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Abstract
A 2year-old has approximately heard a 1000h of speech—at the age of ten, around ten thousand. Similarly, automatic speech
recognisers are often trained on data in these dimensions. In stark contrast, however, only few databases to train a speaker
analysis system contain more than 10h of speech and hardly ever more than 100h. Yet, these systems are ideally expected
to recognise the states and traits of speakers independent of the person, spoken content, language, cultural background, and
acoustic disturbances best at human parity or even superhuman levels. While this is not reached at the time for many tasks
such as speaker emotion recognition, deep learning—often described to lead to significant improvements—in combination
with sufficient learning data, holds the promise to reach this goal. Luckily, every second, more than 5h of video are uploaded
to the web and several hundreds of hours of audio and video communication in most languages of the world take place.
A major effort could thus be invested in efficient labelling and sharing of these. In this contribution, first, benchmarks are
given from the nine research challenges co-organised by the authors over the years at the annual Interspeech conference
since 2009. Then, approaches to utmost efficient exploitation of the ‘big’ (unlabelled) data available are presented. Small-
world modelling in combination with unsupervised learning help to rapidly identify potential target data of interest. Further,
gamified crowdsourcing combinedwith human-machine cooperative learning turns the annotation process into an entertaining
experience, while reducing the manual labelling effort to a minimum. Moreover, increasingly autonomous deep holistic end-
to-end learning solutions are presented for the tasks at hand. The concluding discussion will contain some crystal ball gazing
alongside practical hints not missing out on ethical aspects.
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1 Introduction

X-radiation—here in the sense of Röntgen radiation is com-
posed of X-rays, which have largely become synonymous
of enabling seeing usually hidden aspects via empower-
ing technology. The field of automatic speaker analysis or
‘Computational Paralinguistics’ dealing with the automatic
characterisation of speakers such as by assessing states and
traits from the voice acoustics and textual cues of an indi-
vidual is hardly connotated with such ‘see-through’ abilities
in a figurative sense, yet. This comes, as even those tasks
which are directly accessible to a human perceiver can still
pose problems to a machine such as when aiming at recog-
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nition of human emotion. However, largely unnoticed by the
broad public, computers can indeed already provide auto-
matic speaker analysis empowering humans beyond their
natural skill-set in terms of listening such as when automat-
ically estimating height or weight of a speaker [3,37] down
to a few centimetres or kilograms of error, despite such tasks
clearly being challenging [24] also for humans [56].

To be fair, however, humans have an impressive amount
of data available to learn on speech and speaker characteris-
tics contained in the signal—simply, as they are constantly
exposed to it. Likewise, at the age of just two, we have
roughly listened to some 1000h of speech. At the age of
ten, this has already increased to around ten 1000h of speech
heard [33]. Obviously, these observations do not come with
‘labels’—rather, we learn in a reinforced manner and from
the situational context to recognise, understand, and analyse
the speaker characteristics as conveyed in the speech signal.
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At the same time, we synthesise speech and learn also from
coupling analysis and synthesis efforts.

Considering speech recognition as related discipline, a
technical system today is often trained on similar amounts
of data as a human would hear in her lifetime. And in fact,
also speech recognition engines increasingly learn in weakly
supervised ways, exploiting also unlabelled speech data to
go from some one or 2000h of training material to the order
of tens of thousands [58].

This is in stark contrast to the situation in Computa-
tional Paralinguistics. There, only few databases allow to
train a speaker analysis system based on more than 10h
of speech Yet, expectations are high as to what these sys-
tems ideally should be able to recognise: The tasks are
often ambiguous such as automatic recognition of emotion
or sentiment or the perceived personality of a speaker—
all subjective and therefore ambiguous tasks. At the same
time, recognition should be independent of the person, i.e.,
reliable also for unknown speakers. Further independence
requirements include phonetic content variation robustness,
including varying language. This allows for not having to
ask a user to speak prompted material with known phonetic
content but enables to process arbitrary speech material.

Then, acoustic disturbances including complex cases such
as multiple speakers cross-talking should not be in the way
of reliable assessment—best at human parity or even super-
human levels such as when optimising automatic recognition
of the human heart-beat from acoustics with only a few beats
of error [22], or early diagnosis of diverse health conditions
which at best a physician could ascertain from the voice [36].

