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ABSTRACT

In this paper we want to show hown–gram language mod-
els can be used to provide additional information in auto-
matic speech understanding systems beyond the pure word
chain. This becomes important in the context of conversa-
tional dialogue systems that have to recognize and interpret
spontaneous speech. We show hown–grams can (1) help
to classify prosodic events like boundaries and accents, (2)
be extended to directly provide boundary information in the
speech recognition phase, (3) help to process speech repairs,
and (4) detect and semantically classify out–of–vocabulary
words. The approaches can work on the best word chain or a
word hypotheses graph. Examples and experimental results
are provided from our own research within the EVAR in-
formation retrieval and the VERBMOBIL speech–to–speech
translation system.

1. INTRODUCTION

In this paper we want to show how stochasticn–gram lan-
guage models can be used to provide additional information
in automatic speech understanding (ASU) systems beyond
the pure word chain. The best word chainw� in practically
all speech recognizers is the result of the fundamental for-
mula of speech recognition, the Bayes’ Formulaw� = argmaxw fP (Ojw) � P (w)g
whereO stands for the acoustic input. The computation ofP (Ojw) is referred to as the acoustic model and the esti-
mation ofP (w) as the language model (LM) [1, 2].�This work was funded by the German Federal Ministry of Educa-
tion, Science, Research and Technology (BMBF) in the framework of the
VERBMOBIL Project under Grant 01 IV 701 K5, in the framework of the
SmartKom project under Grant 01 IL 905 K7 and by the DFG (German Re-
search Foundation) under contract number 810 939-9. The responsibility
for the content lies with the authors.yThe author is now with Sympalog Speech Technologies, GermanyzThe author did his work at the Lehrstuhl für Künstliche Intelligenz
(Informatik 8) at the same University; he is now with Datev, Germany

Most of the progress on LMs was made on large vo-
cabulary dictation tasks (often referred to as Large Vocabu-
lary Continuous Speech Recognition, LVCSR) such as the
Wall Street Journal corpus [3] where read speech, which is
grammatically correct, has to be recognized. In this case,
an abundance of written texts is available for training and
the result does not have to be analyzed syntactically and se-
mantically. Thus it is possible to optimize the recognizer to
find the word chain that matches best to the spoken word
sequence, disregarding punctuation, bold faces, and para-
graphs.

Things become a little bit different, when one looks at
so called conversational dialogue systems, e.g. systems that
have to recognizeandunderstand spontaneous speech. The
speech recognizer is now only one module in a larger system
and its output is no longer the final result but the input to
further processing stages. Figure 1 depicts the architecture
of our EVAR train timetable system [4], which is a standard
architecture for an information retrieval dialogue system.

Based on the user utterances word recognition is per-
formed and the best word chain (e.g.“I would like to go
to Frankfurt”), or alternatively a word hypotheses graph
(WHG), is handed on to the linguistic processor. The lin-
guistic processor extracts a set of semantic concepts (se-
mantic attribute–value pairs) from the word recognizer re-
sult (e.g.[goalcity:frankfurt]) and forwards them
to the dialogue manager. The dialogue manager checks
whether all necessary parameters are available and, if so,
sends a query to the application database. Depending on
the dialogue history and the current dialogue strategy, the
user is asked to confirm the parameter (e.g.“You want to
go to Frankfurt?”) and/or another parameter is requested
(e.g. “At what time would you like to leave?”); otherwise
the result of the database search is verbalized. The gener-
ated message is then synthesized by a text–to–speech mod-
ule and played to the user over the telephone line.

Normally, the word chain contains no additional infor-
mation, such as prosodic information. However, even in
the context of a comparatively simple application, such as
an automatic train timetable information system, additional
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information may be important. Consider, for example, the
following user utterances:

U1: “Of course not on Monday.”
U2: “Of course not. On Monday!”

The question whether a phrase boundary occurred after the
word “not” is of considerable importance for the semantic
interpretation of the word sequence“of course not on Mon-
day”, and for determining the next system utterance. For
example, either of the following two utterances may be ap-
propriate:

S1: “What day would you like to travel?”
S2: “You would like to travel on Monday?”

Selecting the wrong response (S1 for U2, or S2 for U1)
will most certainly annoy the caller and will probably make
her/him hang up. It might be argued that the correct inter-
pretation of the word sequence could also be determined
without prosodic information, if the dialogue history is
taken into account. Depending on the previous system ut-
terance, at least one of the two above interpretations could
be declared illogical. This, however, involves a consid-
erable amount of higher–level knowledge and ‘intelligent’
processing, whereas prosodic information in the speech sig-
nal can directly resolve the ambiguity [5, Sec. 8.4]. Fur-
thermore, there is no reason to ignore information that may
without any doubt contribute to finding the correct seman-
tic interpretation, even if a sufficiently intelligent dialogue
module is available.

