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Abstract Notions of invariance pressure for control systems are introduced based onweights
for the control values. The equivalence is shown between inner invariance pressure based on
spanning sets of controls and on invariant open covers, respectively. Furthermore, a number of
properties of invariance pressure are derived and it is computed for a class of linear systems.
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1 Introduction

This paper extends the notion of invariance entropy for discrete-time and continuous-time
control systems to a notion of invariance pressure and discusses some of its properties.
Invariance entropy (and feedback invariance entropy) indicates the amount of ”information”
on controls necessary in order to make a subset of the state space invariant, and is closely
related to minimal data rates. Basic references are the seminal paper Nair, Evans, Mareels
and Moran [9] and the monograph Kawan [7]. Further studies of invariance entropy include
Da Silva and Kawan [4] for hyperbolic control sets, Da Silva [3] for linear control systems
on Lie groups and Colonius, Fukuoka and Santana [1] for topological semigroups. Huang
and Zhong [5] present a version of invariance entropy as a dimension-like invariant in the
sense of Carathéodory structures (cf. Pesin and Pitskel [11]). A problem closely related
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to controlled invariance occurs for observability, where, instead of the uncertainty of the
controls, uncertainty of the state of the system is considered; cf., e.g., Savkin [13], Pogromsky
and Matveev [12] and Liberzon and Mitra [8]; the latter reference introduces the notion of
estimation entropy in this context. This illustrates that invariance entropy is part of the vast
field of control over communication channels with data-rate constraints, cf. Nair, Fagnani,
Zampieri and Evans [10] for a general survey.

Invariance entropy is modeled with some analogy to topological entropy of dynamical
systems. A generalization of the latter notion is topological pressure of dynamical systems
where a potential function gives weights to the points in the state space, cf., e.g., Walters
[15], Viana and Oliveira [14] or Katok and Hasselblatt [6]. We will construct a notion of
invariance pressure that is analogously based on weights for the control values.

The main result is the equivalence between the inner invariance pressure based on span-
ning sets of controls and feedback invariance pressure based on invariant open covers (see
Theorem 11). Furthermore, a number of properties of invariance pressure are derived which
are analogous to properties of topological pressure for dynamical systems. Here, however,
no full analogy should be expected, since no notion of separated sets of controls is available.
While inner invariance pressure, as discussed in detail here, is a generalization of inner invari-
ance entropy, we indicate how also other notions of invariance entropy, in particular, outer
invariance entropy, can be generalized. Furthermore, some properties of invariance entropy
for continuous-time control systems are also derived and the invariance pressure for a class
of linear systems is computed.

The contents of this paper is as follows. Section 2 constructs invariance pressure based on
spanning sets of controls and on invariant open covers and shows that they are equivalent.
Section 3 proves several properties of inner invariance pressure and indicates variants based
on different technical conditions. Finally, Sect. 4 analyzes invariance pressure for continuous-
time control systems and computes the invariance pressure for a class of linear systems.

2 Invariance Pressure for Discrete-Time Systems

In this section we introduce the notion of invariance pressure for discrete-time control sys-
tems. Then a feedback version is defined and it is shown that these two notions are equivalent.

The considered discrete-time control systems have the form

xk+1 = F(xk, uk), k ∈ N0 = {0, 1, . . .}, (1)

where F : X ×U → X and (X, d) is a metric space andU is a topological space. We assume
that Fu := F(·, u) is continuous for every u ∈ U . DefineU := UN0 as the set of all sequences
ω = (uk)k∈N0 of elements in the control range U . We endow the set U of control sequences
with the product topology. Sometimes, we will assume that the set of control values U is a
compact metric space implying that also U is compact metrizable. The shift θ on U is defined
by (θω)k = uk+1, k ∈ N0. For x0 ∈ X and ω ∈ U the corresponding solution of (1) will be
denoted by

xk = ϕ(k, x0, ω), k ∈ N0.

where convenient, we also write ϕk,ω(·) := ϕ(k, ·, ω). By induction, one sees that this map
is continuous. Observe also that this is a cocycle associated with the dynamical system on
U × X given by

�(k, ω, x0) = (θkω, ϕ(k, x0, ω)), k ∈ N0, ω ∈ U, x0 ∈ X.
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We note the following property which is of independent interest (it is not used in the follow-
ing).

Proposition 1 The shift θ is continuous and, if F : X × U → X is continuous, then � is a
continuous dynamical system.

Proof Continuity of θ follows since the sets of the form

W = W0 × W1 × · · · × WN ×U × · · · ⊂ UN0

with Wi ⊂ U open for all i and N ∈ N form a subbasis of the product topology and the
preimages

θ−1W = U × W0 × W1 × · · · × WN ×U × · · ·
are open. If F is continuous, then induction shows that ϕ(k, x0, ω) is continuous in (x0, ω) ∈
X × U for all k. ��

Throughout the text, we will consider a compact set Q ⊂ X and denote by C(U, R) the
set of all continuous function f : U → R. We suppose that the set Q is strongly invariant
in the sense that for all x ∈ Q there is u ∈ U with F(x, u) ∈ intQ. Clearly, this means that
for all x ∈ Q there is ω ∈ U with ϕ(k, x, ω) ∈ intQ for all k ≥ 1. We are interested in the
minimal information to make Q strongly invariant.

Remark 2 At the end of Sect. 3 we will comment on possibilities to relax the property of
strong invariance.

2.1 Inner Invariance Pressure

The definition of inner invariance pressure will require the following notion from Kawan [7,
p. 76].

Definition 3 Let Q ⊂ X a compact set with nonempty interior and n ∈ N. We say that a
subset S ⊂ U is a strongly (n, Q) -spanning set if for each x ∈ Q there is ω ∈ S such that
ϕ(i, x, ω) ∈ intQ for i = 1, . . . , n.

The minimal cardinality of such a set is denoted by rinv,int (n, Q) ≤ ∞, and [7, p. 76]
defines the inner invariance entropy of Q by

hinv,int (Q) = lim
n→∞

1

n
log rinv,int (n, Q).

In order to construct the inner invariance pressure of control systems let for f ∈ C(U, R)

and n ∈ N

(Sn f )(ω) :=
n−1∑

i=0

f (ui ), ω = (ui )i∈N0 ∈ U,

and

an( f, Q) := inf

{
∑

ω∈S
e(Sn f )(ω); S strongly (n, Q)-spanning

}
.
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Definition 4 For a discrete-time control system of the form (1), a strongly invariant compact
set Q ⊂ X and f ∈ C(U, R) consider

Pint ( f, Q) = lim
n→∞

1

n
log an( f, Q). (2)

The inner invariance pressure in Q is the map Pint (·, Q) : C(U, R) → R ∪ {−∞,∞}.
This definition deserves several comments. First observe that Pint ( f, Q) ≥ 0 for f ≥ 0.

If f = 0 is the null function in C(U, R), then
∑

ω∈S e(Sn0)(ω) = ∑
ω∈S 1 = #S, hence

an(0, Q) = inf

{
∑

ω∈S
e(Sn0)(ω); S strongly (n, Q)-spanning

}

= inf {#S; S strongly (n, Q)-spanning}
= rinv,int (n, Q). (3)

Taking the logarithm, dividing by n and letting n tend to ∞ one finds that Pint (0, Q) =
hinv,int (Q). Hence the inner invariance pressure generalizes the inner invariance entropy.

Next we show that it is sufficient to consider finite spanning sets. More precisely, the
following holds.

Proposition 5 For a strongly invariant compact set Q and f ∈ C(U, R) it suffices to taken
in the definition of an( f, Q) the infimum over all finite strongly (n, Q)-spanning sets.

