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Introduction: The use of comorbidity models is crucial in cardioprotective drug
development. Hypercholesterolemia causes endothelial and myocardial dysfunction, as
well as aggravates ischemia/reperfusion (I/R)-induced myocardial injury. Endogenous
cardioprotective mechanisms against I/R are impaired in hyperlipidemic and
hyperglycemic in vivo animal models. Therefore, our aim was to develop a
medium throughput comorbidity cell-based test system of myocardial I/R injury,
hypercholesterolemia and hyperglycemia that mimics comorbidity conditions.

Methods: Cardiac myocytes isolated from neonatal or adult rat hearts were cultured
in control or in three different hypercholesterolemic media with increasing cholesterol
content (hiChol) or hiChol + hyperglycemic medium, respectively. Each group was
then subjected to simulated ischemia/reperfusion (SI/R) or corresponding normoxic
condition, respectively. Cholesterol uptake was tested by Filipin staining in neonatal
cardiac myocytes. Cell viability, total cell count and oxidative stress, i.e., total reactive
oxygen species (ROS) and superoxide level were measured by fluorescent assays.

Results: Neonatal cardiac myocytes took up cholesterol from the different hiChol media
at a concentration-dependent manner. In normoxia, viability of hiChol neonatal cardiac
myocytes was not significantly changed, however, superoxide levels were increased as
compared to vehicle. After SI/R, the viability of hiChol neonatal cardiac myocytes was
decreased and total ROS level was increased as compared to vehicle. HiChol combined
with hyperglycemia further aggravated cell death and oxidative stress in normoxic as
well as in SI/R conditions. Viability of hiChol adult cardiac myocytes was significantly
decreased and superoxide level was increased in normoxia and these changes were
further aggravated by SI/R. HiChol combined with hyperglycemia further aggravated
cell death, however level of oxidative stress increased only in normoxic condition.
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Conclusion: HiChol rat cardiac myocytes showed reduction of cell viability and
increased oxidative stress, which were further aggravated by SI/R and with additional
hyperglycemia. This is the first demonstration that the combination of the current
hypercholesterolemic medium and SI/R in cardiac myocytes mimics the cardiac
pathology of the comorbid heart with I/R and hypercholesterolemia.

Keywords: cardiac myocytes, ischemia/reperfusion injury (I/R injury), hypercholesterolemia (HC), cell culture,
hypercholesterolemia and hyperglycemia

INTRODUCTION

Ischemic heart disease is still the leading cause of death
worldwide; therefore, there is an unmet clinical need for the
development of efficient cardioprotective therapies. In the last
few decades, a wide variety of cardioprotective interventions and
pharmacological treatments were found effective in experimental
animal models and in cell cultures. However, their clinical
translation has been largely disappointing (Hausenloy et al.,
2017). One of the major problem is that the in vitro preclinical
testing of drug candidates apply cell lines and in vivo, ex vivo
testing apply young, healthy animals, thus neglecting the
presence of cardiovascular risk factors and comorbidities.

Ischemic heart disease is typically associated with
metabolic diseases such as diabetes, obesity, hyperlipidemia
and hypercholesterolemia, which predispose the subject to
atherosclerosis and the development of coronary artery diseases
(CADs) (Benjamin et al., 2017). Hypercholesterolemia is
widely accepted as a principal risk factor for CAD (Ferdinandy
et al., 2014) and can increase the myocardial damage due to
ischemia/reperfusion injury and interfere with responses to
cardioprotective interventions (Andreadou et al., 2017). Most
of the preclinical studies have shown that hyperlipidemia
(but not atherosclerosis) leads to a significant aggravation of
myocardial ischemia/reperfusion injury and to an attenuation
of the cardioprotective effect of preconditioning (Ferdinandy
et al., 2007, 2014; Andreadou et al., 2017). One of the first articles
reporting the loss of rapid pacing-induced preconditioning in
hypercholesterolemic rabbits was released in Szilvassy et al.
(1995). The loss of the infarct size-limiting effect of ischemic
preconditioning (Gorbe et al., 2011; Babbar et al., 2013) and
late ischemic preconditioning (Yadav et al., 2012) have been
shown in different models of diet-induced hyperlipidemia in
rats. Detrimental effect of hypercholesterolemia could be due
to either increased production and/or decreased removal of
highly reactive oxygen and/or nitrogen species (ROS and RNS),
such as superoxide, hydrogen peroxide, hydroxyl radicals, and
peroxynitrite (Csonka et al., 2016). Diabetes mellitus is a major
independent risk factor for acute coronary syndrome (ACS) and
causes increased mortality among diabetic individuals (Sethi
et al., 2012). Numerous mechanisms have been proposed to
contribute to the formation of diabetic cardiomyopathy and
myocardial contractile function, including oxidative stress
(Singh et al., 2018).