Likewise, having only a few hours of learning material
at hand, it is not surprising that some automatic recognition
tasks have not yet reached or surpassed human abilities—an
example being the above named emotion recognition from
the voice acoustics [44,61]. However, the recent advances
in processing power, and machine learning methods—most
notably deep learning towhich significant improvements and
expectations are ascribed [12]—in combination with suffi-
cient amount of learning data that can satisfy the increased
requirements for data such models usually come with [7]
hold the promise to reach the point of superhuman level on
most or even all Computational Paralinguistics tasks likely
already in the near future.

As for the amount of data available, luckily, every second,
more than 5h of video are uploaded to the web. YouTube
alone reached 70 million hours of video material by March
2015.1 This is added by several hundreds of hours of audio
and video communication in most languages of the world
taking place. If only a fraction of these data would be shared
and labelled reliably, human-alike or even beyond automatic

1 https://www.youtube.com/yt/press/de/statistics.html—Accessed 1
June 2017.

speaker analysis could eventually be realised for improved
human-computer interaction,mobile health applications, and
many further fields of application.

In this context, the remainder of this paper is laid out as fol-
lows: first, the performance benchmarks of today’s engines
are given in Sect. 2. These stem from the nine research
challenges dealing with Computational Paralinguistics held
over the years at Interspeech (leaving out the still ongo-
ing tenth challenge). Following the belief ‘there is no data
than more data’, approaches to utmost efficient exploita-
tion of the ‘big’ (unlabelled) data available are presented
in Sect. 3. Small-world modelling in combination with unsu-
pervised learning help to rapidly identify potential target data
of interest. Next presented, gamified dynamic cooperative
crowdsourcing aims at turning its labelling into an enter-
taining experience, while reducing the amount of required
labels to a minimum by learning alongside the target task
also the labellers’ behaviour and reliability. Subsequently,
Sect. 4 introduces increasingly autonomous deep holistic
end-to-end learning solutions for the rich speaker analysis.
The concluding discussion will contain some future perspec-
tives alongside practical hints including ethical aspects.

2 Where are we on automatic speaker
analysis?

The foundation for intelligent speech analysis is laid by
the Interspeech Computational Paralinguistic Challenges
(ComParE).2 24 paralinguistic phenomena have been exam-
ined (in the ongoing 2018 challenge, further 4 were added),
encompassing a speaker’s transient states and more perma-
nent traits, as well as speaking styles. The first Interspeech
2009 Emotion Challenge (IS09EC) featured a binary (idle
vs negative) and a five-way (anger, emphatic, neutral, pos-
itive, and rest) classification task on naturalistic children’s
speech. The follow-up Interspeech 2010 Paralinguistic
Challenge (IS10PC), evaluated the continuous-valued level
of interest ([−1,+1]) and the biometric primitives age (child,
youth, adult, and senior) and gender/ age (female, male,
and children). In the ensuing Interspeech 2011 Speaker
State Challenge (IS11SSC), intoxication (above or below .5
per mill blood alcohol concentration) and sleepiness (above
or below 7.5 on the Karolinska sleepiness scale) had to be
detected. Next, in the Interspeech 2012 Speaker Trait Chal-
lenge (IS12STC), personality (openness, conscientiousness,
extraversion, agreeableness, and neuroticism), likability, and
intelligibility of pathological speakers were investigated,
where all tasks were binarised to above or below average.
Since 2013, theChallenge series has been consistently named
to ComParE, subsuming all paralinguistic tasks under one