Other frequent spontaneous speech phenomena which
cause severe problems to speech recognizers aredisflu-
encies, such asself–repairs, false starts, and repetitions.
These are in some cases accompanied bysilent or filled
pauses, such asuh’s and um’s. Disfluencies constitute a
problem for the parsing of spontaneous speech: they should
not be processed as such but rather disregarded: in the ut-
terance

“yes it’s ok Mon uh Sunday the fourth”
the result of syntactic analysis should rather be

“yes it’s ok Sunday the fourth”.
Disfluencies and particularly self–repairs like in the lastex-
ample often involveword fragmentswhich are by defini-
tion out–of–vocabulary (OOV) words, i.e. words that are
not part of the predefined recognition vocabulary, because a
word may be cut off mid–word, or even mid–syllable, and
the recognition lexicon cannot contain all the word frag-

ments of its words (of course — in rare cases — a fragment
can happen to be a lexical entry; this can happen more of-
ten in languages like German where word compounds are
quite frequent). The OOV problem severely impairs the ap-
plicability of speech recognition technology to many real–
world tasks. The OOV word problem has been looked at in
LVCSR, because an increase of approximately 1.5–2.5 er-
rors per OOV word has been observed by several authors
(see for instance [6, 7, 8]). Including an explicit OOV word
as a lexical entry can reduce these additional errors. In an
ASU system, however, it is not only important to reduce the
recognition errors, but to know the semantic category of the
OOV word, in order to react appropriately. For instance in
the EVAR domain (and assuming that names of persons and
the desired city are not in the lexicon) the user utterance

“Hello, my name is Schultz, I want to go to Rossau”
can easier be processed, if the recognizer provides as the
best word chain

“Hello, my name is OOV–last–name, I want to go
to OOV–city”

rather than
“Hello, my name is OOV, I want to go to OOV”.
In this paper we want to deal with these three ad-

ditional information sources that can enrich the word
chain, i.e. prosodic, repair, and OOV information. Adding
this information to the interface between recognition and
linguistic analysis can significantly improve the results
of the overall system. We want to concentrate on the use
of LMs to achieve these tasks. We report on four aspects
of our own use ofn–grams within the EVAR system and
the VERBMOBIL speech–to–speech translation system
[9, 10, 11]:

1. Classification of prosodic events in a WHG
2. Integrated recognition of words and phrase boundaries
3. Processing of speech repairs
4. Detection and semantic classification of OOV words

The rest of the paper is organized as follows: Section 2
outlines the various types of prosodic phenomena which
have been recognized and classified with the use of LMs.
The annotation scheme is described. Section 3 introduces
basic concepts of category based stochastic language mod-
els and how they can be applied to classification tasks. In
Section 4 classification of prosodic events and integrated
recognition of words and phrase boundaries is introduced.
The processing of speech repairs is described in Section 5
and the processing of OOV words in Section 6. Finally,
conclusions and suggestions for future work are given.

2. PHENOMENA AND ANNOTATION

In this paper, we want to deal with the following two
prosodic phenomena, for which we give examples taken



from the VERBMOBIL scenario (appointment scheduling):

Boundaries:
“Fünfter geht bei mir, nicht aber neunzehnter.” vs.
“Fünfter geht bei mir nicht, aber neunzehnter.” i.e.
“The fifth is possible for me, but not the nineteenth.”vs.
“The fifth is not possible for me, but the nineteenth
would be OK.”

Accentuation:
“Ich fahre doch am Montag nach Hamburg.” vs.
“Ich fahre DOCH am Montag nach Hamburg.” i.e.
“I will go on Monday to Hamburg.” vs.
“I will go on Monday to Hamburg after all.”

These are minimal pairs, which demonstrate that lin-
guistic analysis is supported by prosodic markings (and
sometimes can only be done with the help of prosody).
Unfortunately there is no one–to–one mapping of prosodic
classes and linguistic structure (luckily the correspondence
is nevertheless very high [12]).

