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ABSTRACT

Segmentation of speech signals is a crucial task in many types of
speech analysis. We present a novel approach at segmentation on a
syllable level, using a Bidirectional Long-Short-Term Memory Neural
Network. It performs estimation of syllable nucleus positions based
on regression of perceptually motivated input features to a smooth
target function. Peak selection is performed to attain valid nuclei
positions. Performance of the model is evaluated on the levels of both
syllables and the vowel segments making up the syllable nuclei. The
general applicability of the approach is illustrated by good results
for two common databases—Switchboard and TIMIT—for both read
and spontaneous speech, and a favourable comparison with other
published results.

Index Terms— Syllabification, Recurrent Neural Networks,
Speech Analysis, Dialogue Systems

1. INTRODUCTION

Temporal structure is an important source of information describing
speech. Between the fine-grained phone and the coarser word and
utterance levels, syllabic segmentation provides insight both in the
phonological and rhythmic aspects of speech. It can be put to use in
various applications, for example in analysing dialogue for human-
machine interaction [1]. The identification of the vowel constituting
the core of a syllable, the syllable nucleus, is a key part in measuring
speech prominence [2], and speech recognition has been helped by
information about the syllabic structure of utterances [3], such as the
number of syllables in an utterance or the position of syllable nuclei.

We present a novel, data-driven syllabification approach based
on Long-Short-Term Memory (LSTM) Neural Networks [4, 5]. It
is primarily aimed at the use as a tool for dialogue analysis and
spoken dialogue systems. Its general applicability is demonstrated
by experiments on two well-known databases—Switchboard and
TIMIT—of both read and spontancous speech.

The remainder of this paper is structured as follows: We first
introduce relevant known approaches to syllabification in Section
2, then our suggested novel approach employing long-term memory
enhanced recurrent neural networks in Section 3, before presenting
our experiments and results—including a comparison of the obtained
outcomes with other published results—in Section 4 and concluding
in Section 5.

This research was carried out at KTH Speech Music and Hearing, Stock-
holm, supported by the Swedish Research Council project Riythm of conver-
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2. APPROACHES TO SYLLABIFICATION

2.1. Contour-based Approaches

A number of syllabic segmentation strategies rely on the extraction
of a one-dimensional envelope from the acoustical signal. A peak
search procedure on this contour provides a set of local minima and
maxima, serving as estimates for syllable nucleus or syllable border
positions, respectively.

One example for this class of approaches is the calculation of an
energy envelope by low-pass filtering the signal energy in a broad
frequency range [6]. Segmentation is then carried out with a recursive
convex hull algorithm, which exploits thresholds on the relationships
between adjacent maxima and minima of the envelope to find syllable
borders and nuclei. This approach is expanded on by using an altered
frequency range for the calculation of the energy envelope and per-
forming peak selection with a multilayer perceptron evaluating peak
intensity as well as segment duration [7].

The approach described in [8] mainly relies on extracting a spec-
tral correlation envelope from selected subband energies, in addition
to temporal correlation and smoothing. Peak picking is performed on
this envelope employing duration and value thresholds as well as a
voicing decision.

Rhythm guidance has been proposed in order to incorporate a
modelling of speech rhythmicity into syllable nucleus detection [9].
An instantaneous speech rhythm is iteratively estimated by fitting a
sinusoid function to all positions in the set of hitherto estimated peaks
in the utterance. The length of a search interval following the last
estimated nucleus is then determined as a multiple of the estimated
sinusoid’s period length, and the local maximum with the highest
value inside that interval is used as estimate for the next nucleus
position. Estimates in unvoiced segments are discarded.

2.2. Machine Learning Approaches

Alternative to the combination of the calculation of a signal contour
and a peak-picking scheme, a different class of algorithms is built
on modelling syllabicity statistically with machine learning methods.
As an example for these data-driven methods, the use of a multilayer
perceptron for the task of syllable onset detection has been evaluated
[10].