2 http://compare.openaudio.eu/.
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umbrella. The ComParE 2013 targeted for the first time the
sensing of social signals such as laughter and fillers (as a
localisation task), as well as conflict in dyadic group discus-
sions. In addition, it addressed atypical speech patterns due
to pervasive developmental disorders (autism), and enacted
emotion. InComParE2014, the level of cognitive load (work-
ing memory) and physical load (based on heart rate and skin
conductivity) were classified. The ComParE 2015 featured
two regression tasks: the degree of nativeness (i.e., non-native
English prosody) and Parkinson’s condition on the unified
Parkinsons disease rating scale (UPDRS); and the classifi-
cation task of distinguishing six different food types/eating
conditions while speaking. The ComParE 2016 posed new
challenges in detecting deceptive vs non-deceptive speech,
estimating the degree of sincerity, and identifying the native
language out of eleven L1 classes of English L2 speak-
ers. Finally, in the 2017 Addressee sub-challenge, it had to
be determined whether speech produced by an adult was
directed towards another adult or a child; in the Cold sub-
challenge, speech under cold had to be told apart from
‘healthy’ speech; and in the Snoring sub-challenge, four dif-
ferent types of snoring had to be classified. To add the most
recent still ongoing 2018 sub-challenges, these comprise the
Atypical Affect sub-challenge, where emotion of individ-
uals with disabilities has to be recognised in four classes;
in the Self-Assessed Affect sub-challenge, three levels of
valence as self-assessed have to be classified; in the Crying
sub-challenge, infant’s crying sounds in three groups have
to recognised; and in the Heart Beats sub-challenge, three
degrees of heart beat diseases are contained.

In these challenges, weight is put on realism in the sense
of assessing the speaker from a short snippet of audio only
(usually around one to a few seconds), independent of the
speaker, in mostly real-world conditions such as telephone
or broadcast speech. Different measures were used over the
different tasks in the ‘sub-challenges’ per year respecting the
different type of representation or task such as classification,
regression, or detection. Explanations on these are given in
the caption.

The baselines have been established under somewhat sim-
ilar conditions over the years based on the openSMILE
toolkit3 for large-scale acoustic feature space brute forc-
ing with standardised feature sets (which, however, grew
over the years from 384 features (2009) over 1582 (2010),
3996 (2011), 6125 (2012), to 6373 (since 2013) features on
‘functional’ level—partially, however, also directly (lower
numbers of) low-level-descriptors on frame level were used),
and WEKA4 (mostly using Support Vector Machines). In
2017, openXBOW5 and end-to-end learning based on Ten-

3 http://audeering.com/technology/opensmile/.
4 http://www.cs.waikato.ac.nz/ml/weka/.
5 http://github.com/openXBOW/openXBOW/.

Table 1 InterspeechComputational Paralinguistics Challange (Com-
ParE) benchmarks over the years following similar brute-force open-
source computation by openSMILE and WEKA (in 2017, openXBOW
and end-to-end deep learning have been used in addition). Given are the
year the challengewas held, the nameof the sub-challenge indicating the
task targeted (“Pathology”, however, deals with intelligibility of head
and neck cancer patients before and after chemo-radiation treatment),
the modelling scheme (column “Model”) of the task either referring to
the number of distinct classes to recognise, or the interval (marked by
[· · · ]) in case of a regression task, or “x” in case several (classification)
tasks had to be addressed, and the baseline results (column “Base”).
Different evaluation measures were used for competition depending on
the type of task and modelling of it as classification (result given in
terms of percentage of unweighted accuracy (%UA), i.e., added recall
per class divided by the number of classes to copewith imbalance across
classes in the sense of chance-normalisation), regression (shown is the
correlation coefficient (CC (2010)/ρ (else))—marked by +) or detec-
tion task (given is the percentage of unweighted average area under the
curve (%UAAUC)—marked by ∗)

Year Sub-challenge Model Base

2017 Addressee 2 70.2

Cold 2 71.0

Snoring 4 58.5

2016 Deception 2 68.3

Sincerity [0,1] .602+

Native language 11 47.5

2015 Degree of nativeness [0,1] .425+

Parkinson’s condition [0,100] .390+

Eating condition 7 65.9

2014 Cognitive load 3 61.6

Physical load 2 71.9

2013 Social signals 2×2 83.3∗

Conflict 2 80.8

Emotion 12 40.9

Autism 4 67.1

2012 Personality 5×2 68.3

Likability 2 59.0

Pathology 2 68.9

2011 Intoxication 2 65.9

Sleepiness 2 70.3

2010 Age 4 48.91

Gender 3 81.21

Interest [−1,1] .421+

2009 Emotion 5 38.2

2 67.7

sorFlow,6 were used in addition to a fusion of methods. This
was added by another deep-learning baseline in 2018.

To provide an impression of what today’s speaker analysis
systems can reach, Table 1 shows the baseline results of the
Interspeech challenges centred on Computational Paralin-

6 http://www.tensorflow.org/.
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guistics. From the table, one can mainly see two things: an
astonishing range of speaker characteristics can be automati-
cally extracted significantly above chance level—sometimes
already at superhuman level such as in the case of intoxication
or some pathologies—yet leaving head room for improve-
ment for several others if not all.

