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KEY POINTS

 Acute biliary pancreatitis is a significant clinical challenge as currently no specific 

pharmaceutical treatment exists. 

 Intracellular Ca2+ overload, increased reactive oxygen species (ROS) production, 

mitochondrial damage and intra-acinar digestive enzyme activation caused by bile acids 

are hallmarks of acute biliary pancreatitis.

 Transient Receptor Potential Melastatin 2 (TRPM2) is a non-selective cation channel that 

has recently emerged as an important contributor to oxidative-stress-induced cellular Ca2+ 

overload across different diseases. 

 We demonstrated that TRPM2 is expressed in the plasma membrane of mouse pancreatic 

acinar and ductal cells, which can be activated by increased oxidative stress induced by 

H2O2 treatment and contributed to bile acid-induced extracellular Ca2+ influx in acinar 

cells, which promoted acinar cell necrosis in vitro and in vivo. 

 These results suggest that the inhibition of TRPM2 may be a potential treatment option 

for biliary pancreatitis.
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ABSTRACT

Acute biliary pancreatitis poses a significant clinical challenge as currently no specific 

pharmaceutical treatment exists. Disturbed intracellular Ca2+ signalling caused by bile acids is a 

hallmark of the disease, which induces increased reactive oxygen species (ROS) production, 

mitochondrial damage, intra-acinar digestive enzyme activation and cell death. Because of this 

mechanism of action, prevention of toxic cellular Ca2+ overload is a promising therapeutic target. 

Transient Receptor Potential Melastatin 2 (TRPM2) is a non-selective cation channel that has 

recently emerged as an important contributor to oxidative-stress-induced cellular Ca2+ overload 

across different diseases. However, the expression and possible functions of TRPM2 in the 

exocrine pancreas remain unknown. Here we found that TRPM2 is expressed in the plasma 

membrane of mouse pancreatic acinar and ductal cells, which can be activated by increased 

oxidative stress induced by H2O2 treatment. TRPM2 activity was found to contribute to bile acid-

induced extracellular Ca2+ influx in acinar cells, but did not have the same effect in ductal cells. 

The generation of intracellular ROS in response to bile acids was remarkably higher in pancreatic 

acinar cells compared to isolated ducts, which can explain the difference between acinar and 

ductal cells. This activity promoted acinar cell necrosis in vitro independently from mitochondrial 

damage or mitochondrial fragmentation. In addition, bile-acid-induced experimental pancreatitis 

was less severe in TRPM2 knockout mice, whereas the lack of TRPM2 had no protective effect 

in cerulein induced acute pancreatitis. Our results suggest that the inhibition of TRPM2 may be a 

potential treatment option for biliary pancreatitis.
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Introduction

Acute pancreatitis (AP) is one of the most common inflammatory diseases of the gastrointestinal 

tract (Yadav & Lowenfels, 2013), which is primarily caused by impacted gallstones or heavy 

alcohol consumption (Parniczky et al., 2016). Despite intense efforts in both basic and clinical 

research, no specific pharmaceutical treatment exists, and the mortality of severe forms of AP 

(~10% of all cases) remains remarkably high (~28%) (Parniczky et al., 2016). The ‘common 

channel’ theory of biliary pancreatitis suggests that communication between the common bile 

duct and the pancreatic duct may exist because of impacted gallstones. Theoretically, bile acids 

could  reach the pancreatic ductal system and the acinar cells through this channel (Lerch & 

Aghdassi, 2010). Although this hypothesis is still unproven (DiMagno et al., 1982; Lerch et al., 

1993), several studies have shown that bile acids disturb intracellular Ca2+ homeostasis and 

trigger mitochondrial damage in the exocrine pancreas. Bile acids are known to increase the 

intracellular Ca2+ concentration ([Ca2+]I) in isolated pancreatic acinar (Gerasimenko et al., 2006) 

and ductal cells (Venglovecz et al., 2008) in vitro via Ca2+ release from intracellular stores, 

sarco-endoplasmic reticulum Ca2+ pump (SERCA) inhibition (Kim et al., 2002) and extracellular 

Ca2+ influx (Hong et al., 2011). This sustained elevation of [Ca2+]I can induce intra-acinar 

trypsinogen activation (Halangk et al., 2002; Sherwood et al., 2007), mitochondrial damage 

(Voronina et al., 2010; Maleth et al., 2011) and, consequently, cell necrosis in the exocrine 

pancreas. In addition, Booth et al. demonstrated that taurolithocholic acid sulphate (TLC-S) 

increases intracellular and mitochondrial reactive oxygen species (ROS) production, which was 

dependent on increases in [Ca2+]I and mitochondrial Ca2+ concentration (Booth et al., 2011). 

They also showed that bile acid induced the increased generation of ROS and promoted 

apoptosis, whereas increased intracellular and intramitochondrial Ca2+ initiated necrosis.
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In recent years, Transient Potential Melastatin-like 2 (TRPM2), a Ca2+-permeable non-selective 

cation channel, has been identified to act as a cellular redox-sensor (Hara et al., 2002; Di et al., 

2011), which plays an important role in physiological functions as well as in various diseases 

(Takahashi et al., 2011). Activation of TRPM2 by H2O2 is suggested to occur indirectly through 

intracellular production of adenosine diphosphate ribose (ADPR), which then binds to and 

stimulates the C-terminal ADPR pyrophosphatase Nudix-like domain (NUDT9-H motif) of 

TRPM2 (Perraud et al., 2005). In monocytes, Ca2+ influx via TRPM2 was shown to increase 

chemokine production, leading to enhanced neutrophil infiltration in inflammatory bowel 

diseases (Yamamoto et al., 2008). More recently, TRPM2 has been implicated in the 

pathogenesis of irradiation-induced xerostomia. Liu et al. demonstrated that irradiation followed 

by increased ROS production activates TRPM2, leading to extracellular Ca2+ influx and a 

consequent loss of acinar cell function in the salivary glands (Liu et al., 2013). In a downstream 

study, the authors also showed that irradiation activated a TRPM2-dependent mitochondrial 

pathway, leading to caspase-3 activation and mediated cleavage of stromal interaction molecule 

1, which then attenuated store-operated Ca2+ entry (Liu et al., 2017). In the endocrine pancreas, 

TRPM2 has been suggested to play a role in diabetic stress-induced mitochondrial fragmentation. 

Abuarab et al. demonstrated that ROS production induced by high glucose concentrations 

activates TRPM2 and triggers lysosomal membrane permeabilization, leading to Zn2+-mediated 

mitochondrial fission (Abuarab et al., 2017). These studies demonstrate the expression of 

TRPM2 in various epithelial cells, and this protein plays a central role in the pathogenesis of 

oxidative-stress-related diseases. Despite this knowledge, the expression or function of TRPM2 

in exocrine pancreatic cells has never been investigated.

In this study, TRPM2 was shown to be expressed in the acinar and ductal cells of the exocrine 

pancreas. In both cell types, TRPM2 was also found to mediate extracellular Ca2+ influx during 
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oxidative stress conditions. The non-conjugated bile acid chenodeoxycholate (CDC) was found to 

activate TRPM2-mediated Ca2+ influx in acinar cells, but did not do the same in ductal cells, 

contributing to acinar cell damage and increased acinar cell necrosis that was independent from 

mitochondrial damage. Importantly, a knockout of the gene encoding TRPM2 was found to 

significantly decrease tissue necrosis in an experimental model of acute biliary pancreatitis. 

Taken together, these results are the first description of the expression and functional activity of 

TRPM2 in the exocrine pancreas. Moreover, evidence was demonstrated for the important role 

that the activation of this channel plays in biliary pancreatitis.
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Materials and Methods

Animals

TRPM2 knockout mice were generously provided by Yasuo Mori (Kyoto University; Kyoto, 

Japan). The knockout mice were generated from a C57BL/6 background as described previously 

(Yamamoto et al., 2008). TRPM2 +/+ and TRPM2 −/− mice were bred from TRPM2+/− animals 

and were used for experiments between the age of 8–12 weeks. Mice were kept in standard 12 

hour light-dark cycle and on standard rodent food ad libitum. Mice genotyped using a standard 

polymerase chain reaction (PCR) assay as described in (Liu et al., 2013). Experiments on live 

animals were carried out with adherence to the NIH guidelines and the EU directive 2010/63/EU 

for the protection of animals used for scientific purposes. The study was authorized by the 

National Scientific Ethical Committee on Animal Experimentation under licence number 

XXI./2523/2018. Terminal anaesthesia was induced in mice with 250 mg/bwkg sodium 

pentobarbital. Before surgery, mice were anaesthetised with 125 mg/kg ketamine and 12.5 mg/kg 

xylazine. After operation the animals were placed on a heating pad until they regained 

consciousness, following which they were given buprenorphine (0.075 mg/kg) i.p. to reduce pain.