The investigation of mechanisms behind ischemia/reperfusion
injury in the presence of hyperlipidemia and other metabolic
comorbidities is crucial for testing potential cardioprotective

compounds and interventions. Ischemia/reperfusion injury can
be modeled with induction of hypoxia/anoxia in a hypoxic
chamber, which can be further combined with the application
of hypoxic medium. The aforementioned model is widely used
in primary cardiac myocyte cultures and cell lines as well
(Lecour et al., 2014; Lindsey et al., 2018). We reported previously
that simulated ischemia/reperfusion injury causes significant cell
death in neonatal rat cardiac myocytes, which can be reversed
with an NO-donor treatment (Gorbe et al., 2010). Simulation
of hyperlipidemia and hypercholesterolemia in vitro is less
standardized in the literature. There are only few studies, where
lipoprotein or oxidized lipoprotein supplementation was used in
cardiac myocyte cultures to induce in vitro hyperlipidemia (Cal
et al., 2012a,b).

Currently, there is a lack of in vitro cell based platforms
able to mimic such pathological conditions and to become
the gold standard in the development of new effective drug
candidates. Therefore, the aim of the present study was to
set an in vitro medium throughput test system of primary
isolated cardiac myocytes, which can be subjected to simulated
ischemia/reperfusion and mimics in vivo hypercholesterolemia
and hyperglycemia. Severity of cell injury and level of oxidative
stress could reflect the possible cardioprotective or cardiotoxic
effects of tested compounds during preclinical phase of
drug development.

MATERIALS AND METHODS

These experiments conform to the National Institutes of Health
Guide for the Care and Use of Laboratory Animals (NIH Pub.
No. 85-23, Revised 1996) and were approved by the local ethics
committee at the University of Szeged.

Study Design
In the present study, we used both primary isolated neonatal
and adult rat cardiac myocyte adherent cultures. The following
groups were investigated:

(1) normochol (normocholesterolemic control, cell culture
medium supplemented with the vehicle of HiChol
supplementations)

(2) HiChol 1 (cell culture medium supplemented with
hypercholesterolemic medium 1)

(3) HiChol 2 (cell culture medium supplemented with
hypercholesterolemic medium 2)

(4) HiChol 3 (cell culture medium supplemented with
hypercholesterolemic medium 3).
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Each group was tested under the following conditions:

(a) Standard culturing under normoxic condition
(b) Simulated ischemia/reperfusion injury (SI/R)
(c) Simulated ischemia/reperfusion injury + treatment

with NO donor drug or its vehicle (a well-known
cardioprotective compound) under SI/R

(d) Additional hyperglycemia (high concentration of glucose
combined with HiChol supplementation, refers to
metabolic disease condition) under normoxic condition

(e) Additional hyperglycemia + simulated ischemia/
reperfusion injury.

Isolation of Neonatal Cardiac Myocytes
Neonatal cardiac myocytes (NRCM) were isolated from new-
born (1–3 day old) Wistar rats as described previously (Csont
et al., 2010; Bencsik et al., 2014). Briefly, rats were disinfected
with 70% ethanol and then euthanized by cervical dislocation.
The hearts were rapidly removed and placed in ice cold PBS.
Ventricles were separated and minced with fine forceps. Tissue
fragments were digested in 0.25% trypsin for 25 min in a
conical tube at 37◦C. After digestion, the cell suspension was
centrifuged (250× g for 15 min at 4◦C). Pellet was resuspended in
culture medium [Dulbecco’s modified Eagle’s medium (DMEM),
supplemented with 10% fetal bovine serum (FBS), L-Glutamine,
and Antibiotic/Antimycotic]. This cell suspension was preplated
in 6-well plates at 37◦C for 90 min to enrich the culture with
cardiac myocytes. The non-adherent myocytes were collected and
cells were counted and then plated at a density of 105 cells/well in
a 24-well plate.

Isolation of Adult Cardiac Myocytes
Male adult Wistar rats (150 g) were used. Surgery was performed
under sodium pentobarbital anesthesia and each animal was
heparinised (500 IU/kg) through femoral vein. For cardiac
myocyte (ARCM) isolation, hearts were cannulated and perfused
retrograde with butanedione monoxide supplemented Krebs–
Henseleit solution to wash out the clots and blood. After a
2–4 min solution was changed to collagenase II (8000 U/mL)
containing Krebs solution and perfused for 30–45 min. The
ventricles were removed and chopped in small pieces and
digestion continued for 10 min more. The cell suspension was
filtrated and pelleted under gravity, repeated 2–3 times. Under
these steps, the Ca2+ concentration was increased gradually up
to 1 mM. The ratio of the rod shape viable cells was controlled
visually under the isolation at each step of the phasic increase
of Ca2+. We considered isolated adult cardiomyocytes viable
when spontaneously contracting and showing rod shape. After
cell counting, the cells were plated in laminin-coated wells
of a 24-well plate (7500 cell/well) (Markou et al., 2011). To
start SI/R experiment minimum 50% viable cells were required
by cell counting.