Note that in this series, both, acoustic and textual cues
can mostly be exploited unless—in rare cases—the data of
a sub-challenge features prompted speech. However, other
challenges exist focussing on textual cues such as the annual
author profiling task at PAN within the CLEF framework
(cf. e.g., [41] for the latest edition), or the affective text [49],
sentiment analysis [35], and other tasks in SemEval.

3 Big data, little labels: efficiencymatters

While it was outlined above that there are sufficient data
for most tasks of interest in Computational Paralinguistics
owing to the rich amounts of data available on social media,
it is mostly the labels that lack. Certainly, some tasks of
speaker analysis will be hard to find on social media or in
conversations of millions of users, such as those dealing
with rare diseases or disorders. For others, it may be hard
to obtain a ‘ground truth’ such as accurate height of speak-
ers, accurate heart rate of speakers, etc., from social media
and human labelling alone. However, for practically any
task dealing with perceived speaker characteristics and some
more, exploiting the data in combinationwith efficient human
labelling mechanisms seems a promising avenue. For other
tasks, semi-supervised or unsupervised learning approaches
can exploit speech data availablewithout labels such as found
in large quantity on social media, TV, and broadcast [40]. In
the ongoing, different ways of reaching utmost efficiency in
exploiting big speech data are laid out.

3.1 Network analysis for pre-selection of social
media data

It seems obvious that labelling social multimedia data needs
some efficient pre-selection on ‘where to start’ looking at,
e.g., the above named more than 70 million hours of video
material available on YouTube alone. At the age of 80, we
roughly lived700,000h, i.e., around1%of the available video
time on YouTube in March 2015. Entering a search term
such as ‘joy’ in a social multimedia platform is unfortunately
insufficient to quickly lead to a selection of suited videos
(or directly audio streams such as by services as Sound-
Cloud) containing joyful speech, as the retrieved videos may
deal with anything related to joy such as movies, songs, etc.
that are somehow related to joy. This makes it evident that
some smart pre-filtering is needed. Such smart pre-filtering
could be realised by a ‘complex network analysis’ to quickly

retrieve related videos from social multimedia platforms.
Such platforms usually have their own suggestion on the
next best related videos to watch, which could be exploited
to identify next best options for more data. Unfortunately,
the algorithms behind these recommendations are usually
unknown, but they are mostly based on the title and descrip-
tion as well as more general (textual) meta-data as well as
‘social’ data including the viewing statistics featuring demo-
graphic aspects, number of likes/ dislikes given by viewers,
and related search queries of the users [8]. In particular, the
social aspects can be unrelated or even counter-productive
if establishing a database for machine learning, as they will
likely lead to a biased set of data. Based on existing rec-
ommendations, one can aim to reach more suited candidates
of videos by providing one’s own network analysis to iden-
tify relevant videos for database establishment. This can, for
example, be based on the assumption of high similarity of
videos. An option is then to use interconnections of videos as
generated by the social media platform’s recommendations
such as by small-world models and graph-based analysis
finding cliques in the graph. Ideally, some content-based veri-
fication check is additionally implemented verifying coarsely
that the found videos at least likely contain the desired speech
samples. This can contain a speech activity detection engine
or even some comparison against an initial or several initial
exemplary audio streams.

3.2 Game’s on!: making crowdsourcing fun: seriously

Whether freshly recorded or retrieved from social media,
the speech and audio or language data have to be annotated.
Crowdsourcing can be a highly efficient way to label data,
but it has also been questioned in terms of ethical aspects
[1]. Such concerns touch upon whether the crowd workers
are potentially exploited [13], or “ethical norms of privacy”
could be violated—potentially even knowingly by the crowd
workers [20]. In addition, unreliable raters can be a severe
problem adding noise to the labels [53]. In rather subjec-
tive tasks such as observed emotion or perceived personality,
it can be particularly difficult to estimate the reliability of
raters. Likewise,motivating the crowdworker seems an inter-
esting option for example by gamification of the labour to
turn it into fun aiming at lowering the risks of exploita-
tion and unreliable labelling [34]. This may include social
elements such as competing against other crowd workers
on a leaderboard or in one vs one challenges, a point sys-
tem and ‘badges’ or levels such as ‘master rater’, ‘grand
master’, etc. An exemplary existing platform in the field
is given by the iHEARu-PLAY platform [18]. More inter-
estingly, crowd workers could experience how their work
empowersArtificial Intelligence byhaving a gamified crowd-
sourcing platform train models exclusively from their labels
(or by improving existing systems with their labels) and
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have these compete against other crowd-workers’ engines
trained on their respective labels. In automatic speaker anal-
ysis, this would mean training engines based on different
crowd-workers’ labels and having them compete, e.g., on
well-defined test-beds such as the challenges introduced in
Sect. 2.

