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ABSTRACT   

Vibrio splendidus is a marine bacterium often considered as a threat in aquaculture hatcheries 

where it is responsible for mass mortality events, notably of bivalves’ larvae. This bacterium is 

highly adapted to dynamic salty ecosystems where it has become an opportunistic and resistant 

species. To characterize their membranes as a first and necessary step toward studying bacterial 

interactions with diverse molecules, we established a labelling protocol for in vivo 2H solid-state 

nuclear magnetic resonance (SS-NMR) analysis of V. splendidus. 2H SS-NMR is a useful tool to 

study the organization and dynamics of phospholipids at the molecular level, and its application to 

intact bacteria is further advantageous as it allows probing acyl chains in their natural environment 

and study membrane interactions. In this study, we showed that V. splendidus can be labelled using 

deuterated palmitic acid, and demonstrated the importance of surfactant choice in the labelling 

protocol. Moreover, we assessed the impact of lipid deuteration on the general fitness of the 

bacteria, as well as the saturated-to-unsaturated fatty acid chains ratio and its impact on the 

membrane properties. We further characterize the evolution of V. splendidus membrane fluidity 

during different growth stages and relate it to fatty acid chain composition. Our results show larger 

membrane fluidity during the stationary growth phase compared to the exponential growth phase 

under labelling conditions - an information to take into account for future in vivo SS-NMR studies. 

Our lipid deuteration protocol optimized for V. splendidus is likely applicable other 

microorganisms for in vivo NMR studies. 
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ABBREVIATIONS  

CHAPS,3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate hydrate; cyC17:0, 

cyclopropyl heptadecanoic acid; cyC19:0, cyclopropyl nonadecanoic acid; CMC, critical micelle 

concentration; d31-PA, deuterated palmitic acid; DF, degree of freedom; DPC, 

dodecylphosphocholine; F, F-statistic; FA, fatty acid; FAME, fatty acid methyl ester; GC-MS, gas 

chromatography-mass spectrometry; M2, second spectral moment; MTT, 3-(4,5-dimethylthiazol-

2-yl)-2,5-diphenyltetrazolium bromide; OA, oleic acid; OD, optical density; OG, 

octylglucopyranoside; LB, Lysogeny broth; P, probability value; PA, palmitic acid; SFA, saturated 

fatty acid; SS-NMR, solid-state nuclear magnetic resonance; MAS, magic angle spinning; UFA, 

unsaturated fatty acid.  
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1. INTRODUCTION 
 

Vibrio species are Gram-negative bacteria widely spread in coastal marine and estuarine waters 

and sediments [1-4]. They might also be found in aquatic animal tissues, causing serious 

pathologies leading in some cases to economic loss in aquaculture industry [5-8]. To date, most 

research on marine Vibrio species concerned their effects on aquatic organisms acting on 

immunological process [8-14]. As a matter of fact, a common trait of all members of the Vibrio 

genus is their opportunistic nature, which allows them to benefit from the collapse of the immune 

system of cultured organisms in specific conditions to become virulent [14, 15]. Investigating the 

virulence/response of these species requires considering numerous biotic and abiotic factors where 

the physiological responses can remain elusive. For instance, V. splendidus are different from their 

Vibrio congeners by their high genetic variability between strains, where each strain can have a 

different opportunistic and/or virulence pattern [8, 15, 16]. 

Very few studies have so far focused on the membranes of environmental bacteria compared to 

human pathogens, albeit the importance of the external cell envelopes in biological events. Marine 

bacteria are of great interest for membrane properties investigation considering their high resistance 

phenotypes and high adaptability to a large scale of salinity and temperature, attributable to their 

permanent exposure to changing ecosystems [1, 3, 4, 11, 17-21]. Moreover, marine and coastal 

environments constitute a dynamic platform for water mixing, thus containing a plethora of 

molecules such as pollutants, aquatic bioactive components, organic or chemical toxins and 

industrial antibiotics [22-27]. The cell envelope of indigenous bacteria in such environments 

represents the first barrier encountered by external molecules which could either cross the 

membrane and ultimately intracellular sites, or directly affect their structural components [28, 29]. 