Proof First we show for a strongly (n, Q)-spanning setS there exists a finite strongly (n, Q)-
spanning set S ′ ⊂ S. In fact, take an arbitrary x ∈ Q. Since S is strongly (n, Q)-spanning,
there is ωx ∈ S with y j := ϕ( j, x, ωx ) ∈ intQ for j = 1, . . . , n. By continuity, we find
open neighborhoods W1, . . . ,Wn of x such that ϕ( j,W j , ωx ) ⊂ intQ for all j = 1, . . . , n.
The sets Wx = ⋂n

i=1 Wi , x ∈ Q, form an open cover of Q. By compactness of Q there are
finitely x1, . . . , xk ∈ Q such that Q ⊂ ⋃k

i=1 Wxi . Then S ′ = {ωx1 , . . . , ωxk } ⊂ S is strongly
(n, Q)-spanning.

To conclude the proof, set

ãn( f, Q) = inf

{
∑

ω∈S
e(Sn f )(ω); S is a finite strongly (n, Q)-spanning set

}
.

It is clear that an( f, Q) ≤ ãn( f, Q). For the reverse inequality, let S be strongly (n, Q)-
spanning. Then, as shown above, there is a finite strongly (n, Q)-spanning subset S ′ ⊂ S.
Hence

∑

ω∈S ′
e(Sn f )(ω) ≤

∑

ω∈S
e(Sn f )(ω),

implying that ãn( f, Q) ≤ an( f, Q) and then equality is proved. ��
Based on this result, in the following we will only consider finite spanning sets. We still

have to show that the limit in (2) actually exists.

Proposition 6 For f ∈ C(U, R), the following limit exists and satisfies

lim
n→∞

1

n
log an( f, Q) = inf

n≥1

1

n
log an( f, Q).
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Proof This follows by a standard lemma in this context (cf., e.g., Walters [15, Theorem
4.9] or Kawan [7, Lemma B.3]), if we can show that the sequence log an( f, Q), n ∈ N, is
subadditive. Let S1 be a strongly (n, Q)-spanning set and S2 a strongly (k, Q)-spanning set.
Then define control sequences of length n + k by

ω := (u0, . . . , un−1, v0, . . . , vk−1) ∈ U n+k .

for each ω1 = (u0, . . . , un−1) ∈ S1 and ω2 = (v0, . . . , vk−1) ∈ S2. We claim that the set
S of these control sequences is strongly (n + k, Q)-spanning. In fact, for x ∈ Q there exist
ω1 ∈ S1 such that

ϕ( j, x, ω) = ϕ( j, x, ω1) ∈ intQ, j = 1, . . . , n.

Since ϕ(n, x, ω1) ∈ intQ ⊂ Q and S2 is strongly (k, Q)-spanning, there is a ω2 ∈ S2 such
that

ϕ(n + j, x, ω) = ϕ( j, ϕ(n, x, ω1), ω2) ∈ intQ, j = 1, . . . , k.

This shows the claim. Furthermore, for all S1 and S2
∑

ω∈S
e(Sn+k f )(ω) =

∑

ω∈S
e(Sn f )(ω1)e(Sk f )(ω2) ≤

∑

ω1∈S1

e(Sn f )(ω1)
∑

ω2∈S2

e(Sk f )(ω2).

Hence an+k( f, Q) ≤ an( f, Q)ak( f, Q) and the subadditivity property follows proving the
assertion. ��

The following example illustrates the definition of invariance pressure in a simple case.

Example 7 Assume that f ∈ C(U, R) is bounded below (which, naturally, holds, if U is
compact) and that F(Q,U ) ⊂ intQ, that is, the system always enters the interior of Q when
starting in Q. We show that Pint ( f, Q) = inf f . Since for every strongly (n, Q)-spanning
set S the estimate

∑

ω∈S
e(Sn f )(ω) ≥ en inf f · #S ≥en inf f

holds, it follows that Pint ( f, Q) ≥ inf f . Conversely, our assumption implies that for ε > 0
there exists u ∈ U with

f (u) ≤ inf f + ε.

Then the one-point set S = {ω}, where ω = (u, u, . . .), is strongly (n, Q)-spanning and
∑

ω∈S
e(Sn f )(ω) = e(Sn f )(ω) = en f (u) ≤ en inf f +nε.

Taking the infimum over all strongly (n, Q)-spanning sets one finds that the invariance
pressure satisfies

Pint ( f, Q) = lim
n→∞

1

n
log an( f, Q) ≤ lim

n→∞
1

n
log en inf f + ε = inf f + ε.

Since ε > 0 is arbitrary, it follows that Pint ( f, Q) ≤ inf f .
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2.2 Invariance Feedback Pressure

Next we introduce a notion of invariance pressure based on feedbacks and show that it
coincides with the invariance pressure defined above.

Open covers in entropy theory of dynamical systems are replaced in case of control systems
by invariant open covers, introduced in Nair et al. [9]. For control systems of the form (1)
they have the following form.

Definition 8 For a compact subset Q ⊂ X an invariant open cover C = (A, τ,G) is given
by τ ∈ N, a finite open cover A of Q and a map G : A → U τ assigning to each set A in A
a control function such that ϕ(k, A,G(A)) ⊂ Q for all k ∈ {1, . . . , τ }.

Here G(A) may be considered as a feedback when applied to the elements of A. Let
C = (A, τ,G) be an invariant open cover. For any sequence α = (Ai )i∈N0 ∈ AN0 , we have
the control sequence

ω(α) := (u0, u1, . . .) with (ul)
iτ−1
l=(i−1)τ = G(Ai−1), for all i ≥ 1,

that is,

ω(α) = (u0, . . . , uτ−1︸ ︷︷ ︸
G(A0)

, uτ , . . . , u2τ−1︸ ︷︷ ︸
G(A1)

, . . .).

Then we can define, for each n ∈ N, the set

Bn(α) := {x ∈ X; ϕ(iτ, x, ω(α)) ∈ Ai for i = 0, 1, . . . , n − 1}. (4)

Observe that Bn(α) is open in Q and that the control ω(α) is uniquely determined by α,
but not necessarily by the set Bn(α). For each n ∈ N, letting α run through all sequences of
elements in A, the family

Bn = Bn(C) := {Bn(α); α ∈ AN0}
is a finite open cover of Q. Here, and in the following, it is used tacitly that only the first n
elements of α are relevant.

We say that a set of controls of the form

Wn = {ω(αi );αi ∈ AN0 for i ∈ I }
is a generating set of feedback controls (of length nτ ) for the invariant open cover C, if the
sets Bn(αi ), i ∈ I , form a subcover of Bn(C) which is minimal in the sense that none of its
elements may be omitted in order to cover Q. (Its number of elements needs not be minimal
among all subcovers.) Hence Q = ⋃

i∈I Bn(αi ) and the number of elements #I in the index
set I is bounded by #Bn .

Define for ω = (ui )i∈N0 ∈ U

(Snτ )(ω) =
nτ−1∑

i=0

f (ui ),

and set

qn( f, Q, C) = inf

⎧
⎨

⎩
∑

ω∈Wn

e(Snτ f )(ω);Wn generating for C
⎫
⎬

⎭ .
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Definition 9 Consider a discrete-time control system of the form (1), a strongly invariant
compact set Q ⊂ X and f ∈ C(U, R). For an invariant open cover C = (A, τ,G), put

P f b( f, Q, C) = lim
n→∞

1

nτ
log qn( f, Q, C) (5)

and

P f b( f, Q) = inf{P f b( f, Q, C); C is an invariant open cover of Q}.
The invariance feedback pressure is the map P f b(·, Q) : C(U, R) → R ∪ {−∞,∞}.