Tailored Refeed R© Supplements
In order to mimic the elevated concentration of cholesterol
typical of hypercholesterolemic conditions on cultured primary
cardiac myocytes, we identified three increasing cholesterol

concentrations suitable for obtaining the desired responses by
the cells. However, an in vivo hypercholesterolemic condition
is usually overlapped by a general hyperlipidemia/dyslipidemia,
characterized by a wider array of dysregulated lipids and
influenced by multiple factors belonging to genetics,
lifestyle and diet. For this reason, we decided to integrate
the cholesterol-based supplements with selected lipids,
able to generate a more heterogeneous and authentic
hypercholesterolemic/hyperlipidemic phenotype in in vitro
primary cardiac myocytes. The three tailored Refeed R©

supplements (hiChol1, hiChol2, hiChol3) used in this study
were therefore developed by integrating the desired levels of
cholesterol with selected adjuvant lipids, in order to strengthen
the hypercholesterolemic biological effects and create a more
accurate in vitro model. Refeed R© supplements (Remembrane
Srl, Imola, Italy) are a completely defined combination of
non-animal derived lipids (NuCheckPrep, Inc., Elysian, MN,
United States; Sigma Aldrich, St. Louis, MO, United States;
Applichem an ITW, Inc., Chicago, IL, United States) solubilized
in 1 mL of ethanol (Sigma Aldrich). 1.5 mL of Refeed R© was
diluted in 500 mL of complete cell growth medium, the resulting
ethanol concentration being less than 1% (vol/vol) in the final
medium. The specific tailored Refeed R© composition is shown
in Table 1. Similar Refeed compositions for different purposes
have been previously developed, as described (Poggi et al., 2015;
Chatgilialoglu et al., 2017; Cavallini et al., 2018).

Medium Supplementation and Treatment
of Cardiac Myocytes
Neonatal cardiac myocytes were kept at 37◦C in a standard CO2
incubator (humidified atmosphere of 5% CO2) and supplied with
growth medium (10% FBS containing DMEM) for 24 h and
with proliferation medium (1% FBS) for another 48 h. The adult
cardiac myocytes were cultured with same conditions with serum
supplemented media for 3 h (5% FBS containing M199) and
with growth media (serum free M199) for 48 h (Experimental
protocol: Figure 1). Cholesterol supplements (hiChol1, hiChol2,
or hiChol3) or vehicle (0.3% ethanol) were added to each series
(3 µL into 1 mL culture media) (Figure 1). NO- donor S-nitroso-
N-acetyl penicillamine (10-6 M) was applied during simulated
ischemia and reperfusion. High glucose medium contained
4.5 g/L glucose.

Determination of Cholesterol Content of
the Cells by Filipin Staining
To measure the cholesterol content of the cultured cells Filipin
staining was used that enables semi-quantification of free

TABLE 1 | Composition of Refeed R©used for in vitro supplementation
(hypercholesterolemic medium/hiChol) of cardiac myocytes.

HICHOL1 HICHOL2 HICHOL3

Cholesterol 1,93 4,83 9,67

Other lipids 2,45 6,14 12,26

Total lipids 4.38 10.97 21.93

Data are the amount (mg) per 500 mL of complete medium.
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FIGURE 1 | (A) NeonatalQ4 cardiomyocytes

Q5

were cultured in normo glycemic or hyperglycemic medium supplemented with vehicle or hypercholesterolemic
supplementation (hiChol). Cholesterol staining was to show the effect of hiChol supplementation. Cell viability and oxidative stress, i.e., total reactive oxygen species
(ROS) and superoxide level was measured by fluorescent assays after 72 h cultivation. Each group was subjected to normoxia or simulated ischemia/reperfusion
injury (SI/R), respectively. Viability and oxidative stress was measured after normoxia or SI/R. (B) In adult rat cardiomyocytes treated with vehicle or hiChol
supplements cell viability and oxidative stress was measured under normoxia or after SI/R injury.

cholesterol in biological membranes (Maxfield and Wustner,
2012; Wilhelm et al., 2019). NRCMs were incubated in 300 µL
warm D-PBS based Filipin working solution (100 ug/ml)
(Sigma, F4767) for 30 min at 37◦C. Then we fixed them with
2% paraformaldehyde (10 min at room temperature). After
the fixation, cells were permeabilized (digitonin at 500 uM),

and then propidium iodide (PI) dye (50 µM, dissolved in
D-PBS) was added and incubated for 5 min to assess the cell
number. Filipin data were quantified by using a fluorescent
microscope (Olympus Fluoview 1000, excitation wavelength:
340 nm; emission wavelength: 410 nm), whereas 20–23 random
areas of cell cultures (four different cultures per group) were
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taken and the integrated density of fluorescence intensity was
analyzed by the NIH software ImageJ.