Acquiring knowledge on Vibrio membrane structure and fluidity would help tackling physiological 

processes inside the cell and gain a better understanding of the interaction mechanisms of these 

marine bacteria with molecules in their environment. This should contribute to improve 

investigations of larval infections and therapeutic treatments in aquaculture. 

Historically, in vivo nuclear magnetic resonance (NMR) has been associated with the observation 

of metabolites and metallic ions that were sufficiently abundant so generate an NMR signal [30, 
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31]. Afterwards, thanks to technological progress, new labelling schemes, and genetic 

manipulations, the term in-cell NMR arose, describing the observation of larger molecules inside 

whole cells [32-34]. For obvious resolution and sensitivity issues, in cell solution NMR first 

focused on small and/or mobile molecules [31, 32, 34, 35]. During the last five years, solid-state 

(SS) NMR made a significant contribution, to include not just large molecules with limited 

movement, but also heterogeneous biological systems [36]. Today, in vivo NMR generally refers 

to the study of intact living organisms such as bacteria, microalgae, and small invertebrates, as long 

as their size allows them to fit into the NMR rotor [37-42].  

The objective of this work was to establish a protocol to deuterate the lipid acyl chains in V. 

splendidus membranes, to enable the in vivo 2H SS-NMR study of this marine bacterium. More 

specifically we used the indigenous 7SHRW strain isolated from the St. Lawrence Gulf sediments 

(Canada) which can cause significant mortalities to blue mussels and scallops at larval stages [43, 

44], and has the advantage to be easily cultured in laboratory conditions. Like other marine bacteria, 

very few research on membrane phospholipids of Vibrio sp. are available [45-49] and studies on 

V. splendidus in this regard are even more sparse. To the best of our knowledge, only one study 

describes membrane phospholipids of V. splendidus, using a strain living in deep anoxic sediments 

[50].    

Deuterium SS-NMR is an excellent tool to investigate the structure and dynamics of membrane 

lipids at the molecular level [51-53]. Warnet et al. showed that magic-angle spinning (MAS) can 

be used in 2H in-cell SS-NMR studies to shorten the acquisition time by a factor of 10 while 

simultaneously maintaining spectral sensitivity, thus favoring the in vivo character of the 

experiment [54]. However, 2H NMR requires isotopic labelling which can be challenging in 

biological organisms such as V. splendidus. Notably, deuteration labelling protocols of bacteria 

phospholipids require the use of surfactants [55-57] to micellize deuterated fatty acids prior to their 

uptake by the bacteria and use in the phospholipids biosynthesis. These surfactants can possibly 

affect the membrane. Moreover, the natural saturated/unsaturated lipid ratio in the bacterial 

membrane should be preserved. A careful optimization of the deuteration protocol is thus necessary 

to ensure genuine in vivo characterization of these microorganisms.  
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In this work we propose for the first time a protocol for the deuteration of lipids in a model 

marine bacterium, V. splendidus. To do so, we assessed the effect of different surfactants on the 

cell growth. We also studied the effect of palmitic and oleic acid on the lipid profile and membrane 

fluidity by in vivo 2H SS-NMR as a function of cell growth stage. The labelling strategy developed 

here has the potential to be amenable to the in vivo NMR investigations of a variety of marine and 

terrestrial bacteria.  

 

2. MATERIALS AND METHODS 

2.1 Materials  

Triton X-100 and 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate hydrate 

(CHAPS), Brij35, oleic (OA) and deuterated palmitic (d31-PA) acids, deuterium-depleted water, as 

well as 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), and fatty acid 

methyl ester (FAME) mix C4-C24 were all purchased from Sigma Aldrich (Oakville, Canada). 

Dodecylphosphocholine (DPC) and octylglucopyranoside (OG) were obtained from Avanti Polar 

Lipids (Alabaster, AL). Polyethylene glycol sorbitan monolaurate (Tween® 20) was purchased 

from BioShop Canada Inc. (Burlington, Canada), whereas LB (Lysogeny broth) Broth Miller was 

obtained from BioBasic Inc. (Markham, Canada).  

