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Abstract—Predicting mobile network parameters while driving
is a challenge. The high dynamics and the mobility of the clients
lead to spontaneous changes in the communication quality. There
are different known approaches to predict the throughput of such
mobile network connections. The paper presents a novel overview
for the performance of different geographical prediction methods
based on the same dataset. To generate the dataset, a tool for
monitoring a vehicle-to-server communication in a passive way is
presented, too. It does not only capture high level parameters like
TCP throughput and round trip times, but also mobile network
parameters, like RSSI or RSRQ. In addition, the data is recorded
in real-time and augmented with GPS coordinates to analyze
them location-dependent.

Index Terms—passive monitoring, vehicle-to-everything com-
munication, throughput prediction, connectivity map, cellular
network

I. INTRODUCTION

Within the automotive sector, several manufactures started
working on automated driving. They all use onboard sensors
to detect the local environment. Due to the fact that the range
of on-board sensors is limited and not sufficient to guarantee
a safe driving process at higher speeds, research is carried out
on the subject of vehicle-to-everything (V2X) communication
[1]. There are three common communication standards. IEEE
802.11p, which is focusing on vehicle-to-vehicle communica-
tion, vehicle-to-road-side-unit communication using small re-
lay stations next to the street and (inally, communication based
on the mobile networks for vehicle-to-server connections. This
paper focuses on communication based on mobile networks.
For many scenarios it is crucial to guarantee that data is sent
reliably. Therefore, a deeper analysis of the communication is
necessary. Typically, the throughput (TP) and the Round-Trip-
Time (RTT) are two indicators to determine the performance
of a communication, but also mobile network parameters like
the signal strength or the signal-to-interference plus noise ratio
(SINR) are areas of interest. To measure TP or RTT, it is
possible to inject traffic to the network and to analyze it. The
mobile network is a shared medium with limited resources.
By injecting additional data for the measuring process, the
network congests and gets slowed down. To avoid loading
the network, within this paper, a tool is presented to collect
these network parameters passively. On one side, long-term
evolution (LTE) related parameters get recorded and on the
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other side, TCP related metrics are calculated. The recorded
dataset is used to analyze the performance of different ge-
ographical based prediction algorithms. These methods are
able to predict the throughput of a specific location along
the route of the driving vehicle. This allows an application,
e.g., adaptive video stream players [2], [3], to react on the
varying bandwidth. In section II, the related work is discussed,
followed by a detailed explanation of the measured mobile
network parameters and the calculation of TP and RTT in
section III. Section IV introduces the measurement setup and
provides an overview of the architecture of the measuring
tool. Our measurement campaign and the test area is described
in section V. In section VI, the different types of geo-based
prediction methods get described followed by an evaluation of
the performance for each approach. Finally, we conclude our
paper and present an outlook to future work.

II. RELATED WORK

This section is structured into two parts. The first part shows
the related work regarding measuring data in a passive way
and the second part reflects the current state of science for
map based mobile throughput prediction.

For monitoring the behavior of a network, we have to
distinguish between active and passive measurement methods.
In [4] and [5] active measurements are used to get the round
trip time or the throughput of a network. Such a measurement
method leads to the problem that additional network traffic
is generated. To avoid this problem, passive measurement
methods are applied.

In [6], a technique called SYN-ACK (SA) estimation is
introduced. This method is based on the packets exchanged
during TCP’s three way handshake in the beginning of a
connection. With this technique it is possible to measure quite
accurately RTT values for most of the TCP connections.

A second technique called Slow-Start (SS) estimation in [6]
is based on the congestion control mechanism and relies on the
assumption, that the time period between two packet bursts is
equal to the connection’s RTT. To get a precise measurement, it
is important that five consecutive segments have the maximum
segment size (MSS). As a consequence, this technique cannot
be used for flows that only transfer small segments.
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In [7] a third passive measurement technique is worked out.
The FIN-ACK measures the RTT at the end of a TCP connec-
tion. This algorithm is quite similar to the SA technology in
[6]. Both deliver an exact value for the RTT, but they have also
the same disadvantages. These algorithms can just measure
one RTT value per connection and since the segments do not
contain any data, this can cause a smaller RTT.