Here are several comments on this definition. If f = 0 is the null function in C(U, R),
then

∑

ω∈Wn

e(Sn0)(ω) =
∑

ω∈Wn

1 = #Wn,

hence

qn(0, Q, C) = inf

⎧
⎨

⎩
∑

ω∈Wn

e(Snτ 0)(ω);Wn generating for C
⎫
⎬

⎭

= inf {#B; B a subcover of Bn} = N (Bn; Q),

where N (Bn; Q) denotes the minimal number of elements in a subcover of Bn .
Hence one finds that the strong topological feedback entropy h f b(C) of C (as defined in

Kawan [7, p. 70]) is

h f b(C) := lim
n→∞

1

nτ
log N (Bn; Q) = lim sup

n→∞
1

nτ
log qn(0, Q, C) = P f b(0, C),

and so the strong topological feedback entropy of system (1) satisfies

h f b(Q) := inf{h f b(C); C an invariant open cover of Q}
= inf{P f b(0, C); C an invariant open cover of Q} = P f b(0, Q).

Hence the invariance feedback pressure is a generalization of the strong topological feedback
entropy.

The following lemma provides the remaining proof that the limit in (5) actually exists.

Lemma 10 If f ∈ C(U, R) and C = (A, τ,G) is an invariant open cover of Q, then the
following limit exists and satisfies

lim
n→∞

1

n
log qn( f, Q, C) = inf

n≥1

1

n
log qn( f, Q, C).

Proof The assertions will follow from Walters [15, Theorem 4.9] if the sequence
log qn( f, Q, C), n ∈ N, is subadditive. This will be shown by constructing a generating
set Wn+k from generating sets Wn and Wk with the desired properties.

Let Wn = {ω(αi1), . . . , ω(αiM )} and Wk = {ω(βi1), . . . , ω(βiK )} be generating sets of
feedback controls. Hereαi andβ j are given by sequences of sets inA in the formαi = (

Aαi
σ

)
σ

and β j =
(
Aβi

σ

)

σ
. Then define for all i and j sequences in A by

αiβ j =
(
Aαi
0 , . . . , Aαi

n−1, A
β j
0 , . . . , A

β j
k−1, . . .

)
.
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If we denote by A
αiβ j
σ the σ th element of αiβ j , then

A
αiβ j
σ =

{
Aαi

σ , if 0 ≤ σ ≤ n − 1

A
β j
σ−n, if σ ≥ n.

Claim: The set {
ω(αiβ j ); i ∈ {i1, . . . , iM }, j ∈ { j1, . . . , jK }} (6)

contains a generating set of feedback controls.
First note that by the cocycle property one finds for σ = 0, . . . , k

ϕ(σ+n)τ,ω(αiβ j ) = ϕστ,(θnτ ω(αiβ j )) ◦ ϕnτ,ω(αiβ j ) = ϕστ,ω(β j ) ◦ ϕnτ,ω(αi ),

and hence

ϕ−1
(σ+n)τ,ω(αiβ j )

= ϕ−1
nτ,ω(αi )

◦ ϕ−1
στ,ω(β j )

.

Thus for all i and j
Bn+k(αiβ j ) = Bn(αi ) ∩ ϕ−1

nτ,ω(αiβ j )
Bk(β j ). (7)

In fact,

Bn+k(αiβ j ) =
n+k−1⋂

σ=0

ϕ−1
στ,ω(αiβ j )

(A
αiβ j
σ )

=
n−1⋂

σ=0

ϕ−1
στ,ω(αiβ j )

(A
αiβ j
σ ) ∩ ϕ−1

nτ,ω(αi )

[ k−1⋂

σ=0

ϕ−1
στ,ω(β j )

(A
αiβ j
σ+n)

]

=
n−1⋂

σ=0

ϕ−1
στ,ω(αi )

(Aαi
σ ) ∩ ϕ−1

nτ,ω(αi )

[ k−1⋂

σ=0

ϕ−1
στ,ω(β j )

(A
β j
σ )

]

= Bn(αi ) ∩ ϕ−1
nτ,ω(αi )

Bk(β j ).

Clearly the sets Bn+k(αiβ j ) are elements of Bn+k(C). It follows from (7) that they cover Q,
since this is valid for the families {Bn(αi ); i ∈ {i1, . . . , iM }} and {Bn(β j ); j ∈ { j1, . . . , jK }}.
Hence the collection in (6) is a subcover of Bn+k(C) and one finds in the family (6) an
associated generating set of feedback controls which we denote by Wn+k . Thus the Claim
is proved.

In order to show subadditivity of the sequence log qn( f, Q, C), n ∈ N, note that for all
n, k ∈ N

∑

ω∈Wn+k

e(S(n+k)τ f )(ω) =
∑

ω∈Wn+k

e(Snτ f )(ω)e(Skτ f )(θnτ ω)

≤
∑

ω∈Wn

e(Snτ f )(ω)
∑

ω∈Wk

e(Skτ f )(ω).

Since Wn and Wk are arbitrary it follows that qn+k( f, Q, C) ≤ qn( f, Q, C) · qk( f, Q, C).
This implies the required subadditivity concluding the proof. ��

Next we show that this feedback invariance pressure coincides with the inner invariance
pressure introduced in Definition 4. This generalizes a result for invariance entropy from
Colonius, Kawan and Nair [2].
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Theorem 11 Let Q bea strongly invariant compact subset of X. Then for every f ∈ C(U, R)

Pint ( f, Q) = P f b( f, Q).

Proof First we prove the inequality Pint ( f, Q) ≤ P f b( f, Q). Let C = (A, τ,G) be an
invariant open cover. Then for n ∈ N, every generating setWn of controls for C is a strongly
(nτ, Q)-spanning set and hence

anτ ( f, Q) = inf
S

∑

ω∈S
e(Snτ f )(ω) ≤

∑

ω∈Wn

e(Snτ f )(ω),

where the infimum is taken over all strongly (nτ, Q)-spanning set S. It follows that
anτ ( f, Q) ≤ qn( f, Q, C) and therefore

Pint ( f, Q) = lim
n→∞

1

nτ
log anτ ( f, Q) ≤ lim

n→∞
1

nτ
log qn( f, Q, C) = P f b( f, Q, C).

Since this holds for every invariant open cover C, we conclude
Pint ( f, Q) ≤ inf

C
P f b( f, Q, C) = P f b( f, Q),

where the infimum is taken over all invariant open covers C of Q.
To show that P f b( f, Q) ≤ Pint ( f, Q) consider a strongly (τ, Q)-spanning set S with

τ ∈ N. We will construct an invariant open cover. For each ω ∈ S define

A(ω) = {x ∈ Q; ϕ( j, x, ω) ∈ intQ for j = 1, . . . , τ }.
The setA = {A(ω); ω ∈ S} forms a finite open cover of Q. Now define a map G : A → U τ

by

G(A(ω)) = (ω0, . . . , ωτ−1).

Clearly, C := (A, τ,G) is an invariant open cover of Q.
Recall that α ∈ AN0 defines a control ω(α) and for n ∈ N the set Bn(α) is given by (4),

Bn(α) = {x ∈ X; ϕ(iτ, x, ω(α)) ∈ Ai for i = 0, 1, . . . , n − 1}.
These sets form on open cover Bn = Bn(C) of Q. Consider a generating set of feedback
controls of the form

Wn = {ω(αi );αi ∈ AN0 for i ∈ I },
hence the sets Bn(αi ), i ∈ I , form a subcover of Bn(C) which is minimal. Therefore

∑

ω∈Wn

e(Snτ f )(ω) =
∑

ω∈Wn

e(Sτ f )(ω)e(Sτ f )(θτ ω) · · · e(Sτ f )(θ (n−1)τ ω)

≤
⎛

⎝
∑

ω∈Bn

e(Sτ f )(ω)

⎞

⎠

⎛

⎝
∑

ω∈Bn

e(Sτ f )(θτ ω)

⎞

⎠ · · ·
⎛

⎝
∑

ω∈Bn

e(Sτ f )(θ (n−1)τ ω)

⎞

⎠

≤
(
∑

ω∈S
e(Sτ f )(ω)

)n

.