2.2 Bacterial growth and 2H labelling protocol  

Vibrio splendidus strain 7SHRW were isolated from sediments of Hillsborough River, Prince 

Edward Island (Gulf of St. Lawrence, Canada) [43]. Cell culture was initiated by adding 100 µl of 

a frozen cell stock solution (in 40% glycerol at -80°C in 10 mL LB medium (NaCl 10g/L, tryptone 

10 g/L, yeast extracts 5 g/L), and incubated at 24.5°C (± 0.5°C) on a rotary shaker (INFORS HT 

Multitron Pro, USA) operating at 100 rpm. After 3 days of growth, bacteria were transferred into 

250 mL Erlenmeyer flasks containing 100 mL of LB 1X (initial OD600nm adjusted to ≈ 0.02) and 1 

mL was transferred into a 24-well plate to monitor the growth kinetic with a multiple plate reader 

(Infinite M200 TECAN, Männedorf, Switzerland). Plates were conditioned to 24.5°C (± 0.5°C) 

and to an agitation of 87 rpm before measuring the absorbance at 600 nm every 30 min during 48 

hours. For each treatment, 3 to 4 wells were used. For isotopic labelling, V. splendidus were grown 
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in the same conditions as described above but in an LB medium enriched with deuterated palmitic 

acid (d31-PA). Prior to each use, the Vibrio strain was grown for two days and its purity was verified 

on LB-agar. The initial bacteria concentration was adjusted to be the same between replicates, i.e., 

an optical density (OD600nm) of 0.02 at 600 nm wavelengths.  

Initially, different commonly used surfactants were tested to micellize palmitic acid (0.3 mM) in 

culture media, and bacterial growths were monitored. Surfactants were used above their critical 

micelle concentration (CMC): Brij35 (0.1 mM), Tween20 (0.06 mM), Triton-X (0.4 mM), OG (20 

mM), CHAPS (6 mM), and DPC (1.5 mM). The lipid deuteration procedure was optimized as 

follows: LB culture medium was supplemented with a mixture of d31-PA (0.3 mM) and Tween-20 

(0.14 mM), heated at 85°C, and the corresponding solution was flash-frozen and heated again 

several times until the complete dissolution of d31-PA crystals. Protonated OA was added in the 

same proportions (0.3 mM) during bacteria inoculation, to mitigate potential unbalance of the 

saturated/unsaturated fatty acid (SFA/UFA) ratio within the membrane [54] . Potential effect of the 

2H labelling was verified by comparing the growth of bacteria in deuterated and non-deuterated 

media. The specific growth rate (µ) was estimated from the slope regression of ln (OD600nm) as a 

function of elapsed time [58] 

2.3 Fatty acid profile analysis  

Fatty acid (FA) profiles were analyzed using gas chromatography combined to mass 

spectrometry (GC-MS) to obtain the proportion of each FA (deuterated or protonated) in ng.mg-1, 

and were expressed as relative concentration (weight % relative to total FA contents) as described 

by Tardy-Laporte et al. [57]. Briefly, starting from three pools of 30 to 60 mg of dry-freezed 

bacteria, total lipids were extracted using dichloromethane/methanol (2:1 CH2Cl2/MeOH v/v) and 

0.88% KCl solution in a Potter glass homogenizer. Neutral and polar lipids were separated by 

elution through a silica gel column (30×5 mm) hydrated with 6% water. Polar lipids were 

transesterified using 2 mL of H2SO4 (2% in MeOH) and 0.8 mL of toluene. Final extracts were 

diluted in hexane solution and adjusted to a volume of 0.5 mL before GC-MS analysis (Agilent 

technology-7890A, Santa Clara, CA, USA). FA analyses were performed in parallel on a FAME 

mix which was used as a standard.  
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2.4 Sample preparation for 2H SS-NMR analysis and viability assays 

Freshly collected bacterial cells were centrifuged at 4000 rpm for 10 min to remove the culture 

medium. Pellets were then suspended in a saline sterile rinsing solution (9‰ NaCl) to remove any 

residual FAs and detergent molecules, and centrifuged again at 3800 rpm for 5 min. Rinsing was 

carried out at least 3 times, twice with saline solution prepared with nanopure water, and a final 

wash with saline solution prepared with deuterium-depleted water. The final pellet was used to fill 

a 4-mm zirconium oxide rotor, which corresponds to approximately 90 mg of hydrated bacteria. 

NMR experiments were performed on deuterated bacteria harvested at three different growth times 

(mid-log, early stationary phase and late stationary phase) and prepared in triplicate.   

