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Abstract— Many children on autism spectrum have atypical
behavioral expressions of engagement compared to their neu-
rotypical peers. In this paper, we investigate the performance
of deep learning models in the task of automated engagement
estimation from face images of children with autism. Specifi-
cally, we use the video data of 30 children with different cultural
backgrounds (Asia vs. Europe) recorded during a single session
of a robot-assisted autism therapy. We perform a thorough
evaluation of the proposed deep architectures for the target
task, including within- and across-culture evaluations, as well as
when using the child-independent and child-dependent settings.
We also introduce a novel deep learning model, named Cul-
tureNet, which efficiently leverages the multi-cultural data when
performing the adaptation of the proposed deep architecture
to the target culture and child. We show that due to the highly
heterogeneous nature of the image data of children with autism,
the child-independent models lead to overall poor estimation of
target engagement levels. On the other hand, when a small
amount of data of target children is used to enhance the model
learning, the estimation performance on the held-out data from
those children increases significantly. This is the first time that
the effects of individual and cultural differences in children
with autism have empirically been studied in the context of
deep learning performed directly from face images.

I. INTRODUCTION

Autism Spectrum Condition (ASC) is a complex ncu-
rodevelopmental condition characterized by socio-emotional
communication challenges, as well as repetitive and stereo-
typed behaviours [S]. Some of the social challenges arise
from different motor abilities and subsequent challenges pro-
ducing speech and nonverbal expressions. These differences
usually manifest early in life, prompting the need to detect
them early and give the child enhanced opportunities to
develop these skills. Technology that can engage the learner
successfully can provide longer periods of practice, with
opportunities to gain important knowledge for cognitive and
social development [24], [26]. A challenge when working
with population with ASC is that their personal displays of
engagement also can vary largely across children and are
usually perceived as of low intensity, compared to those of
their neurotypical peers [33]. This makes engagement recog-
nition extremely hard to perform. Another important aspect
of perceived engagement displays are cultural differences
among children with ASC. Yet, there is very little research
examining ASC characteristics in cross-cultural settings [30],
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Fig. 1: Automated estimation of engagement directly from
face images of children with ASC during a robot-assisted
therapy, using the proposed “culturalized” deep models.

[37]. Nevertheless, cross-cultural analyses are particularly
important for ASC since these may provide better insights
into the perception of symptoms and expression of different
behaviors, including engagement.

Measuring engagement of children with ASC during ther-
apy offers opportunities to provide personalized interac-
tions [13] and interventions [3] that, in turn, can help to
optimize the learning outcomes. However, current methods
for engagement measurement require experienced observers
and/or self-reports, which are expensive and time intensive,
and/or are not appropriate for non-verbal children. In addi-
tion, these approaches are subjective and may require a lot
of time spent with the child before he/she can be accurately
read, especially by a new person who is unfamiliar with the
child and/or less experienced in performing the therapy. To
help address these challenges, there is an ever-growing need
for automated methods for measurement of engagement of
children with ASC.

Most of the existing works on automated analysis of
behavioral cues of children with ASC focus on child-
therapist sessions [21], often assisted by robots to facilitate



the children’s engagement [37]. These studies attempt to
automate the engagement measurement from different be-
havioral modalities, including the children’s facial expres-
sions [4], body movements [14], autonomic physiology [21],
and vocalizations [6]. This is usually conducted by ap-
plying machine learning algorithms to the sensory inputs
(e.g., audio-visual) capturing different behavioral modali-
ties [8], [18]. These inputs are then transformed into feature
representations, which are used to train supervised mod-
els, where human experts provide labels for target states
(e.g., engagement levels) of the children by examining each
child’s audio-visual recordings. To this end, most of the
prior work exploits the use of non-parametric classification
models, such as Support Vector Machines (SVM) [9]. Yet,
traditional methods such as SVMs, Decision Trees, or Linear
Discriminant Analysis [9], among others, require (i) a careful
engineering of input features (hand-crafted), (ii) cannot deal
efficiently with large feature dimensions, e.g., when using
the pixel values from face images as the input. These have
recently been addressed by deep learning frameworks [23],
[27] that tackle (i)-(ii) by providing learning models that can
make inference directly from high-dimensional face images
by leveraging efficiently large amounts of training data.