The method described in [8] leverages the timestamp option
within TCP. The authors determined that in 76.4 percent of the
Alexa Global 500 list the TCP timestamp option is supported.
The accuracy of the algorithm depends on the granularity of
the TCP timestamps. These are different, depending on the
implementation on sender side. They detected that over 90
percent of the implementations use a granularity bigger than
10ms. Due to this constraint, this method is not useful to
measure RTTs precisely.

In [9], different passive measurement approaches for mea-
suring bandwidth and latency are investigated. The analysis
focuses on mobile networks, mainly 3G. Within this paper, a
tool is presented which implements the SYN-ACK algorithm
and the FIN-ACK algorithm to calculate the RTT at runtime.
Additionally, this software is able to determine the throughput
and mobile network related parameters. The data of the tool
shall be used to predict the throughput of a mobile network
connection.

In the past, different methods have been presented to predict
the throughput of a TCP connection. For the dynamic vehicle
driving scenario, it turns out that location-based prediction
overtakes predicting with previous throughput data from the
actual driving circle [11], [12] and there are different ways
these data can by used. In [13-15] approaches are deployed,
which count all measured points nearby the actual location.
Another approach is to match all data points to the road and
split the track in segments. This can be done with segments
defined by the Open Street Map data [16] or by predefining
them with a fixed length as shown in [2], [11], [17], [18].
There is also the possibility of matching the data to a grid,
which is more simple than building segments. Apart from these
approaches there are also other methods like predicting the
throughput with machine learning based algorithms leveraging
LTE low level parameters [10]. Our recorded dataset also
contains these parameters, but an evaluation is not part of this

paper.
III. NETWORK PARAMETERS

To determine the quality of a network, characteristic pa-
rameters need to be analyzed. The communication is based on
layers and they are interfering with each other. For a deeper
analysis, we want to investigate metrics from the physical layer
as well as from the transportation layer. Within our testbed, the
communication is based on mobile networks, namely LTE. On
the transport layer, the TCP protocol is used. Our measurement
is taken on the client side. The following section describes the
metrics which are collected from the measurement tool.

For judging the physical mobile connection quality, LTE
parameters shown in Table I are gathered.

Table I: Captured LTE low-level parameters

Acronym  Definition

CNT Cellular Network Type

RSSI Receive Signal Strength Indicator
RSRP Reference Signal Receiving Power
RSRQ Reference Signal Receiving Quality
SINR Signal to Interference Noise Ratio
ASU Arbitrary Strength Unit

Cell Id Cell Identifier

P. Cell Id  Physical Cell Identifier

LAC Location Area Code

TAC Tracking Area Code

MNC Mobile Network Code

MCC Mobile Country Code

ARFCN Absolute Radio Frequency Channel Number
PLMN Public Land Mobile Network

The behavior of TCP on LTE shall be determined by
evaluating TCP communication throughput and round trip
times. To measure these parameters, a passive measurement
method based on sniffing the available traffic of a connection
is utilized.

1) Passive measurement of RTT: The RTT is an important
metric in determining the behavior of a network connection.
It describes the period of time it takes to send a packet to
a receiver and to get the corresponding acknowledgement to
this packet. One common method to measure the RTT is done
via injecting an ICMP message into the network. Due to the
lack in the network neutrality, it may happen that this message
does not get routed directly through the network. Likewise, the
measured RTT with ICMP could be higher than for TCP.

To measure the round trip time within a TCP connection
in a passive way, several methods are described in section II.
For our measurement tool, different algorithms will be used.
Based on [6], the RTT is calculated utilizing the three way
handshake of a TCP connection. First, the RTT is measured
during the establishment of the communication. Additionally,
the RTT is measurcd with the FIN-ACK method from [7].
This algorithm is based on the connection closing procedure
of TCP.