Following NMR experiments V. splendidus viability was determined using MTT reduction assays 

[59]. Cell suspensions from NMR samples were diluted in 5 replicates to a final OD600nm of 0.1 

each, and were mixed with MTT solution (5mg/ml) to a ratio of MTT/cell suspension of 1:10 (v/v). 

The mixture was incubated in Eppendorf tubes for 20 minutes at 25°C with open caps until the 

formation of formazan crystals. Preparations were centrifuged (10.000g ×1min.) and the crystal 

pellets were dissolved in dimethylsulfoxide and incubated at room temperature for 15 minutes. 

Optical density was measured at 550 nm and cell viability of bacteria was expressed in relative 

percentage compared to freshly harvested bacteria before rinse. MTT assays were performed on 

triplicates of cultures corresponding to the NMR samples. 

2.5 In vivo 2H SS-NMR experiments and moment analysis 

All 2H solid-state NMR experiments were performed at 25°C on a Bruker Avance HD III wide 

Bore 600 MHz spectrometer (Billerica, MA, USA) using a double-resonance magic angle spinning 

(MAS) probe tuned to 92.1 MHz. Sample spinning frequency was set to 10 kHz. Typically, spectra 

were acquired using a Hahn Echo pulse sequence (90°-t-180°-t) with the following operating 

conditions: 5 µs 90° pulses separated by an echo delay of 100 µs and a recycle time of 0.5 s. Each 

spectrum was obtained in approximately 43 min of acquisition time, corresponding to 4096 scans. 

A total of 32k points were acquired for a spectral width of 500 kHz. Spectra were Fourier 

transformed after application of a 50 Hz exponential line broadening and zero filling to 64k points.  
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Spectral moment analysis was performed using MestRenova software V6.0 (Mestrelab Research, 

Santiago de Compostela, Spain) and a macro developed by Pierre Audet (Université Laval). The 

second moment (M2) was calculated as described in equation 1 [54]: 

𝑀2 = 𝜔𝑟
2 ∑ 𝑁2𝐴𝑁

∞
𝑁=0

∑ 𝐴𝑁
∞
𝑁=0

=
4𝜋2𝜈𝑄

2

5
⟨𝑆𝐶𝐷

2 ⟩   (1) 

where ωr is the angular spinning frequency, N the side band number, and AN the area of each 

sideband obtained by spectral integration, S2
CD is the mean square order parameter, and Q is the 

static quadrupolar coupling constant equal to 168 kHz for a C-D bond in acyl chains [60]. 

 

3. RESULTS 

3.1 Optimized 2H labelling of V. splendidus for in vivo SS-NMR 

The enzymatic machinery of bacteria energetically favours the incorporation of exogenous FAs 

into phospholipids [61], thus enabling the incorporation of deuterated PA chains exclusively in the 

membranes. We based our 2H labelling procedure of V. splendidus on a previously published 

protocol for another Gram(-) bacterium, Escherichia coli, which involved micellization of FAs by 

DPC in the growth medium to facilitate the FA uptake. However, since the presence of surfactants 

could be harmful to bacteria, and since another surfactant (Brij-58) had been used by other groups 

[56, 62], we tested a series of detergents to identify the best suited for optimal bacterial lipid 

deuteration. Therefore, Tween-20, Brij-35, DPC, Triton-X, CHAPS and OG were assessed. To do 

so, we first monitored bacterial growth in different culture media when mixing protonated palmitic 

acid (PA) with these non-anionic surfactants above their CMC. Figure 1 shows that Tween-20 is 

the less harmful detergent for the lipid deuteration of V. splendidus, and that a high concentration 

of bacteria is measured even at a detergent concentration of 0.25 mM, i.e., well above Tween-20’s 

CMC (0.06 mM). A concentration of 0.14 mM of Tween-20 was thus employed for the rest of the 

study because it allows complete solubilization of PA (concentration of 0.3 mM) without affecting 

the bacterial culture.  
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The deuteration of V. splendidus membrane lipids was then verified by 2H SS-NMR. The second 

spectral moment M2 was calculated to assess the membrane fluidity. When specific quadrupolar 

splittings cannot be measured, M2 values are good reporter of the spectral distribution which 

reflects the lipid phases - the greater the M2 value, the greater the lipid ordering. Figure 2B-C shows 

that the deuteration protocol used herein was successful as a good signal-to-noise ratio is observed 

in vivo by 2H SS-NMR when bacteria are sampled in the exponential growth phase. The importance 

of the surfactant-mediated micellization step can be seen in Figure 2A which shows that when d31-

