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ABSTRACT 

Over the recent years, the installation of photovoltaic (PV) system and integration with 

electrical grid has become more widespread worldwide. With the significant and rapid 

increase of photovoltaic power plants (PVPPs) penetration to the electric grid, the power 

system operation and stability issues become crucial and this leads to continuous 

evaluation of grid interconnection requirements. For this purpose, the modern grid codes 

(GCs) require a reliable PV generation system that achieves fault ride-through (FRT) 

requirements. Therefore, the FRT capability becomes the state of art as one of the 

challenges faced by the integration of large-scale PV power stations into electrical grid 

that has not been fully investigated. This research proposes FRT requirements for the 

connection of PVPPs into Malaysian grid as new requirements. In addition, presents a 

comprehensive control strategy of large-scale PVPPs to enhance the FRT capability based 

on modern GCs connection requirements. In order to meet these requirements, there are 

two major issues that should be addressed. The first one is the ac over-current and dc-link 

over-voltage that may cause disconnection or damage to the grid inverter. The second one 

is the injection of reactive current to assist the voltage recovery and support the grid to 

overcome the voltage sag problem. To address the first issue, the dc-chopper brake 

controller and current limiter are used to absorb the excessive dc-voltage and limits 

excessive ac current, respectively, and therefore protect the inverter and ride-through the 

faults smoothly. After guaranteeing that the inverter is kept connected and protected, this 

control strategy can also ensure a very important aspect which is the reactive power 

support through the injection of reactive current based on the standard requirements. 

Feed-forward decoupling strategy based-dq control is used for smooth voltage fluctuation 

and reactive current injection. Furthermore, to keep the power balance between both sides 

of the inverter, PV array can generate a possible amount of active power according to the 

rating of grid inverter and voltage sag depth by operating in two modes, which are normal 

and FRT modes. These two modes of operation require fast and precise sag detection 

strategy to switch the system from normal mode to a faulty mode of operation for an 

efficient FRT control. For this purpose, RMS detection method has been used. In this 

research, the large-scale PV plant connected to the MV side of the utility grid, taking the 

compliance of TNB technical regulations for PVPPs into consideration has been modelled 

using MATLAB/Simulink with nominal rated peak power of 1500 kW. Analyses of the 

dynamic response for the proposed PVPP under various types of symmetrical and 

asymmetrical grid faults also had been investigated. As a conclusion, the PVPP connected 

to the power grid provided with FRT capability has been developed. The sizing of the 

suggested PV array is achieved in which the simulation results matched the sizing 

calculation results. Moreover, the results at the point of common coupling show that the 

proposed PVPP is compatible with TNB requirements, including the PV-grid connection 

method, PV inverter type, nominal voltage operating range, total harmonic distortion less 

than 5%, voltage unbalance less than 1%, frequency fluctuation within ± 0.1 Hz, and 

power factor higher than 0.9. In addition, the control simulation results presented 

demonstrate the effectiveness of the overall presented FRT control strategy, which aims 

to improve the capability of ride-through during grid faults safely, to keep the inverter 

connected, to ensure the safety of the system equipment, to ensure all values return to pre-

fault values as soon as the fault is cleared within almost zero second as compared to the 

strategy without FRT control which needs around 0.25s, and to provide grid support 

through active and reactive power control at different types of faults based on the FRT 

standard requirements. 
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ABSTRAK 

Dalam tahun-tahun kebelakangan ini, pemasangan sistem fotovoltaik (PV) dan integrasi dengan 

grid elektrik telah menjadi semakin meluas di seluruh dunia. Dengan peningkatan ketara dan pesat 

penyambungan loji janakuasa fotovoltaik (PVPPs) ke grid elektrik, isu-isu berkaitan operasi 

sistem kuasa dan kestabilan menjadi lebih penting dan membawa kepada penilaian berterusan 

terhadap syarat penyambungan ke grid. Untuk tujuan ini, baru-baru ini, kod grid moden (GCs) 

memerlukan sistem penjanaan PV yang boleh dipercayai dengan mencapai keperluan melangkaui 

ganguan (FRT). Oleh itu, keupayaan FRT menjadi sebagai salah satu cabaran yang dihadapi oleh 