2) Throughput measurement: In general, throughput (TP)
is the amount of data sent over a channel within a defined
time frame [19]. To measure the throughput of the actual
TCP flow, we can simply count the payload of each TCP
segment and divide it by the transfer time. Before a TCP
flow achieves its steady-state throughput, a sufficient amount
of bytes has to be transmitted. This behavior is caused by
the slow-start phase to avoid congestions. To determine the
maximum-throughput of a connection, it is important that
the flow finished the slow-start phase. To detect the end of
the slow-start, different measurements were conducted. By
downloading files of different sizes and analyzing the average
throughput, we figured that, only flows larger than 800 k£ B can
leave the slow-start phase. This result is confirmed by [20].
They detect that flows larger than 1 M B can leave the slow-
start phase. So, to measure the maximum throughput, only
flows of this size have to be evaluated.
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IV. IMPLEMENTATION OF THE MEASUREMENT TOOL

Within our work, we develop an application to monitor a
vehicle-to-server communication based on the mobile network.
The main focus is to provide an architecture to easily extend
the functionality of the software. The following section de-
scribes our hardware setup and our software architecture.

A. Hardware

To avoid running out of computing performance we used
an in-vehicle computer, equipped with an Intel i7-5650U and
8 GB of RAM, as a measuring platform. It is equipped witch
am MC7304 LTE module from Sierra Wireless which is able
to handle all available mobile network frequencies utilized in
the EU. The module supports a data rate up to 100 MBit/s.
To reach a high alliterative of LTE, we use external antennas
which are mounted on the roof of the vehicle. These antennas
provide an additional gain of +12dBi. For measuring the
position, we are using a uBlocks UBX-G6010 GPS receiver.

B. Software

Our tool is implemented in C++ and uses the Boost-, the
libpcab-, the libgmi and the libgps libraries. Figure 1 illustrates
the main architecture. The application is structured into three
main parts:

e Input: The tool sniffs data from the LTE modem, the
actual network interface and a GPS device. For accessing
information from the LTE modem, the QMI-protocol is
used. The sniffing is done with libpcap and the single
packets for a connection are stored within a list. The GPS
data is extracted from the GPS device with the help of
libgps.

o Processing: Within the processing block, first, the data are
aggregated. Then, the network parameters are calculated
in a passive way. In this step, the previously described
measurement methods are utilized.

o Output: It is possible to save the measurement results
within a SQLite-Database, CSV-File or to write the
results into a named pipe as a JSON object. This is useful
for processing the data in a next step. For instance, we
want to push the measurement results instantly to a server
to analyze them.
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Figure 1: Block diagram of the measurement tool. It collects
TCP, mobile network and GPS parameters and store the data
locally

The main focus of the application is to sniff, to analyze, and to
provide the measurement results in a suitable format. A flexi-
ble configuration of the tool allows to enable or disable single

measurements and to adjust the frequency of the measurement.
We monitor the network with a rate of 3.33 Hz.

V. MEASUREMENT CAMPAIGN

We conducted a comprehensive measurement campaign
using our measurement tool and the hardware described in
section IV-A. To generate network traffic during the campaign,
the data transfer is simulated with a script. It periodically
downloads a 4 M B file from a server, which is located at
OTH Amberg-Weiden. To keep the server load small, a method
which constraints the maximum simultaneous downloading
clients to two is implemented. The server connection supports
150 Mbit/s. Our mobile data plan supports 100 M Bit/s, such
that it is guaranteed that the measurement server is not the
bottleneck of the connection. Figure 2 illustrates the measuring
process. The LTE related data are collected cyclically. Mea-
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Figure 2: Illustration of the TCP and LTE parameter measure-
ment process. A simplified trend of the throughput is shown in
green. The red dashed lines indicate the measurement points.

surement points are indicated with red dashed lines in the
figure. In our case, measurements are taken with a frequency
of 3.33 Hz. The green line shows the trend of the throughput
in a simplified way. In the beginning of the data transfer,
the throughput is growing, due to the slow-start phase. In
interval 1, the steady-state of the throughput is reached. Since
we want to predict the maximum available throughput, it is
important to delete the values for interval 0 and 1. In interval
3, the throughput measurement stops, when the data transfer
is finished. So for the illustrated throughput trend in the figure
2, we get four valid throughput values, for interval 2, 3, 7 and
8.