PA is used without Tween-20, no side bands can be detected (i.e., there is no labelling). Figure 2C 

also shows that supplementing the culture medium with oleic acid (OA) in addition to d31-PA leads 

to a reduction in side bands intensities, indicating an increase in membrane fluidity further 

demonstrated by the decrease in M2 value. These findings suggest that both unsaturated (OA) and 

saturated (d31-PA) FAs were integrated by the cell. The in vivo NMR conditions during V. 

splendidus analysis were confirmed by estimating the bacterial viability, which was 95 ± 5 %. 

 

 

Figure 1: Effect of different 

surfactants on V. splendidus growth. 

Control (a) experiment using the 

growth medium, and was compared to 

the following detergents at their CMC: 

Tween-20 (b), Brij-35 (c), DPC (d), 

Triton-X (e), CHAPS (f) and OG (g). 

Tween-20 was also tested at 0.25 mM 

(h). 
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Figure 2 : In vivo 2H MAS (10 kHz) SS-NMR spectra of V. splendidus harvested in the mid-log 

phase. Control experiment corresponding to bacteria labelled with d31-PA without detergent (A), 

bacteria labelled with d31-PA in the presence of Tween-20 (0.14 mM) without (B), and with (C) 

OA (1:1). Spectra are normalized according to the central peak. Average second spectral moments 

M2 are indicated (109 s-2).  

 

3.2 Fatty acid composition as a function of cell growth and labelling conditions 

Since the labelling protocol was successful, the membrane FA profile was monitored in order 

to quantify the assimilation of exogenous FAs at different growth stages and assess the potential 

impact of 2H labelling on the membrane. Lipid analyses were thus performed on labelled and non-



12 

 

labelled bacteria and comparisons established between growth media enriched with d31-PA, with 

and without OA. Cell growth data are presented in the “Supplementary material” section. Figure 3 

shows that the incorporation of d31-PA is indeed successful and that 77% of the PA acyl chains in 

the membrane are deuterated during the mid-log phase for V. splendidus grown in the presence of 

d31-PA (amounting to 44% of all FAs). The deuteration level of PA is maintained as high as 69% 

(31% of all fatty acids, numerical values are reported in Supplementary material, Table SI1) when 

OA is added in the growth medium, in spite of the high incorporation of OA into the membranes 

lipids. In the early stationary phase, the level of deuterated PA remains high, i.e. 75% of PA (or 

32% of all FAs). When OA is added, this deuteration level is reduced to 55% (18% of all FAs), but 

it is still sufficient to generate a strong 2H-NMR signal (see Figure 4B). 

Depending on the growth regimes, V. splendidus FA profile reveals more than 15 different FA 

chains with three major and recurring components: palmitoleic acid (C16:1), PA (C16), and OA 

(C18:1) (Fig.3). Our results (Fig. 3A) indicate that deuteration with d31-PA respects the native 

composition of V. splendidus. In addition, exogenous OA was highly incorporated during the 

exponential phase, at the expense of palmitoleic acid - the most naturally abundant UFA in V. 

splendidus membranes. The choice to enrich the culture with OA as an UFA was to balance as 

much as possible the incorporation of saturated d31-PA and to allow comparison with previously 

published deuteration protocols for other bacteria such as E. coli [54-56]. It also enabled exploring 

the adaptability of V. splendidus to integrate exogenous FAs and to modulate its FA chain fluidity 

accordingly. 

