

PVDF/HMO ultrafiltration membrane for efficient oil/water separation

N. H. Ismail^{a,b}, W. N. W. Salleh^{a,b}, N. A. Awang^{a,b}, S. Z. N. Ahmad^{a,b}, N. Rosman^{a,b}, N. Sazali^c, and A. F. Ismail^{a,b}

- ^a Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, Skudai, Johor Bahru, Johor, Malaysia
 - ^b School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, Johor Bahru, Johor, Malaysia
 - c Faculty of Mechanical Engineering, Universiti Malaysia Pahang, Pekan, Pahang, Malaysia

ABSTRACT

In this research, hydrous manganese oxide (HMO) nanoparticles was adopted in polyvinylidene fluoride (PVDF) to improve the ability of the mixed matrix membrane (MMM) to separate oil/water emulsions. The MMMs - which were added with various amounts of HMO loading (3, 5, 7 and 10 wt%) – were characterized for its physicochemical properties, morphological structure, and nanoparticles dispersion of the PVDF/HMO membrane. Evidently, the presence of these nanoparticles increased the hydrophilicity and oleophobicity of the PVDF/HMO membrane as compared to those of the pristine PVDF. Concurrently, the water contact angle was reduced from 99 to 58 while oil contact angle increased from 0 to 35. The presence of -OH groups and Mn element channeling the PVDF/HMO membrane wetting properties, which in turn improved the membrane's affinity towards water molecules and aversion to oil droplets. The PVDF/HMO membrane that contained 10 wt% of HMO loading exhibited a water flux (402 L/m2 h) - 10 times greater than the pristine PVDF membrane with 93% oil rejection rate.

KEYWORDS

Hydrophilic membrane; Hydrous manganese oxide (HMO); Mixed matrix membrane (MMM); Oil/ water separation; Oily wastewater

ACKNOWLEDGEMENT

The authors would like to thank the Ministry of Education and Universiti Teknologi Malaysia for the financial support provided under MRUN-RU Partner Translational Research Program (Project Number: R.J1300000.7851.4L863) and Transdisciplinary Research (TDR) Grant (Project Number: Q.J130000.3551.05G76) in completing this work. N.H. Ismail would like to acknowledge the support from Universiti Teknologi Malaysia for ZAMALAH scholarship.