3.3 Cooperative learning: human+machine

Aiming to reduce human labelling effort has long since
led to the idea of self-learning by machines such as by
unsupervised, semi-supervised, or active learning. This
could be shown successful in Computational Paralinguistics
tasks starting with the recognition of emotion [68] or the
confidence estimation in emotion recognition results [11]
exploiting unlabelled data and even earlier on in textual
cues’ exploitation [16] in sentiment analysis. Purely self-
learning seems unsuited, as the risk to run into stagnation
of improvement can be high, despite adding exponentially
more unlabelled data. Furthermore, models could of course
also become corrupted by purely semi-supervised learning,
if no proper controlmechanisms ofmodel performance are in
place to monitor the development of the models when adding
increasingly more machine-labelled data for model training.
Thus, even when aiming at ‘never-ending learning’ [31], it
seemswise to keep the human in the loop by combining semi-
supervised learning with active learning—an idea which has
been considered early on in general machine learning [70],
but onlymore recently inComputational Paralinguistics [67].

Active learning, i.e., pre-selecting the most informative
instances for labelling by humans, has thereby mostly been
shown to work well in simulations with ground-truth labels.
This means, experiments were simulated on fully labelled
databases blinding part of the labels and revealing them only
if the data has been selected for active learning. This may
be overly optimistic, as the data likewise has been labelled
under comparably controlled conditions, i.e., by the same
individuals on a small dataset in a short time window. How-
ever, recently it has been shown that the idea also works well
in a crowdsourcing framework for Computational Paralin-
guistics tasks [19]. In future solutions, learning the labellers,
i.e., ‘being careful whom to trust when’ [53] can play an
increasingly important role when it comes to crowdsourcing-
based annotation in an active learning manner [62]. This
can also help increase efficiency when learning profiles of
inter-rater reliability to determine the optimal grouping of
crowd-workers for reducing human labelling effort.

3.4 Using synthesised speech for training

A promising approach that disposes of the need of data
labelling at all is to synthesise speech according to a specifi-
cation of speaker states and traits, and then use the resulting

audio as training data, along with the ground truth labels that
are already known by definition. As for other emerging tech-
niques in speaker analysis, the field of emotion recognition
pioneered this paradigm in early works on using emotional
speech synthesis to complement human natural emotional
speech in training recognition models [46]. However, the
synthesis approach used in this work suffers from a depen-
dency on expert crafted rules to vary the speech synthesis
parameters according to specific conceptualisations of emo-
tion, making it difficult to generalise the method to other
speaker states and traits, forwhich suchmappingswouldhave
to be obtained by laborious manual research. For instance,
we do not know of an implementation of speech synthesis
according to a specified personality vector in terms of the
OCEAN personality dimensions (openness, conscientious-
ness, extraversion, agreeableness, neuroticism)—although
first studies exist on parameters of speech synthesis engines
that contribute to personality perception, e.g., [4]—not to
mention the large variety of speaker states and traits that can
currently be analysed bymachines (see for example Table 1).
In this vein, deep learning based generativemodels for speech
synthesis such as WaveNet [57] could be highly promising,
as these allow the learning of generative models conditioned
on—in principle—arbitrary speaker profile vectors as well as
linguistic and prosodic features, automatically learning the
relation from input profiles to synthesised waveforms in an
end-to-end fashion (cf. Sect. 4.2). In the experiments done
in [57], these vectors comprised encodings of speaker ID as
well as textual features and fundamental frequency. In the
context of data scarcity for Computational Paralinguistics, it
is particularly interesting that the trainingmaterial for speech
synthesis per speaker ID includes several dozen hours; thus,
it is conceivable to be able to train speaker trait/ state con-
ditioned WaveNet synthesis models on the set of ComParE
databases mentioned in this article, where a similar amount
of data per class would be available in many cases.

