- -

--1LIteratureReview 56 days Mon 6/16/03

69days
--

Mon 7/14/03 r ---12ISystemAnalysts
3SystemDesign

��ystemCodmq1ImPlementation
5

61days·- -Tue 9/9/03
- - -

60 days
_-

Mon10/13/03 I
.-.-----

6

_ ..
--

]

SystemTesting1Evaluation
r]Fri 11/21/0342 days

Documentation
-

- -_

121 days- Thu 8/21103 [
- ---

-----. ---- .----

-I

Milestone •
f-- _.,-, - -- .. _ .--�-

Task
External Tasks L

• • External Milestone •Project:ps \ Split I I I I I I I I I I I I I I 1
Summary

DateThu2/19/04 �;=:S;ll*�Progress Project Summary Deadline

Univ
ers

ity
 of

 M
ala

ya

VSERMANVAL

1. Java has to be installed in order to run the simulator.

2. To run the simulator, click the 'go' batch
file (Figure AI) which is located in

'javasim 0.490Id' folder.

liiiiiiii go
r.t::;·["='5 8 "tch File

In:

Figure A I : 'go' Batch File

3. This will appear on the screen:

Figu re A2 : cmd.exe

4. The simulator will then appear on the screen (Figure A3).

t Javil Network Simulator

�@:I@

Figure A3 : UMJaNetSim
Network Simulator

Univ
ers

ity
 of

 M
ala

ya

Setting up a simple topology with self-similar component as traffic source

1. To set up a simple. topology such as the one shown in Figure A4, the components

should first be created. The topology in Figure A4 consists of the following
components:

(i) Two VBR Self-similar application components (vbrl and vbr2)

(ii) Two Generic BTEs (btel and bte2)

(iii) Two Generic Links (II and 12)
(iv) One ATM Generic switch (atm)

f.lle f.uH Iools �dow !:!elp

I.

Figure A4: Simple topology

2. To create a component, right-click the mouse. The following pop-up will appear

on the screen:

--

I Cancel
-------.

New_CO�tlt •

Figure AS: Pop-up

2

Univ
ers

ity
 of

 M
ala

ya

3. To create a VBR Self-similar component, select the "VBR Self-Similar

Application" from the "Application" list which is under "New Component"

(Figure A6).

Cancel

NlWI ComFJ(lnent � ATM Switch •

BTE

Figure A6: Selecting the VBR Self-Similar Application

4. The following pop-up requesting the name to be given to the component will

appear on the screen as shown below:

Component Name:

IL .
�_'_ _ __ .

J

Figure A7: Name request

5. Once the name has been entered and the "OK" button is pressed, the VBR Self­

similar component will appear on the screen:

• t Java Network Simulator

-
--

- - --
-

��f8l

tan II Ret'" I j Connect Mode j I Fh All j r
.

Tell J 00:00:00.000
I

- - --

Figure A8: Component created

3

Univ
ers

ity
 of

 M
ala

ya

6. Similarly, create the rest of the components from "New Component" as

mentioned in points I(i) to l(iv)
(i) For the two BIE components, select "BIE Generic" from "BIE"

(ii) For the two Link components, select "Generic Link" from "Link"

(iii) For the ATM Generic Switch, select "AIM Generic" from "AIM

Switch"

7. No two components should have the same name. The following error message

wi II appear:

o

J.], Duplicate component name, try another one...

Figure A9: Errol' message

8. Once all the components have been created, they should be connected:

(i) vbrl should be connected to bteI,

(ii) bte J should be connected to II,

(iii) II should be connected to atm,

(iv) atm should be connected to 12,

(v) 12 should be connected to bte2, and

(vi) bte2 should be connected to vbr2

9. Connecting is done by first clicking the "Connect Mode': button (Figure A I 0),

and then clicking the mouse on the middle ofa component and 'dragging' the

mouse to the next component it is to be linked to and clicking the mouse again. A

'white line' will appear between the two components, and the components will

then be 'connected'. Once all the components have been connected, click the

"End Connect" button (Figure AIl).