Since the previous inequality holds for all finite strongly (τ, Q)-spanning sets S, it follows
that qn( f, Q, C) ≤ [aτ ( f, Q)]n for all n ∈ N. Hence

P f b( f, Q, C) = lim
n→∞

1

nτ
log qn( f, Q, C) ≤ lim

n→∞
1

nτ
log [aτ ( f, Q)]n = 1

τ
log aτ ( f, Q).
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Using Proposition 6 we conclude that

P f b( f, Q) = inf
C

P f b( f, Q, C) ≤ inf
τ∈N

1

τ
log aτ ( f, Q) = Pint ( f, Q).

��

3 Properties of the Invariance Pressure

In this section, we collect several properties of invariance pressure which are analogous to
properties of topological pressure for dynamical systems. Furthermore, we discuss some
alternative versions of invariance pressure.

We start with the following elementary lemma which will be used in the proof of Propo-
sition 13.

Lemma 12 Let ai ≥ 0, bi > 0, i = 1, . . . , n ∈ N, be real numbers. Then
∑n

i=1 ai∑n
i=1 bi

≥ min
i=1,...,n

(
ai
bi

)
.

Proof Let n = 2. Then we may assume that a1
b1

≤ a2
b2
. Dividing numerator and denominator

by b1 one can further assume that b1 = 1, hence the assumption takes the form a1 ≤ a2
b2

and

the assertion reduces to a1+a2
1+b2

≥ a1. This is equivalent to

a1 + a2 ≥ a1 + a1b2, i.e., a2 ≥ a1b2,

which is our assumption. The induction step from n to n + 1 follows since
∑n+1

i=1 ai∑n+1
i=1 bi

=
∑n

i=1 ai + an+1∑n
i=1 bi + bn+1

≥ min

(∑n
i=1 ai∑n
i=1 bi

,
an+1

bn+1

)
≥ min

i=1,...,n+1

(
ai
bi

)
.

��
Proposition 13 Consider a discrete-time control system of the form (1), let Q be a compact
strongly invariant subset of X and let f, g ∈ C(U, R) and c ∈ R. Then the following
assertions hold:

(i) If f ≤ g, then Pint ( f, Q) ≤ Pint (g, Q).
(ii) Pint ( f + c, Q) = Pint ( f, Q) + c.
(iii) If U is compact, then |Pint ( f, Q) − Pint (g, Q)| ≤ ‖ f − g‖∞.

Proof (i) If f ≤ g, it follows that
∑

ω∈S e(Sn f )(ω) ≤ ∑
ω∈S e(Sng)(ω) for all (n, Q)-

spanning sets S, because the exponential function is increasing. Hence an( f, Q) ≤
an(g, Q) and so Pint ( f, Q) ≤ Pint (g, Q).

(ii) One finds that

an( f + c, Q) = inf

{
∑

ω∈S
e(Sn( f +c))(ω); S (n, Q)-spanning

}

= inf

{
enc

∑

ω∈S
e(Sn f )(ω); S (n, Q)-spanning

}

= encan( f, Q),
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hence

Pint ( f + c, Q) = lim
n→∞

1

n
log an( f + c, Q) = lim

n→∞
1

n
log

(
encan( f, Q)

)

= c + Pint ( f, Q).

(iii) Recall that for an( f, Q) and an(g, Q) the infimum is taken over all strongly (n, Q)-
spanning sets S. Thus, using Lemma 12 for the second inequality below, one finds

an(g, Q)

an( f, Q)
= infS

{∑
ω∈S e(Sng)(ω)

}

infS
{∑

ω∈S e(Sn f )(ω)
} ≥ inf

S

{∑
ω∈S e(Sng)(ω)

∑
ω∈S e(Sn f )(ω)

}

≥ inf
S

{
min
ω∈S

e(Sng)(ω)

e(Sn f )(ω)

}
≥ e−n‖ f −g‖∞ .

Therefore an( f,Q)
an(g,Q)

≤ en‖ f −g‖∞ and so

Pint ( f, Q) − Pint (g, Q) = lim
n→∞

1

n
log

an( f, Q)

an(g, Q)
≤ lim

n→∞
1

n
log en‖ f −g‖∞

= ‖ f − g‖∞.

Interchanging the roles of f and g one finds assertion (iii). ��
Next we discuss changes in the considered set Q.

Proposition 14 Let f ∈ C(U, R) and Q ⊂ X a compact strongly invariant set. Assume that
Q = ⋃N

i=1 Qi with compact strongly invariant sets Q1, . . . , QN . Then

Pint ( f, Q) ≤ max
1≤i≤N

Pint ( f, Qi ).

Proof For every i ∈ {1, . . . , N }, let Si a strongly (n, Qi )-spanning set and define S =⋃N
i=1 Si . Then S is a strongly (n, Q)-spanning set with

∑

ω∈S
e(Sn f )(ω) ≤

N∑

i=1

∑

ω∈Si

e(Sn f )(ω).

With

an( f, Qi ) = inf

⎧
⎨

⎩
∑

ω∈Si

e(Sn f )(x,ω); Si strongly (n, Qi )-spanning

⎫
⎬

⎭ ,

we have an( f, Q) ≤ ∑N
i=1 an( f, Qi ). Now Kawan [7, Lemma 2.1] implies that

Pint ( f, Q) = lim
n→∞

1

n
log an( f, Q) ≤ lim sup

n→∞
1

n
log

N∑

i=1

an( f, Qi )

≤ max
1≤i≤N

lim sup
n→∞

1

n
log an( f, Qi ) = max

1≤i≤N
Pint ( f, Qi ).

��
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Consider two control systems of the form (1) given by

xk+1 = F1(xk, uk) and yk+1 = F2(yk, vk) (8)

in X1 and X2 with corresponding solutions ϕ1(n, x, ω1) and ϕ2(n, y, ω2) and control spaces
U1 and U2 corresponding to control ranges U1 and U2, respectively. Then

zk+1 = F(zk, wk),

with zk = (xk, yk), wk = (uk, vk), F = (F1, F2), again is a control system of the form (1) in
X1 × X2 with control space U1 ×U2 and solution ϕ1 ×ϕ2 : N0 × (X1 × X2)× (U1 ×U2) →
X1 × X2,

(ϕ1 × ϕ2) (n, z, ω) = (ϕ1 × ϕ2) (n, (x, y), (ω1, ω2)) = (ϕ1(n, x, ω1), ϕ2(n, y, ω2)).

Proposition 15 Let fi ∈ C(Ui , R) and let Qi ⊂ X i be compact strongly invariant sets for
the control systems in (8), i = 1, 2. Then

Pint ( f1 × f2, Q1 × Q2) = Pint ( f1, Q1) + Pint ( f2, Q2),

where f1 × f2 ∈ C(U1 ×U2, R) is defined by ( f1 × f2)(u, v) = f1(u) + f2(v).

Proof Note that Q1 × Q2 ⊂ X1 × X2 is a compact strongly invariant set. Furthermore, if
Si is a strongly (n, Qi )-spanning set for Qi , i = 1, 2, then S = S1 × S2 ⊂ U1 × U2 is a
strongly (n, Q1 × Q2)-spanning set and

∑

ω∈S
e(Sn( f1× f2))(ω) =

∑

(ω1,ω2)∈S1×S2

e(Sn f1)(ω1)e(Sn f2)(ω2)

=
∑

ω1∈S1

e(Sn f1)(ω1)
∑

ω2∈S2

e(Sn f2)(ω2).

Since S1 and S2 are arbitrary, we obtain
an( f1 × f2, Q1 × Q2) = an( f1, Q1)an( f2, Q2).

Therefore

Pint ( f1 × f2, Q1 × Q2) = lim
n→∞

1

n
log an( f1 × f2, Q1 × Q2)

= lim
n→∞

1

n
log [an( f1, Q1)an( f2, Q2)]

= Pint ( f1, Q1) + Pint ( f2, Q2).

��
Nextwe show that the inner invariance pressure is invariant under appropriate conjugacies.