For retracting the data, a test round is defined around
Amberg, Germany. It covers different scenarios like urban,
interurban and motorway roads. Figure 3 illustrates the test
round. The circuit has approximately 28 km and is evenly split
into three parts. Each part represents a specific scenario. In the
urban scenario, the speed limit is 50 km /h and the way of driv-
ing is determined by stop and go traffic. The population density
and consequently the amount of mobile devices is higher, but
the 4G network coverage is fully developed within this area.
The interurban scenario exhibits a speed limit of 100 km/h
and shows a better traffic flow, with less intersections and
traffic lights. The last scenario is the motorway. In Germany,
there is no speed limit, but within our measurement campaign,
the limit is set to the advisory speed of 130 km/h. On the
motorway, the traffic flow was very constant during our test
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Figure 3: Defined test area around Amberg, Germany. The
circuit contains urban, interurban and motorway parts in one
track.

drives and the 4G network coverage is also fully equipped.
The measurement campaign was conducted in November 2017
within a week and consists of 46 rounds. The whole dataset
is stored in a PostgreSQL database and contains 136 000 data
points with 35 features.

VI. IMPLEMENTING DIFFERENT CONNECTIVITY MAPS

Forecasting the Quality of Service (QoS) of a mobile
connection is helpful for several applications. To implement
different prediction methods and algorithm, a generic frame-
work, based on Python, is developed. Here, our dataset is used
to implement different Connectivity Maps (CM). A CM is
a geographical based approach to provide the network status
for specific positions and areas. Therefore, the CM aggregates
the data from our dataset based on the GPS position of the
measurement. Basically, a CM consists of two parts. A geo-
database contains the actual dataset and provides the structure
of the road network. Additionally, the geo-database supplies
a map data structure for aggregating the measurements to it.
We use the PostGIS extension for PostgreSQL to setup such a
geo-database. The second part of the CM is a visualization to
show the results within a real map. It consists of two layers.
The first layer is the road map and in our work, it is based
on the free available OpenStreetMaps (OSM). The second
layer defines the segments with the corresponding network
condition for this section. We present three different types of
CMs, for predicting the throughput of a connection. Before
developing the CM, it is necessary to pre-process our dataset;
for example, due to the inaccuracy of GPS, the data points
need to get map matched to the correct road. We developed a
map matching with the help of the PostGIS functionality. By
defining a threshold of 5m around the road, the data points
get matched to the closest road. For a CM, this simple map
matching algorithm is sufficient.

A. Connectivity Map based on OSM segments (CM-OSM)

The first approach for setting up a CM is based on OSM
segments. The roads within OSM maps are composed of
different segments as depicted in figure 4. The length of the
single segments is fluctuating and depends on how the user
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Figure 4: Exemplary OSM segments on the test circuit. It
shows the variance of the segment length.

drew the map. For each segment, the throughput measurements
get aggregated using the median. Since the OSM segment
structure already exists, this type of CM is easy to generate
and it is no problem to scale it on a larger area. Our test round
consists of 188 segments with an average length of 148.93 m.

B. Connectivity Map based on equidistant segments (CM-
Manual)

To address the issue of different segment length from the
CM based on OSM segments, a second method is imple-
mented. Instead of using the OSM segments, the circuit is
split into equidistant road sections with a length of 500m.
The structure for our circuit consists of 56 segments. Since
our test round is slightly longer than 28 km, with this type
of CM the information for a short road section is lost. This
is also one disadvantage for this kind of CM. The process of
generating the equidistant segment is difficult and it is hard to
scale this method to a bigger area. The throughput data gets
aggregated for each segment, again.