Simulated Ischemia/Reperfusion (SI/R)
To simulate ischemia/reperfusion injury we used a combination
of hypoxic atmosphere (mixture of 95% N2 and 5% CO2) in
a three-gas incubator and a hypoxic solution (in mM: NaCl
119, KCl 5.4, MgSO4 1.3, NaH2PO4 1.2, HEPES 5, MgCl2 0.5,
CaCl2 0.9, Na-lactate 20, BSA 0.1% pH 6.4, 310 mOsm/L). The
culture medium was removed and replaced with the hypoxic
solution (without supplementation). Parallel normoxic control
was performed, where the culture medium was replaced with
normoxic solution (in mM: NaCl 125, KCl 5.4, NaH2PO4
1.2, MgCl2 0.5, HEPES 20, MgSO4 1.3, CaCl2 1, glucose 15,
taurine 5, creatine-monohydrate 2.5, and BSA 0.1%, pH 7.4,
310 mOsm/L) and the cells kept in the normoxic incubator
(Csont et al., 2010; Gorbe et al., 2010; Bencsik et al., 2014;
Paloczi et al., 2016). Hypoxic and normoxic solutions were used
without modification according to Li et al. (2004). The length
of ischemia was 4 h for the neonatal (NRCM) and 30 min
for the adult (ARCM) cells. After the ischemic period, the
culture medium was replaced and the cells were reoxygenated
for 2 h. Cholesterol supplementation was applied again during
simulated reperfusion. See for protocol figure (Figure 1). The
length of the simulated ischemia is based on our preliminary
results and literature. The European Society of Cardiology
Working Group Cellular Biology of the Heart has recommended
that the combined ischemic and reperfusion times should be
selected to result in 50% cell death (Lecour et al., 2014), then
cardioprotection can be tested.

Viability Assays
To assess cell viability, calcein and propidium iodide stainings
were performed. Cells were washed with warm D-PBS and calcein
solution (1 µM) was added and incubated for 30 min at room
temperature in dark chamber. Then the calcein solution was
replaced with fresh D-PBS and the fluorescence intensity of
each well was detected by fluorescent plate reader (FluoStar
Optima, BMG Labtech). Fluorescence intensity was measured
in well scanning mode (scan matrix: 10 × 10; scan diameter:
10 mm; bottom optic; no of flashes/scan point: 3; temp: 37◦C;
excitation wavelength: 490 nm; emission wavelength: 520 nm)
(Bencsik et al., 2014).

To express the viability in a ratio of the total cell number
we used propidium iodide staining. Propidium iodide (50 µM)
and digitonin (500 µM) were added and incubated for 7 min.
Then the propidium iodide solution was replaced with warm
D-PBS and fluorescence intensity of each well was detected;
excitation wavelength: 544 nm; emission wavelength: 620 nm
(Bencsik et al., 2014).

Oxidative Stress Measurements
The presence of general reactive oxygen species (ROS)
production was detected with 2,7-dichlorodihydroflourescein
diacetate (DCFH-DA) (Sigma; D6883). This fluorogenic dye
is widely used to measure general level of oxidative stress, as
it measures hydroxyl, peroxyl and other ROS activity within

the cell according to manufacturers instruction. The presence
of superoxide was detected with an oxidative fluorescent dye
dihydroethidium (DHE) (Sigma; D7008). Cardiac myocytes
were rinsed with Dulbecco’s Phosphate Buffered Saline (D-PBS),
then incubated in 100 µL of 10 µM DHE or DCFH-DA at room
temperature for 60 min in a dark chamber. Then the dye solution
was replaced with warm D-PBS and fluorescence intensity of
each well was detected; excitation wavelength: 530 nm; emission
wavelength: 620 nm in case of DHE (Csont et al., 2007) and
excitation/emission at 495 nm/529 nm in case of DCFH-DA,
as described (Csont et al., 2007; Tao et al., 2007; Kalyanaraman
et al., 2012; Ludke et al., 2017).

RESULTS

Cholesterol Uptake of Neonatal Rat
Cardiac Myocytes
Normoxic neonatal cardiac myocytes were treated with
cholesterol containing medium with increasing concentrations
(hiChol1, hiChol2, hiChol3) of cholesterol to test the uptake
by the cells. Filipin staining reflected the cholesterol content
of the cardiac myocytes and propidium iodide counterstain
reflected the total cell count (representative images Figure 2A).
Fluorescence signal analysis showed that cholesterol uptake from
the hiChol supplements was efficient and cholesterol content
increased in cardiac myocytes at concentration dependent
manner (Figure 2B).