Again, consider two control systems as in (8). A pair of maps (ρ, H) is called a conjugacy
if ρ : X1 → X2 and H : U1 → U2 are homeomorphisms such that

ρ(F1(x, u)) = F2(ρ(x), H(u)) for all x ∈ X1, u ∈ U1. (9)

Note that this induces a map h : U1 → U2 such that h(ω)i = H(ωi ) for all i ∈ N0 and the
solutions satisfy

ρ(ϕ1(k, x, ω)) = ϕ2(k, ρ(x), h(ω)) for all n ∈ N0. (10)

Clearly, conjugacy is an equivalence relation.
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Theorem 16 Using the above notation, assume that (ρ, H) is a conjugacy between two
systems of the form (8), suppose that Q ⊂ X1 is strongly invariant and let f ∈ C(U2, R).
Then ρ(Q) is strongly invariant in X2 and the inner invariance pressure satisfies

Pint ( f ◦ H, Q) = Pint ( f, ρ(Q)).

Proof The set ρ(Q) is compact by continuity of ρ. In order to see that it is strongly invariant,
write y = ρ(x) ∈ ρ(Q) with x ∈ Q. By strong invariance of Q there is u ∈ U1 with
F1(x, u) ∈ intQ. Since ρ is an open map, the conjugacy condition implies.

F2(y, H(u)) = F2(ρ(x), H(u)) = ρ(F1(x, u)) ∈ ρ(intQ) = int(ρ(Q)).

If S is a strongly (n, Q)-spanning set, then h(S) is a strongly (n, ρ(Q))-spanning set: In
fact, for y = ρ(x) ∈ ρ(Q) there is ω ∈ S with ϕ1(i, x, ω) ∈ int(Q), i = 1, . . . , n, therefore
(10) implies

ϕ2(i, y, h(ω)) = ϕ2(i, ρ(x), h(ω)) = ρ(ϕ1(i, x, ω)) ∈ ρ(int(Q)) = int(ρ(Q)).

The same arguments show that for a strongly (n, ρ(Q))-spanning set S̃ the set S := h−1(S̃)

is strongly (n, Q)-spanning. Note also that (Sn f )(h(ω)) = (Sn( f ◦ H))(ω). Hence
∑

h(ω)∈h(S)

e(Sn f )(h(ω)) =
∑

ω∈S
e(Sn f )(h(ω)) =

∑

ω∈S
e(Sn( f ◦H))(ω)

and it follows that an( f, ρ(Q)) = an( f ◦ H, Q), and Pint ( f ◦ H, Q) = Pint ( f, ρ(Q)), as
claimed. ��

Nextweprove the power rule for inner invariance pressure.Consider a control systemof the
form (1) with compact strongly invariant set Q. Suppose we take N ∈ N steps at once. Then,
naturally, the solution ϕ(N , x, ω) may be in intQ while there may exist i ∈ {1, . . . , N − 1}
with ϕ(i, x, ω) /∈ Q. Hence, for a power rule in invariance problems of discrete-time systems
one has to exclude this a-priori.

Starting from control system (1) define the following control system. Given N ∈ N, the
control range isU N = U × · · ·×U and the set of corresponding controls is denoted by UN .
Then a bijective relation between the controls in U and in UN is given by

i : U → UN : ω = (ωk) �→ (ωN
k ) := (ω(Nk), . . . , ω(Nk + N − 1)).

The solutions will be given by ϕN (0, x, ω) = x and for k ≥ 1

ϕN (k, x, i(ω)) = ϕ(nN , x, ω).

Then, these are the solutions of a control system of the form

xk+1 = F (N )(xk, vk), vk ∈ U N , (11)

and the solutions can be written as

ϕN (k, x, ω) = ϕN ,θN (k−1)(ω) ◦ · · · ◦ ϕN ,ω(x).

As argued above, in the definition of the strong invariance pressure of system (11) we only
consider solutions which remain in Q for all times between the steps of length N .

Proposition 17 In the above setting we denote by PN
inv( f, Q) the inner invariance pressure

of (11). Then for every f ∈ C(U, R)

PN
int (g, Q) = N · Pint ( f, Q),

where g ∈ C(U N , R) is given by g(ω0, . . . , ωN−1) := ∑N−1
i=0 f (ωi ).
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Proof If S ⊂ U is a strongly (nN , Q)-spanning set for (1), then SN := {i(ω); ω ∈ S} is a
strongly (n, Q)-spanning set for (11). Analogously, if SN is a strongly (n, Q)-spanning set
for (11), then i−1(SN ) is a strongly (nN , Q)-spanning set for (1). Therefore

∑

ω∈SN

e(Sng)(ω) =
∑

ω∈i−1(SN )

e(SnN f )(ω).

We denote

aNn ( f, Q) := inf
SN

⎧
⎨

⎩
∑

ω∈SN

e(Sn f )(ω)

⎫
⎬

⎭ ,

where the infimum is taken over all the strongly (n, Q)-spanning sets SN for (11). Then
aNn (g, Q) = anN ( f, Q) and so

PN
int (g, Q) = lim

n→∞
1

n
log aNn (g, Q) = N lim

n→∞
1

nN
log anN ( f, Q) = N · Pint ( f, Q).

��
The following simple example illustrates inner invariance pressure. A more elaborate

case will be discussed in the next section in the framework of outer invariance pressure for
continuous-time systems.

Example 18 Consider a scalar linear system of the form

xk+1 = αxk + uk, uk ∈ U := [−1, 1],
with α > 1 and let Q :=

[
− 1

α−1 + ε, 1
α−1 − ε

]
, where ε > 0 is small. Let f ∈ C(U, R) be

given by f (u) = |u| , u ∈ [−1, 1]. We claim that

Pint ( f, Q) = hinv,int (Q) = logα.

Concerning the formula for the inner invariance entropy of Q one knows that

hinv,int (Q) ≤ hinv,out (Q) = logα.

The converse inequality follows by the same volume argument as in Colonius, Kawan and
Nair [2, Example 3.2].

In order to show Pint ( f, Q) ≥ logα, consider for n ∈ N a finite strongly (n, Q)-spanning
set S. For ω ∈ S define

Qω := {x ∈ Q;ϕ( j, x, ω) ∈ intQ for j = 1, . . . , n}.
Then Q = ⋃

ω∈S Qω and hence the Lebesgue measure λ satisfies λ(Q) ≤ ∑
ω∈S λ(Qω).

Furthermore, for x ∈ Qω we have

ϕ(n, x, ω) = αnx +
n−1∑

i=0

αn−1−iui ∈ Q,

which implies that λ(Q) ≥ αnλ(Qω). Thus

λ(Q) ≤
∑

ω∈S
λ(Qω) ≤ #S·max

ω∈S λ(Qω) ≤ #S · α−nλ(Q)

   



                          15

and hence #S ≥ αn . Since f (u) ≥ 0, it follows that

an( f, Q) = inf

{
∑

ω∈S
e(Sn f )(ω); S strongly (n, Q)-spanning

}
≥ αn

implying

Pint ( f, Q) = lim
n→∞

1

n
log an( f, Q) ≥ logα.

In order to prove Pint ( f, Q) ≤ logα, we use that the inner invariance entropy is given by
hinv,int (Q) = logα. If a solution with x0 ∈ Q and control values ui ∈ U satisfies for k ≥ 1

ϕ(k, x, ω) = αkx +
k−1∑

i=0

αk−1−iui ∈ intQ,

then it follows for every δ ∈ (0, 1) that δui ∈ δU = [−δ, δ] ⊂ [−1, 1] = U for all i and

δϕ(k, x0, ω) = αkδx0 +
k−1∑

i=0

αk−1−iδui ∈ int(δQ) ⊂ int(Q).

Hence the solution with initial point δx0 ∈ δQ and control values δui ∈ δU remains in
int(δQ). Observe that f (δui ) = |δui | ≤ δ.