4 Deep learning: machine intelligence
matters

4.1 Deep learning in computational Paralinguistics

Deep learning has a long tradition in the field of Com-
putational Paralinguistics: the first paper using long-short
term memory (LSTM) recurrent neural networks (RNNs)
for speech emotion recognition dates back 10years [59], the
first to use a deep architecture based on restricted Boltzmann
machines—again for speech emotion recognition—appeared
some 3years later [50]. More recently, first works on convo-
lutional neural networks (CNNs) for speech emotion recog-
nition appeared [29]. However, only 2years ago, the first true
end-to-end Computational Paralinguistics system using con-
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volutional layers ahead of LSTM layers [55] appeared. Also
there, the task was emotion recognition from speech, mak-
ing emotion recognition the pioneering task when it comes to
deep learning in Computational Paralinguistics. This seems
to hold also for one of the latest trends in deep learning—
the use of generative adversarial networks (GANs) [5], as
well as for attention mechanisms [21,30]. Both GANs and
attention can be seen as mechanisms to learn features from
data – while GANs can be seen as representation learning
(cf. Sect. 4.4) and also allow for simulating training data,
the use of attention is related to learning statistical function-
als, i.e., features that summarise lower level feature contours
over time. This is particularly important for Computational
Paralinguistics, as many tasks in this field are formulated
as sequence classification or regression tasks (mapping a
sequence of features, e.g., a spectrogram, to a single tar-
get value, e.g., arousal of a speaker), and not all areas of
the feature sequence are equally relevant to the problem at
hand (e.g., emotional utterances may contain a significant
amount of silence or non-emotional words). While these
first works on attention learning were—again—restricted to
emotion recognition, it is conceivable that many more works
will follow this highly promising paradigm for holistic Com-
putational Paraliguistics in the near future, given the high
flexibility of the general approach.

In fact, largely independent of this development in deep
learning exploiting acoustic information in Computational
Paralinguistics, deep learning is increasingly used in the anal-
ysis of textual cues. LSTM RNNs are, for example, used in
sentiment analysis from textual cues [42,69]. Alternatively,
gated recurrent units have been considered to the same task in
[52]. CNNs are for example applied for personality analysis
[28,39], computation of sentiment [39,51,69], and emotion
features [39], or dialect and variety recognition [17]. Adver-
sarial network inspirations can be found on sentiment tasks
as well in [25,32].

4.2 Learning end-to-end

The learning of feature representations from the data seems
attractive in a field that has been coined by huge efforts put
into the design of acoustic features over the years. Indeed, as
outlined above, in 2016 first efforts in doing so were success-
fully reported [55]. In that work, the authors train an emotion
recogniser to learn directly from the raw audio signal wave-
form. Furthermore, via correlation analysis, they show that
the network seems to learn features that relate to the ‘tradi-
tional’ ones extracted by experts such as functionals of the
fundamental frequency or energy contours. In [43], this is
broadened up to three more paralinguistic tasks providing
a benchmark of a challenge event by end-to-end learning
among other ways of establishing a benchmark. While the
approach is not always superior to traditional methods in

these works, it shows that indeed, meaningful feature repre-
sentations can be learnt from the data. One can assume that
given the above named small size of corpora is the major bot-
tleneck when it comes to reaching much more competitive
results.

4.3 Borrowing pre-trainedmodels from computer
vision

This bottleneck of little data for pre-training is yet overcome
in computer vision, where large pre-trained networks such as
AlexNet [23] or VGG19 [48] exist. In [2], these are for the
first time exploited for Computational Paralinguistics show-
ing the power of the approach on the Interspeech 2017
ComParE’s [43] snoring sub-challenge: image classifica-
tion CNN descriptors are extracted from audio spectrograms
called “deep spectrum features” in the paper. They are
extracted by forwarding the audio spectrograms through the
very deep task-independent pre-trained CNNs named pre-
viously to build up feature vectors. In this first paper, the
authors evaluate the use of different spectrogram colourmaps
and different CNN topologies. They beat the conventionally
established baseline in the challenge by a largemargin,which
the authors can further increase by suited feature selection
by competitive swarm optimisation in [15], rendering this
approach highly promising and likely supporting the claim
that it is mostly about the amounts of data needed to fully
exploit deep learning in Computational Paralinguistics.