C. Connectivity Map based on a grid (CM-Grid)

The third approach is to map the data to a grid instead of
matching it to segments. Therefore, a grid layer is generated.
Each single tile is quadratic and covers an area of 0.25 km?.
The throughput data is aggregated for each tile. So, with this
kind of CM, it is possible to predict the throughput for each
single tile. Here, it is not necessary to conduct a map matching,
since the tiles are overlapping the roads. Compared to the
aforementioned version of generating equidistant segments,
the grid based method is easy to generate and also provides
an equidistant predicting range.

VII. EVALUATION OF CONNECTIVITY MAPS

To compare the performance of different CMs, the next step
is to validate every single model. For validation, the predicted
value of each CM type is compared with four randomly chosen
rounds from the dataset. For each model, the root mean square
relative error (RMSRE) as shown in [21] is selected as defined
in equation 1, where X i is the predicted and X; the measured
throughput value at the time <.

A 2
1 Xi— X;
RMSRE = | =Y | ———"— (1)
n mzn(X’LXZ)

i=1
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A. CM-OSM

For the CM based on OSM segments, the RMSRE has a
range from 54.12% to 67.38%. The error deviation of the
relative error for each validation round is visualized in figure
5. All rounds show outliers up to 300 %.

Test round 1, RMSRE: 0.55488 Test round 2, RMSRE: 0.65503

number of segments
number of segments
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relative Error
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(a) Error deviation (b) Error deviation

Test round 3, RMSRE: 0.54115 Test round 4, RMSRE: 0.67382
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relative Error
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relative Error

(c) Error deviation (d) Error deviation

Figure 5: CM-OSM: Error deviation of validation round 1-4
for the download throughput using a OSM segment based CM

Particularly, noticeable is that the amount of outliers over
all test rounds is similar. By investigating these segments, it
is possible to elaborate coherences between them. It can be
shown that the length of these bad segments is always smaller
than 150 m. Better results can be achieved for segments which
are longer.

B. CM-Manual

The CM based on equidistant segments addresses the prob-
lem of having too short and different segment sizes. The
RMSRE has a range from 32.54% to 50.53%. The error
deviation is shown in figure 6. Most of the values can be
predicted with an error smaller than 10 %, but there are still
outliers up to 150%. It can be seen that all outliers are
located within the urban and interurban scenario, but not on the
motorway. It can be supposed that predicting the throughput
within areas with a higher population density is harder.

C. CM-Grid

The last CM is based on a grid. Figure 7 shows the
deviation of the relative errors for predicting the throughput.
The RMSRE has a range from 31.41% to 48,40 %. There
are again outliers up to 150 %. It can be noticed that those
outliers are on one hand located in urban and interurban areas
and on the other hand those tiles just contain a short part of
the defined test round. Due to the segmentation of the tiles,

Test round 1, RMSRE: 0.37265

Test round 2, RMSRE: 0.3613

number of segments
number of segments

12 11 S s T s o 05 1 is
relative Error

(b) Error deviation

0102 0 0z 04 06 08 1

relative Error

(a) Error deviation

Test round 3, RMSRE: 0.32544 Test round 4, RMSRE: 0.50534

number of segments
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—14 13 -1 08 00 0.4 02 0 02 04 06 08
relative Error

(d) Error deviation

0T 05 700-04-02 0 02 04 0 G5 T 12 14 10 18 2
relative Error
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Figure 6: CM-Manual: Error deviation of validation round 1-
4 for the download throughput using a fixed length segment
based CM

Test round 1, RMSRE: 0.3802 Test round 2, RMSRE: 031413
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Test round 3, RMSRE: 0.39176 Test round 4, RMSRE: 0.48406
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Figure 7: CM-Grid: Error deviation of validation round 1-4
for the download throughput using a grid based CM

it is inevitable that some of them just contain a short section
of the test round. With a grid based CM one has equidistant
tiles, but this does not guarantee that the road segments have
the same length.