Take 0 < δ < 1
α−1 − ε. Then for x0 ∈ Q =

[
− 1

α−1 + ε, 1
α−1 − ε

]
there are n0 ∈ N and

ω = (ui ) with ui ∈ U = [−1, 1] such that

ϕ(n0, x0, ω) ∈ (−δ, δ) and ϕ(k, x0, ω) ∈ intQ for all k = 1, . . . , n0 − 1. (12)

This is seen as follows. If x0 ∈
[
0, 1

α−1 − ε
]
, we can make a step to the left of x0 of length l

where l ∈ (0, (α − 1)ε] is arbitrary. In fact, using the control value u0 = −1 ∈ [−1, 1] one
obtains for x1 = αx0 + u0 that

x1 − x0 = αx0 − x0 − 1 ≤ (α − 1)

(
1

α − 1
− ε

)
− 1 = −(α − 1)ε < 0.

Similarly, for u0 = −(α − 1)x0 ∈ [−1, 1], one computes x1 = x0 and hence, by continuity,
one can make steps of length l to the left.

Analogously for x0 ∈
[

1
1−α

+ ε, 0
]
one can make steps of length l ∈ (0, (α − 1)ε] to the

right. Going several steps, if necessary, one can reach the interval (−δ, δ) from each point
of Q. These arguments also show that we can stay in the interval (−δ, δ) if we start in it.
Together we have shown that there is a time n0 ∈ N such that for every x0 ∈ Q there is a
control ω with (12).

By continuity, there are finitely many controls ω1, . . . , ωN such that for every x0 ∈ Q
there is ωi with ϕ(n0, x0, ωi ) ∈ (−δ, δ) and ϕ(k, x0, ωi ) ∈ intQ for k = 1, . . . , n0.

Now choose a finite (n, Q)-spanning set S with minimal cardinality #S = rinv,int (n, Q).
This yields the set Sδ := {δω;ω ∈ S} of controls with values in [−δ, δ] which keep every
element in δQ. Concatenations of the controls in Sδ with the controls ω1, . . . , ωN yields an
(n0 + n, Q)-spanning set S ′ with cardinality #S ′ ≤ N · #S. For k ∈ {n0, . . . , n0 + n − 1},
the controls in S ′ have values in [−δ, δ], hence f (u) = |u| ≤ δ here.

   



16                           

We compute for ω′ = (u′
i ) ∈ S ′

(Sn0+n f )(ω
′) =

n0+n−1∑

i=0

f (u′
i ) =

n0−1∑

i=0

f (u′
i ) +

n0+n−1∑

i=n0

f (u′
i )

≤ n0 max
u∈[−1,1] |u| + n max

u∈[−δ,δ] |u| = n0 + nδ.

This yields

an+n0( f, Q) ≤
∑

ω′∈S ′
e(Sn+n0 f )(ω) ≤ #S ′ · en0+nδ ≤ N · #S · en0+nδ

= N · rinv,int (n, Q) · en0+nδ,

and hence

Pint ( f, Q) = lim sup
n→∞

1

n + n0
log an+n0( f, Q)

≤ lim sup
n→∞

[
1

n + n0
log N + n

n + n0

1

n
log rinv,int (n, Q) + n0 + nδ

n + n0

]

≤ lim
n→∞

1

n
log rinv,int (n, Q) + lim sup

n→∞
n0 + nδ

n + n0
.

Since n0+nδ
n+n0

≤ 2δ for n large enough, it follows that Pint ( f, Q) ≤ hinv,int (Q) + 2δ which
implies Pint ( f, Q) ≤ hinv,int (Q) using that δ > 0 is arbitrary.

As announced in Remark 2, we conclude this section with some comments on other
versions of invariance pressure that can be constructed in analogy to versions of invariance
entropy, cf. Kawan [7].

Call a pair (K , Q) of nonempty subsets of X admissible for control system (1), if K is
compact and for each x ∈ K there is ω ∈ U such that ϕ(k, x, ω) ∈ Q for all k ∈ N0. Then
for n ∈ N a subset S ⊂ U is called (n, K , Q)-spanning if for all x ∈ K there is ω ∈ S with
ϕ(k, x, ω) ∈ Q for k = 0, 1, . . . , n. For f ∈ C(U, R) define

an( f, K , Q) := inf

{
∑

ω∈S
e(Sn f )(ω); S (n, K , Q)-spanning

}
.

Then one can define the invariance pressure as

P( f, K , Q) := lim sup
n→∞

1

n
log an( f, K , Q).

Another version of invariance pressure can be defined as follows. For ε > 0, the ε-
neighborhood Nε(Q) of Q ⊂ X is the set Nε(Q) := {y ∈ X; there is x ∈ Q with
d(x, y) < ε}. Given a closed set Q ⊂ X , ε > 0 and n ∈ N, a set S ⊂ U is called
(n, Q, Nε(Q))-spanning, if for all x ∈ Q there is ω ∈ S with ϕ(k, x, ω) ∈ Nε(Q) for all
k = 1, . . . , n. For f ∈ C(U, R) define

an(ε, f, Q) := inf

{
∑

ω∈S
e(Sn f )(ω); S (n, Q, Nε(Q))-spanning

}
,

and

P(ε, f, Q) := lim sup
n→∞

1

n
log an(ε, f, Q).
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Then we define the outer invariance pressure as

Pout ( f, Q) := lim
ε→0

P(ε, f, Q).

Clearly, Pout ( f, Q) = supε>0 P(ε, f, Q) ≤ Pint ( f, Q).

4 Invariance Pressure of Continuous-Time Systems

In this section we discuss invariance pressure for control systems given by ordinary differ-
ential equation and show that it can be characterized using discretized time. Then we will
derive a formula for the outer invariance pressure of linear control systems.

Throughout we assume that X is a d-dimensional smooth manifold, U ⊂ R
m is Borel

measurable and U = {ω : R → U ; Lebesgue integrable}. Consider the continuous-time
control system

ẋ(t) = F(x(t), ω(t)), (13)

where F : X × U → T X is continuous, T X is the tangent bundle and for each u ∈ R
m the

map Fu := F(·, u) : X → T X is a vector field. We assume that Q ⊂ X is compact and
that for all x ∈ Q and ω ∈ U a unique solution ϕ(t, x, ω) ∈ Q, t ≥ 0, exists. Furthermore,
we assume that Q is controlled invariant, i.e., for every x ∈ Q there exists ω ∈ U such that
ϕ(t, x, ω) ∈ Q for all t ≥ 0.

In analogy to the discrete-time case, we call a subset S ⊂ U a (τ, Q)-spanning set, if
τ > 0 and for every x ∈ Q there exists ω ∈ S such that ϕ(t, x, ω) ∈ Q for all t ∈ [0, τ ].

For τ ≥ 0 and f ∈ C(U, R) define (Sτ f )(ω) = ∫ τ

0 f (ω(t))dt and

aτ ( f, Q) := inf

{
∑

ω∈S
e(Sτ f )(ω); S (τ, Q)-spanning

}
.

The central definition is the following.

Definition 19 The invariance pressure in Q of f ∈ C(U, R) for the control system (13) is

Pinv( f, Q) = lim sup
τ→∞

1

τ
log aτ ( f, Q)

and the invariance pressure of (13) is the map Pinv(·, Q) : C(U, R) → R.

The next theorem shows that for the invariance pressure the time may be discretized.