4.4 Coupling analysis and synthesis

The usage of generative adversarial networks (GANs) in
combinationwith discriminative training is a recent trend that
seems highly promising due to offering a novel paradigm of
combining unlabelled with labelled data. The generic prin-
ciple of GANs is as follows: a generator network transforms
random noise into a waveform or feature representation of
a signal (such as speech). A second network, called dis-
criminator, is trained to distinguish outputs of the generator
from real-world training examples, while the objective of the
generator is to have its outputs classified as real. However,
recently GANs are increasingly used as part of a discrimi-
natively trained model, where the output of the generator is
additionally fed into a neural network classifier (or regres-
sor) predicting a target value such as emotion (see Fig. 1).
For instance, this paradigm has recently been proposed for
automatic valence recognition from speech [5]. In particular,
this work used a large set of meeting speech, which is not
labelled at all in emotional dimensions, to train the gener-
ator and discriminator—valence labels were only required
for training the weights of the final classification layers [10].
Applied a similar technique to the classification of autismdis-
orders from children’s speech. It seems easy to extend this
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Fig. 1 Generative adversarial
network (GAN) applied to
feature generation for
Computational Paralinguistics

Random noise

Generator Discriminator

Paralinguis�c classifier/regressor

Real example

Generated example Real / generated

Speaker state / trait

to a variety of other speaker states and traits in the future,
offering a new concept of leveraging unlabelled, yet diverse
speech data, and, as opposed to the training with synthesised
speech mentioned in Sect. 3.4, does not rely on synthesis-
ing high-quality speech in an intermediate step—instead, the
system directly learns to synthesise meaningful feature rep-
resentations.

5 Broad tasks: holismmatters

From amethodological point of view, contemporarymachine
intelligence lacks holistic sensing and analysis ability in two
aspects: (1) At the front-end, the bulk of studies treat human
communication channels separately based on single-modal
analysis. (2) On the output side, there is currently a wealth of
loosely connected studies on affect recognition and machine
analysis of social signals and human user characteristics;
however, there is no holistic concept considering all these
contiguous ontological phenomena jointly and in an associa-
tive context.

To make the dream of omniscient machine intelligence
come true, we envision an end-to-end unified sensing and
analysis framework based on multi-modal data processing
andmulti-task learning for holisticmachineperception, using
a novel “deep fusion” approach that explores the space
between traditional early and late fusion approaches in a
continuous way, where modalities can be processed with
modality-dependent or shared hidden layers (see Fig. 2).

5.1 Goingmulti-modal: holistic machine perception

Research efforts towards multi-modal data processing have
been mainly dedicated to affect recognition by means of
bimodal audio-visual fusion on data-level, feature-level or
decision-level. As for the machine analysis of speaker char-
acteristics in general, the core machine perception research
fields, i.e., computer vision, computer audition, and computer
touch, are still widely decoupled and there exist only few
works on multi-sensory integration of all perceptual modal-
ities, including auditory, visual and tactile sensing (e.g.,
physiological signals, or textual input). In order to exploit
joint training with databases featuring different modalities,
stacked auto-encoders can be applied to raw signals as well
as intermediate features extracted by the lower hidden layers
of the neural network.

A number of multi-modal databases exist, mostly con-
taining annotations with human affect, for instance, the
RECOLA (REmote COLlaborative and Affective interac-
tions) corpus, which provides audio, video and biosig-
nals (ECG, EDA) and serves as the standard dataset in
the ACM Multimedia Audio/Visual Emotion Challenge
(AVEC). Another commonly used database is MAHNOB-
HCI, comprising a large collection of modalities (multicam-
era video of face, head, speech, eye gaze, pupil size, ECG,
GSR, respiration amplitude, and skin temperature). Simi-
larly, the HUMAINE database provides naturalistic clips
which record pervasive emotion (forms of feeling, expres-
sion and action that colour human life).
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Fig. 2 End-to-end unified
multi-modal multi-task deep
neural network