Summarizing, with the CM based on equidistant segments,
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the best results for predicting the throughput can be achieved.
The grid based approach also performs well and due to its
simpler implementation, this solution has more advantages.
The OSM based version achieves no satisfactory results. All
the results are summarized in Table II. Also notable is that

Table II: Performance of the different Connectivity Maps

Min. RE [%] | Max. RE [%] | RMSRE [%]
CM-OSM 0.07 355.03 60.62
1. Round 0.24 310.18 55.49
2. Round 0.58 355.03 65.50
3. Round 0.07 308.99 54.12
4. Round 0.90 320.09 67.38
CM-Manual 0.08 169.93 39.12
1. Round 0.16 134.81 37.27
2. Round 0.08 162.07 36.13
3. Round 0.38 169.93 32.54
4. Round 1.44 148.75 50.53
CM-Grid 0.15 168.94 39.25
1. Round 0.35 141.90 38.02
2. Round 0.15 106.54 3141
3. Round 1.46 168.94 39.18
4. Round 1.43 122.37 48.40

the forth validation round always performances the worst. By
analyzing the meta information of it, it can be shown that the
elapsed time for this round is the longest. This indicates a high
traffic density and confirms the assumption that predicting the
throughput for a higher population density is more difficult.

VIII. CONCLUSION

In this paper, we presented a tool for passive monitoring
a vehicle-to-server communication based on a 4G mobile
network. In addition to the LTE parameters, we utilized a
SYN-ACK and FIN-ACK method for measuring RTT. With
the help of the tool, a comprehensive measurement campaign
is conducted. By utilizing this dataset, different geographical
based Connectivity Maps for predicting the throughput are
developed. More precisely, a CM based on OSM segments,
a CM based on equidistant segments and a grid based CM
is developed. To compare the performance of each method,
the deviation of the relative errors for each validation dataset
and the RMSRE is calculated. It is shown that a CM based
on equidistant segments performs best with an RMSRE of
39.12 %. Our recorded dataset contains also network parame-
ters like RSRQ or RSSI. So in the future, more algorithms for
predicting the throughput shall be implemented and analyzed.
For this purpose, history based algorithms and methods based
on machine learning will be implemented. The goal is to
provide a novel and comprehensive overview for different
throughput prediction approaches.

REFERENCES

[1]1 A. Rathore, “State-of-the-Art Self Driving Cars,” in International Journal
of Conceptions on Computing and Information Technology, vol. 4, pp. 1-
5, Januray 2016.

[2] A. Bokani, “Location-Based Adaptation for DASH in Vehicular Envi-
ronment,” presented at the Proceedings of the 2014 CoNEXT on Student
Workshop, 2014, pp. 21-23.

[3] G. Zhong and A. Bokani, “A Geo-Adaptive JavaScript DASH Player,”
presented at the Proceedings of the 2014 Workshop on Design, Quality
and Deployment of Adaptive Video Streaming, 2014, pp. 39-40.

[4] N. V. Mnisi et al., “Active Throughput Estimation Using RTT of
Differing ICMP Packet Size,” in Third International Conference on
Broadband Communications, Information Technology Biomedical Appli-
cations,Gauteng, 2008, pp. 480-485.

[51 M. Jain and C. Dovrolis, “End-to-end available bandwidth: measure-
ment methodology, dynamics, and relation with TCP throughput,” in
IEEE/ACM Transactions on Networking, vol. 11, no. 4, pp. 537-549, Aug.
2003.

[6] H.Jiang and C. Dovrolis, “Passive Estimation of TCP Round-Trip Times,”
in ACM SIGCOMM Computer Communication Review, p vol. 32, pp. 75-
88, July 2002.