Theorem 20 If U is compact, then the invariance pressure of system (13) satisfies for every
τ > 0

Pinv( f, Q) = lim sup
n→∞

1

nτ
log anτ ( f, Q) for all f ∈ C(U, R). (14)

Proof For every f ∈ C(U, R), the inequality

Pinv( f, Q) ≥ lim sup
n→∞

1

nτ
log anτ ( f, Q) (15)

is obvious. For the converse note that the function g(u) := f (u) − inf f is nonnegative (if
f ≥ 0, it is not necessary to consider the function g). Let (τk)k≥1, τk ∈ (0,∞) and τk → ∞.
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Then for every k ≥ 1 there exists nk ≥ 1 such that nkτ ≤ τk < (nk + 1)τ and nk → ∞ for
k → ∞. Since g ≥ 0 it follows that

aτk (g, Q) ≤ a(nk+1)τ (g, Q)

and consequently

1

τk
log aτk (g, Q) ≤ 1

nkτ
log a(nk+1)τ (g, Q).

This yields

lim sup
k→∞

1

τk
log aτk (g, Q) ≤ lim sup

k→∞
1

nkτ
log a(nk+1)τ (g, Q).

Since 1
nkτ

= nk+1
nk

1
(nk+1)τ and nk+1

nk
→ 1 for k → ∞, we obtain

lim sup
k→∞

1

τk
log aτk (g, Q) ≤ lim sup

k→∞
1

(nk + 1)τ
log a(nk+1)τ (g, Q)

≤ lim sup
n→∞

1

nτ
log anτ (g, Q).

Together with (15) applied to f − inf f , this shows that

Pinv( f − inf f, Q) = lim sup
n→∞

1

nτ
log anτ ( f − inf f, Q),

and as in Proposition 13 (ii) we have

Pinv( f, Q) = Pinv( f − inf f, Q) + inf f = Pinv(g, Q) + inf f

= lim sup
n→∞

1

nτ
log anτ ( f − inf f, Q) + inf f

= lim sup
n→∞

1

nτ
log e−n inf f anτ ( f, Q) + inf f

= lim sup
n→∞

1

nτ
log anτ ( f, Q).

��
The above result can be rephrased in the following form. Define the invariance pressure

at time 1 of system (13) by

P1
inv( f, Q) = lim sup

n→∞
1

n
log an( f, Q), f ∈ C(U, R),

where

an( f, Q) := inf

{
∑

ω∈S
e(Sn f )(ω); S (n, Q)-spanning

}
.

Corollary 21 If U is compact, then the invariance pressure of system (13) satisfies

Pinv( f, Q) = P1
inv( f, Q) for all f ∈ C(U, R).

Remark 22 Compactness of U has been used in the proof of Theorem 20 only in order to
guarantee that inf f > −∞ for every f ∈ C(U, R). Thus the property in (14) holds for
arbitrary U if the considered functions f are bounded below.
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Next we determine the outer invariance pressure for a class of problemswith linear control
systems. For a control system of the form (13) the outer invariance entropy is defined as
follows (cf. Kawan [7, p. 44]). The ε-neighborhood of Q ⊂ X be denoted by Nε(Q) := {y ∈
X; there is x ∈ Q with d(x, y) < ε}.

Given a closed set Q ⊂ X , ε > 0 and τ > 0, a set S ⊂ U is called (τ, Q, Nε(Q))-
spanning, if for all x ∈ Q there is ω ∈ S with ϕ(t, x, ω) ∈ Nε(Q) for all t ∈ [0, τ ]. Denote
by rinv(τ, ε, Q) the minimal number of elements that a (τ, Q, Nε(Q))-spanning set can have
and

hinv(ε, Q) := lim sup
τ→∞

1

τ
log rinv(τ, ε, Q). (16)

Definition 23 The outer invariance entropy of a closed subset Q ⊂ X is defined by

hinv,out (Q) := lim
ε→0

hinv(ε, Q) ≤ ∞.

It is obvious that hinv,out (Q) = supε>0 hinv(ε, Q) ≤ hinv(Q).
We consider linear control systems of the form

ẋ(t) = Ax(t) + Bu(t), u(t) ∈ U, (17)

where A ∈ R
d×d , B ∈ R

d×m and ∅ �= intU with U ⊂ R
m .

The following result is a consequence of Kawan [7, Theorem 3.1].

Theorem 24 Suppose that Q ⊂ R
d is a compact controlled invariant set for system (17)

with intQ �= ∅. Then

hinv,out (Q) =
d∑

i=1

max(0,Reμi ),

where summation is over all eigenvalues μi of A.

Remark 25 The existence of a compact controlled invariant set Q with nonempty interior
can be guaranteed if the matrix pair (A, B) is controllable (i.e., rank [B, AB, . . . , Ad−1B]
= d) and the matrix A is hyperbolic (i.e., it has no eigenvalues on the imaginary axis).

Theorem 24 will be used to prove a result on outer invariance pressure which we define
in the following way. For the general system (13), f ∈ C(U, R) and ε > 0 let

aτ (ε, f, Q) := inf

{
∑

ω∈S
e(Sτ f )(ω); S (τ, Q, Nε(Q))-spanning

}
,

Pinv(ε, f, Q) := lim sup
τ→∞

1

τ
log aτ (ε, f, Q).

Definition 26 For f ∈ C(U, R) the outer invariance pressure in Q is defined by
Pout ( f, Q) = limε→0 Pinv(ε, f, Q) and the outer invariance pressure of the control sys-
tem (13) is the map Pout (·, Q) : C(U, R) → R.

We get the following formula for the outer invariance pressure of linear systems.

Theorem 27 Consider the linear control system (17) with compact convex control range U.
Let Q ⊂ R

d be compact and let f ∈ C(U, R) be a map such that there are u0 ∈ U and
x0 ∈ intQ with f (u0) = minu∈U f (u) and Ax0 + Bu0 = 0 (i.e., x0 is an equilibrium for
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u0), and assume that there is T0 > 0 such that for every x ∈ Q there are T ∈ (0, T0] and
ω ∈ U with

ϕ(T, x, ω) = x0 and ϕ(t, x, ω) ∈ Q for all t ∈ (0, T ]. (18)

Then the outer invariance pressure is

Pout ( f, Q) = f (u0) + hinv,out (Q) = f (u0) +
d∑

i=1

max(0,Reμi ), (19)

where summation is over all eigenvalues μi of A.

Proof Note that our assumption on Q implies that Q is controlled invariant. Then the second
equality in (19) is an immediate consequence of Theorem 24. We will prove the first equality
in (19) in three steps.

Step 1 First we will simplify the assertion. Define g(v) := f (u + u0) on V := U − u0.
Then g(0) = f (u0) ≤ f (u) = g(u − u0) for all u ∈ U , hence g(0) = minv∈V g(v).
Consider the control system

ẏ(t) = Ay(t) + Bv(t), v(t) ∈ V . (20)

A trajectory ϕ(·, x, ω) of (17) determines a trajectory ψ(·, x − x0, ω − u0) of (20) (here u0
is identified with the corresponding constant control function) and conversely, since

ψ(t, x − x0, ω − u0) = eAt (x − x0) +
∫ t

0
eA(t−s)B(ω(s) − u0)ds

= eAt x +
∫ t

0
eA(t−s)Bω(s)ds −

[
eAt x0 +

∫ t

0
eA(t−s)Bu0ds

]

= ϕ(t, x, ω) − x0.

Thus ϕ(t, x, ω) ∈ Nε(Q) implies that ψ(t, x − x0, ω − u0) ∈ Nε(Q) − x0 = Nε(Q − x0).
The controllability condition for (17) implies that for every x − x0 ∈ Q − x0 there is ω ∈ U
with

ψ(T, x − x0, ω − u0) = 0 and ψ(t, x − x0, ω − u0) ∈ Q − x0 for all t ∈ [0, T ].
Furthermore, 0 ∈ int(Q− x0) since x0 ∈ intQ. It follows that the (τ, Q, intQ)-spanning sets
S of system (17) give rise to (τ, Q − x0, int(Q − x0))-spanning sets S − u0 of system (20)
and conversely. Then it follows that the outer invariance pressure Pout ( f, Q) of system (17)
coincides with the outer invariance pressure Pout (g, Q − x0) of system (20).