Isolation of pancreatic acinar cells

Pancreatic acinar cells from wild-type and TRPM2 knockout mice were isolated as described 

previously (Gout et al., 2013). Briefly, mice were sacrificed, and the pancreas was removed and 

was placed into ice-cold Hank's Balanced Salt Solution (HBSS; Sigma-Aldrich; Cat. No.: 8264). 

The tissue was then cut into small pieces in a 1.5 mL centrifuge tube which were placed into a 

sterile flask with 10 mL of isolation solution [10 mL HBSS (Cat. No.: Sigma; H9269), 200 U/mL 

of collagenase (Worthington; Cat. No.: 5273), 10 mM HEPES (Sigma-Aldrich; Cat. No.: 3375)]. 
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The tissue was incubated for 25–30 min at 37°C and was vigorously shaken every 5 min. After 

digestion, the pancreas was placed into a 50 mL tube (Sarstedt; 62.559.205) with 10 mL of ice-

cold washing solution (containing 10 mL HBSS, 10 mM HEPES, 5 % Foetal Bovine Serum Cat. 

No.: Gibco; 10500-064) and centrifuged at 90 RCF at 4°C for 2 min. This step was repeated two 

times. The supernatant was removed, and the pellet was resuspended in 1 mL HBSS solution. 

Until experimental use, the acinar cells were kept in an incubator at 37°C with 5% CO2.

Isolation of pancreatic ductal fragments

Isolation of inter-, and intralobular pancreatic ductal fragments was performed as described 

previously (Maleth et al., 2015). Terminal anaesthesia was induced in mice with 250 mg/bwkg 

sodium pentobarbital and the removed pancreas was digested for 15 min with 100 U/mL purified 

collagenase (Worthington, Cat. No.: LS005273) containing solution at 37°C applying gentle 

shaking. The isolation solution also contained 0.1 mg/mL trypsin inhibitor (ThermoFisher 

Scientific, Cat. No.: 17075029) and 1 mg/mL bovine serum albumin (VWR, Cat. No.: 9048-46-8) 

in DMEM Nutrient Mixture F-12 Ham (Sigma, Cat. No.: D6421).. Pancreatic ducts were 

separated from the acinar lobules under a stereomicroscope and used for downstream analysis. 

Gene expression analysis

Gene expression was investigated by the combination of reverse-transcription (RT-PCR) and 

conventional PCR. Total mRNA was isolated from three independent biological replicates of 

mouse brain, isolated pancreatic acini or isolated pancreatic ducts with the NucleoSpin RNA XS 

kit (Macherey-Nagel, Ref.: 740902.50) according to the manufacturer’s instructions. The mRNA 

concentrations were measured with NanoDrop™ 2000 (ThermoFisher Scientific). 1 µg purified 

mRNA was used to synthetize cDNA. using an iScript™ cDNA Synthesis kit (Bio-Rad; Cat. No.: 
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1708890). Conventional PCR amplification was performed by DreamTaq Hot Start DNA 

Polymerase (ThermoFisher Scientific, Cat. No.: EP1702) with cDNA specific primers (forward: 

ACGGGCAATATGGTGTGGAG; reverse: CACCTCCCCTTTCCTTCGTT) for 35 cycles. 

Mouse brain lysate was used to validate the primers.

Immunofluorescent labelling

For immunostaining pancreatic acinar cells were isolated and attached to poly-l-lysine-coated 

cover glasses, whereas pancreatic ducts were frozen in Shandon Cryomatrix (ThermoFisher 

Scientific, Cat. No.: 6769006) and 7 µm thick sections were cut with a cryostat (Leica CM 1860 

UV). Antibody labelling was performed as previously described (Molnar et al., 2019). Briefly, 

sections were fixed in 4% PFA-PBS and after antigen retrieval with sodium citrate–Tween 20 

buffer sections were blocked for 1 h. Sections were incubated with Anti-TRPM2-ATTO-594 

(Alomone Labs Cat. No.: ACC-043-AR) conjugated primary rabbit polyclonal antibody 

overnight at 4°C (1:100 dilution). Nuclei were labelled with Hoechst 33342 and sections were 

kept in a Fluoromount mounting medium (Sigma-Aldrich; Cat. No.: F4680) until imaging. 

Sections were imaged with a Zeiss LSM880 laser scanning confocal microscope using a 40× oil 

immersion objective (Zeiss, NA: 1.4).

Electrophysiology

For electrophysiology recordings, pancreatic acinar cells were isolated from mouse pancreas as 

described previously (Geyer et al., 2015), with slight modifications. The pancreas was removed 

and injected with a F12/DMEM (ThermoFisher Scientific Cat. No.: 11320033) medium 

containing 100 U/mL collagenase P (Roche), 0.1 mg/mL trypsin inhibitor and 2.5 mg/mL BSA. 

These were then incubated in 5 mL volume of the same solution in a 37°C shaking water bath for 
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30 min, which was continuously gassed with carbogen. The tissue was dissociated by pipetting 

with a serological pipette 4–6 times before filtering through a 150 μm mesh. Cells were layered 

on top of 400 mg/mL BSA and washed through the medium by gentle centrifugation. The pellet 

was resuspended in Ca2+-free, collagenase-containing Tyrode’s solution before being further 

digested for 10 min. Following this, cell clumps were gently agitated with a 1 mL pipette tip 

attached to a serological pipette. The resulting cells were collected by centrifugation, resuspended 

in DMEM medium and kept gassed at room temperature until use in patch clamp experiments. 

Whole cell currents were acquired at room temperature using an Axopatch 200B amplifier and a 

Digidata 1322A digitiser (Axon Instruments) at a 50 kHz sampling rate and filtered online at 5 

kHz using a low-pass Bessel filter. Data acquisition was performed using pClamp 9 software 

package (Axon Instruments). Pipettes of ~6 MΩ resistance were used with the intracellular 

solution containing 130 mM Cs-glutamate, 5 mM CaCl2, 10 mM EGTA (resulting in 135 nM 

ionised Ca2+), 5 mM MgCl2 and 10 mM HEPES, pH: 7.3. Pancreatic acinar cells were 

continuously perfused with extracellular saline solution (140 mM Na-glutamate, 4 mM CsCl, 2 

mM CaCl2, 2 mM MgCl2, 10 mM HEPES, pH: 7.4) with or without 100 µM H2O2. Cation 

currents were recorded during 100 ms long test pulses at step potentials between −60 and +120 

mV both under control conditions and during treatment.

Fluorescent microscopy

Isolated pancreatic acinar clusters or ductal fragments were placed on poly-l-lysine-coated cover 

glasses and incubated with BCECF-AM (1.5 μmol/L) or Fura2-AM (5 μmol/L) for 30 min at 

37°C (Hegyi et al., 2004). The loaded cells were imaged with an Olympus IX71 inverted 

microscope equipped with a Hamamatsu ORCA-ER CCD camera through a 20× oil immersion 

objective (Olympus; NA: 0.8). Samples were excited with an Olympus MT-20 illumination 
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system equipped with a 150 W xenon arc light source. Filter combinations for BCECF and Fura2 

was described previously (Molnar et al., 2019). . Ratiometric image analysis was performed 

using Olympus excellence software with a temporal resolution of 1 s.

Investigation of acinar cell fate

To investigate acinar cell fate, an apoptosis/necrosis detection kit was used according to the 

manufacturer’s instruction (Abcam Cat. No.: ab176750). CytoCalcein Violet 450 is sequestered 

in the cytoplasm of live cells. In apoptosis, phosphatidylserine (PS) is transferred to the outer 

leaflet of the plasma membrane, which can be detected by the PS sensor Apopxin Deep Red. 