Indeed bacteria responded to the enrichment with both exogenous FAs by including them in their 

lipid profile, more strikingly during the exponential phase, without affecting much the proportions 

of the other FAs (Fig. 3B). Permutational multivariate analysis of variance (Permanova) on Bray-

Curtis matrices (Primer 7.0.13) of FAs composition of cell culture from different treatments and 

growth phases reveal significant interaction between both factors (DF = 2 and 22, Pseudo-F = 4.05, 

p = 0.005). Pair-wise Permanova comparison test indicates more specifically where differences 

were observed. Interestingly, the FA compositions were similar to that of the native bacteria 

membranes during the plateau phase (Fig. 3A), suggesting an adaptation of the bacteria to the 
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growth medium (p = 0.089). In contrast, growing bacteria with only d31-PA leads to a more altered 

FA profile (p = 0.002). For instance, the major FA chains for V. splendidus, i.e., palmitoleic acid, 

was reduced by more than half, and other UFAs such as cyclopropane FAs (cyC17:0 and cyC19:0) 

were highly synthesized under this regime (see Supplementary material).  

 

  

Figure 3: Fatty acid composition and 

corresponding SFA/UFA ratio at 

exponential (mid-log) and early 

stationary growth phases of V. 

splendidus in the presence of 

exogenous FAs. (A) Control sample 

in LB medium, (B) in presence of d31-

PA, and (C) in presence of d31-PA 

and OA (1:1). Other SFAs includes 

lauric, myristic, pentadecanoic, 

heptadecanoic, stearic and arachidic 

acids (see complete assignment in 

table SI1). Other UFAs include 

myristoleic, pentadecenoic, 

stearidonic, -linoleic, eicosanoids, 

cyclopropyl heptadecanoic 

(cyC17:0), and cyclopropyl 

nonadecanoic (cyC19:0) acids (see 

complete assignment in table SI1). 

Hatched histograms indicate the 

relative proportion of d31-PA per total 

palmitic acid. Saturated/unsaturated 

fatty acid ratios were calculated from 

FA content expressed in mol% per 

total FA (See S.I). Growth 

temperature was 25°C for all 

cultures. 
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Under labelling conditions, both with and without OA, the SFA/UFA ratios were higher in the 

exponential phase than in the stationary phase. This pattern is due to increased biosynthesis of 

UFAs such as palmitoleic acid (C16:1) or cyclopropane FAs (cyC17:0 and cyC19:0). It should also 

be noted that the SFA/UFA ratio of bacteria labelled in the presence of OA and during early 

stationary phase (SFA/UFA = 0.65 ± 0.01) was close to that of unlabelled cultures which was about 

0.59 ± 0.05 and 0.60 ± 0.01 during mid-log and early stationary phases, respectively.  

 

3.3 Membrane fluidity characterization by SS-NMR 

The 2H SS-NMR spectra obtained for the labelled bacteria (Figure 4) show that membrane 

rigidity varies with cell division. Under the same growth conditions (d31-PA with OA) and in a 

timeframe of 5 hours, a reduction was observed in the sideband intensity and number. Accordingly, 

the M2 values dropped by half going from the mid-log to the stationary phase. These results are 

consistent with the decreased SFA/UFA ratio which reveal an increase in membrane fluidity as a 

function of growth time under the same growth conditions.   

 

4. DISCUSSION 

4.1 2H labelling optimization for in vivo study of membranes by 2H SS-NMR 

Nuclear magnetic resonance spectroscopy has gained an appreciated reputation among 

biologists, notably because of its low radiation energy in the radio frequency range, which causes 

no detrimental effects on biological tissues [35]. This property has allowed NMR to tackle different 

living systems (cells or tissues) which is referred to as in vivo NMR [31, 35, 36]. Labelling is a 

common strategy in NMR and deuterium labelling of lipid chains is a useful approach to explore 

changes occurring in biological membranes using SS-NMR. However, when studying living 

organisms, the deuteration protocol could be a disturbing factor to physiological pathways, or 

induce stress. Previously published work has established the feasibility and pertinence of bacterial 

membrane deuteration on human pathogens E. coli and B. subtilis [54-57, 63]. Here, a marine 

bacterium, V. splendidus, is deuterated for the first time while minimizing disturbances on the 

microorganism. Although V. splendidus and previously characterized E. coli [54, 55] are both 
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Gram(-) bacteria, differences in 2H SS-NMR spectra between these two species were expected, due 

perhaps to species-specific biological requirements [64, 65].  