2.1. Boundaries

Consider the following excerpt from a real VERBMO-
BIL turn (translated into English), where<A> stands for breathing,

w<L> for unusual lengthening of wordw,<P> for a pause,
Bi for an acoustic–prosodic boundary
D3 for a dialogue act boundary, and
M3 for a syntactically motivated boundary:

(see below for details w.r.t. the boundary classes)
“ : : : M3 D3 well then I’m not present at allB3 M3 D3<A> and in the<L> B9 <P> thirty fourth week B3 M3<P> <A> that would beB3 <P> TuesdayB2 the twenty
third B3 <A> and Thursday the twenty fifthM3 D3 <P>: : :”
Acoustic–prosodic Boundaries
Clearly, a classifier which segments this turn based only
on acoustic prosodic information, like length of a pause
between words, might give the linguistic analysis bound-
aries which hinder rather than help (like the boundary
between“in the” and “thirty” ). We distinguish therefore
betweenB0: normal word boundary;B2: intermediate
phrase boundary with weak intonational marking;B3: full
boundary with strong intonational marking, often with
lengthening;B9: ‘agrammatical’ boundary, e.g., hesitation
or repair. Thus we can distinguish between prosodic
boundaries which correspond to the syntactic structure and
others which contradict the syntactic structure. However we
still have the problem that syntactic boundaries do not have
to be marked prosodically. A detailed syntactic analysis
would rather have syntactic boundaries irrespective of their
prosodic marking, e.g., it needs to know aboutB9 andB0

in order to favor continuing the ongoing syntactic analysis
rather than assuming that a sentence equivalent ended and
a new analysis has to be started. Depending on — among
other things — the speaker style, the speaker is sometimes
inconsistent with his/her prosodic marking. In the example
above, the intermediate boundary between“Tuesday” and
“the twenty third” is clearly audible, whereas there is no
audible boundary between“Thursday” and “the twenty
fifth”. Syntactic phrasing is — besides by the prosodic
marking — also indicated by word order. We recognize
these acoustic–prosodic boundaries with classifiers (neural
networks) based on acoustic–prosodic features [13, 10].
We want to recognize the different linguistic levels of
boundaries with LMs which look at the word order.

Syntactic–prosodic Boundaries
For the LM training we have the demand for large train-
ing databases. The marking of perceptual labels is very
time consuming, since it requires listening to the signal.
We therefore developed a rough syntactic–prosodic labeling
scheme, which is based purely on the orthographic translit-
eration of the signal, the so calledM system. The scheme
is described in detail in [12]. It classifies each turn of a
spontaneous speech dialogue in isolation, i.e. does not take
context (dialogue history) into account. Each word is classi-
fied into one of 25 classes in a rough syntactic analysis. For
the purpose of the paper, it suffices to look at two different
mappings into major classes:

1. M3: clause boundary (between main clauses, subor-
dinate clauses, elliptic clauses, etc.),M0: no clause
boundary;

2. S0: no boundary,S1: at particles,S2: at phrases,
S3: at clauses,S4: at main clauses and at free
phrases.

Dialogue Act Boundaries
Even less labeling effort and formal linguistic training isre-
quired if we label the word boundaries according to whether
they mark the end of a pragmatic unit. We refer to these
boundaries as dialogue act boundaries. Dialogue acts are
defined based on their illocutionary force, i.e. their commu-
nicative intention, cf. [14]. Dialogue acts are e.g. ‘greeting’,
‘confirmation’, and ‘suggestion’; a definition of dialogue
acts in VERBMOBIL is given in [15], [16]. In parallel to the
B andM labels, we distinguish betweenD3: dialogue act
boundary, andD0: no dialogue act boundary.

2.2. Phrase Accents

We distinguish between four different types of syllable
based phrase accent labels which can easily be mapped onto
word based labels denoting if a word is accented or not:



PA: primary accent;SA: secondary accent;EC: emphatic
or contrastive accent;A0: any other syllable (not labeled ex-
plicitly). Since the number ofPA, SA, EC labels is not large
enough to distinguish between them automatically, we only
ran experiments trying to classify ‘accented word’ (A3 =fPA, SA, ECg) vs. ‘not accented word’ (A0). In the VERB-
MOBIL domain, the number of emphatic or contrastive ac-
cents is not very large. In information retrieval dialogues
this could easily change, if there is a large number of mis-
understandings and corrections. Again, these are the basis
for our ‘acoustic model’. For the LM, we developed a rule–
based system which — starting with theM boundaries —
predicts for each word between two boundaries, whether
it carries the phrase accent, based on the part–of–speech
(POS) sequence in the syntactic phrase. The system is de-
scribed in [17].