During necrosis the cell membrane integrity is lost and thus the DNA Nuclear Green DCS1, a 

membrane-impermeable dye can label the nucleus of damaged cells. Briefly, pancreatic acinar 

cells from wild-type (WT) and TRPM2 KO mice were isolated as described above with 

modifications to improve overall cell survival (shorter tissue digestion and gentle centrifugation 

was applied) and incubated with 1 mM H2O2 or 250 µM CDC for 30 min. Cells were then 

centrifuged at 500 RCF for 5 min at 4°C and washed twice with PBS. Cells were then 

resuspended in 200 μL of Assay Buffer and loaded with CytoCalcein 450, Nuclear Green and 

Apopxin Deep Red at room temperature for 30–60 min. Following this, cells were collected and 

centrifuged at 500 RCF for 5 min at 4°C before being placed on a Cellview cell culture slide 

(Greiner Bio-One cat. no.: 543979) for imaging. Images were captured using a Zeiss LSM880 

confocal microscope with different channels and wavelengths according to each dye: 

CytoCalcein 450 (Ex/Em = 405/450 nm), Nuclear Green (Ex/Em = 490/520 nm) and Apopxin 

Deep Red (Ex/Em = 630/660 nm). For each condition, five images were captured, and the total 

number of cells was counted by two independent investigators. Cells with Nuclear Green staining 
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were considered necrotic, with Apopxin Deep Red staining apoptotic, whereas double stained 

cells were considered necrotic.

Confocal imaging of live acinar cells

Changes of the mitochondrial membrane potential (ΔΨm) were followed by using 

tertamethylrhodamine-methyl ester (TMRM), which accumulates in the mitochondria depending 

on ΔΨm. Generation of intracellular ROS was measured by H2DCFDA ROS indicator. Isolated 

pancreatic acinar cells were incubated with 100 nM TMRM (ThermoFisher Scientific Cat. No.: 

T668), or 4 µM H2DCFDA (ThermoFisher Scientific Cat. No.: D399) in standard HEPES 

solution for 20 min at 37°C on a poly-l-lysine-coated cover glass. The solutions were 

complemented with 100 nM TMRM to avoid dye leakage. Changes in ΔΨm or intracellular ROS 

were monitored using a ZEISS LSM880 confocal microscope. The cells loaded with TMRM 

were excited with 543 nm, and the emitted light was captured between 560 and 650 nm. Five to 

10 ROIs were placed on the mitochondria of pancreatic acinar cells. H2DCFDA was excited with 

490 nm and the emitted fluorescence was captured between 500 and 550 nm. Fluorescence 

signals were normalised to initial fluorescence intensity (F/F0) and expressed as relative 

fluorescence.

In vivo acute pancreatitis models

Cerulein-induced acute pancreatitis (AP) was induced by 10, hourly intraperitoneal injections of 

50 μg/bwkg cerulein (Bachem Cat. No.: H-3220) (control groups received physiological saline) 

(Pallagi et al., 2014). Two hours after the last cerulein injection, mice were euthanised with 85 

mg/kg pentobarbital. Biliary AP was triggered by the administration of 4% Na-taurocholate 

(Sigma-Aldrich Cat. No.: 86339) into the common bile duct as described previously by Perides et 

http://www.zeiss.com/microscopy/en_de/products/confocal-microscopes/lsm-880-with-airyscan-.html


14

al. (Perides et al., 2010b). Briefly, mice were anaesthetised with 125 mg/kg ketamine and 12.5 

mg/kg xylazine, and median laparotomy was performed, where the papilla of Vater was 

cannulated by a 0.4 mm diameter needle connected to an infusion pump. Mice were administered 

4% Na-taurocholate or physiological saline at a perfusion rate of 10 µL/min [TSE System 

GmbH-cat. no.: 540060-HP] for 5 min. After the abdominal wall and the skin were closed 

separately, the animals were placed on a heating pad until they regained consciousness, following 

which they were given buprenorphine (0.075 mg/kg) i.p. to reduce pain. Mice were sacrificed 24 

h later using pentobarbital (85 mg/kg i.p.). In both cases, blood samples were collected after 

terminal anaesthesia through the inferior vena cava, and the pancreata were removed 

immediately. Blood samples were placed on ice and then centrifuged at 2500 RCF for 15 min at 

4°C. Serum samples were collected and stored at −20°C. Pancreas samples were placed into a 4% 

formaldehyde solution and stored at 4°C until histology. A colorimetric kit (A Amylase Assay) 

was used to measure serum amylase activity (Diagnosticum, Cat. No.: 47462). Absorbance of the 

samples was detected at 405 nm using a FLUOstar OPTIMA (BMG Labtech) microplate reader. 

Formaldehyde-fixed pancreas samples were embedded in paraffin, and 4 μm thick sections were 

cut and stained with haematoxylin–eosin. Histologic parameters such as oedema, inflammatory 

cell infiltration and necrosis were scored (0–5 points for oedema, leukocyte infiltration and 

necrosis for the total histological score, or % of total area for necrosis) by three independent 

investigators blinded to the protocol (Pallagi et al., 2014). Averages of the scores were calculated 

and included to the manuscript. Total histological score was calculated by adding the individual 

scores together.

Statistics
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Statistical analysis was performed by Graphpad Prism software. All data are expressed as means 

± SEM. Both parametric (one-way analysis of variance) and nonparametric (Mann Whitney test, 

Kruskal-Wallis test - for analysis of the acinar cell survival assay) tests were used based on the 

normality of data distribution. A p value of less than 0.05 was accepted as statistically significant.
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Results

TRPM2 channel is expressed in the exocrine pancreas

End-point PCR analysis of isolated acini and ductal fragments confirmed that the TRPM2 gene 

was expressed in the exocrine pancreatic cells (Figure 1.A.). When immunofluorescent labelling 

of TRPM2 was performed on isolated acinar clusters and cross sections of isolated ducts, the 

confocal images showed that TRPM2 channels were expressed on the basolateral membrane of 

the pancreatic acinar cells, whereas an apical expression pattern was seen in ductal cells (Figures 

1.B–C).

Functional TRPM2 channels are present in pancreatic acinar and ductal cells

When isolated WT pancreatic acini were challenged with 1 mM H2O2 to increase ROS, a rapid 

and sustained increase of [Ca2+]I was observed (Figure 2.A), which was significantly reduced in 

the TRPM2 knockout (KO) acini (0.41 ± 0.09 vs 0.17 ± 0.029, respectively). In cells treated in an 

extracellular Ca2+-free medium, Ca2+ elevation was found to be significantly impaired, and no 

difference was detected between WT and TRPM2 KO cells. This suggests that the sustained 

elevation of [Ca2+]I in response to H2O2 was largely due to TRPM2-channel-mediated influx of 

extracellular Ca2+. In addition, H2O2 activated a reversible cationic membrane current, with a 

relative linear I–V relationship as was reported previously for TRPM2 (Liu et al., 2013) (Figure 

2.B). Similarly to acinar cells, treatment of isolated WT pancreatic ductal fragments with 1 mM 

H2O2 induced a sustained elevation of [Ca2+]I (Figure 2.C), which was significantly lower in 

TRPM2 KO ductal cells (0.30 ± 0.06 vs 0.10 ± 0.013, respectively). In these cells as well, Ca2+ 

elevation was significantly lower in Ca2+-free conditions (Figure 2.C.). As the intracellular Ca2+ 

level of pancreatic ductal cells decrease in response to extracellular Ca2+ removal, we normalised 
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the maximal Ca2+ responses to the same initial value. Genetic inhibition of TRPM2 channels had 

no effect on amylase release from pancreatic acinar cells (data not shown) or on the HCO3
− 

secretion by pancreatic ductal cells (described below, Figures 3.C–D). Therefore, the 

physiological relevance and function of TRPM2 in the exocrine pancreas still require further 

characterisation and study.

TRPM2 contributes to bile-acid-induced extracellular Ca2+ influx in pancreatic acinar cells

Bile acids can cause the release of Ca2+ from intracellular stores and can trigger extracellular Ca2+ 

influx. To study this, the intracellular Ca2+ elevation in response to bile acid treatment was 

compared in pancreatic acini and ducts. Administration of 250 µM CDC was found to trigger a 

rapid, sustained increase in [Ca2+]I, which was markedly impaired in the TRPM2 KO acinar cells 

(0.834 ± 0.02 vs 0.655 ± 0.04) (Figure 3.A). These results highlight that TRPM2 plays an 

important role in bile-acid-induced extracellular Ca2+ influx in pancreatic acinar cells. By 

contrast, no significant difference was detected in isolated ductal fragments between the Ca2+ 

response of WT and TRPM2 KO ducts to 250 µM CDC, suggesting that, in ductal cells, TRPM2 

plays no role in bile-acid-induced cell injury (Figure 3.B). 