 

The capacity of the bacteria to grow under our labelling conditions was first verified. While 

deuteration of molecules such as FAs does not affect their structure and thermodynamical stability, 

surfactants used to facilitate the deuterated FA incorporation into the bacteria [66], could have a 

detrimental effect since detergents are commonly used for biochemical applications such as 

extraction of membrane proteins. Therefore, the physiological state of the bacteria during labelling 

procedure was monitored using growth kinetics, and our results showed that Tween-20 had the 

lowest impact. This result is in agreement with Schuck et al. who compared sensitivities of diverse 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: 2H MAS (10 kHz) SS-NMR 

spectra of intact V. splendidus harvested at 

three different cell growth times: (A) after 15 

h in the mid-log phase (OD600nm ≈ 0.3), (B) 

after 22 h (±2h) at the beginning of the 

stationary stage (OD600nm ≈ 0.5), and (C) 

after 30 h at advanced stationary phase 

(OD600nm ≈ 0.5). Bacteria were labelled with 

d31-PA in presence of OA. Average second 

spectral moments M2 are indicated (109 s-2). 
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cells toward a set of detergents and showed that Tween-20 was always the least effective in 

provoking membrane resistance, and the best at preserving membrane integrity [67]. Tween-20 has 

a low CMC, does not affect protein activity, and is rarely used for cell lysis or protein extraction, 

but rather as a gentle washing agent. [67, 68]. On the other hand, although harmless for the first 10 

hours of culture, the zwitterionic detergent DPC used to deuterate E. coli and B. subtilis lipids 

showed a hampering action on V. splendidus at longer exposure time, which could be explained by 

its ability to break protein-lipid and lipid-lipid associations [68, 69]. 

De novo synthesis of FAs is the most energetically expensive mechanism in phospholipid 

synthesis for bacteria membrane [49]. Because they do not have specialized functional cellular 

compartments, prokaryotic organisms rely on multiple regulation tools to control their 

phospholipid composition according to the niche in which they live [47, 49, 50, 70, 71]. Overall, 

bacteria tend to sustain their membrane homeostasis through adaptation mechanisms by 

maintaining zwitterionic/anionic, protein/lipid [70] or FA chain ratios [72]. The SFA/UFA ratio is 

one of the most used reporters of membrane fluidity [73-75] as well as bacterial adaptive strategies 

[73-77]. Our results showed that when PA was added in the growth medium of V. splendidus 

without OA, bacteria adapted by synthesizing more cyclic fatty acids (cyC17:0 and cyC19:0) that 

restored membrane fluidity. Similarly, when OA was also added and despite the fact that OA is not 

the major UFA in V. splendidus, this FA was highly integrated in the exponential phase, resulting 

in a FA profile similar to that of unlabelled bacteria. The SFA/UFA ratios determined here confirm 

the need to enrich the medium with UFAs during labelling with d31-PA in order to avoid extreme 

shifts from the natural lipid composition (Fig. 3), in agreement with previous work carried out on 

E. coli [54-56]. 

In short, our lipid deuteration protocol on V. splendidus allowed a similar or better labelling rate 

as compared to previous work on bacteria. Lipid profile analyses showed that at least 69% 

deuteration of C16:0 acyl chains was observed in the exponential phase. This deuteration level is 

slightly higher than what was reported for E. coli grown in the presence of d31-PA [54, 55]. Except 

for minor differences in the FA incorporation process [47] and a different culture time lapse, the 

lipid metabolism of Vibrio species is very similar to E. coli’s since they are both Gram(-) bacteria 
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with similar transcriptional regulatory genes for FA metabolism and phospholipid composition [47, 

49, 72, 76].   

4.2 Membrane evolution during bacterial growth 

Our results showed that the membrane fluidity varied with bacterial growth during the labelling 

process. Indeed bacteria experience the fastest growth rate in the exponential phase during which 

they produce membrane lipids [71]. Once lipids are synthesized, the lipid profile remains the same 

until the stationary phase is reached, i.e., when nutrients become limited, DNA replication, protein 

synthesis and respiration are reduced, and cell lysis begins [78]. Previous in vivo NMR studies have 

been carried out on bacteria sampled at the mid-log growth stage [54-57] which provides excellent 

NMR signal-to-noise ratio. However, our results revealed that samples obtained at later stages, 

especially the early stationary stage, provide sufficient labelling for a good NMR signal-to-noise 

ratio, as well as additional advantages. 