These considerations imply that without loss of generality, we can assume that 0 ∈ U and
that Q ⊂ R

d is a compact set with 0 ∈ intQ such that for every x ∈ Q there are T > 0 and
ω ∈ U with

ϕ(T, x, ω) = 0 and ϕ(t, x, ω) ∈ Q for all t ∈ (0, T ],
and that f ∈ C(U, R) with f (0) = minu∈U f (u) (we just write U instead of U − u0, Q
instead of Q − x0 and f instead of g).

Using the same arguments as in the proof of Proposition 13(ii), we find that

Pout ( f, Q) = Pout ( f − f (0), Q) + f (0).

Hence we can further assumewithout loss of generality that 0 = f (0) = minu∈U f (u). Then
the claim takes the form Pout ( f, Q) = hinv,out (Q).
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Step 2 Next we show Pout ( f, Q) ≥ hinv,out (Q). Clearly, it is sufficient to show for
all ε > 0 that Pinv(ε, f, Q) ≥ hinv(ε, Q). Using (18) together with the fact that 0 is an
equilibrium, one finds that for every τ ≥ T0 and every x ∈ Q that there is a control ωx with
ϕ(τ, x, ωx ) = 0 and ϕ(t, x, ωx ) ∈ Q for all t ∈ [0, τ ]. By uniform continuity in t ∈ [0, τ ]
there is a neighborhood of x such that for every y in this neighborhood one has

ϕ(t, y, ωx ) ∈ Nε(Q) for all t ∈ [0, τ ].
Then compactness of Q implies that there is a finite (τ, Q, Nε(Q))-spanning set.

Let δ > 0. Then for all τ large enough one finds a finite (τ, Q, Nε(Q))-spanning set S
with

P(ε, f, Q) = lim sup
τ ′→∞

1

τ ′ aτ ′(ε, f, Q) ≥ 1

τ
log aτ (ε, f, Q) − δ

≥ 1

τ
log

∑

ω∈S
e(Sτ f )(ω) − 2δ.

Since S is (τ, Q, Nε(Q))-spanning, it follows that #S ≥ rinv(ε, τ, Q) and, by assumption,
we also know that f (u) ≥ f (0) = 0 for all u ∈ U . This implies for all τ large enough that

P(ε, f, Q)) ≥ 1

τ
#S − 2δ ≥ 1

τ
rinv(τ, ε, Q) − 2δ.

For τ → ∞ it follows that

P(ε, f, Q) ≥ lim sup
τ→∞

1

τ
rinv(τ, ε, Q) − 2δ.

Since δ > 0 is arbitrary, it follows that this inequality also holds for δ = 0. For ε → 0, this
yields, using also Theorem 24,

Pout ( f, Q) = lim
ε→0

P(ε, f, Q) ≥ lim
ε→0

lim sup
τ→∞

1

τ
rinv(τ, ε, Q) = hinv,out (Q).

Step 3 Finally we show Pout ( f, Q) ≤ hinv,out (Q). Fix ε > 0. The assertion will follow
if we can show that for every δ > 0

P(ε, f, Q) ≤ hinv(ε, Q) + δ.

The strategy will be similar as in Example 18: Every point in Q is steered into a small
neighborhood of 0 ∈ R

d and kept there by a spanning set constructed using linearity of the
system equation.

Take δ > 0. Since 0 ∈ intQ there is α ∈ (0, 1) such that the α-ball Nα(0) around 0
with radius α is contained in intQ. We may choose α > 0 small enough such that |u| < α

implies f (u) ≤ δ. The variation-of-constants formula shows that for β > 0 every trajectory
ϕ(t, x0, u), t ≥ 0, of system (17) satisfies

βϕ(t, x0, u) = eAtβx0 +
∫ t

0
eA(t−s)Bβu(s)ds = ϕ(t, βx0, βu), t ≥ 0.

Take β < α small enough such that βQ ⊂ Nα(0) in R
d and βU ⊂ Nα(0) in R

m . The
controls βu take values in βU which is a subset of U by convexity of U . Note also that
Nα(0) ⊂ Q implies Nαβ(0) ⊂ βQ.

As in Step 2, there is for every x ∈ Q a control ωx ∈ U with

ϕ(T0, x, ωx ) = 0 and ϕ(t, x, ωx ) ∈ Q for all t ∈ (0, T0].
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By uniform continuity on [0, T0] one finds for all y in a neighborhood of x that

‖ϕ(T0, y, ωx )‖ < αβ and ϕ(t, y, ωx ) ∈ Nε(Q) for all t ∈ [0, T0].
Then compactness of Q implies that there are finitely many controls ω1, . . . , ωN such that
for every x ∈ Q there is ωi with

‖ϕ(T0, x, ωi )‖ < αβ and ϕ(t, y, ωi ) ∈ Nε(Q) for all t ∈ [0, T0]. (21)

Thus we have found finitely many controls steering every point in Q into Nαβ(0) ⊂ βQ ⊂
Nα(0) ⊂ intQ. Next we construct controls keeping every point in the ball Nαβ(0) in the
ε-neighborhood of Nε(Q) (on arbitrarily large time intervals).

Fix τ > 0 and let S = {
ω′
1, . . . , ω

′
M

}
be a (τ, Q, Nε(Q))-spanning set with #S =

rinv(τ, ε, Q). Then it follows thatSβ := {
βω′

1, . . . , βω′
M

}
is (τ, βQ, Nε(Q))-spanning. The

controls βu take values in βU ⊂ Nα(0) ∩U . Obviously, #Sβ = M = #S = rinv(τ, ε, Q).
The concatenations of the controls ω1, . . . , ωN with the controls in Sβ are given for

i = 1, . . . , N and j = 1, . . . , M by

ωi j (t) :=
{

ωi (t) for t ∈ [0, T0]
βω′

j (t − T0) for t > T0
.

Now consider τ ′ := τ + T0. Then the set

S ′ = {
ωi j ; i ∈ {1, . . . , N } and j ∈ {1, . . . , M}}

is (τ ′, Q, Nε(Q))-spanning. This follows, since by (21) one has that all points ϕ(T0, x, ωi ) ∈
Nαβ(0) ⊂ βQ. On the interval [T0, τ ′] each control only takes values in βU ⊂ Nα(0), hence
f (u) ≤ δ here. We have #S ′ = N · M = N · rinv(τ, ε, Q) and compute for ωi j ∈ S ′

(Sτ ′ f )(ωi j ) =
∫ τ ′

0
f (ωi j (σ ))dσ =

∫ T0

0
f (ωi j (σ ))dσ +

∫ τ ′

T0
f (ωi j (σ ))dσ

≤ T0 max
u∈U f (u) + (τ ′ − T0) max|u|≤α

f (u) ≤ T0 max
u∈U f (u) + τδ.

This yields

log aτ ′(ε, f, Q) ≤ log
∑

ωi j∈S ′
e(Sτ ′ f )(ωi j ) ≤ log

∑

ωi j∈S ′
eT0 maxu∈U f (u)+τδ

≤ log #S ′ + T0 max
u∈U f (u) + τδ

≤ log N + T0 max
u∈U f (u) + τδ + log rinv(τ, ε, Q).

Note that

lim
τ ′→∞

τ

τ ′
1

τ
log rinv(τ, ε, Q) = hinv(ε, Q).

Let τk → ∞ such that for τ ′
k = τk + T0

P(ε, f, Q) = lim
k→∞

1

τ ′
k
log aτ ′

k
(ε, f, Q).

For k large enough

1

τ ′
k

[
log N + T0 max

u∈U f (u) + τkδ

]
≤ 2δ,

   



                          23

hence it follows that

P(ε, f, Q) = lim
k→∞

1

τ ′
k
log aτ ′

k
(ε, f, Q) ≤ hinv(ε, Q) + 2δ.

Since δ > 0 is arbitrary, this implies P(ε, f, Q) ≤ h(ε, Q) and the proof is complete. ��
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