Since HCO3
− secretion is the primary function of the ductal epithelia, the HCO3

− efflux across the 

apical membrane was compared between WT and TRPM2 KO ducts using fluorescent 

intracellular pH (pHi) measurements (Maleth et al., 2015). Ductal cells were exposed to 20 mM 

NH4Cl in HCO3
−/CO2-buffered solution from the basolateral membrane, triggering a rapid 

alkalisation because of the influx of NH3 (Figure 3.D), followed by a slower recovery of the 

alkaline pH to the resting pHi. This recovery phase depends on the HCO3
− efflux (i.e. secretion) 

from the ductal epithelia via the SLC26 Cl−/HCO3
− exchangers and CFTR (Maleth et al., 2015). 

Removal of NH4Cl rapidly decreased pHi below the resting value, which is restored by the 
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activities of the basolateral NHE1 and NBCe1 (Maleth et al., 2015). The initial recovery rates 

were measured (calculated as ΔpH/Δt) over the first 30 s to calculate the base flux [J(B−)] values 

as described (Maleth et al., 2015). With this assay, no difference in the activities of the apical and 

basolateral proteins was found between WT and TRPM2 KO ducts (Figures 3.D-E). Although the 

administration of CDC markedly inhibited ion secretion as has been previously described (Maleth 

et al., 2011), the genetic knockout of TRPM2 demonstrated no protective effect, suggesting that 

bile acids affect ductal cells via a TRPM2-independent mechanism (Figures 3.D-E).

To provide mechanistic explanation for the different contribution of TRPM2 in bile acid 

generated Ca2+ response in acinar and ductal cells, we measured the intracellular ROS using 

H2DCFDA. In accord with the previous findings of Booth et al. (Booth et al., 2011), we showed 

that 250 µM CDC increased the intracellular ROS level in pancreatic acini. Interestingly, the 

ROS production during bile acid treatment in ductal epithelial cells was significantly lower 

compared to acinar cells (13.6±2 vs 33.4±4 arbitrary unit).

Lack of TRPM2 decreases acinar cell necrosis during bile acid exposure

Pancreatic acinar cell fate determines the severity of AP. Because of this, it was also important to 

characterise the role of TRPM2 in acinar cell death. In the untreated control samples, ~85% of 

the acinar cells were viable in both the WT and TRPM2 KO samples, which is comparable to 

previously published results (Booth et al., 2011). Incubation of WT and TRPM2 KO acini with 1 

mM H2O2 for 30 min remarkably decreased the number of viable cells, and necrotic cell death 

was significantly increased (Figure 4.A-B). A lack of TRPM2 was observed to protect acinar 

cells from oxidative-stress-induced cell necrosis during H2O2 treatment (% of viable cells: 19.4 ± 

0.4 in WT vs 49.1 ± 1.2 in TRPM2 KO). The rate of apoptosis was similar in TRPM2 KO and 

WT acini (% of apoptotic cells: 9.1 ± 4.3 in WT vs 10.8 ± 2.5 in TRPM2 KO), whereas necrosis 
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was significantly impaired in TRPM2 KO acini (% of necrotic cells: 71.5 ± 4.2 in WT vs 40.1 ± 

3.2 in TRPM2 KO). Similarly, incubation of acinar cells with 250 µM CDC for 30 min decreased 

the number of live cells in WT sample, however overall cell survival was remarkably improved 

by TRPM2 deletion (% of viable cells: 48.3 ± 0.9 in WT vs 74.1 ± 1.3 in TRPM2 KO) (Figure 

4.A-B). TRPM2 deletion significantly decreased booth apoptotic and necrotic cell death in the 

CDC treated group (WT: 15.4 ± 2.5% vs KO: 8.5 ± 1.3% and WT: 36.3 ± 2.2% vs KO:17.4 ± 

1.3%, respectively). Importantly, the lack of TRPM2 channels resulted in a ~30% decrease in 

acinar cell death, suggesting that TRPM2 has an important contribution to acinar cell death 

during biliary AP.

Lack of TRPM2 does not prevent mitochondrial damage during bile acid exposure

We wanted to further characterise the intracellular mechanisms that play a role in TRPM2-

channel-mediated cell necrosis. As TRPM2 has been reported to induce mitochondrial damage 

(Liu et al., 2017), the mitochondrial membrane potential was measured (Δψm) in WT and 

TRPM2 pancreatic acinar cells. Administration of 1 mM H2O2 resulted in a marked drop of Δψm 

in WT cells (Figure 5.A). The decrease of Δψm was significantly lower in TRPM2 KO cells, 

whereas removal of the extracellular Ca2+ impaired the loss of Δψm in WT cells to the level of 

TRPM2 KO acini. This suggests that extracellular Ca2+ influx through TRPM2 plays a crucial 

role in the oxidative-stress-induced mitochondrial damage seen in pancreatic acinar cells. The 

decrease of Δψm in response to 250 µM CDC was also compared. However, no difference was 

seen between WT and TRPM2 KO cells (Figure 5.B). This may be due to the Ca2+-independent 

direct mitochondrial toxicity of bile acids (Schulz et al., 2013). Previously, TRPM2 channels 

have been suggested to be key mediators of diabetic stress-induced mitochondrial fragmentation 
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in endothelial cells (Abuarab et al., 2017). Notably, in pancreatic acinar cells, fragmentation of 

mitochondria was not observed in response to either H2O2 or bile acid treatment (Figure 5.C).

Lack of TRPM2 decreases the severity of experimental biliary pancreatitis

To determine the role of TRPM2 in the pathogenesis of AP, the disease severity of WT and 

TRPM2 KO animals was compared in two standard experimental AP models. In the first series of 

experiments, mice were given 10 hourly i.p. injections of either physiological saline (control 

group) or 50 µg/bwkg cerulein to induce AP (Figure 6.A). Overall, in this experimental model, 

no significant differences were detected between WT and TRPM2 KO mice. The control animals 

had normal pancreatic histology in both groups (Figure 6.A), whereas cerulein hyperstimulation 

caused extensive pancreatic damage. Despite this, no significant differences were observed in the 

histological parameters between the WT and TRPM2 KO animals. The extent of interstitial 

oedema (3.14 ± 0.25 for WT vs 3.03 ± 0.34 for KO), leukocyte infiltration (2.74 ± 0.53 for WT 

vs 3.04 ± 0.23 for KO, p = 0.08) or necrosis (18.64 ± 3.16 for WT vs 21.32 ± 3.58 for KO) was 

not found to be significantly different in the cerulein-treated groups (Figure 6.B).

More importantly, the role of the TRPM2 channel in the pathogenesis of biliary AP was also 

examined. In this model, pancreatitis was induced by intraductal infusion of 4% Na-taurocholate 

(TC) (control animals received physiological saline) as described previously (Pallagi et al., 

2014). The infusion of 4% Na-taurocholate induced necrotising pancreatitis in both WT and 

TRPM2 KO mice, accompanied by elevated histological and laboratory parameters (Figures 6.C–

D). The extent of interstitial oedema (2.8 ± 0.16 for WT vs 2.7 ± 0.2 for KO) or leukocyte 

infiltration (3.3 ± 0.38 for WT vs 2.7 ± 0.29 for KO, p = 0.08) was not significantly different in 

the Na-taurocholate-treated groups. Notably, the extent of necrosis was significantly higher in the 

WT group in comparison to the TRPM2 KO animals (41.3% ± 7.13% for WT vs 26.4% ± 5.5% 
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for KO). In accordance with these findings, serum amylase activities were also significantly 

higher in the Na-taurocholate-treated WT animals versus the TRPM2 KO group. This perfectly 

mimicked the in vitro results obtained in this study, further confirming the crucial role of the 

TRPM2 channel in the pathogenesis of biliary AP.
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Discussion

Previous reports suggest that bile acids can trigger sustained intracellular Ca2+ elevation, increase 

intracellular and intramitochondrial ROS production and damage the mitochondrial network in 

both pancreatic acinar and ductal cells. These subcellular changes can eventually lead to AP, 

which is a severe inflammatory disease of the gastrointestinal tract that has no specific treatment. 

Although the TRPM2 channel has recently emerged as a ROS-sensitive non-specific cation 

channel which mediated Ca2+-dependent injury, the possible role that this channel plays in the 

pathogenesis of AP has yet to be investigated.

Though the expression of TRPM2 has been demonstrated previously in different cell types, 

including inflammatory cells (Yamamoto et al., 2008), myocytes (Miller et al., 2019) and 

epithelial cells (Liu et al., 2013), to our knowledge, this is the first report demonstrating the 

expression of TRPM2 in the exocrine pancreas. Using conventional PCR and immunolabelling 

techniques, the expression of TRPM2 in the basolateral membrane of acinar cells and on the 

luminal membrane of ductal cells was confirmed. In addition, increased intracellular ROS was 

found to trigger TRPM2-mediated extracellular Ca2+ influx in both cell types. This study did not 

show any alterations in acinar and ductal cell function between WT and TRPM2 KO mice. 