So far, deep learning has shown great success in various
machine learning tasks, such as object recognition and sen-
timent analysis [27], [31]. Furthermore, this has also been
shown in the tasks of automated measurement of engagement
and affective states directly from face images of neurotypical
individuals [22], [32], where the proposed deep architectures
were able to generalize well to previously unseen subjects.
In the context of autism, deep learning has been applied
to autism screening from brain images [20], and affect
and engagement estimation from multimodal behavioral cues
(facial landmarks, head pose, biosignals, and voice) [36];
yet, it has not been explored in the task of automated
measurement of engagement directly from face images of
children with ASC. This may particularly be challenging due
to the large individual and cultural heterogeneity in image
data of this population. Also, most of existing works on
analysis of facial cues in autism focus on eye-gaze, blinking,
and head-pose [12], [29], which are shown to be a good
proxy of joint attention and engagement — the lack of which
is pertinent to ASC. Extracting these cues from face images
is usually done using detectors specifically built for each
facial cue. While this may be cumbersome, it can also miss
salient facial cues of importance for engagement estimation.

In this work, we explore the use of deep learning to
estimate engagement levels from raw face images of children
with ASC. Specifically, we use a cross-cultural dataset of 30
children with ASC participating in a robot-assisted autism
therapy [37]. We focus on three main questions that, to
the best of our knowledge, have not been explored before:
(i) How robust is deep learning in the estimation of engage-
ment levels from face images of children with ASC as we
vary the amount of training data examples per child, and
test the models on previously unseen data of these children?
(i) How well does it generalize within and across different
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cultures? (iii) How well can it generalize to new children,
compared to when these children are also included in the
training set? To this end, we perform a thorough analysis
of different deep network architectures. Based on this, we
propose a deep learning architecture that can efficiently
leverage the multi-cultural data to improve the engagement
estimation from face images. The contributions of this work
can be summarized as follows:

o« We provide the first study that explores the perfor-
mance of deep learning in the context of automated
engagement estimation of children with ASC directly
from their face images. While deep learning has been
explored before in the task of affect estimation from
face images of neurotypical population (e.g., [32]), it
has not been investigated in the context of autism.

We perform in-depth analysis of the target deep learning
architectures, providing insights into the ability of deep
models to deal with highly heterogeneous face-image
data, which can arise from both individual and cultural
variation in children with ASC.

We propose a novel personalized deep learning architec-
ture (CultureNet — see Fig.1) that leverages efficiently
the data from children with ASC and with a different
cultural background. We show that for improving the
engagement estimation from face images of children
with ASC, it is critical to have access to data from the
target culture and child during the model learning.

The rest of the paper is organized as follows. First,
we provide a background on the data used in this work,
cultural differences in autism, and engagement measurement.
Then, we describe the proposed deep learning architectures
and their experimental evaluation. Finally, we provide a
discussion of the results and conclude the paper.

II. AuTISM, CULTURE AND ENGAGEMENT

A. Dataset: Robot-assisted Autism Therapy

In this work, we use the video data from a robot-assisted
therapy (with the NAO robot) for children with ASC [37].
The goal of the therapy is to teach neurotypical emotion
expressions to children with ASC: a therapist uses images of
facial and body expressions of basic emotions (e.g., sadness,
happiness, anger, and fear) as shown by typically developing
children. To facilitate emotion recognition and imitation by
the children, the robot then demonstrates the expression
of these emotions. The therapy steps are adopted from
the Theory of Mind (ToM) concept [7], designed to teach
the perspective taking (“social imagination”) — one of the
key challenges for many children with ASC. However, the
engagement estimation is quite challenging due to the large
behavioral differences across the children with ASC from
the two cultures examined here. Analysis of their facial
expression allows for unobtrusive measures of engagement
during the therapy. Success with this difficult task would, in
turn, help enable assistive robots that can learn and recognize
the children’s engagement from their facial expressions and



adapt to them more intelligently (e.g., by changing the exer-
cise, and/or providing feedback/prompts) [25], also providing
effective ways to monitor the therapy progress [36].