As a different learning-based method, a standard recurrent neural
network model and a recurrent Temporal Flow Model architecture
allowing various delays for the connections between different network
layers are compared for the task of finding syllable borders [11].
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3. SYLLABIFICATION WITH A BLSTM NETWORK

3.1. Bidirectional Long-Short Term Memory Networks

The concept of Long-Short Term Memory (LSTM) [4, 5] increases
the availability of temporal contextual information for a neural net-
work. This is achieved by replacing the nodes of a standard recurrent
network by interconnected blocks, in each of which information is
stored in one or more internal state cells. Input and output of new
data as well as decay of the internal state recurrence are controlled
multiplicatively by gate nodes, so that the memory blocks to some
extent resemble the memory cells used for binary storage in semicon-
ductor memory. A single LSTM block showing the architecture of the
internal state node and the gate nodes is depicted in Figure 1. With
this structure, the way information is stored and used at different time
steps can be controlled much more flexibly than in traditional neu-
ral networks, since the behaviour of the controlling gates is learned
during the training process of the network. The added increase in
temporal modelling promises improvements for segmentation prob-
lems such as the syllabification task at hand, since long-term temporal
structure existing in the data can be learned automatically.

A bidirectional architecture gives the network access to past and
future contextual information, requiring the whole information to be
present at the beginning of the processing. For the syllabification
method developed here, a bidirectional architecture with two hidden
layers and 30 LSTM cells in each was trained using the on-line gradi-
ent descent algorithm at a learning rate of 10~ % with a momentum
of 0.9. 8-fold cross validation was used in combination with early
stopping [5], so that the network training was stopped when no per-
formance increase on a disjunct validation set had been registered for
a run of 20 epochs. The models at the epoch with the best validation
set performance were used for evaluation.

Input Gate

Internal
State

Fig. 1: An LSTM block with a single internal state cell

3.2. Data Representation

Different spectral representations were considered for the use as
input representation for the BLSTM network. Since a combination of
temporally smoothed and non-smoothed representations as well as the
inclusion of delta features proved beneficial, a concatenation of a 20-
band modulation spectrum [12] calculated on a critical-band-warped
frequency scale and their first differences and an ensemble consisting
of 12 PLP coefficients [13] and logarithmized energy and their first
and second differences were used as features. Feature extraction was
partly done using the openSMILE utility [14].

0.5
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Fig. 2: Target representation for an example utterance. Vowel seg-
ments are shaded, syllable borders are indicated by broken vertical
lines.

In order to specify a desired output shape, Gaussian segments
spanning target segments from the annotation were concatenated with
constant zero-valued stretches for non-vocalic segments, as illustrated
in Figure 2. The neural network was trained to perform non-linear
regression from the 79-dimensional input vector sequence to the
thus specified target function, thereby incorporating both information
about syllable nucleus position via its peak structure, and the temporal
extension of the vowels.

3.3. Peak Picking and Threshold Calculation

The output of the BLSTM network is the activation of the output
node for each frame presented to the network in the input sequence.
An example of an output sequence is shown in Figure 3.

Neural network output

yinow wi t y
1 1.5

Time [s]

Fig. 3: Output of the BLSTM network with valid peaks according to
region-based thresholding for an example segment from the Switch-
board corpus. Vowel regions identified correctly are shaded grey,
missed ones are hatched; syllables are delineated by vertical broken
lines. Correctly placed nuclei are denoted by crosses, inserted ones
by circles. The minimum separation threshold 7; (dashed) used is
the segment output mean value (dotted) multiplied with a factor de-
termined for each cross validation configuration on the validation
set.

While most short vowels are present in the neural network’s
output as clearly defined, narrow peaks, multiple peaks may occur for
lengthened vowels, such as the back-channels occurring frequently
in spontaneous dialogue. However, these peaks are commonly not
separated by dips in the neuronal network’s output values as deep
as those occurring between separate vowels. Therefore, a region-
based peak selection strategy was adopted. Candidate regions are
identified as those regions in which the neuronal network’s output
is continuously above a lower threshold 77, and the position of the
maximum within each candidate region is taken as a nucleus estimate.
The minimum separation threshold 77 is estimated as a multiple of
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Table 1: Description of the data sets used. Each set was split in 8
cqual-sized subsets for cross validation.

#turns min/max length [s]  # vowels/syllables
STP 640 0.45/13.73 581375806
TIMIT 1344 1.06/7.44 17283 /17283

the mean segment output value, where the factor is determined for
each cross validation configuration so as to minimize the total error
on the corresponding validation set.