Shared Hidden Layers

Social Signals Affect Short-Term States Long-Term Traits

Feature Transformation

Video Audio Other modalities:
e.g. physiological 
signals, textual input

Frontend Layers

Output Layers

5.2 Going broad: holistic speaker analysis

As the characteristics of a speaker are usually ‘all present’
or ‘all on’ more or less at the same time, it appears crucial
to address them in parallel rather than one by one in iso-
lation ignorant to potential other ones. This seems relevant
even if one is only interested in one speaker characteristic,
e.g., emotion of the speaker, to avoid confusion by interfering
other speaker states or traits such as being tired, intoxicated
by alcohol, being under a certain cognitive load, or simply
with one’s personality type. There are only a few approaches,
yet, considering this mutual dependency of speaker char-
acteristics, mostly based on multi-task learning with neural
networks. Examples in acoustic speech information exploita-
tion include simultaneous assessment of age, gender, height,
and race recognition [45], age, height, weight, and smoking
habits recognition at the same time [38], emotion, likability,
and personality assessment in one pass [66], commonly tar-
geting deception and sincerity [64] or drowsiness and alcohol
intoxication [65] in the recognition, as well as assessment
of several emotion dimensions or representations in par-
allel [14,60,61,63], and aiming at speaker verification [6]
co-learning other aspects. Similar approaches can be found
in text-based information exploitation [25].

6 Conclusions and perspectives

Concluding this contribution, a short summary is given fol-
lowed by some perspectives.

6.1 Conclusions

In this article, we showed the results of the Interspeech
challenge series on Computational Paralinguistics over the
last 9years since their beginning (the tenth edition is currently
still ongoing). The results from this series clearly indicate that
a broad choice of speaker states and traits such as emotions,
health state, age, personality, or gender—naming but a few—
can be recognised from the voice significantly above chance
level and often already quite reliably.

At the same time, these results showed the room left over
for future improvements. To address this issue, an argument
was made to go ‘broader’ in automatic speaker analysis in
terms of assessment ofmultiple characteristics of a speaker in
full parallel to avoid confusion due to co-influence of these.
Further, deep learning has been named as current promis-
ing solution for modelling in terms of machine learning.
As particular advantage, this allows the learning of the fea-
ture representation directly from the data—an interesting
and valuable aspect in a field that is ever-since marked by
major efforts going into the design of optimal feature rep-
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resentations. As such going ‘deep and broad’ requires ‘big’
training data, avenues towards efficient exploitation of ‘big’
social multimedia data in combination with gamified crowd-
sourcing were shown. These included efficiency-optimising
measures by smart pre-selection of instances and combined
active and semi-supervised learning mechanisms to avoid
human involvement in labelling as much as possible. Alter-
natively, exploitation of pre-trained networks on ‘big’ image
data was named to analyse speech data based on image-
related representations such as spectograms or scalograms
and alike in potential future efforts.However, for someunder-
resourced special types of data, such as of vulnerable parts
of the population [27], ‘conventional’ collection of data will
still be required.

6.2 Some crystal-ball gazing

Putting the above together in a ‘life-long learning’ [47] Com-
putational Paralinguistics system supported by the crowd
during 24/7 learning efforts based on big social media and
contributed data, we may soon see superhuman level auto-
matic speaker analysis for an astonishingly broad range of
speaker characteristics.

Further supporting approaches notmentionedhere include
transfer learning [26] and reinforcement learning [54], to
name but two of the most promising aspects.

Once reaching such abilities, ethical, legal, and societal
implications (ELSI) will play an important role [9] if such
technology is increasingly used in human-decision support
such as in automatic job interviews, tele-diagnosis in health
care, or monitoring of customers, and employees, to name
again but three use-cases. It will be of crucial importance to
invest efforts into privacy protection, reliable and meaning-
ful automatic confidence measure provision to explain the
certainty and trust one should have in the automatic assess-
ments, and accountable communication of the ‘possible’ to
the general public such as in down-toning trust in deception
recognition, if it only works at—say—some 70% accuracy
as shown in the table above. This will require organisation
of future challenges in the research community as well as
ensuring widest possible spread of the word.

May we soon experience powerful and reliable automatic
speaker analysis and Computational Paralinguistics applied
in the best possible ways only to benefit society at large in
everyday problem solving and increase of wellbeing.
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