Indeed GC-MS analyses showed that exogenous PA and OA were highly integrated in the 

membrane at mid-log phase during which they become the most abundant FA chains in the 

membrane (Figure 3). In subsequent growth stages, PA and OA diminished to reach more “native” 

proportions (i.e., those measured in the control samples), while the amount of palmitoleic acid 

increased, through an unknown mechanism that could imply FA conversion or exchange, the 

addition of a double bond or a CH2, or the synthesis of new FAs. This is consistent with other 

investigations on Vibrio species, showing that exogenous FAs are incorporated by direct trans-

acylation or after incorporation into the biosynthesis pool [47]. Additionally the SFA/UFA ratio, 

which decreased as a function of growth time, reaching that of unlabelled bacteria (especially when 

both PA and OA were added to the culture medium), validate the evolution of the FA profile. The 

2H SS-NMR spectra also reveal an increase in membrane fluidity as a function of V. splendidus 

growth stages when d31-PA, and to a lesser extent when equal proportions of OA and d31-PA, are 

added to the growth medium (Figure 4). In the exponential phase, a more rigid membrane was 

observed, close to a gel phase (M2 above 20×109 s-2), whereas in later stages the M2 value was 

closer to that of a fluid phase membrane (M2 below 10×109 s-2) [54]. Since the FA composition 
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and SFA/UFA ratio were closer to their “native” values in the early stationary phase, the lower M2 

values would thus report with biological membranes in the fluid phase [79]. 

The contribution of signal from free d31-PA cannot explain the change in lipid profile during cell 

growth. Indeed Figure 2A shows no 2H SS-NMR signal after rinsing. Additionally, free d31-PA is 

insoluble in water and would lead to a very broad 2H SS-NMR spectrum with M2 above 70×109 s-

2 (data not shown), which is incompatible with our results. Moreover, the 2H SS-NMR spectrum of 

d31-PA crystals would not vary with growth time. In light of these results, the increase in membrane 

fluidity with cell growth time would be explained by a gradual adaptation of the microorganism 

metabolism upon isotopic labelling to cope with possible stress and disturbance of metabolic 

pathways [73-75] due to chemical isotopic labelling. In most cases, stress is known to lead to an 

increase in membrane rigidity, although the opposite pattern could happen in the case of marine 

prokaryotic organisms, and specifically for Vibrio species [46, 75]. The increased fluidity due to 

increased UFA proportions, and notably cyclopropanes FAs observed when PA was added in the 

growth medium, seems to prove such environmental stress [75, 80]. However, when both PA and 

OA were present in the medium, cyclopropane FA proportions were inverted (Table SI1), 

suggesting that stress was reduced [80]. Similarly, the superimposed growth curves (see Fig. SI1) 

indicate that V. splendidus metabolism kinetics under isotopic labelling was not affected by 

labelling stress. Therefore, the FAs turnover would be fast and all exogenous d31-PA transferred 

into the membrane lipids at the mid-log phase. Yet, being long and saturated, they would induce 

large M2 values. In the early stationary phase, bacteria would have had enough time to regulate 

their metabolism to the presence of exogenous FAs in the growth medium, generally through 

adapting their enzymatic machinery [71], and have either converted into or synthesized new UFAs 

in order to reduce the membrane rigidity, and reach their initial membrane state, as observed by 

the reduced M2 values.  
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5. CONCLUSION AND PERSPECTIVES 

Setting out labelling procedures is an important step towards developing effective and reliable 

tools for in vivo NMR studies. Here, membranes of intact V. splendidus were characterized for the 

first time by SS-NMR, as a model of marine Gram(-) bacteria. This work provides a better 

understanding of changes in bacterial membrane properties as a function of growth time and 

conditions that have never been studied so far on any biological system by in vivo NMR. Overall, 

the present study should help in the design of efficient labelling protocols of bacteria, which takes 

into account not only the technical spectroscopy requirements for analyses (such as signal-to-noise 

ratio) but also biological considerations. This 2H labelling protocol is useful for 2H SS-NMR, but 

could also be useful for neutron diffraction, or extended to the labelling of cell membranes by other 

isotopes such as 13C. Additionally, by characterizing the membrane of V. splendidus, a potential 

virulent bacterium for marine organisms, this work paves the way towards studying the interactions 

of its membrane with exogenous molecules in the aquatic environment.  
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