[7] A. Moosbrugger and P. Dorfinger, “Passive RTT measurement during
connection close,” in 18th International Conference on Software, Telecom-
munications and Computer Networks, Split, Dubrovnik, 2010, pp. 392-
396

[8] B. Veal et al., “New Methods for Passive Estimation of TCP Round-
Trip Times,” in Passive and Active Network measurement Conference, p.
121-134, 2005.

[9] T. Pogel, J. Liibbe and L. Wolf, “Passive client-based bandwidth and
latency measurements in cellular networks.” in2012 Proceedings IEEE
INFOCOM Workshops, Orlando, FL, 2012, pp. 37-42.

[10] A. Samba, Y. Busnel, A. Blanc, P. Dooze and G. Simon, “Instantaneous
Througput Prediction in Cellular Networks: Which Information is Ned-
ded?,” in 2017 IFIP/IEEE Symposium on Integrated Network and Service
Management (IM), Lisbon, Portugal, 2017, pp. 624-627.

[11] J. Yao, S. S. Kanhere, und M. Hassan, “Improving QoS in High-
Speed Mobility Using Bandwidth Maps,” IEEE Transactions on Mobile
Computing, vol. 11, no. 4, pp. 603-617, Jan. 2012.

[12] P. Deshpande, X. Hou, and S. R. Das, “Performance Comparison of 3G
and Metro-scale WiFi for Vehicular Network Access,” in Proceedings of
the 10th ACM SIGCOMM Conference on Internet Measurement, New
York, NY, USA, 2010, pp. 301-307.

[13] I. D. D. Curcio, V. K. M. Vadakital and M. M. Hannuksela, “Geo-
predictive Real-time Media Delivery in Mobile Environment,” in Pro-
ceedings of the 3rd Workshop on Mobile Video Delivery, New York, NY,
USA, 2010, pp. 3-8.

[14] K. Evensen et al., “Mobile video streaming using location-based network
prediction and transparent handover,” presented at the Proceedings of the
21st international workshop on Network and operating systems support
Jor digital audio and video, 2011, pp. 21-26.

[15] B. Taani and R. Zimmermann, “Spatio-Temporal Analysis of Bandwidth
Maps for Geo-Predictive Video Streaming in Mobile Environments,”
presented at the Proceedings of the 2016 ACM on Multimedia Conference,
2016, pp. 888-897.

[16] T. Pogel and L. Wolf, “Optimization of Vehicular Applications and
Communication Properties with Connectivity Maps,” in 2015 IEEE 40th
Local Computer Networks Conference Workshops (LCN Workshops),
Clearwater Beach, FL, 2015, pp. 870-877.

[17] J. Yao, S. S. Kanhere, und M. Hassan, “Using Bandwidth-road Maps
for Improving Vehicular Internet Access,” in Proceedings of the 2Nd
International Conference on COMmunication Systems and NETworks,
Piscataway, NJ, USA, 2010, S. 460461.

[18] H. Riiser, T. Endestad, P. Vigmostad, C. Griwodz, und P. Halvorsen,
“Video streaming using a location-based bandwidth-lookup service for
bitrate planning,” ACM Transactions on Multimedia Computing, Commu-
nications, and Applications (TOMM), vol. 8, no. 3, Jan. 2012.

[19] M. Mathis and M. Allman, “A Framework for Defining Empirical Bulk
Transfer Capacity Metrics,” in RFC 3148, July 2001, pp 1-3

[20] A. Gerber. J. Pang, O. Spatscheck and S Venkataraman, “Speed Test-
ing without Speed Tests: Estimating Achievable Download Speed from
Passive Measurements,” in Proceedings of the 10th ACM SIGCOMM
Conference on Internet Measurement, Melbourne, Australia, 2010, pp.
424-430.

[21] Q. He, C. Dovrolis, and M. Ammar, “On the predictability of large
transfer TCP throughput,” in ACM SIGCOMM Computer Communica-
tion Review, 2005, vol. 35, pp. 145-156.

1488