In order to analyse the effect of additional temporal modelling on
top of this method, an explicit thythm-guided peak selection explicitly
modelling the distance between syllable nuclei was added. To this
end, a context of a maximum of 4 subsequent internuclei distances
was modelled with a 4-component Gaussian Mixture Model for the
logarithms of the distances. To select valid peaks from the set of
candidates provided by the region-based thresholding scheme, each
utterance was traversed from left to right. In each step, the most
probable candidate was selected based on the probability distribution
provided by the Gaussian model conditioned on the distances between
the 3 preceding peaks. The parameters of the model were estimated
from the annotation of the utterances used for training for each cross
validation configuration.

4. EXPERIMENTS AND RESULTS

4.1. Data Sets

The BLSTM syllable nucleus estimation was trained and evaluated
both on read and spontaneous speech data. In an effort to find a
trade-off between training time and coverage of the data, a subset
of each corpus was used for training and evaluation of a respective
model as described below. An overview over the subsets from each
corpus used is given in Table 1. Conversational speech data was taken
from the subset of the Switchboard Database annotated on a syllabic
level by the Switchboard Transcription Project (STP) [15]. In order
to have a valid representation of the syllabic vowels, abutting vowel
segments that form a diphtong within a syllable were combined, and
pauses filled with vowelic sounds were added as target segments for
syllabic nuclei.

An additional model was trained and evaluated on a set made up
of 1344 utterances from the TIMIT corpus of read speech. In the
selection of the sentences, care was taken that no single speaker or
single sentence occurred in more than one group for cross-validation.
The dialectal (sa) sentences were excluded for their similar syllabic
structure. Based on the available phoneme annotation for the Switch-
board corpus, syllabic annotation was created using the rule-based
syllabification implemented in the zsylb2' program.

4.2. Evaluation Procedure

For the evaluation of the model performance, either the phonetic and
syllabic segmentations stemming from the annotation of the corpora
used were taken as the ground truth. The scoring procedure counted
one-to-one matches between a nucleus estimate and a target segment
as correct, target segments missed entirely as deletions and surplus
nucleus estimates in target segments as well as estimates in non-
target regions as insertions. Thus, segments containing more than
one estimate were counted neither as correct nor as deletions, but all
but one estimates in this segment were evaluated as insertions, which

Uwritten by Bill Fisher, no citation available. The program is available at
ftp://jaguar.ncsl.nist.gov/puby/, last acc. Oct 12, 2010

accounts for the differences between the rate of correct estimations
and the recall values. Alternative evaluation schemes were adopted
in order to be able to compare performance with published results.

4.3. Results

Using this evaluation method, the BLSTM syllabification models
achieved the results reported in Table 2 on the used datasets from
TIMIT and the STP-annotated Switchboard corpus. Figures averaged
over the performance of all models generated in an 8-fold cross-
validation training run with early stopping as described in section 3.1.
Results are given both for annotated vowel and syllable segments, and
for the region-based and the rhythm-guided peak picking methods.

Table 2: Results of the BLSTM approach for phone and syllable
level evaluation as described in section 4.2 with a minimum separa-
tion threshold (MST) peak selection procedure and added rhythm-
guidance (RG). The results are averaged over those generated by
8-fold cross-validation.

(a) ICSI-annotated Switchboard data

STP [%] phone level syllable level
MST MST+RG | MST MST+RG
correct 82.29 81.22 | 82.65 82.03
insertion 16.77 15.05 | 16.28 14.11
deletion 15.18 16.78 | 11.93 13.45
recall 84.44 82.88 | 87.40 85.92
precision 83.11 84.40 | 83.58 85.34
F 83.74 83.61 | 85.42 85.61

(b) TIMIT data set

TIMIT [ %] phone level syllable level
MST MST+RG | MST MST+RG
correct 90.53 88.10 | 90.25 88.43
insertion 5.72 4.71 5.99 4.38
deletion 8.22 11.00 6.88 9.49
recall 91.68 88.90 | 92.92 90.31
precision 94.07 94.94 | 93.79 95.29
F 92.85 91.81 | 93.34 92.73

For comparison, these results can be related to the ones published
in [8] for the algorithm based on temporal correlation and spectral
cross-correlation introduced in section 2.1. It is mainly evaluated on
a syllable rate correlation measure, but figures for an evaluation in
terms of a one-to-one mapping of peaks in the correlation envelope
and the syllabic transcription are also given. Note, however, that
insertions are based on a count of segments in this evaluation, not on
a count of surplus peaks within a target segment or outside a target
region. In Table 3, the results published in [8] are given and compared
with a similar evaluation of the BLSTM approach with region-based
peak search in Table 3.