B. Cultural Differences

The importance of cultural diversity when studying dif-
ferent populations has been emphasized in a number of
psychology studies [17], [38]. Several cross-cultural stud-
ies highlight that culture-based treatments are crucial for
individuals with ASC [15], [40]. For example, cross-cultural
supports are argued to be needed for pervasive developmental
conditions, including autism [16]. Perepa et al. describe
how they investigated cultural context in interventions for
children with autism and with a diverse cultural background
— British, Somali, West African, and South Asian [34]. They
found that the cultural background of the children’s parents is
highly relevant to their social behavior, emphasizing the im-
portance of transcultural treatments for children with autism.
Libin et al. showed that the children’s background, such as
culture and/or psychological profile, need to be taken into to
account when designing the therapy [28]. Likewise, using the
dataset employed in this work, our team previously showed
that there are statistically significant cultural differences in
engagement levels between children with ASC from Asia
and Europe [37]. While these works provide evidence about
cultural differences in autism, to date, it has not been
explored how they impact potential deep learning models
of engagement from face images.

C. Engagement Definition

There is a wide gamut of engagement definitions de-
pending on their main focus [24]. Most of the prior work
on engagement in human-robot interaction (HRI) relies on
binary engagement (engaged vs. disengaged) mainly due to
the difficulty in capturing subtle changes in engagement
displays. For a thorough comparison of the different en-
gagement definitions, we refer the reader to [2], [24]. We
used continuous coding ([—1, +1]) of engagement levels that
focuses on the task-response time [36]. The reference points
were defined as follows: (—1) corresponding to cases when
the child completely disengaged from the interaction with
the robot and/or therapist, and/or refused to perform the task
even after several prompts by the therapist, (0) when the
child looked indifferent to the interaction with the therapist
and/or robot, and (41) when the child was fully engaged in
the task. For details about the coding process, see [36] and
Sec.IV-A.

III. DEEP LEARNING: THE MODEL

We consider the following setting: we are given an image
data set S = {S°, S*} of subjects (children with ASC) from
two cultures, C0 and C'1. The data of subjects within each
culture are denoted as: S¢ = {s§,..., s%}, where ¢ = {0, 1}
and K is the number of subjects per culture'. Furthermore,
the data of each subject are stored as s; = {X;,y;}, where

1For notational simplicity, we assume the same number of data per subject
and culture.
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input images of the subjects ¢ 1,...,K are stored in
X, € RP=*P= where D, = 256 is the length (in pixels)
of a detected face region in target images. Note that these
examples may be temporally correlated (in the case of video
data) or be randomly sampled from independent observations
of the subject. Then, each image is associated with a ground-
truth label y; of the engagement level (provided by human
coders). In what follows, we first describe how a general
deep model is used to estimate target engagement states
on held-out face images. Then, we introduce a culturalized
model, devised to account for culture-specific differences,
while leveraging the data from both cultures.

A. General Deep Model (GenNet)

As the general deep model, we used a deep convolu-
tional network architecture composed of the layers of the
ResNet [19], a pre-trained deep network, in combination with
additional network layers that we included for the target task,
i.e., estimation of engagement levels from face images. The
traditional ResNet-50 architecture is composed of multiple
three-layer “bottleneck” building blocks, containing 50 (con-
volutional and dense) layers in total. However, the network’s
weights are optimized for object classification (e.g., the
object categories such as “laptop” and “orange”). Our model
learning thus consisted of two steps: (i) fine-tuning of the
ResNet weights for faces, followed by (ii) learning of ad-
ditional network layers for estimation of engagement levels.
For (i), we used all of the ResNet layers but replaced the
last (i.e., the softmax layer) with a data-uninformed fully-
connected dense layer with linear activation. This network
was then fine-tuned for face images using a rich dataset
(500k+ images) of annotated faces — AffectNet [32], in
terms of valence/arousal levels. Once we fine-tuned the
network weights (W) for extraction of discriminative
facial features, we removed the last regression layer and froze
the ResNet weights, the role of which from this point was
to perform efficient facial feature extraction. Then, in step
(ii), we designed a deep network architecture containing five
fully connected layers (fcl), which we added to the output
of the fine-tuned ResNet to form a general deep model for
engagement estimation in our experiments.