3. N–GRAM LANGUAGE MODELS

In this section, the problem of estimating stochastic lan-
guage modelsP (w) for sentencesw = w1 : : : wm of wordswi from a finite vocabularyW is addressed. The joint dis-
tributionP (w) can be decomposed by the chain ruleP (w) = P (w1) mYi=2P (wijwi�11 )= P (w1) mYi=2P (wi j w1 : : : wi�1)
into a product of conditional word probabilities. Ann–gram
language modelis obtained if only sub–sequences of lengthn (n–grams) are taken into account, that is, the history is
restricted ton� 1 words:P (w) � P (w1) mYi=2P (wijwi�1i�n+1)
The straightforward approach is to replace the conditionaln–gram probabilities by their maximum likelihood esti-
mates P̂ (wijwi�1i�n+1) = #(wii�n+1)#(wi�1i�n+1)
where the function#(�) gives the frequency of occurrences
of its argument in the training text. Typical values ofn in
speech recognition applications aren = 2 (bigram) andn =3 (trigram).

Unfortunately, the frequency ratios are far from being
reliable probability estimates, even in the case of small val-
ues forn. In particular,P̂ (wijwi�1i�n+1) degenerates to zero
if the n–gramwii�n+1 was never observed in the training
data. An even larger problem arises as soon as the denom-
inator#(wi�1i�n+1) of the ML estimate expression turns to

zero. As a consequence, the raw ML estimates have to be
smoothed; non–zero probabilities have to be assigned toun-
seenword sequences, and thatprobability masshas to be
taken from non–zero ML estimates. There are two basic
strategies that are employed for this purpose:Backing–off
approaches [18] andinterpolationstrategy schemes [19].

3.1. Category basedn–Grams

Where for LVCSR huge amounts of written text are often
available, the training data for ASU systems have to be
transcribed from recorded dialogues. This is a very expen-
sive task. For instance, the EVAR training set and cross–
validation set together contain only about 60,000 words
(2,300 different). The number of parameters inn–gram
models can be drastically reduced, ifword categories(or
word classes) are introduced. These can be based on syn-
tactic, semantic, and pragmatic knowledge, or they can be
determined automatically with the use of clustering algo-
rithms. Here, only categoriesZ = fZ1;Z2; : : : ;ZDg are
considered that do not overlap and build a partition of the
vocabularyW , that is, each word sequencew = w1 : : : wm
corresponds to a unique sequence of word categoriesz =z1 : : : zm; zi 2 Z . The probability of observing a word se-
quencew can then be denoted asP (w) � P (z1)P (w1 j z1) mYi=2P (zi j zi�1i�n+1)P (wi j zi)

Any type of n–gram can be used to model the proba-
bilities of category sequences. Additionally, the conditional
probability for a symbol given a category has to be esti-
mated. This is usually done according to the relative fre-
quency of the words belonging to each category, or with the
same smoothing techniques as for word based models.

The use of word categories can significantly improve
the robustness of language model training. Manually con-
structed word categories, however, have to be carefully se-
lected (consider, for example, a single category ‘number’
for the train timetable information domain; because of dif-
ferent ranges for hours and minutes, this might be a bad
choice [20]).

We build a category system that contains the following
word categories:� all relevant predefined word categories, i.e. word cat-

egories which contain words that are sufficiently fre-
quent in the training data. As indicated above, this is
very application dependent. Example categories are
‘first name’, ‘last name’, ‘city name’, ‘region’, ‘day
of week’, and ‘month’;� a category of its own for each sufficiently frequent
word which is not included in one of the manually
designed word categories, and



� a single word category for all remaining words which
are not included in one of the manually designed word
categories.

3.2. Classification with Language Models

Letwi again be a word out of a vocabulary wherei denotes
the position in the utterance (the approach works as well, ifwi denotes a category).vi denotes a symbol out of a prede-
fined setV of prosodic symbols. These can be for examplefM3, M0g, fA3, A0g, or a combination of bothfM0A0,
M0A3, M3A0, M3A3g depending on the specific classifi-
cation task. For example,vi =M3 means that theith word
in an utterance is succeeded by a clause boundary.