Effect of Hypercholesterolemic
Supplementation and Simulated
Ischemia/Reperfusion Injury on Neonatal
Cardiac Myocytes
Under normoxic conditions, the cell viability of neonatal
cardiac myocytes was not influenced by the hypercholesterolemic
supplementation (Figure 3A). Under normoxic conditions there
were no differences in total ROS levels between the groups
too (Figure 3B). However, superoxide levels were significantly
elevated in all groups (Figure 3C), reflecting some detrimental
effect in presence of high level of cholesterol.

Simulated ischemia/reperfusion (SI/R) injury caused
significant cell death of normocholesterolemic cardiac myocytes
(Supplementary Figure S1A) compared to normoxic groups.
Cardiac myocyte viability was significantly decreased with
the administration of hiChol3 (Figure 3A). SI/R injury
alone increased both total ROS and superoxide levels in
normocholesterolemic (normChol) groups, which were further
increased in presence of hypecholesterolemic supplementation
(hiChol3) (Figures 3B,C).

Effect of Metabolic Disease Condition
and Simulated Ischemia/Reperfusion
Injury in Neonatal Cardiac Myocytes
In normoxic condition, when hypercholesterolemic
supplementation was applied in combination with high
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FIGURE 2 | (A) Representative images of membrane cholesterol content in neonatal cardiac myocytes after cholesterol supplementation (hiChol1, hiChol2, hiChol3)
measured with Filipin staining (for cholesterol content) and propidium iodide staining (for total cell count). (B) Membrane cholesterol levels of neonatal cardiac
myocytes evaluated (Image J software) after cultivation with different supplements (hiChol1, hiChol2, hiChol3). Data are expressed as mean ± SEM compared to
normoxia vehicle control group (100%). ∗p < 0.05 vs. normoxia vehicle (one-way ANOVA, Tukey’s post hoc), n = 20–23.

glucose in medium, reduced cell viability was detected at
higher concentration of cholesterol (hiChol2 and hiChol3)
(Figure 4A). In these groups, total ROS and superoxide
levels increased correspondingly (Figures 4B,C). Simulated
ischemia-reperfusion further decreased cell viability in
hiChol2 and hiChol3, while total ROS and superoxide levels
increased (Figure 4).

Effects of Hypercholesterolemic
Supplementation and Simulated
Ischemia/Reperfusion Injury in Adult
Cardiac Myocytes
We tested the sensitivity of cardiac myocytes isolated from
adult rats to hypercholesterolemia. Cell viability was significantly
reduced after hiChol2 supplementation of adult cardiac myocytes
in normoxia (Figure 5A). The total ROS level was not influenced,
but superoxide level was elevated by hiChol2 under normoxic
condition (Figures 5B,C).

Simulated ischemia/reperfusion injury caused significant cell
death of adult cardiac myocytes (Supplementary Figure S1B).
The reduction of cell viability by cholesterol supplementation
was further increased when hypercholesterolemia was combined
with simulated ischemia/reperfusion injury (Figure 5A). Both
total ROS and superoxide showed markedly elevated levels

when hypercholesterolemic supplementation and simulated
ischemia/reperfusion was combined (Figures 5B,C).

Effect of Metabolic Disease Condition
and Simulated Ischemia/Reperfusion
Injury in Adult Cardiac Myocytes
In normoxic condition, when hypercholesterolemic
supplementation was applied in combination with high
glucose in medium, reduced cell viability was detected at higher
concentration of cholesterol (hiChol2 and hiChol3) (Figure 6A).
In these groups, total ROS and superoxide levels increased
correspondingly in normoxic condition (Figures 6B,C).
Simulated ischemia-reperfusion caused similar rate of cell death
in hiChol2 and hiChol3 as in normoxic cells, while interestingly
total ROS did not changed, superoxide levels increased only in
hiChol3 group (Figure 6).

Cardioprotection Against Simulated
Ischemia/Reperfusion Injury in
Hypercholesterolemic Neonatal and
Adult Cardiac Myocytes
The NO-donor S-nitroso-N-acetyl penicillamine (SNAP)
significantly decreased cell death induced by SI/R injury in
neonatal normocholesterolemic cardiac myocytes (Figure 7A).
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FIGURE 3 | Neonatal rat cardiac myocyte viability was measured (A) with
calcein AM staining after cultivation with/without hiChol1-3 supplements
under normoxic conditions and combined with simulated ischemia/reperfusion
injury (SI/R). Total ROS (B) and superoxide (C) level was measured in neonatal
cardiac myocytes treated with cholesterol supplements (hiChol1-3) under
normoxia or after SI/R. Data are expressed as mean ± SEM, in comparison to
normoxia vehicle control group (100%). $p < 0.05 normoxia vehicle vs. SI/R
vehicle (t-test); ∗p < 0.05 vs. normoxia vehicle (one-way ANOVA, LSD
post hoc); #p < 0.05 vs. SI/R vehicle (one-way ANOVA, LSD post hoc);
n = 5–11 “N number denotes the number of wells originated from several
technical repeats.”