However, intracellular Ca2+ signalling is one of the major signalling pathways in the exocrine 

pancreas (Ahuja et al., 2014; Maleth & Hegyi, 2014) which regulates the secretion of digestive 

enzymes in acinar cells as well as ion and fluid secretion in ductal cells. Therefore, it might be 

possible that TRPM2-mediated Ca2+ entry could contribute to physiological signalling, though 

further studies are required in order to confirm this. In other cell types, redox signals have been 

demonstrated to sensitise TRPM2 and  increase the intracellular Ca2+ concentration at 

physiological body temperature, which plays an important role in the regulation of macrophage 

functions (Kashio et al., 2012). In TRPM2 KO mice, blood glucose levels were significantly 
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higher, whereas insulin secretion was significantly impaired, suggesting a potential role of 

TRPM2-mediated Ca2+ increase in insulin secretion (Uchida et al., 2011). On the other hand, 

activation of TRPM2 channels in pancreatic β-cells increased intracellular Ca2+ concentration and 

release of sequestered intracellular Zn2+ from lysosomes (Manna et al., 2015). In these 

experiments, gene knockout of TRPM2 protected mice from β-cell death. Previously, TRPM2 

facilitated extracellular Ca2+ influx in monocytes in response to H2O2 and thus regulated the 

production of the macrophage inflammatory protein-2 (CXCL2), which, in turn, regulated the 

inflammatory response in a dextran sulphate sodium-induced colitis inflammation model in mice 

(Yamamoto et al., 2008). In another experimental model, the lack of TRPM2-regulated CXCL2 

production in TRPM2 KO mice suppressed neutrophil infiltration into the central nervous system 

and slowed the progression of experimental autoimmune encephalomyelitis (Tsutsui et al., 2018). 

The role of TRPM2 has also been indicated in irradiation-induced side effects in cancer patients. 

In salivary gland epithelial cells, irradiation increased ROS production during radiotherapy of 

head and neck cancers, which activated TRPM2-mediated extracellular Ca2+ influx in acinar cells 

(Liu et al., 2013). The sustained intracellular Ca2+ entry leads to impaired secretory function of 

acinar cells and to the development of xerostomia–a frequent side effect of radiotherapy in these 

patients. In a downstream study, the same group demonstrated that irradiation increased the 

mitochondrial Ca2+ concentration and the production of ROS, impaired the Δψm and activated 

caspase-3. These changes lead to a sustained decrease in STIM1 expression and consequently 

decreased the store-operated Ca2+ entry (Liu et al., 2017).

Disturbed intracellular Ca2+ homeostasis has been suggested by several studies to play a pivotal 

role in bile-acid-induced exocrine pancreatic cell damage. In pancreatic acini, bile acids trigger 

dose-dependent intracellular Ca2+ elevation via the activation of IP3 and ryanodine receptors 

(Gerasimenko et al., 2006). In addition, Perides et al. showed that activation of the G-protein-
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coupled cell surface bile acid receptor (Gpbar1 or TGR5) at the apical membrane of pancreatic 

acinar cells leads to sustained Ca2+ elevation, intracellular activation of digestive enzymes and 

cell injury (Perides et al., 2010a). Moreover, the genetic deletion of Gpbar1 specifically reduced 

the severity of TLCS-induced AP. On the other hand, however, in pancreatic ductal cells, CDC 

dose-dependently elevated the intracellular Ca2+ level and inhibited HCO3
− secretion 

(Venglovecz et al., 2008). In our experiments, CDC increased the [Ca2+]I both in acinar and 

ductal cells, but genetic deletion of TRPM2 decreased Ca2+ elevation only in acinar cells. The 

results of this study show that the TRPM2 channel has a ~22% contribution to the bile-acid-

generated Ca2+ signal in acinar cells. Interestingly, our results highlighted that the generation of 

intracellular ROS in response to bile acids is remarkably different in pancreatic acinar and ductal 

cells, which can provide mechanistic explanation for the different involvement of TRPM2 in bile 

acid generated Ca2+ response in these cell types. This different response might be caused by the 

difference in the mitochondrial mass in acinar versus ductal cells (Park et al., 2001; Maleth et al., 

2011). As expected from this, the genetic deletion of TRPM2 had no protective effect against 

bile-acid-induced inhibition of ductal secretion. Whereas in acini, other plasma membrane Ca2+ 

channels were also demonstrated to contribute to cell damage during AP. Gerasimenko et al. 

showed that the inhibition of extracellular Ca2+ entry via Orai1 decreases acinar cell necrosis in 

vitro (Gerasimenko et al., 2013). Moreover, inhibition of Orai1 by selective inhibitors markedly 

impaired the extracellular Ca2+ influx and sustained Ca2+ overload in pancreatic acinar cells upon 

bile acid stimulation, which significantly impaired pancreatic oedema, inflammation and necrosis 

in experimental models of AP (Wen et al., 2015). Others found that deletion of TRPC3 markedly 

reduced the bile-acid-evoked Ca2+ signals and decreased the intracellular trypsin activation in 

vitro and the severity of cerulein-induced AP in vivo (Kim et al., 2009). In addition, Kim et al. 

described that transporter-mediated bile acid uptake results in a specific and significant of the 
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sarco/endoplasmic reticulum Ca2+ ATPase pump function and thus deplete the endoplasmic 

reticulum Ca2+ stores leading cell damage and necrosis (Kim et al., 2002).

Intracellular Ca2+ overload can lead to premature activation of trypsinogen (Kruger et al., 2000), 

mitochondrial damage and cell necrosis in acinar cells (Criddle et al., 2006). In this study, a 

knockout of TRPM2 resulted in a significant protection of pancreatic acinar cells from H2O2 and 

bile-acid-induced necrosis. Importantly, this protection was also observed in TC-induced AP as 

the extent of necrosis was significantly lower in TRPM2 knockout mice compared to the WT 

littermates. In line with our results, in a previous study, Booth et al. reported that incubation of 

pancreatic acinar cells with TLC-S in vitro induced Ca2+-dependent necrosis, which was 

abolished by BAPTA-AM pre-treatment (Booth et al., 2011). Using different inhibitors to 

prevent apoptosis and necrosis, the authors suggested that elevated intracellular and 

intramitochondrial ROS are the major triggers of apoptosis, whereas increases in intracellular and 

intramitochondrial Ca2+ induce necrosis. As bile acids inhibited cellular ATP production 

(Voronina et al., 2010) and decreased ΔΨm (Voronina et al., 2004), we also compared the 

changes of ΔΨm in response to bile acid treatment in TRPM2 KO and WT acinar cells. The 

genetic knockout of TRPM2 and removal of the extracellular Ca2+ markedly reduced the drop of 

Δψm, suggesting that extracellular Ca2+ influx through TRPM2 plays a crucial role in oxidative-

stress-induced mitochondrial damage. Despite this, we did not detect this protective effect in bile-

acid-treated cells a result which might be explained by the Ca2+-independent direct mitochondrial 

toxicity of bile acids. Direct mitochondrial toxicity of bile acids was described in an experimental 

model of cholestasis. In these series of experiments Schultz et al. found that bile acids impaired 

the mitochondrial membrane potential and induced mitochondrial permeability transition pore 

opening (Schulz et al., 2013). Another group showed that physiologically relevant concentrations 

of bile acids can induce alterations in the mitochondria outer membrane (MOM) order, which 
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again can lead to the opening of the mitochondrial membrane permeability transition pore in 

isolated mitochondria (Sousa et al., 2015). Previously, we (Venglovecz et al., 2008) and others 

also reported (Voronina et al., 2004) that the toxic effects of bile acids cannot be completely 

abolished by the removal of intracellular Ca2+ elevation. Mitochondrial fragmentation, which has 

been previously linked to the activation of TRPM2 (Abuarab et al., 2017), was not observed in 

our experiments. These results suggest that bile acids can induce mitochondrial damage in several 

different ways independently form intracellular Ca2+ overload. On the other hand, independently 

from mitochondrial damage, other Ca2+-dependent toxic effects of bile acids have been described, 

which could also contribute to acinar cell necrosis. Bile acids were shown to activate calcineurin 

via the elevation of intracellular Ca2+ in pancreatic acinar cells, leading to intra-acinar activation 

of chymotrypsinogen and NF-κB activation, and acinar cell death (Muili et al., 2013b). In 

addition, genetic or pharmacological inhibition of calcineurin reduced the severity of TLC-S-

induced AP, and pharmacologic and genetic inhibition of calcineurin abolished the translocation 

of protein kinase C, which is a critical upstream regulator of NF-κB activation (Muili et al., 

2013a). 