Classification is done with the Bayes’ Rule by comput-
ing the posterior probability for the occurrence of a prosodic
symbolVi 2 V , given a string where words and prosodic la-
bels alternate:P (vi = Vijw1v1 : : : wi�1vi�1wiwi+1vi+1 : : : wmvm)= P (w1v1 : : : wi�1vi�1wiViwi+1vi+1 : : : wmvm)PVi2V P (w1v1 : : : wi�1vi�1wiViwi+1vi+1 : : : wmvm)
According to the last equation we need to model the follow-
ing a priori probability:P (w1v1w2v2 : : : wmvm)
When determining the appropriate labelVi to substitutevi,
the labels at positionsvi�k andvi+k are not known (k =1; 2; : : :). To simplify the computation, we approximateP (w1v1w2v2 : : : wmvm) �P (wi�n+2 : : : wi�2wi�1wiviwi+1wi+2 : : : wi+n�2)
and represent the distribution byn–grams which are esti-
mated on strings of words and prosodic symbols.

If one wants to classifyvi in a WHG instead of a word
chain, the exact solution would be a weighted sum of all
probabilitiesPvi computed on the basis of all the possible
contexts, i.e. all possible paths throughwi. However, this
does not seem to be feasible under real–time constraints.
Instead we classifyvi based on the locally best path throughwi by looking atn� 2 predecessors and successors ofwi.

4. CLASSIFICATION OF ACCENTS AND
BOUNDARIES WITH LMS

We have defined the classes (Section 2) and a classifier
(Section 3.2). The classifier looks at the word sequence
and not at the acoustic evidence. Classification with neu-
ral networks based on acoustic evidence is described in
[10, 13]. As different‘understanding modules’in VERB-
MOBIL use our classification results and look at different

resolutions (S vs. M vs. D) [9] and since classification er-
rors have different effects depending on whether a prosodic
event is not found (miss) or its complement is wrongly clas-
sified as a prosodic event (false alarm), we pass on acous-
tic based and word sequence based classification separately
(note that in a previous version of our prosody module we
combined the acoustic and word sequence based classifi-
cation [13]). In Tables 1 and 2 we present the recall, i.e.,orret=(orret + miss), for defined classes. Precision,
i.e., orret=(orret + false alarm) can be computed
from the numbers provided. The results are achieved on
the basis of the spoken word chain, i.e. simulating a perfect
word recognizer.

set M3 M0 A3 A0 D3 D0
G # train 27k 126k 103k 174k 15k 99k

# test 5k 24k 3k 5k 5k 26k
recall 86 97 87 92 80 96

E # train 16k 53k – – – –
# test 2k 6k – – – –
recall 83 94 – – – –

J # train – – – – 14k 94k
# test – – – – 1k 8k
recall – – – – 92 99

Table 1. LM classification: Recall in percent for syntactic–
prosodic boundariesM, rule–based accentsA, and dialogue
act boundariesD in the three languages of the VERBMOBIL

system: German (G), English (E) and Japanese (J); number
of cases is given for train and test

reference recognized
German

label # S0 S1 S2 S3 S4
S0 24286 89 2 5 2 2
S1 1408 8 81 4 2 5
S2 1014 15 3 69 3 10
S3 622 8 2 5 73 12
S4 3640 4 5 6 6 79

English
label # S0 S1 S2 S3 S4
S0 5771 89 1 6 2 2
S1 169 7 64 17 0 12
S2 900 5 3 83 2 8
S3 145 7 1 7 71 14
S4 1066 3 8 9 3 76

Table 2. Recall in percent for the fiveS classes

Integrated Recognition of Words and Boundaries
The approach just presented has the disadvantage that
knowledge about the position of phrase boundaries cannot



be used for determining the spoken word sequence. As
has been pointed out by other authors [21, 22], information
about the syntactic structure of an utterance can improve
the word recognition result. Taking a look at our VERB-
MOBIL test database with respect to the occurrence of un-
seen word pairs, we found that of all pairs of neighboring
words which arewithin phrases that are delimited byM3
phrase boundaries, only 14% have never been observed in
the training sample. The same ratio for word pairsacross
phrase boundaries is 38%. Any standardn–gram language
model will provide lower probabilities for word transitions
that have not been observed in the training data. That is, lan-
guage model probabilities across phrase boundaries aresys-
tematically underestimatedby word–based language mod-
els.

In our integrated approach for word–and–boundary
recognition, utterances are not modeled as unstructured se-
quences of words, as in traditional word recognizers, but as
sequences of words and boundaries. Both words and bound-
aries are therefore integrated in a single language model.
Furthermore, suitable HMMs have to be provided for phrase
boundaries. We developed the LMs on the basis of the
M0/M3 classes. It is worth noting that 59% of theM3
boundaries are marked by a pause or a non–verbal sound,
and that 67% of all pauses and non–verbals coincide with
an M3 boundary ([20]). We thus have to provide HMMs
to modelM3 boundaries with and without pauses and non–
verbals and HMMs to model pauses and non–verbals with-
out M3 boundary. For phrase boundaries that do not coin-
cide with a filled pause or a non–verbal, we use a one–state
HMM that always consumes a single time frame. Table 3
shows the complete inventory of boundary HMMs together
with their non–boundary equivalents.