Formally, this architecture receives as input the face im-
ages of training subjects (X) and passes the most discrimi-
native (deep) facial features (hg) in the output of the ResNet.
These are then passed through the fcls, where we used the
rectified linear unit (ReL.U) [27], defined as:

hy = max(0, Wih;—1 + by), M

where | = 1,...,4, and 6; = {W},b;}. ReLU is the
most popular activation function that provides a constant
derivative, resulting in fast learning and preventing vanishing
gradients in deep neural networks [27]. The last fcl (I = 5)
is the standard linear dense layer, defined as:

9= Wihi—1 + by, 2)

the output of which () is the estimated engagement level.
The optimization of the network parameters is obtained by



minimizing the loss . defined as:
N

. X . o1 N
Q"= argmin ac(f,y) = argmin NZII%—%IIQ,
Q={01,.., 05} Q={01,.., 05} +V 3
3)

where N represents the number of training face images from
either of the datasets (SY,S!) or both, depending on the
evaluation setting (see Sec. IV).

B. Culturalized Model (CultureNet)

The GenNet deep model does not offer flexibility to
specialize its network parameters to each target culture.
However, this is important, as the data coming from different
cultures may have different variance at both the feature
and label level. The former is likely because of differences
in facial physiognomy in children with different cultural
backgrounds, while the latter is likely because of their
differences in expression and in the distributions of their
expert-labeled levels of engagement (see Fig. 2). To this end,
we formulate the CultureNet, a deep learning approach that
allows us to leverage the data from both cultures (S) while
also being able to have a culture-specific model (see Fig. 1).
More formally, we start from the GenNet model architecture,
initialized using the fine-tuned ResNet weights (WT¢) and
the ReLu/Linear fcls parametrized by (2. Then, the learning
of the CultureNet is performed in two steps:

« Joint Learning. We jointly learn the weights of (five)
fcls as done in GenNet, while keeping the ResNet
weights (W) frozen. Here, the data from both cul-
tures (S°, S1) are used to fine-tune the network weights
by solving the optimization problem in Eq.3.

o Culturalization. We frecze the network parameters
{01, .., 04} tuned in the previous step to both cultures
and use the culture-specific data to additionally fine-tune
the last layer of the network (65), i.e., the linear fcl
used for engagement estimation, effectively rendering
the culture-specific models with the shared network
structure (see Fig.1).

The learning in the second step (“culturalization™) is attained
through the last layer in the network (fcl [ = 5), one for
each culture. Then, before further optimization, the culture-
specific layers are initialized as: 60 +— 65 and 63 < 05, and
then fine-tuned using the data from CO (S°) and C1 (S),
respectively, as:

Nes©

" . 2

(9§) = argomln N Z ||yl - yZH , €= {07 1} (4)
5 i=1

The final network weights are then used to perform the

culture-specific inference of engagement from target images.

C. Implementation Details

We implemented the proposed deep architectures using
Keras API [11] with the Tensorflow [1] back-end. The
network receives as input the cropped face images (256 X
256), resulting in 2048D activations in the output of the
ResNet layers, which were passed to the fcls with the
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Fig. 2: Histograms of the children’s engagement annotations,
within the range [-1,1], for CO (Japan) and C1(Serbia).

following structure: fcl (2048 x 500), fc2 (500 x 200),
fc3 (200 x 100), fc4 (100 x 50), and fc5 (50 x 1). The
parameter optimization was performed using the standard
back-propagation algorithm and Adadelta optimizer with the
default parameters [27]. We used this shrinking network
structure to reduce the number of network activations while
still being able to exploit the network depth and different
abstract representations produced by its activations in the
output of each layer. Overall, this structure performed similar
or better than other more shallow or deeper structures that
we evaluated’. To avoid over-fitting of the deep models,
we tried several strategies including batch-normalization and
dropout with a varying portion of dropping nodes [27];
however, this did not improve the model’s performance
significantly on the target data. Therefore, we used only
the early-stopping strategy based on the validation data with
the maximum number of epochs set to 20, which turned
out to produce the best performance. The details of the
employed validation settings are provided in Sec. IV. The
engagement inference from new face images is then per-
formed by passing the raw face image through the described
network architecture (ResNet+5 fcls), using the feed-forward
algorithm. The python code and unidentifiable facial features,
obtained in the output of the fine-tuned ResNet and used to
train/evaluate the CultureNet, are made publicly available at:
https://github.com/yuriautsumi/CultureNet- Autism.