In our study general TRPM2 knockout mice were used, therefore other factors might contribute 

to the observed protective effect of TRPM2 deletion in acute biliary pancreatitis. It is well 

described that inflammatory cells contribute to the severity of acute pancreatitis (Sendler et al., 

2018; Sendler et al., 2019). Previously, TRPM2 was identified as a crucial contributor of 

monocyte response to oxidative stress, which in turn regulated the production of the macrophage 

inflammatory protein-2 (CXCL2) and inflammatory response in experimental colitis in mice 

(Yamamoto et al., 2008). Although inflammatory cell infiltration of the damaged area peaks 

several days (on day 3-4) after the initial injury, therefore these cell types do not contribute to the 

early events in acute pancreatitis pathogenesis. In our series of experiments, the animals were 
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sacrificed 24 hours after the bile acid infusion, therefore we concluded that the observed 

difference is primarily due to the lack of TRPM2 expression in the acinar cells.     

Taken together, to the best of our knowledge, this is the first report of the expression and 

pathological function of the TRPM2 channel in the exocrine pancreas. We demonstrated that both 

pancreatic acinar and ductal cells express functionally active TRPM2, which can be activated by 

increased oxidative stress. Importantly, we also provided evidence that TRPM2 activity 

contributes to bile-acid-induced extracellular Ca2+ influx in acinar but not ductal cells, which 

promotes acinar cell necrosis independently from mitochondrial damage and increases the 

severity of bile-acid-induced experimental pancreatitis. These results suggest that inhibition of 

TRPM2 might be a potential option for use in treating biliary pancreatitis.
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Translational Perspective

Inflammatory disorders of the pancreas (such as acute and chronic pancreatitis) pose a significant 

clinical challenge as currently no specific pharmaceutical treatment exists. Basic science studies 

can identify pathogenic disease mechanisms as novel drug targets, which can support drug 

discovery and therapy development in pancreatic diseases. Disturbed intracellular Ca2+ signalling 

caused by bile acids is a hallmark of the disease, which induces increased reactive oxygen species 

production, mitochondrial damage, intra-acinar digestive enzyme activation and cell death. 

Because of this mechanism of action, prevention of toxic cellular Ca2+ overload might be a 

promising therapeutic target. Transient Receptor Potential Melastatin 2 (TRPM2) is a non-

selective cation channel that has recently emerged as an important contributor to oxidative-stress-

induced cellular Ca2+ overload across different diseases. In our study, we are the first to report 

that TRPM2 is expressed in the acinar and ductal cells of the exocrine pancreas, which can be 

activated by increased oxidative stress. Activation of TRPM2 contributed to bile acid-induced 

extracellular Ca2+ influx in acinar cells, which promoted necrosis in vitro and in vivo. In an 

experimental model of biliary acute pancreatitis genetic knockout of TRPM2 significantly 

decreased the disease severity and protected acinar cell. Based on these results we suggest that 

the inhibition of TRPM2 may be a potential treatment option for biliary pancreatitis and 

development of novel TRPM2 inhibitors can be translated to patients benefit.
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Figure legends

Figure 1. Expression of TRPM2 in the exocrine pancreas. A. Agarose gel images of cDNA 

samples derived from isolated acini and ductal fragments confirmed that the TRPM2 gene is 

expressed in the exocrine pancreas. B–C. Immunofluorescent labelling of TRPM2 on isolated 

acinar clusters and cross sections of isolated ducts. TRPM2 channels are expressed on the 

basolateral membrane of the pancreatic acinar cells and on the apical membrane in ductal cells, 

which is also demonstrated on the transmitted light images Scale bar: 10 µm

Figure 2. Functional activity of TRPM2 in the exocrine pancreas. A. Average traces of 5–6 

individual experiments demonstrating the effect of 1 mM H2O2 on pancreatic acinar cells in the 

presence or absence of extracellular Ca2+. Bar charts summarise the maximal Ca2+ responses to 

H2O2, which was significantly reduced in TRPM2 KO acini. *: p < 0.05 vs WT. B. 

Representative whole cell current recordings and current–voltage relationships in isolated 

pancreatic acini. H2O2 activated a reversible cationic membrane current, with a relative linear I–V 

relationship. n = 4/group. C. Averages of intracellular Ca2+ recordings in isolated pancreatic 

ducts (5–6 experiments/group) in the presence or absence of extracellular Ca2+. The intracellular 

Ca2+ level decreases in response to extracellular Ca2+ removal as demonstrated by the 

rrepresentative trace of intracellular Ca2+ recordings in isolated pancreatic duct (wild type). Bar 

charts summarise the maximal Ca2+ elevations evoked by H2O2, which was significantly lower in 

TRPM2 KO ductal cells. These results suggest that TRPM2 mediates extracellular Ca2+ influx 

under an oxidative stress condition in pancreatic acinar and ductal cells. *: p < 0.05 vs WT.

Figure 3. The role of TRPM2 in bile-acid-evoked Ca2+ signal generation. A–B. Average 

traces and bar charts of 5–6 individual experiments comparing intracellular Ca2+ elevations 

evoked by 250 µM CDC in WT and TRPM2 KO acini and isolated ducts. Genetic deletion of 

TRPM2 reduced the bile-acid-induced Ca2+ elevation in pancreatic acini, but not in ducts. *: p < 

0.05 vs WT. C. Average pHi traces of 4–6 experiments for each condition. Pancreatic ducts were 

perfused with HCO3
−/CO2-buffered extracellular solution, and intracellular alkalisation was 

achieved by 20 mM NH4Cl administration. D. Bar charts of the calculated base fluxes of HCO3
−. 

250 µM CDC significantly decreased both alkaline and acidic recovery; however, no significant 
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difference was detected in WT and TRPM2 KO ducts. E. Average traces of H2DCFDA 

intensities and bar charts of the maximal fluorescent intensity changes in isolated acini and ducts. 

ROS generation induced by bile acid treatment was measured in 5–6 individual experiments. *: p 

< 0.05 vs acini.

Figure 4. The role of TRPM2 in acinar cell necrosis during bile acid exposure. A. 

Representative images of different conditions (blue: live cells labelled with CytoCalcein 450, 

green: necrotic cells labelled with Nuclear Green, and red: apoptotic cells labelled with Apopxin 

Deep Red). Scale bar: 20 µm. B. Bar chart representing the ratio of live, apoptotic and necrotic 

cells. Incubation of WT and TRPM2 KO acini with 1 mM H2O2 or with 250 µM CDC for 30 min 

markedly decreased the number of viable cells, whereas necrosis was significantly increased. 

TRPM2 KO acinar cells displayed a significantly decreased rate of apoptosis in the bile acid 

treated group, whereas cell necrosis was impaired in both cases. n: 4-5 experiment/group. C. Bar 

charts representing the ratio of live, apoptotic and necrotic cells. TRPM2 knockout significantly 

improved acinar cell survival in 1 mM H2O2 or with 250 µM CDC treated groups. *: p< 0.05 vs 

WT treated sample (H2O2 or CDC); n: 4-5 experiment/group.

Figure 5. The effect of TRPM2 on the development of mitochondrial damage. A. Average 

traces and bar charts of the changes of Δψm in WT and TRPM2 pancreatic acinar cells. 1 mM 

H2O2 markedly decreased Δψm in WT cells (blue trace), which was impaired by TRPM2 

knockout (red trace) or removal of the extracellular Ca2+ (green trace). For control cells were 

perfused with standard HEPES solution (grey trace). B. By contrast, no difference was observed 

when acinar cells were challenged by 250 µM CDC. C. Representative confocal images of 

labelled mitochondria in pancreatic acinar cells. Mitochondrial fragmentation was not observed 

in response to H2O2, or to bile acid treatment. Scale bar: 10 µm. n: 6–7 experiments/groups; *: p 

< 0.05 vs WT.