M3 boundary non–boundary # HMM
model equivalent states
[M3] (none) 1

[-M3-] [-] 3
[—M3—] [—] 9
[M3:um] [um] 9
[M3:NV] [NV] 9

[M3:breathing] [breathing] 9

Table 3. The inventory of boundary HMMs and their non–
boundary equivalents. The HMM training for all these mod-
els is performed in a partially unsupervised manner as de-
scribed in [20]

The integrated language model for words and phrase
boundaries is a regularn–gram model which is constructed
as follows:� M3 boundary models are treated like words� all M3 boundaries are included in a single, additional

word category M3� non–boundary models for pauses and non–verbal
phenomena are treated as random events that do not
depend on the surrounding word context. They are
ignored, when the probability of the following word
is calculated.

In Figure 2, the integrated word–and–boundary lan-
guage model is illustrated with an example utterance.

Table 4 shows the results for the baseline and the in-
tegrated word–and–boundary recognizer. There is a small
improvement in word error rate and part of the syntactic
structure of the utterance is recognized ‘for free’, i.e. the
interface to the understanding module contains more infor-
mation with no computational overhead (in fact the compu-
tation is slightly faster). The approach is described in detail
in [20, 23]. There a hybrid recognizer that also uses acoustic
boundary evidence is described as well.

The results are not comparable to the ones presented in
Table 1, because those were achieved on the basis of the
spoken word chain. When using the output of the baseline
word recognizer instead of the spoken word chain, preci-
sion and recall for theM3 andM0 classes are practically
identical for the sequential and the integrated approach.

system WER recall prec. RTF

baseline word rec. 23.8% — — 4.1
integrated word–

and–boundary rec.
22.9% 74.5% 75.7% 4.0

Table 4. Word error rates (WER), recall and precision rates
for M3 phrase boundaries, and real time factor (RTF) on the
VERBMOBIL test sample

5. REPAIRS

In the German part of the VERBMOBIL corpus, 21% of all
turns contain at least one repair. Most of them (82%) are
so called modification repairs and we therefore concentrate
on this type of repairs (for a detailed analysis of the differ-
ent kinds of repairs see [24]). Modification repairs correct
part of the whole sentence, but do not change the syntac-
tic construction. We define repetitions as a special case of
modification repairs, where the corrected part and the cor-
rection are identical. Commonly each repair is segmented
in the four partsreparandum(RD),editing term(ET), inter-
ruption point(IP), andreparans(RS); an example is given
in Figure 3:� RD: the ‘wrong’ part of the utterance� IP: boundary marker at the end of the RD



Pbegin(okay) P (Tuesday j M3) P (o’clock j eleven) Pend(M3)
okay [-M3-] Tuesday [—] o’clockP (eleven j at)

P ([—])
P (at j Tuesday) at eleven [M3]PM3([-M3-]) � P (M3 j okay) PM3([M3]) � P (M3 j o’clock)

Fig. 2. The integrated word–and–boundary language model (in the case of a bigram–based recognizer) illustrated with the
example utterance“okay — Tuesday at — eleven o’clock”(the dashes indicate silent pauses). The correct sequence of word
and boundary models and the corresponding bigram probabilities are given in the figure. AllM3 boundary models (e.g.
[-M3-] for a boundary which is marked by a silent pause and[M3], which consumes only one time frame) are in a single
language model categoryM3; the category–dependent emission probabilities forM3 models are denotedPM3(�).� ET: special phrases, which indicate a repair like

“well” , “I mean” or filled pauses such as“uhm” ,
“uh” (optional, most of the time missing)� RS: the correction of the RD

yes it’s okay Monday <uh> Sunday the fifth

Editing
Term

Interruption-
point

ReparansReparandum

Montag den fünftenSonntag<äh>ja ist in Ordnung

Fig. 3. A repair example

Modification repairs have a strong correspondence
between RD and RS. We can measure this in terms of
length of RD and RS and POS replacements. For almost all
POS categories, the speakers prefer to modify a word in the
RD with a word which belongs to the same POS category
in the RS. Thus there is no need for a complete syntactic
analysis to detect and correct most modification repairs
even if repairs are characterized by violation of syntactic
and semantic well–formedness [25]. We implemented a
statistical approach as a filter process between the speech
recognition engine and the syntactic parser. Starting with
the WHG produced by the word recognizer, a prosodic
module detects possible IPs. For each of these IPs, a
stochastic model tries to find an appropriate repair by
guessing the most probable segmentation.