The protective effect of SNAP was abolished in each hiChol
supplemented groups (Figure 7B). SNAP significantly
decreased rate of cell death induced by SI/R injury in adult
normocholesterolemic cardiac myocytes (Figure 8A). Protective
effect of SNAP was abolished in each hiChol supplemented
groups (Figure 8B).

FIGURE 4 | Neonatal rat cardiac myocyte cells cultured in hyperglycemic
medium with/without hiChol1-3 supplements. Viability (A) was measured with
calcein AM staining in normoxia or after SI/R injury. Total ROS (B) and
superoxide (C) level were also measured in normoxia or after SI/R. Data are
expressed as mean ± SEM, in comparison to normoxia vehicle control group
(100%). $p < 0.05 normoxia vehicle vs. SI/R vehicle (t-test); ∗p < 0.05 vs.
normoxia vehicle (one-way ANOVA, LSD post hoc); #p < 0.05 vs. SI/R vehicle
(one-way ANOVA, LSD post hoc); n = 6–12.

DISCUSSION

In the present study, we showan in vitro medium throughput
cell-based test system of primary isolated cardiac myocytes
subjected to simulated ischemia/reperfusion in combination
with hypercholesterolemia using tailored hypercholesterolemic
supplementation with or without hyperglycemia. HiChol-
supplemented rat cardiac myocytes showed reduction of cell
viability and increased oxidative stress, which were further
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FIGURE 5 | Adult myocardial cell viability (A) was measured in normoxia or
after simulated ischemia-reperfusion (SI/R) injury with/without hiChol1-3
supplements. Total ROS (B) and superoxide (C) level was measured too. Total
ROS (B) and superoxide (C) level were also measured in normoxia or after
SI/R. Data are expressed as mean ± SEM, in comparison to normoxia vehicle
control group (100%). $p < 0.05 normoxia vehicle vs. SI/R vehicle (t-test);
∗p < 0.05 vs. normoxia vehicle (one-way ANOVA, LSD post hoc); #p < 0.05
vs. SI/R vehicle (one-way ANOVA, LSD post hoc); n = 5–14 on (A,C); n = 3–5
on (B).

aggravated by SI/R and additional hyperglycemia. Moreover,
HiChol supplementation blocked the cardiocytoprotective effect
the positive control NO-donor SNAP. These results are in
accordance to results observed in in vivo settings with
myocardial infarction and metabolic disease. This is the
first demonstration that the combination of the current
hypercholesterolemic/metabolic disease medium and SI/R in

FIGURE 6 | Adult rat cardiac myocyte cells cultured in hyperglycemic medium
with/without hiChol supplements. Viability (A) was measured with calcein AM
staining in normoxia or after SI/R injury. Total ROS (B) and superoxide (C) level
were also measured in normoxia or after SI/R. Data are expressed as
mean ± SEM, in comparison to normoxia vehicle control group (100%).
$p < 0.05 normoxia vehicle vs. SI/R vehicle (t-test); ∗p < 0.05 vs. normoxia
vehicle (one-way ANOVA, LSD post hoc); #p < 0.05 vs. SI/R vehicle (one-way
ANOVA, LSD post hoc); n = 6–12.

cardiac myocytes mimics the cardiac pathology of the comorbid
heart with I/R and hypercholesterolemia/metabolic disease. This
in vitro model can be suitable for testing potential drug
candidates for cardioprotection.

Hypercholesterolemia is widely accepted as a principal risk
factor for CAD (Ferdinandy et al., 2014). Hypercholesterolemia
has direct negative effects on the myocardium itself, in addition
to the development of atherosclerosis and CAD. In the
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FIGURE 7 | (A) SI/R and S-niroso-N-penicillinamine (SNAP) effect on the cell
viability of neonatal cardiomyocytes was detected with calcein-AM. (B) Effect
of Hypercholesterolemia on protective effect of SNAP against SI/R was tested
in each concentration (hiChol1, hiChol2, hiChol3). Data are expressed as
mean ± SEM, in comparison to normoxia vehicle control group (100%).
$p < 0.05Q10 normoxia vehicle vs. SI/R vehicle; #p < 0.05 vs. SI/R vehicle
(one-way ANOVA, LSD post hoc); n = 13–15.