IV. EXPERIMENTS
A. Experimental Setup

Data and Features. In our experiments, we used the
cross-cultural dataset of children with ASC attending a single
session (on average, 25 mins long) of a robot-assisted autism
therapy [37]. During the therapy, an experienced educational
therapist worked on teaching the children socio-emotional
skills, focusing on recognition and imitation of behavioral
expressions as shown by neurotypical population. To this
end, the NAO robot was used to demonstrate examples of
these expressions. It was also controlled by the therapist
(the “Wizard-of-Oz” scenario), who used the NAO to keep
the child engaged during the interaction. The data com-
prises audio-visual and autonomic physiological recordings
of 17/18 children, ages 3-13, with Japanese (C0) / Serbian
(C1) cultural background, respectively. All the children have

2The performance of the models was not affected significantly when using
different network architectures, thus, we chose this one in order to have
consistent settings across different experiments.
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TABLE I: Overview of different evaluation settings.

| Evaluation setting | Datatype | Model
M1 | subject independent | within-culture GenNet
M2 | subject independent | cross-culture GenNet
M3 | subject independent | mixed-culture GenNet
M4 | subject independent | both-cultures | CultureNet
M5 subject dependent within-culture GenNet
M6 subject dependent child-specific GenNet
M7 subject dependent both-cultures | CultureNet

a prior medical diagnosis of ASC, varying in its severity. In
this paper, we used the video data of 15 children from each
culture.?

The images of each child were processed using Faster-
RCNN [35], an automatic face detection approach based on
deep networks consisting of several convolutional layers and
recurrent-neural networks and pre-trained for face detection®.
In cases where the face was detected in the target frame, the
output size was 256 x 256 pixels. To have a balanced dataset,
we used 6k face images per child that were automatically
detected (with a detection threshold > 0.95) using Faster-
RCNN. Such cropped faces were then passed as input to the
proposed deep-learning architectures (Sec. III).

To train the deep models, we used the annotations of
children’s engagement in target videos. The videos were
coded on a continuous scale from —1 to +1 by five expert
human coders, while watching the audio-visual recordings of
the therapy sessions. The coders’ agreement was measured
using the intra-class correlation (ICC) [39], type (3,1). The
ICC ranges from 0 — 100% and is commonly used in
behavioral sciences to assess the coders’ agreement. The
average ICC among the coders was 61 + 14% (mean+SD).
Their codings were temporally aligned to obtain the gold-
standard labels [36], which were used to train the deep
models. The histogram of the labels’ distributions for both
cultures is depicted in Fig. 2.

Evaluation Metrics. As evaluation measure, we used
the following metrics: ICC (described above), concordance
correlation coefficient (CCC), and Pearson Correlation (PC).
We compare these three correlations scores as they allow
us to quantify different aspects of the models: while ICC
encodes the consistency between the model predictions (g)
and labels (y) as y = g + b, CCC measures agreement as
a departure from perfect linearity (y = ), and PC captures
the general linear relationship y = ay + b, where a and b
are the scale and bias terms, respectively. Note that CCC
and PC range from [-1,1]; however, we report them in
%, i.e., [-100,100]. We also include Mean Absolute Error
(MAE), encoding average absolute deviation from the labels
(ly — 9|). We computed these scores on the pairs of the
model estimates and gold-standard labels.

Evaluation Settings. To evaluate the different deep learn-
ing architectures, we randomly split the data of each child
into non-overlapping partitions, containing p; = 80% (5k)

3The videos of the remaining children were of a low quality and/or
contained significant face occlusions.
“https://github.com/playerkk/face-py-faster-rcnn
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and po = 20% (1k) face images, and consider two evalua-
tion settings: subject-independent (SI) and subject-dependent
(SD). In the SI setting, a non-overlapping set of children
was used to learn and test the models. From the children
that were used for learning, we used p; and ps to train and
validate the models, respectively. In the SD setting, however,
a portion (p2) of each child is used for learning the models.
In both settings, the performance scores are computed on
the held-out portion (p;) of each testing child. We report
the average results over 10 runs, each time starting from a
different random initialization of the deep models/child data
selection.