In Table 4, performance of the BLSTM approach with region-
based peak search on the TIMIT set is compared to results published
in [9]. Here, the evaluation method is based on peaks coinciding
with annotated vowel segments, which are padded symmetrically to a
minimum length of 50 ms if necessary.

The above comparisons show that the introduced novel BLSTM
approach compares equally or favourably with other methods: The
observed superiority in /1 measure in Tables 3 and 4 is significant at
the 0.05 level for STP and at level < 10~ for TIMIT in a one-tailed
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Table 3: Comparison of the performance of the temporal and spec-
tral cross-correlation (TCSSC) approach, as given in [8] and the
introduced BLSTM approach on Switchboard data, evaluated on a
syllable-segment-based evaluation, where syllable segments with
multiple peaks are counted as a single insertion.

STP[%] | TCSSC [3] | BLSTM |

correct 80.60 82.65
insertions 3.80 5.42
deletions 15.60 11.93
recall 83.78 87.39
precision 95.50 93.84
" 89.26 90.50

Table 4: Comparison of performance on TIMIT data of the introduced
BLSTM approach to the methods evaluated in [9]: an implementation
of [8] (TCSSC), an energy-based baseline method (nRG) and rhythm-
guided syllabification [9] (RG). Evaluation is done on the basis of
syllable nuclei estimates coinciding with annotated vowel segments,
where short segments are symmetrically padded to a minimum length
of 50 ms if necessary.

| TIMIT[%] | TCSSC[9] nRG[9] RG [9] [ BLSTM |
recall 86.06 79.97 86.59 92.22
precision 99.69 99.84 98.86 95.82
Iy 90.21 88.58 92.07 93.98

test. At the same time no further parametrization apart from the design
choices of the network architecture and the input representation is
needed. Thereby, as there is no need for heuristics and the specific
formulation of knowledge about the nature of the problem, the transfer
of the approach to other domains and languages is simplified.

The temporal precision of the approach can be seen by the fact
that results evaluated on syllable and phoneme level are similar, show-
ing that the majority of estimates are within the salient part of the
syllable and can serve both as vowel and syllable nucleus landmarks.
The fact that the direct inclusion of inter-nuclei duration modelling in
the rhythm-guided peak selection did not lead to improvements over
the method underlying it shows that also these long-term temporal
relationships are represented in the BLSTM approach.

The complex nature of the conversational speech in the Switch-
board data set poses a greater problem for syllabification, as can be
seen by the considerable difference to the results for TIMIT. Part of
this difference can also be explained with the problems arising at the
definitions of target segments for training and evaluation for those
parts of the data which are non-lexical. The training of data-based
models for segmentation and all evaluation depend crucially on data
annotation, which is not standardized for the frequent non-lexical
segments in spontaneous speech. Therefore, for the application in
dialogue systems and for speech rate evaluation, other, perceptually
motivated segmentation levels should be evaluated in addition to the
syllabic level. Since we believe the BLSTM approach to be more gen-
erally applicable for a wider class of speech segmentation problems,
further work can be done on extending this method to those domains.

5. CONCLUSION

A new approach to the problem of syllable nucleus detection based on
the BLSTM neural network formulation has been presented. Its ap-
plicability to the task of syllabification of both read and spontaneous
speech has been shown by using it on data with very diverse character-
istics. Models both for TIMIT data and for data from the Switchboard
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corpus showed good results, without the need of explicitly specifying
different parametrizations for the different corpora.

The syllabification model introduced here will be used in exper-
iments to further the understanding of temporal aspects of speech
in dialogue. Coming experiments will include the analysis of the
behaviour of dialogue partners on data from the full Switchboard
dialogues and from the SPONTAL database [16] of Swedish multi-
partner conversations.
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