present study, we observed a concentration-dependent uptake
of cholesterol by cardiac myocytes, which formed lipid droplets
mainly visible in the cytoplasm. HiChol-supplemented normoxic
neonatal rat cardiac myocytes did not show reduced cell viability,
but adult rat cardiac myocytes did. Similarly, direct harmful
effect of hypercholesterolemia on myocardium has been shown
in several experimental animal models. After 10 weeks of
cholesterol feeding, both systolic and diastolic impairments were
detected without hypertrophy or elevated blood pressure in
rabbits (Huang et al., 2004). Reduced myocardial strain was
detected with speckle tracking echocardiography in rabbit after
2- and 3-month atherogenic feeding, without atherosclerosis
(Liu et al., 2014). It was shown in a hypercholesterolemic
rat model that sterol esters affect membrane composition,
increase erythrocyte osmotic fragility and decrease antioxidant
enzyme levels (Sengupta and Ghosh, 2014). In the present
study, the presence of hypercholesterolemia induced an increased
level of superoxide formation in both neonatal and adult rat
cardiac myocytes in normoxic condition. This finding is in line

FIGURE 8 | (A) SI/R and S-niroso-N-penicillinamine (SNAP) effect on the cell
viability of adult cardiomyocytes was detected with calcein-AM. (B) Effect of
Hypercholesterolemia on protective effect of SNAP against SI/R was tested in
each concentration (hiChol1, hiChol2, hiChol3). Data are expressed as
mean ± SEM, in comparison to normoxia vehicle control group (100%).
$p < 0.05 normoxia vehicle vs. SI/R vehicle; #p < 0.05 vs. SI/R vehicle
(one-way ANOVA, LSD post hoc); n = 5–12.

with in vivo data, where increased formation superoxide has
been observed in hypercholesterolemic rat myocardium (Onody
et al., 2003). Elevated oxidative stress associated with high left
ventricular diastolic pressure were observed in in vivo and
ex vivo isolated diet-induced hypercholesterolemic rat hearts as
well (Varga et al., 2013). These results shows that the present
in vitro hypercholesterolemic/metabolic disease cell culture
model mimics the in vivo settings regarding the deteriorative
effects on cardiac myocytes via increased oxidative stress.

As already widely reported in the literature (Lin et al., 2015),
lipid dysregulation is often present as a cause or a consequence
of many human diseases. Commercially available in vitro models
do not take into account the influence of lipid dysregulation
on most cell properties. Therefore, there is an urgent need for
a new generation of in vitro models that would be able to
mimic pathologies or predisposing conditions also through the
consideration of the cell lipidome. Mammalian in vitro cells
are able to synthesize internally the majority of lipids, lipid
building blocks and related precursors they need. However, their
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preference is to uptake lipids from the cell culture medium, if
they are available. Consequently, in the presence of an adequate
external source of lipids, most cellular enzymes are down
regulated or switched-off. This is why the lipid composition
of in vitro cells can be modulated by strictly controlling their
external supply and a carefully planned feeding strategy grants
the possibility to develop efficient in vitro models mimicking real
in vivo conditions (Poggi et al., 2015; Chatgilialoglu et al., 2017).
The scope of this work was to develop a hypercholesterolemic
comorbidity model of primary cardiac myocytes. In our
opinion, the supplementation of increasing concentrations of
cholesterol only was a too simplistic way to operate; in fact,
in vivo hypercholesterolemic conditions are often interconnected
with a broader hyperlipidemia/dyslipidemia, characterized by
a wider array of dysregulated lipids and influenced by
multiple factors belonging to genetics, lifestyle and diet (Castro
Cabezas et al., 2018). Frequently, a hypercholesterolemic
condition is generated or corroborated by a poor diet quality
based on saturated fats and pro-inflammatory lipids (Marais,
2013; Arsenault et al., 2017). For this reason, we decided
to integrate the cholesterol-based supplements with selected
lipids, thus generating a more heterogeneous and authentic
hypercholesterolemic/hyperlipidemic phenotype for our primary
cardiac myocyte in vitro model. The three tailored Refeed R©

supplements were therefore developed by integrating the desired
levels of cholesterol with selected adjuvant lipids, in order to
strengthen the hypercholesterolemic biological effects and create
a more accurate in vitro model. In our present neonatal rat
cardiac myocyte model, hypercholesterolemic supplementation
was taken up by cells in a concentration dependent manner and
did not influence viability of neonatal cells. Filipin fluorescence
intensity showed lipid droplets mainly located in cell cytoplasm.
In another study, cardiac myocyte labeled with Filipin shows
highest level of cholesterol content in plasma membrane, but
also detectable signals can be captured from Golgi apparatus and
outer nuclear membrane (Severs, 1982).