Figure 6. Genetic knockout of TRPM2 decreases the severity of biliary, but not cerulein-

induced, acute pancreatitis. A. Representative images of pancreatic histology in cerulein-

induced pancreatitis. Mice were given 10 hourly i.p. injections of either physiological saline 

(control group) or 50 µg/bwkg cerulein. Scale bar: 100 µm. B. Cerulein administration caused 
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extensive pancreatic damage; however, no significant differences were observed in the 

histological parameters of WT and TRPM2 KO animals. n: 6–7 animals/groups; *: p < 0.05 vs 

WT; **: p < 0.05 vs TRPM2 KO. C. Representative images of pancreatic histology in Na-

taurocholate-induced pancreatitis. Pancreatitis was induced by intraductal infusion of 4% Na-

taurocholate (TC). Scale bar: 100 µm. D. The infusion of 4% Na-taurocholate-induced 

necrotising pancreatitis in WT and TRPM2 KO mice accompanied by elevated histological and 

laboratory parameters. Although the extent of interstitial oedema or leukocyte infiltration was not 

different, the extent of necrosis was significantly impaired in the TRPM2 KO animals. n: 6–7 

animals/groups; *: p < 0.05 vs WT control; **: p < 0.05 vs TRPM2 KO control; a: p < 0.05 vs 

WT Na-TC treated.



33

References

Abuarab N, Munsey TS, Jiang LH, Li J & Sivaprasadarao A. (2017). High glucose-induced ROS 
activates TRPM2 to trigger lysosomal membrane permeabilization and Zn(2+)-mediated 
mitochondrial fission. Sci Signal 10.

Ahuja M, Jha A, Maleth J, Park S & Muallem S. (2014). cAMP and Ca(2)(+) signaling in secretory 
epithelia: crosstalk and synergism. Cell Calcium 55, 385-393.

Booth DM, Murphy JA, Mukherjee R, Awais M, Neoptolemos JP, Gerasimenko OV, Tepikin AV, 
Petersen OH, Sutton R & Criddle DN. (2011). Reactive oxygen species induced by bile 
acid induce apoptosis and protect against necrosis in pancreatic acinar cells. 
Gastroenterology 140, 2116-2125.

Criddle DN, Murphy J, Fistetto G, Barrow S, Tepikin AV, Neoptolemos JP, Sutton R & Petersen 
OH. (2006). Fatty acid ethyl esters cause pancreatic calcium toxicity via inositol 
trisphosphate receptors and loss of ATP synthesis. Gastroenterology 130, 781-793.

Di A, Gao XP, Qian F, Kawamura T, Han J, Hecquet C, Ye RD, Vogel SM & Malik AB. (2011). The 
redox-sensitive cation channel TRPM2 modulates phagocyte ROS production and 
inflammation. Nat Immunol 13, 29-34.

DiMagno EP, Shorter RG, Taylor WF & Go VL. (1982). Relationships between pancreaticobiliary 
ductal anatomy and pancreatic ductal and parenchymal histology. Cancer 49, 361-368.

Gerasimenko JV, Flowerdew SE, Voronina SG, Sukhomlin TK, Tepikin AV, Petersen OH & 
Gerasimenko OV. (2006). Bile acids induce Ca2+ release from both the endoplasmic 
reticulum and acidic intracellular calcium stores through activation of inositol 
trisphosphate receptors and ryanodine receptors. J Biol Chem 281, 40154-40163.

Gerasimenko JV, Gryshchenko O, Ferdek PE, Stapleton E, Hebert TO, Bychkova S, Peng S, Begg 
M, Gerasimenko OV & Petersen OH. (2013). Ca2+ release-activated Ca2+ channel 
blockade as a potential tool in antipancreatitis therapy. Proc Natl Acad Sci U S A 110, 
13186-13191.

Geyer N, Diszhazi G, Csernoch L, Jona I & Almassy J. (2015). Bile acids activate ryanodine 
receptors in pancreatic acinar cells via a direct allosteric mechanism. Cell Calcium 58, 
160-170.

Gout J, Pommier RM, Vincent DF, Kaniewski B, Martel S, Valcourt U & Bartholin L. (2013). 
Isolation and culture of mouse primary pancreatic acinar cells. J Vis Exp.



34

Halangk W, Kruger B, Ruthenburger M, Sturzebecher J, Albrecht E, Lippert H & Lerch MM. 
(2002). Trypsin activity is not involved in premature, intrapancreatic trypsinogen 
activation. Am J Physiol Gastrointest Liver Physiol 282, G367-374.

Hara Y, Wakamori M, Ishii M, Maeno E, Nishida M, Yoshida T, Yamada H, Shimizu S, Mori E, 
Kudoh J, Shimizu N, Kurose H, Okada Y, Imoto K & Mori Y. (2002). LTRPC2 Ca2+-
permeable channel activated by changes in redox status confers susceptibility to cell 
death. Mol Cell 9, 163-173.

Hegyi P, Rakonczay Z, Jr., Gray MA & Argent BE. (2004). Measurement of intracellular pH in 
pancreatic duct cells: a new method for calibrating the fluorescence data. Pancreas 28, 
427-434.

Hong JH, Li Q, Kim MS, Shin DM, Feske S, Birnbaumer L, Cheng KT, Ambudkar IS & Muallem S. 
(2011). Polarized but differential localization and recruitment of STIM1, Orai1 and TRPC 
channels in secretory cells. Traffic 12, 232-245.

Kashio M, Sokabe T, Shintaku K, Uematsu T, Fukuta N, Kobayashi N, Mori Y & Tominaga M. 
(2012). Redox signal-mediated sensitization of transient receptor potential melastatin 2 
(TRPM2) to temperature affects macrophage functions. Proc Natl Acad Sci U S A 109, 
6745-6750.

Kim JY, Kim KH, Lee JA, Namkung W, Sun AQ, Ananthanarayanan M, Suchy FJ, Shin DM, Muallem 
S & Lee MG. (2002). Transporter-mediated bile acid uptake causes Ca2+-dependent cell 
death in rat pancreatic acinar cells. Gastroenterology 122, 1941-1953.

Kim MS, Hong JH, Li Q, Shin DM, Abramowitz J, Birnbaumer L & Muallem S. (2009). Deletion of 
TRPC3 in mice reduces store-operated Ca2+ influx and the severity of acute pancreatitis. 
Gastroenterology 137, 1509-1517.

Kruger B, Albrecht E & Lerch MM. (2000). The role of intracellular calcium signaling in premature 
protease activation and the onset of pancreatitis. Am J Pathol 157, 43-50.

Lerch MM & Aghdassi AA. (2010). The role of bile acids in gallstone-induced pancreatitis. 
Gastroenterology 138, 429-433.

Lerch MM, Saluja AK, Runzi M, Dawra R, Saluja M & Steer ML. (1993). Pancreatic duct 
obstruction triggers acute necrotizing pancreatitis in the opossum. Gastroenterology 
104, 853-861.

Liu X, Cotrim A, Teos L, Zheng C, Swaim W, Mitchell J, Mori Y & Ambudkar I. (2013). Loss of 
TRPM2 function protects against irradiation-induced salivary gland dysfunction. Nat 
Commun 4, 1515.



35

Liu X, Gong B, de Souza LB, Ong HL, Subedi KP, Cheng KT, Swaim W, Zheng C, Mori Y & 
Ambudkar IS. (2017). Radiation inhibits salivary gland function by promoting STIM1 
cleavage by caspase-3 and loss of SOCE through a TRPM2-dependent pathway. Sci Signal 
10.

Maleth J, Balazs A, Pallagi P, Balla Z, Kui B, Katona M, Judak L, Nemeth I, Kemeny LV, Rakonczay 
Z, Jr., Venglovecz V, Foldesi I, Peto Z, Somoracz A, Borka K, Perdomo D, Lukacs GL, Gray 
MA, Monterisi S, Zaccolo M, Sendler M, Mayerle J, Kuhn JP, Lerch MM, Sahin-Toth M & 
Hegyi P. (2015). Alcohol disrupts levels and function of the cystic fibrosis transmembrane 
conductance regulator to promote development of pancreatitis. Gastroenterology 148, 
427-439 e416.

Maleth J & Hegyi P. (2014). Calcium signaling in pancreatic ductal epithelial cells: an old friend 
and a nasty enemy. Cell Calcium 55, 337-345.

Maleth J, Venglovecz V, Razga Z, Tiszlavicz L, Rakonczay Z, Jr. & Hegyi P. (2011). Non-conjugated 
chenodeoxycholate induces severe mitochondrial damage and inhibits bicarbonate 
transport in pancreatic duct cells. Gut 60, 136-138.

Manna PT, Munsey TS, Abuarab N, Li F, Asipu A, Howell G, Sedo A, Yang W, Naylor J, Beech DJ, 
Jiang LH & Sivaprasadarao A. (2015). TRPM2-mediated intracellular Zn2+ release triggers 
pancreatic beta-cell death. Biochem J 466, 537-546.