stesen kuasa PV berskala besar bagi penyambungan ke grid elektrik yang belum disiasat 

sepenuhnya. Kajian ini mencadangkan keperluan FRT untuk sambungan PVPP ke grid Malaysia 

sebagai keperluan baru. Di samping itu, membentangkan strategi kawalan komprehensif PVPP 

berskala besar untuk meningkatkan keupayaan FRT berdasarkan keperluan sambungan GC 

moden. Untuk memenuhi keperluan penyambungan ini, terdapat dua isu utama yang perlu 

ditangani. Yang pertama adalah arus ulang alik (ac) terlebih arus serta arus terus (dc) terlebih 

voltan yang boleh menyebabkan pemotongan atau kerosakan pada penyongsang grid. Yang kedua 

ialah suntikan arus reaktif untuk membantu pemulihan voltan dan menyokong grid mengatasi 

masalah sag voltan. Untuk menangani isu pertama, pengawal brek dc-chopper dan penghad arus 

digunakan untuk menyerap voltan dc yang berlebihan dan mengehadkan arus ac berlebihan, 

membolehkan melindungi penyongsang dan melangkaui gangguan elektrik dengan lancar. 

Selepas menjamin bahawa penyongsang terus disambungkan dan dilindungi, strategi kawalan ini 

juga boleh memastikan ciri yang sangat penting iaitu memberi sokongan kuasa reaktif melalui 

suntikan arus reaktif mengikut keperluan standard. Tambahan pula, untuk menjaga keseimbangan 

kuasa antara kedua-dua belah penyongsang, PV boleh menjana jumlah kuasa aktif yang 

diperlukan berdasarkan kepada penarafan grid penyongsang dan kedalaman voltan sag dengan 

dalam operasi dua mod iaitu mod biasa dan FRT. Kedua-dua mod operasi ini memerlukan strategi 

pengesanan yang cepat dan tepat yang penting bagi sistem untuk beralih dari mod operasi normal 

ke mod operasi kawalan FRT. Untuk tujuan ini, kaedah pengesanan RMS telah digunakan. Dalam 

kajian ini, loji PV berskala besar yang disambungkan ke sisi MV grid utiliti, yang mengambil 

pematuhan peraturan teknikal TNB mengenai penyambungan PVPP telah dimodelkan 

menggunakan MATLAB/Simulink dengan nominal kuasa puncak tertinggi 1500 kW. Analisa 

tindak balas dinamik untuk PVPP yang dicadangkan di bawah pelbagai jenis gangguan grid 

simetri dan bukan simetri juga telah dijalankan. Sebagai kesimpulan, reka bentuk lengkap PVPP 

yang disambungkan kepada grid kuasa yang disediakan dengan keupayaan FRT telah 

dilbangunkan. Rekabentuk saiz PV yang dicadangkan berdasarkan pengiraan ukuran telah 

dicapai. Selain itu, keputusan di titik gandingan bersama menunjukkan bahawa PVPP yang 

dicadangkan adalah bersesuaian dengan syarat keperluan TNB termasuk kaedah sambungan PV-

grid, jenis penyongsang PV, rangkaian operasi voltan nominal, jumlah harmonik gangguan 

kurang daripada 5%, ketidakimbangan voltan kurang dari 1% , julat frekuensi dalam ± 0.1 Hz, 

dan factor kuasa lebih tinggi daripada 0.9. Di samping itu, hasil simulasi kawalan yang 

dibentangkan menunjukkan keberkesanan strategi kawalan yang dicadangkan secara keseluruhan, 

meningkatkan keupayaan melangkaui gangguan elektrik grid dengan selamat, memastikan 

penyongsang sentiasa terhubung, memastikan keselamatan peralatan sistem, semua nilai kembali 

kepada nilai pra-gangguan sebaik sahaja gangguan dibersihkan dalam masa hampir sifar saat 

berbanding tanpa kawalan yang memerlukan sekitar 0.25s, dan juga memberi sokongan kepada 

grid melalui kawalan kuasa aktif dan reaktif pada pelbagai jenis gangguan elektrik berdasarkan 

syarat keperluan FRT.  
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Vabc Grid voltage 

Vd Active voltage in SRF 

*

dV  Active voltage reference in SRF 

Vdc Dc-link voltage 

Vgn    Nominal grid voltage 

Via Vib Vic inverter voltage 

Vmax Maximum voltage of the photovoltaic array 

Vmpp    Voltage of the PV module/array at the maximum power point 

Voc   Open circuit voltage 

Vpg    Present grid voltage before faults 

Vq Reactive voltage in synchronous reference frame. 