For the SI experiments, we evaluated the following set-
tings: M1 — within culture evaluation, where the training
and test children from the same culture (CO or C1) were
used to evaluate the GenNet model. Specifically, 14 children
were used to train the model and 1 child to test model.
This was repeated for each child (thus, 15 times) from cach
culture. M2 — cross-culture evaluation of GenNet, where the
models were trained on CO (15 children) and tested on C1
(15 children), and vice versa. M3 — mixed-culture evaluation,
where we used training children from both cultures (i.e., 29
children) to learn the GenNet, and tested on the left-out child.
This, again, was repeated for all 30 children. Lastly, M4 is
the “culturalized” model (CultureNet), where the last-layer
of the GenNet obtained by M3 was further fine-tuned to each
culture separately using data of 14 children from the target
culture (see Fig.1). The testing was then performed in the
leave-one-child-out fashion, as in M3.

For the SD experiments, we define M5 as the within-
culture GenNet model (M1); however, p; = 20% of data
of cach child (from culture CO or C1) were used to train the
model, and the remaining p; = 80% of the child-data for
testing.5 We also evaluated the child-specific models (M6),
where only the py = 20% of the target child data was used
to train the model (thus, no data of the other children) using
GenNet. This was repeated for each child from CO/C1. We
also define model M7 that performs personalization of the
CultureNet model M4 to each child. Specifically, we first
trained a GenNet using py data of all children from both
cultures. We then fine-tuned its last layer to the target culture
(CO or CI) using po data from each child from that culture
(culturalization). Finally, this was followed by fine-tuning
of the culture-specific layer using po data of target child,
effectively rendering 30 child-dependent models. Table I
provides the summary of the proposed settings.

B. Results

Table II summarizes the average results computed for
different deep models (M1-M7) and reported per culture,
calculated as an average across the mean performance (over
10 runs) for each child. In the SI settings, it can be observed

SThis strategy allows us to have direct comparisons with the SI models
evaluated on the p; portion of target data. Also, as shown later in Fig.3,
including more data of the other children did not improve the estimation
performance.



TABLE 1II: Comparison of the proposed deep learning settings, showing the meanztstandard deviation of 10 runs of
subject-independent (M1-M4) and subject-dependent (M5-M7) cross-validation. We report Intra-class Correlation (ICC),
Concordance Correlation Coefficient (CCC), and Pearson Correlation (PC), as well as Mean Absolute Error (MAE). The
Mean Estimate (ME) is computed from the training portion (20%) of the engagement labels of each child. This constant
child-specific estimate of his/her future engagement levels is compared against the test set as in the subject-dependent models.

Models Co C1
ICC [%] CCC [%] PC [%] MAE ICC [%] CCC [%] PC [%] MAE

M1 13.194+11.78 10.63+8.72 16.37+15.93  0.22+0.14 10.75+9.54 7.96+7.30 11.81+13.58  0.32+0.16
M2 5.97+6.89 3.3746.18 3.84412.27 0.64+0.11 7.31+7.39 4.08+6.55 5.924+11.70 0.5740.20
M3 10.564+10.24 8.2948.01 12.614+12.69  0.284+0.10 9.40+8.14 6.48+6.47 10.044+10.44  0.3710.12
M4 12.90£11.74 10.924+9.50 15.90+£14.90 0.2340.13 10.01£9.92 7.51+8.08 10.92+13.07  0.33+0.15
M5 389142590 36.71+26.28  41.48+26.37 0.1540.07 | 38.684+20.99 36.33421.17 41.244+21.32  0.18+0.07
M6 39.17425.84  36.77426.31  42.03+26.24  0.1440.07 | 38.604+21.23  36.184+21.37 41.274+21.45 0.18+0.07
M7 43.35+24.30 43.18+24.32 45.17+24.17 0.13+0.08 | 42.17+19.71 41.93+19.76 43.621+19.69 0.16+0.08
ME | - - - 0.1840.15 | - - - 0.2340.08

that M1 (the within-culture training) performs the best over-
all. Compared to M2, which uses data from the other culture
to train the deep model, we note a drop in the performance
in both CO and CI1. This is expected as the label distribution
in the two cultures are different, rendering models that
are suboptimal for estimation of target engagement levels
specific to each culture.