Connect Mode J
Figure AI 0: "Connect Mode" button

I End Connect I
Figure A II: "End Connect" button

4

Univ
ers

ity
 of

 M
ala

ya

10. The properties of the components should then be set. To send traffic from vbrI to

bte2, right click the vbrl component and select "Properties" from the list that

appears (Figure A 12).
.

I
! . i

can:�=1,
Copy

.

Delete

Properties

Figure AU: Selecting "Properties"

11. The property box ofvbrl will then appear:

, Destination NSAP

. Number ofMeits to be sent

Repeat count (-1"'1nf)

start time (asecs)

I Delay between calls (usees)

Random data size

Random delay bet. calls

Enable starting delay
Random destination rt.i

Use name as seed

Port number

o 0 Calls attempted

o iJ CaUs accepted

U iJ Incoming Calls

U 0 Totallncornlng Calls

o IJ Current Bil Rate (MBits/s)

o

o

o

o

0.0 ...

Figure A13: Properties ofvbrl

12. Fill Lip the following properties:
(i) Mean Bit Rate - choose a positive value

(ii) Hurst parameter - choose any value between 0.5 and 1.0

(iii) Start time - any positive integer, e.g. I

(iv) Number ofMBits to be sent - any positive value

(v) Repeat count - set it at J

(vi) Delay between calls - any positive integer

(vii) Destination NSAP - set it at I

5

Univ
ers

ity
 of

 M
ala

ya

13 . For the ATM Generic switch, click on the "Manage" button which is next to the

"Route Table" property (Figure A 14) on the property list. The Route Table as

shown in Figure A 15 will appear.

Ir.::-:!I Manage... !

Figure A14: "Manage" button

Mask: I . __ ..J Out Links: [1_���1
[Add J I����J

========NS=AP=(h=ex=.)=-__ �_10ask J Out Link If
10 1,1 I

,

Figure A1S: Route Table

J 4. In order to send cells/data from vbrl to bte2, there has to be a path from the ATM

switch to bte2, which is via 12. To do this, under "NSAP(hex) :
"

enter
, I '. Under

"Mask" enter any value between (including) I and 160. Under "Out Links:
"

select 12.

J 5. Click the "Add" button. The screen should then be updated:

'-'-'-�----

�-
--, -

-

t Route Table 00
NSAP (hex):·I� ..

.. _ __
....

J
Mask: /1 60..._ j Out links: 1'2 ."J

Figure A 16: Route Table updated

J 6, Next, on the property I ist of bte2 (Figure A 17), set the "Logging every" property

as 1. I n order to send data ff'OI11 vbr 1 to bte2, both components should have the

same value for the NS;\P. The "NSAP far interface to 12" should therefore be set

to 1.

6

Univ
ers

ity
 of

 M
ala

ya

Max Output Queue Size (·1=inf) !
�

-I'_�---i

Logging every (ticks) (e.g. 1, 100) r 0
_...

--I
�-

-I' .. --�

IJ I] Cells Received I 0 I
1 j

Route Table ! Manage... j
,__

�I.,- ,. .. -- �.'.�'.-"

,
NSAP for interface to 12 ! 0 i

,__
......

' ...J

IJ IJ Cells in VBR Q to 12 0

I] IJ Cells drop edinVBRQtol2 0

I] D Cells in ABR Q to 12 0

[J I] Cells dropped in ABR Q to 12 0

Figu re A 17: Properties of bte2

17. Once the relevant properties are set, to run the simulator, click the "Start" button.

I Start I
Figure A18: "Start" button

18. The numbers next to the "Cells Received" property of both the ATM switch and

BTE2 should increase with time.

19. The values of the "Current Bit Rate" property
ofVBRl should change constantly.

To view the changing bit rate in the form of a graph, click the check box next to

the "Current Bit Rate" property. A graph should appear (Figure A 19).

� noms

,__
��O �I

,__ ��O ll�1
48.2475599246737

Figure A 19: Graph displaying changing bit rate

7

Univ
ers

ity
 of

 M
ala

ya

20. To pause the simulation at any time, click the "Pause" button. To reset the values

at any time, cl ick the "Reset" button.

Figure A20: "Pause" button

Figure A21: "Reset" button

8

Univ
ers

ity
 of

 M
ala

ya