Detection of Interruption Points
The prosodic module classifies each word boundary in
the WHG as a regular or an irregular boundary. Irregular
boundaries are seen as hypotheses for IPs (details are given
in [10]). Note that IPs are a mixture ofB2/B3 and B9
boundaries (Section 2.1), since they can either coincide

with syntactic boundaries or they can be ‘agrammatical’.
On the other hand, hesitations can beB9 boundaries and
yet do not necessarily mark repairs. A classification of
a subsample of the VERBMOBIL database with neural
networks and 559 IPs vs. 51,486 ‘normal’ word boundaries
(i.e., a relation of 1:100!) yielded the results shown in
Table 5.

Segmentation
Repair processing is seen as a statistical machine translation
(SMT) problem [26] where the RD is a translation of the RS.
The SMT approach assumes that a speaker who produces
the source sentenceS originally wants to produce the target
sentenceT . Transferring this approach to repair processing,
the source sentence is represented by theRD and the target
sentence is equivalent to theRS. SMT defines a scoring
function for a pair(S; T ) which can be adopted for repair
processing without further changes:P (RDjRS) =Xa P (RD; ajRS)a is the alignment, which describes the link between
words in RD and RS. The probabilities are estimated
with a linear interpolation ofn–grams for the words, the
corresponding POS tags, and the semantic classes. Details
are given in [24, 27].

Integration into the VERBMOBIL System
The repair module is integrated in the VERBMOBIL system
on top of the prosodically annotated WHG from the rec-
ognizer. For each path through the WHG that contains an
IP hypothesis, all possible segmentations, i.e., all possible(RD;RS) pairs, must be scored. In practice we reduce this
set to pairs, whereRD andRS are at most four words long,
because we found that this restriction holds for 96% of all
repairs in the VERBMOBIL corpus. ETs are characterized
by a closed list of short phrases. Thus if after an IP such a



phrase is found, it is skipped to build the(RD;RS) pair.
If the score of a pair is above a heuristic threshold, the pair
is accepted as a repair and an alternative path is inserted
in the WHG. The resulting WHG is finally analyzed by a
stochastic parser, which selects according to its model the
best scored path and therefore can accept or reject the repair.

detection correct RS
recall prec. recall prec.

prosodic classifier 90% 3% — —
repairs without
word fragments

48% 77% 47% 76%

repairs including
word fragments

70% 86% 61% 84%

Table 5. Results for repair processing

Discussion of the Results
Table 5 shows the results of the repair process with the as-
sumption that we have a perfect recognizer that produces
no word errors and marks every word fragment. The ‘detec-
tion’ column shows the results for the repair identification
task. The ‘correct RS’ column presents the same numbers
for the correct segmentation. A segmentation is defined as
‘correct’ if RD and ET are identified. In some cases within
complex repairs (repairs within repairs), RD and ET are not
identified correctly but, if these segments are removed from
the input, the resulting string is the intended word sequence.

One major problem in handling self repairs are word
fragments. They occur often at the end of the RD and con-
stitute an important repair signal. But current state of the
art speech recognizer cannot detect word fragments. So any
analysis based on word fragment information does not re-
flect the performance in a real speech system. Thus, we per-
form two tests: One with word fragment information and
one where we exclude turns with fragments.

The first row in this table shows the results for prosodic
IP detection. One can see the problem of a solely prosody
based repair detection. The neural network recognizes 90
percent of all repairs, but produces a lot of false alarms as
indicated by the bad precision. The reason is not a worse
classifier but a principle problem. At first the event IP is
very rare in contrast to the event ‘no interruption’, which is
a bad precondition for a two class classifier. And secondly,
the prosodic features that are used to mark the IP can be
observed in many situations that constitute no repair.

But as can be seen in the following rows the repair
search process can eliminate many of those false alarms.
When we count only turns without fragments, we detect and
correct almost half of the repairs. The last row shows the
strong impact of fragments to repair processing. By using
fragment information recall and precision of detection and
correction increase.

We believe that modeling modification repairs as a
translation process is an promising approach to repair pro-
cessing. The formal description in terms of statistical ma-
chine translation opens a great variety for further model im-
provements. The main unsolved problems are word frag-
ments and fresh starts.