Miller BA, Wang J, Song J, Zhang XQ, Hirschler-Laszkiewicz I, Shanmughapriya S, Tomar D, Rajan 
S, Feldman AM, Madesh M, Sheu SS & Cheung JY. (2019). Trpm2 enhances physiological 
bioenergetics and protects against pathological oxidative cardiac injury: Role of Pyk2 
phosphorylation. J Cell Physiol.

Molnar R, Madacsy T, Varga A, Nemeth M, Katona X, Gorog M, Molnar B, Fanczal J, Rakonczay Z, 
Jr., Hegyi P, Pallagi P & Maleth J. (2019). Mouse pancreatic ductal organoid culture as a 
relevant model to study exocrine pancreatic ion secretion. Lab Invest.

Muili KA, Jin S, Orabi AI, Eisses JF, Javed TA, Le T, Bottino R, Jayaraman T & Husain SZ. (2013a). 
Pancreatic acinar cell nuclear factor kappaB activation because of bile acid exposure is 
dependent on calcineurin. J Biol Chem 288, 21065-21073.

Muili KA, Wang D, Orabi AI, Sarwar S, Luo Y, Javed TA, Eisses JF, Mahmood SM, Jin S, Singh VP, 
Ananthanaravanan M, Perides G, Williams JA, Molkentin JD & Husain SZ. (2013b). Bile 
acids induce pancreatic acinar cell injury and pancreatitis by activating calcineurin. J Biol 
Chem 288, 570-580.

Pallagi P, Balla Z, Singh AK, Dosa S, Ivanyi B, Kukor Z, Toth A, Riederer B, Liu Y, Engelhardt R, 
Jarmay K, Szabo A, Janovszky A, Perides G, Venglovecz V, Maleth J, Wittmann T, Takacs T, 
Gray MA, Gacser A, Hegyi P, Seidler U & Rakonczay Z, Jr. (2014). The role of pancreatic 



36

ductal secretion in protection against acute pancreatitis in mice*. Crit Care Med 42, 
e177-188.

Park MK, Ashby MC, Erdemli G, Petersen OH & Tepikin AV. (2001). Perinuclear, perigranular and 
sub-plasmalemmal mitochondria have distinct functions in the regulation of cellular 
calcium transport. EMBO J 20, 1863-1874.

Parniczky A, Kui B, Szentesi A, Balazs A, Szucs A, Mosztbacher D, Czimmer J, Sarlos P, Bajor J, 
Godi S, Vincze A, Illes A, Szabo I, Par G, Takacs T, Czako L, Szepes Z, Rakonczay Z, Izbeki F, 
Gervain J, Halasz A, Novak J, Crai S, Hritz I, Gog C, Sumegi J, Golovics P, Varga M, Bod B, 
Hamvas J, Varga-Muller M, Papp Z, Sahin-Toth M & Hegyi P. (2016). Prospective, 
Multicentre, Nationwide Clinical Data from 600 Cases of Acute Pancreatitis. PLoS One 11, 
e0165309.

Perides G, Laukkarinen JM, Vassileva G & Steer ML. (2010a). Biliary acute pancreatitis in mice is 
mediated by the G-protein-coupled cell surface bile acid receptor Gpbar1. 
Gastroenterology 138, 715-725.

Perides G, van Acker GJ, Laukkarinen JM & Steer ML. (2010b). Experimental acute biliary 
pancreatitis induced by retrograde infusion of bile acids into the mouse pancreatic duct. 
Nat Protoc 5, 335-341.

Perraud AL, Takanishi CL, Shen B, Kang S, Smith MK, Schmitz C, Knowles HM, Ferraris D, Li W, 
Zhang J, Stoddard BL & Scharenberg AM. (2005). Accumulation of free ADP-ribose from 
mitochondria mediates oxidative stress-induced gating of TRPM2 cation channels. J Biol 
Chem 280, 6138-6148.

Schulz S, Schmitt S, Wimmer R, Aichler M, Eisenhofer S, Lichtmannegger J, Eberhagen C, 
Artmann R, Tookos F, Walch A, Krappmann D, Brenner C, Rust C & Zischka H. (2013). 
Progressive stages of mitochondrial destruction caused by cell toxic bile salts. Biochim 
Biophys Acta 1828, 2121-2133.

Sendler M, van den Brandt C, Glaubitz J, Wilden A, Golchert J, Weiss FU, Homuth G, De Freitas 
Chama LL, Mishra N, Mahajan UM, Bossaller L, Volker U, Broker BM, Mayerle J & Lerch 
MM. (2019). NLRP3 Inflammasome Regulates Development of Systemic Inflammatory 
Respoes in Mice With Acute Pancreatitis. Gastroenterology.

Sendler M, Weiss FU, Golchert J, Homuth G, van den Brandt C, Mahajan UM, Partecke LI, Doring 
P, Gukovsky I, Gukovskaya AS, Wagh PR, Lerch MM & Mayerle J. (2018). Cathepsin B-
Mediated Activation of Trypsinogen in Endocytosing Macrophages Increases Severity of 
Pancreatitis in Mice. Gastroenterology 154, 704-718 e710.



37

Sherwood MW, Prior IA, Voronina SG, Barrow SL, Woodsmith JD, Gerasimenko OV, Petersen OH 
& Tepikin AV. (2007). Activation of trypsinogen in large endocytic vacuoles of pancreatic 
acinar cells. Proc Natl Acad Sci U S A 104, 5674-5679.

Sousa T, Castro RE, Pinto SN, Coutinho A, Lucas SD, Moreira R, Rodrigues CM, Prieto M & 
Fernandes F. (2015). Deoxycholic acid modulates cell death signaling through changes in 
mitochondrial membrane properties. J Lipid Res 56, 2158-2171.

Takahashi N, Kozai D, Kobayashi R, Ebert M & Mori Y. (2011). Roles of TRPM2 in oxidative stress. 
Cell Calcium 50, 279-287.

Tsutsui M, Hirase R, Miyamura S, Nagayasu K, Nakagawa T, Mori Y, Shirakawa H & Kaneko S. 
(2018). TRPM2 Exacerbates Central Nervous System Inflammation in Experimental 
Autoimmune Encephalomyelitis by Increasing Production of CXCL2 Chemokines. J 
Neurosci 38, 8484-8495.

Uchida K, Dezaki K, Damdindorj B, Inada H, Shiuchi T, Mori Y, Yada T, Minokoshi Y & Tominaga 
M. (2011). Lack of TRPM2 impaired insulin secretion and glucose metabolisms in mice. 
Diabetes 60, 119-126.

Venglovecz V, Rakonczay Z, Jr., Ozsvari B, Takacs T, Lonovics J, Varro A, Gray MA, Argent BE & 
Hegyi P. (2008). Effects of bile acids on pancreatic ductal bicarbonate secretion in guinea 
pig. Gut 57, 1102-1112.

Voronina SG, Barrow SL, Gerasimenko OV, Petersen OH & Tepikin AV. (2004). Effects of 
secretagogues and bile acids on mitochondrial membrane potential of pancreatic acinar 
cells: comparison of different modes of evaluating DeltaPsim. Journal of Biological 
Chemistry 279, 27327-27338.

Voronina SG, Barrow SL, Simpson AW, Gerasimenko OV, da Silva Xavier G, Rutter GA, Petersen 
OH & Tepikin AV. (2010). Dynamic changes in cytosolic and mitochondrial ATP levels in 
pancreatic acinar cells. Gastroenterology 138, 1976-1987.

Wen L, Voronina S, Javed MA, Awais M, Szatmary P, Latawiec D, Chvanov M, Collier D, Huang W, 
Barrett J, Begg M, Stauderman K, Roos J, Grigoryev S, Ramos S, Rogers E, Whitten J, 
Velicelebi G, Dunn M, Tepikin AV, Criddle DN & Sutton R. (2015). Inhibitors of ORAI1 
Prevent Cytosolic Calcium-Associated Injury of Human Pancreatic Acinar Cells and Acute 
Pancreatitis in 3 Mouse Models. Gastroenterology 149, 481-492 e487.

Yadav D & Lowenfels AB. (2013). The epidemiology of pancreatitis and pancreatic cancer. 
Gastroenterology 144, 1252-1261.

Yamamoto S, Shimizu S, Kiyonaka S, Takahashi N, Wajima T, Hara Y, Negoro T, Hiroi T, Kiuchi Y, 
Okada T, Kaneko S, Lange I, Fleig A, Penner R, Nishi M, Takeshima H & Mori Y. (2008). 



38

TRPM2-mediated Ca2+influx induces chemokine production in monocytes that 
aggravates inflammatory neutrophil infiltration. Nat Med 14, 738-747.