*

qV  Reactive voltage reference 

VT The thermal voltage 

VTHD Voltage total harmonic distortion 

ω Angular frequency 

∆P Change in the power of MPPT 



  

xvii 

α/β Components of that variable in stationary frame 

θPLL Phase angle of the PLL 

αv     Temperature coefficients of open circuit voltage 

αi    Temperature coefficients of short circuit current 

 

 



  

xviii 

LIST OF ABBREVIATIONS 

3-ph Three phase 

ac Alternating current 

AEMC Australian Energy Market Commission 

ANN Artificial neural network 

DCL Adaptive dc-link 

BDEW German Association of Energy and Water Industries 

CC Constant current 

CSI Current Source Inverters 

CV Constant voltage 

DB Dead beat 

dc Direct current 

DG distribution generator 

DPGS Distributed power generation systems 

DSO Distribution system operators 

DVR Dynamic voltage restorer 

DVS Dynamic voltage support 

ECM Energy Commission Malaysia 

FACTS Flexible ac transmission system 

FDP Fuel diversification policy 

FF Fill factor 

FFT Fast Fourier transform 

FiT Feed-in-Traffic 

FL Fuzzy logic 

FLC Fuzzy logic control  

FLS Feedback linearization strategy 

FL-GA Fuzzy logic-genetic algorithm 

FRT Fault ride through 

GA Genetic algorithm 

GB/T Guobiao Standards/ recommended (Chinese national standards) 

GC Grid code 

GCPPPs Grid-connected photovoltaic power plants 



  

xix 

GCPVS Grid-connected photovoltaic system 

GTO Gate turn-off thyristor 

GW Giga watt 

HC Hill climbing 

IEA International Energy Agency 

IEC International Electro-technical Commission 

IEEE Institute of Electrical and Electronics Engineers 

IGBT Insulated-gate bipolar transistor 

INC Incremental conductance 

IPP Independent Power Producers 

LL Line to line 

LLG Line to line to ground 

LV Low voltage 

LVRT Low voltage ride-through 

MDS Main distribution substation 

MOSFET Metal oxide semiconductor field effect transistor 

MPP Maximum power point 

MPPT Maximum power point tracking 

MV Medium voltage 

MVA Mega volt-ampere 

MW Megawatt 

P&O Perturb and observe 

p.u Per unit 

PCC Point of common coupling 

PI Proportional integral 

PID Proportional integral derivative 

PF Power factor 

PLL Phase locked loop 

PPU Pencawang pembahagian utama-main distribution substation 

PR Proportional resonant 

PSO Power system operator 

PV Photovoltaic 

PVPP Photovoltaic power plants 



  

xx 

PWM Pulse width modulation 

RC Repetitive current 

RE Renewable energy 

RM Malaysian ringgit 

RMS Root mean square 

SAPVS Stand-alone photovoltaic system 

SCESS Supercapacitor energy storage system 

SDBR Series dynamic breaking resistor 

SEDA Sustainable energy development authority 

SGCT Symmetrical gate commutated thyristor 

SLG Single line to ground 

sq km Square kilometre 

SRF-PLL Synchronous reference frame phase-locked loop 

STATCOM Static compensator 

STC Standard test conditions 

SVC Static VAR compensator 

THD Total harmonic distortion 

TNB Tenaga Nasional Berhad 

USANAERC United States-north American electric Reliability Corporation 

USAPREPA United States-Puerto Rico Electric Power Authority 

VAR Volt-ampere reactive 

VCO Voltage controlled oscillator 

VSI Voltage source inverters 

VUF Voltage imbalance factor 

WPP Wind power plant 

ZVRT Zero voltage ride through 
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