There are other, less-controlled external types of lipid
supplementation described in the literature in cell culture
models, showing direct harmful effect of cholesterol. Cal et al.
(2012a,b) describe that the cholesterol uptake from VLDL
or LDL lipoprotein levels can affect the regulation of LPR-
1 (lipoprotein receptor-related protein 1) receptor expression
and the cholesterol accumulation in the ischemic myocardium.
Castellano et al. (2011) described the VLDL effect on Ca2+

handling and how the hypoxia can further exacerbate this
effect. Oxidized forms of lipoproteins can be harmful also
directly for the myocardium. Therefore, the present tailored
hypercholesterolemic supplementation is suitable for controlled
induction of hypercholesterolemia in vitro.

In the present study, simulated ischemia/reperfusion was
combined with hypercholesterolemic medium. Simulated
ischemia/reperfusion induced cell death aggravated harmful
effect of hypercholesterolemia in neonatal as well as in adult
cardiac myocytes. This finding is in line with majority of
in vivo animal models of ischemia/reperfusion, in which
hypercholesterolemia aggravated the ischemia/reperfusion
injury of the myocardium (Andreadou et al., 2017). In the

present model, decreased viability of cardiac myocytes was
associated with increased levels of total ROS and superoxide
anion. One of the most important free radicals generated
during hypercholesterolemia is superoxide anion (Landmesser
et al., 2000; Napoli and Lerman, 2001). Increased level of ROS
and its fundamental role in ischemia/reperfusion injury is an
extensively studied phenomenon (Perrelli et al., 2011; Moris
et al., 2017; Sinning et al., 2017; Cadenas, 2018; Hernandez-
Resendiz et al., 2018). ROS mediated signaling pathway is
defined as “redox signaling” (Moris et al., 2017) which was not
directly investigated in the present study. ROS modulates several
downstream signaling pathways, i.e., the activity of NFkB, which
is a well-studied redox-sensitive transcription factor (Frantz
et al., 2001). Hypercholesterolemia was the first cardiovascular
risk factor to be associated with the loss of cardioprotection due
to deterioration of several signaling mechanisms (Ferdinandy
et al., 2007, 2014), including disruption of NO-cGMP-PKG
pathway (Giricz et al., 2009), KATP signaling (Csonka et al.,
2014), Connexin43 distribution (Gorbe et al., 2011), inhibition of
opening of mitochondrial permeability transition pores (Yadav
et al., 2010), among several other (Andreadou et al., 2017).

To further validate our system, we used a well-known
cardioprotective NO-donor to test if its cardiocytoprotective
effect is also blocked by hyperchoelsteolemia in our in vitro
system. Here we have found that the NO-donor SNAP
protected both neonatal and adult normocholesterolemic cardiac
myocytes against SI/R injury, but not the hypercholesterolemic
cardiac myocytes. These results further validated our
present in vitro I/R and hypercholesterolemic model is
suitable for testing cardioprotective in the presence of
hypercholesterolemic comorbidity.

Ischemic heart disease associates with several risk factors
and comorbidities, like aging and diabetes. Several studies
investigated the effect of hyperglycemia on ischemic heart
and cardioprotection in different experimental animal models
of diabetes and in diabetic patients. Studies showed that the
presence of diabetes might interfere with the cardioprotective
mechanisms, attenuating the effectiveness of these therapeutic
strategies (Ferdinandy et al., 2014). Therefore, here we
investigated the presence of hyperglycemia in addition to
hypercholesterolemia in isolated primary cardiac myocytes. Here
we have found that the combination of hypercholesterolemia
and hyperglycemia mimicking metabolic disease worsened
the survival of cardiac myocytes even in normoxic condition.
Reduction in cell viability and increase in the level of oxidative
stress were further aggravated in ischemic neonatal cardiac
myocytes. In case of adult cardiac myocytes, SI/R injury
interestingly total ROS did not changed, and superoxide levels
increased only in hiChol3 group. We have previously found that
acute hyperglycemia in vivo did not influence infarct size in rat
acute myocardial model, but abolished cardioprotective effect
of remote ischemic preconditioning (Baranyai et al., 2015). In
a diabetic mice model, the exacerbation of heart failure after
MI has been observed via increasing NAD(P)H oxidase-derived
superoxide. These results further prove the validity of our
present in vitro I/R and hypercholesterolemic/metabolic disease
model is suitable for testing cardioprotective compounds in the
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presence of hypercholesterolemic/metabolic disease comorbidity
(Matsushima et al., 2009).

Limitations
The mechanisms of increased oxidative stress, i.e., ROS
producing enzymes and/or decreased antioxidant capacities were
out of the scope of the present study.

CONCLUSION

This is the first comorbidity cell-based in vitro test system of
ischemia/reperfusion injury and hypercholesterolemia/metabolic
diseasemimics the in vivo comorbidity condition of myocardial
ischemia/reperfusion injury. The present test system should
be considered as a screening platform for testing potential
cardiocytoprotective drug candidates in the presence of
these comorbidities.
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