6. DETECTION AND CLASSIFICATION OF OOV
WORDS

In [28] we presented an approach for the detection of OOV
words which implicitly provides information on the word
category. This involves the integration of both detection
andclassification of OOV words directly into the recogni-
tion process of an HMM–based word recognizer. With our
approach, acoustic information as well as language model
information can be used for the purpose of classifying OOV
words into different word categories. Currently the same
acoustic models are used for all OOV words; only language
model information contributes to the assignment of a cate-
gory to each.

The basic idea behind our approach is to build language
models for the recognition of OOV words that are based on a
system of word categories. Emission probabilities of OOV
words are then estimated for each word category. Even if
we include in our vocabulary all words of a category that
were observed in the training sample, there is still a cer-
tain probability of observing other new words of the same
category in an independent test sample or in future utter-
ances. This probability can be estimated from the training
sample itself. Details on the calculation of the OOV emis-
sion probabilities were given in [28]; an improved version
of the algorithm can be found in [20]. Figure 4 shows the
principle of this estimation technique for the categorycity
of the EVAR sample.

For most of our linguistically motivated word cate-
gories, the OOV probability is 0, because they describe a
finite set of words. In the time table inquiry domain there
are 5 word categories that are practically infinite (e.g.city,
region, last name). In addition, a category for rare words
has been defined that do not fall under any other category
(OOV probability 73%) and another for garbage (e.g. word
fragments, OOV probability 100%).

After integrating OOV probabilities into the language
model, the latter has to be combined with one or several
acoustic models for OOV words. Simple ‘flat’ acoustic
models can be used for this purpose as well as more en-
hanced models based on phone– or syllable–grammars.

The results for the VERBMOBIL domain are summa-
rized in Table 6. The total number of OOV words in the
test sample was 132, i.e. an OOV rate of 2.8%. At the first
glance, the overall recall and precision rates for OOV words
of 28% and 32% are rather disappointing. Interestingly,
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Fig. 4. Estimation of the current OOV word probability
for word categorycity. The functiong gives the number
of words in categorycity up to theith word of the training
sample that would have been OOV if we had redefined the
vocabulary after each observed word. The slope of the lin-
ear approximation is an estimation of the OOV probability
of categorycity

however, the word error rate after including OOV words
drops from 22.5% to 22.1%. This is due to the fact that OOV
false alarms occur mainly at those parts of utterances where
word recognition errors would also have occurred without
OOV models in the vocabulary. These results are compara-
ble to those achieved in [8].

7. CONCLUSION AND OUTLOOK

In the field of speech recognition, stochasticn-grams are
widely used for the estimation of the probability of word
strings. Their success is mainly due to an unique combi-
nation of favorable features:n-grams can be estimated eas-
ily from transcribed speech or text data and their structure
makes it possible to integrate them into a time-synchronous
recognition process. In this paper, we showed how these
characteristics facilitate the processing of complex speech
phenomena, like prosodic events and speech repairs as well
as the application ofn-grams to the recognition and clas-
sification of OOV words. We demonstrated that the struc-
ture ofn-grams supports the integration of the detection of
prosodic boundaries into the speech recognizer and showed
that this approach can also improve the speed and accuracy
of word recognition.

We expect that further improvements may be gained by
a better integration of the different modules. For instance,
the OOV word detection and classification has not been
evaluated yet in conjunction with the repair processing mod-
ule. Currently, all word fragments fall into the garbage cat-
egory of the OOV module. The repair processing module
may receive more specific information if word fragments
would be classified into different categories, e.g. if a sepa-

system baseline OOV–extended

WER 22.5% 22.1%
RTF 3.8 3.9
recall
total

0% 28%

precision
total

– 32%

recall
LAST NAMES

0% 35%

precision
LAST NAMES

– 68%

Table 6. Evaluation of the OOV–extended recognizer for
the VERBMOBIL domain. The recall and precision rates are
given for all OOV words (recall total and precision total)
and for OOV words from word categoryLAST NAMES (re-
call LAST NAMES and precisionLAST NAMES)

rate category for word fragments of weekdays (“yes it’s ok
Mon” ) would exist. Another important research area which
has not been mentioned in this paper so far is the classi-
fication of differentemotions, e.g. anger, anduser states,
e.g. helplessness. Emotions and user states are expressed
by prosodic, lexical, syntactic/semantic, and illocutionary
means [29]. At least some of these means can be modeled
with n–grams. In the near future, we plan to evaluate, if the
integration of the information sources provided by all mod-
ules described in this paper can improve the current perfor-
mance on this task.
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