We also attribute this adverse performance to the differ-
ence in the facial physiognomy between the children from
the two cultures, which may also bias the features (network
activations) in the last layer of the ResNet. Interestingly,
in this setting (M2), better results are obtained on C1 than
on CO, which is again due to the label bias: in CO mostly
high levels of engagement were observed. This, evidently,
led the model trained on C1 to predict low-level estimates
of engagement in CO, as reflected in its high MAE. In terms
of correlation scores, the relationship between the scores
is consistent: PC>ICC>CCC, evidencing that the models’
estimates are positively correlated with the ground-truth, but
there are strong differences in scale and bias of the estimates.
Overall, the MAE performance of the SI models is rather low,
even below taht achieved by using the simple mean estimate
(a constant engagement level) computed from data of each
child (non-overlapping with test data) — see Table 1T .

On the other hand, we observe large improvements in the
models’ performance by the SD settings (i.e., when using
20% of the target child data). First, note that all three corre-
lation measures produce similar performance, showing that
these models attain more consistent estimates of engagement
(ICC vs. PC), with an overall higher level of agreement
(CCC vs. PC) with the labels. This is also reflected in their
MAE. Interestingly, by comparing MS and M6, there is a
small difference in their performance. This, in turn, indicates
that the large heterogeneity in the individual data drives
the models to focus mainly on the target child data during
learning, while not benefiting from the data of the other
children also used during the training (MS). In other words,
while MS uses a simple addition of the target child data to
its training set, M7 exploits this data more effectively.
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However, this seems to depend largely on the training
strategy — by looking into the performance achieved by M7,
which leverages the data of the other children and culture,
we also see large improvements over the child-specific
models M6. This is achieved through the proposed training
strategy, designed to take advantage of (i) both cultures’
data, followed by focusing on (ii) within culture data, and
finally (iii) specializing to the target child (personalization).
Thus, the network pre-training using steps (i)-(ii) plays an
important role in learning robust initial network parameters,
from which the child-adaptation can take full advantage.
Note also the high error-bars, depicted in terms of one
standard deviation (SD), of the performance of both settings
(ST and SD). Namely, it turns out that for some children,
the learned models simply fail due to the large variation in
their individual data, which is especially pronounced in the
SI experiments (see Fig. 3).

We next investigate the contribution of adding more data
of target children for the model learning and generalization.
Fig. 3 (Left) shows the performance of the M1 (SI) model in
terms of PC when varying the number of (i) training children,
and (ii) portion of the data from the training children.
Including more data during training did not seem to improve
the generalization of the deep model. Instead, including more
data sometimes even hurts the model’s performance in the SI
setting. We attribute this to the large heterogeneity in facial
expressions features of target children: by adding more data,
the model’s variance increases and the model becomes even
more uncertain when trying to generalize to the previously
unseen children. Also, the facial features were extracted
using ResNet, fine-tuned on the AffectNet data of faces of
typical individuals, which could have also influenced the
quality of the obtained mid-level feature representations. We
also performed a similar analysis for the SD setting using
the child-specific model M6. In this case, we found that
including more data of target children improves largely the
performance scores, with PC increasing from CO: 27.86% —
34.60% — 38.98 — 42.03%, and C1: 25.14% — 31.97% —
36.98% — 41.27%, when 5% — 10% — 15% — 20%
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Fig. 3: Left: The performance of M1 (the subject-independent within-culture model) w.r.t. the amount of training data: the
number of children used to train the model (top), and the percentage of the data from each of the 14 children used to train the
model (bottom). The reported PC scores are computed as average for the children from each culture, CO and C1, depicted
with dashed-gray and full-green lines, respectively. Middle: The performance per-child and culture by the “culturalized”
models: M4 (in gray) and M7 (in green). The children are sorted based on the decreasing performance by M7 in order
to better assess the differences between the two models. Right: The boxplots indicating the median of enagement levels
(provided by human coders) of the corresponding children. The bottom and top edges of the box indicate the 25th and 75th
percentiles, respectively, and the whiskers extend to the most extreme data points.

of the target child data is used, respectively. While this is
expected, here we show empirically that having access to
the child data (even a small portion) is critical for achieving
substantial improvements in the models’ performance.

To obtain better insights into the models’ performance
at the individual level and across the cultures, Fig. 3
(Middle) shows the per-child PC attained by the cultural-
ized/personalized models — M4 and M7 — evaluated under
the SI and SD settings, respectively. We observe that in
both cultures, personalizing the CultureNet by using 20%
of the target child data during training allows M7 to largely
improve the estimation performance on almost all children.
For instance, for child 5/CO0, the SD model achieves PC above
70% compared to near 0% when tested in the SI manner. A
similar trend is present for most children from C1, where M7
outperforms M4 by a large margin. Finally, note that even the
model M7 does not generalize with consistent performance
across all the children/cultures. This, in turn, shows that for
different children, more data may be needed to adapt the
models in order to account for the within-child data variance.
To illustrate this, in Fig. 3 (Right), we depict the distribution
of the true enagement levels per child, where the children
arc sorted in the same order as in Fig. 3 (Middle). Note that
in CO, most of the children are highly engaged; however,
M?7 underperforms on children with low variation in their
engagement levels (i.e., children 9-15). On the other hand, in
culture C1, the engagement levels vary more largely between
and within most of the children (note the longer whiskers in
the plots of children from C1). This may explain the less
steep drop in the M7 perfromance on children from C1.
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V. DISCUSSION AND CONCLUSIONS

In this work, we investigated different deep learning set-
tings that we designed for automated estimation of engage-
ment from face images of children with ASC, who partici-
pated in one-day robot-assisted autism therapy. Our results
reveal important findings in terms of how deep learning can
be used to leverage face-image data of children with ASC to
attain better estimation of target engagement. More specifi-
cally, we analyzed the role of the cultural label as the driving
factor in learning deep models for their generalization to
different children with ASC: within and across two cultures
(Asia vs. Europe). Furthermore, we performed this analysis
in the child-independent and child-dependent manner. We
showed that due to the large difference in the distribution
of engagement levels in the two cultures, the deep models
trained on only one culture have limited ability to generalize
to the other culture. While we cannot say for sure the effect
is due to any specifics in the underlying cultures (vs. due to
some bias in our sample from the two cultures) it does appear
to downgrade the estimation performance on these data. The
difference in facial physiognomy between the two cultures
and dynamics of their facial expressions, are also a potential
cause. This indicates the importance of having access to data
of the target culture and children when building deep models
for engagement estimation.

Another important finding is that increasing the number
of the children data to train the models did not lead to
improvements in performance on previously unseen children.
On the other hand, by including a relatively small portion
of the target child data (1k examples), the models easily



adapt, largely improving the estimation performance. Note
also that just adding more data of the target child during
training will not necessarily increase the model’s perfor-
mance — the model’s learning and inference has also to be
designed carefully. We demonstrated this by personalizing
the CultureNet to each child, which resulted in the best
performance among the compared models. This poses a
question to what extent the engagement estimation can be
improved when working with face images of children with
ASC? In our recent work [36], we achieved an ICC of 65%
in the task of engagement estimation from multi-modal data,
including face, body, voice and biosignals, of children with
ASC. While this work achieved the ICC of 43% directly from
face images (in contrast to [36] where facial landmarks and
other high-level features were used), there is still a lot of
room for improvement; however, more data and behavioural
modalities (beyond raw face images) may be needed.

One of the technical limitations of the current approach
is that the ResNet, used to extract mid-level feature repre-
sentation in the proposed deep architectures, is fine-tuned on
faces of typically developing individuals. In future, we plan
to evaluate our approach using end-to-end learning of the
deep models, hopefully rendering more discriminative facial
features of children with ASC. Ideally, this approach would
leverage data from multiple cultures and a larger number of
children. This, however, raises concerns about data privacy
and sharing of sensitive personal information such as face
images. For this, secure data-sharing frameworks [10] can
be explored to optimize the learning of deep models.
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