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Abstract

Numerous studies claim that personal dimensions - such as personal interests or prior

spatial knowledge - influence the identification of landmarks for pedestrians. We

assume that the collection of personal data is the highest effort for the identification

of personalised landmarks. Therefore, we need to make sure that the data collection

effort is justified relative to the benefits that can be accrued through the provision of

personalised landmarks.

In this thesis we determine which personal dimensions play a role for the identifi-

cation of personalised landmarks and focus on prior spatial knowledge and personal

interests. On the basis of these dimensions we personalise existing mathematical

models. From the amount of possible models available, we limit our investigations on

four of them: the weighted sum model, the weighted product model, a decision flow

chart, and a decision tree model. We train and implement the personalised models

and use them to identify landmarks selected by participants of a survey. The results

of the models are evaluated and compared with statistical methods. In addition,

we train conventional, non-personalised models and use them also to identify the

landmarks selected by the participants. We compare the results of both models,

personalised and conventional, to see if there are advantages of personalisation.

The comparison shows that although the personalised models respond sensitively

to personal dimensions, a personalised model does not identify significantly more

landmarks selected by survey participants than a conventional model. This means

that the collecting of personal data is unlikely to justify the effort. Therefore, it is

most likely sufficient to focus on existing conventional, non-personalised models and

to concentrate on their use in applied pedestrian wayfinding applications.

Landmark Identification, Personalisation, Spatial Knowledge, Personal Interests





Zusammenfassung

Zahlreiche Studien behaupten, dass persönliche Dimensionen - wie persönliches

Interesse oder vorheriges räumliches Wissen - die Identifikation von Landmarken

für Fußgänger beeinflussen. Wir gehen davon aus, dass der größte Aufwand zur

Identifikation personalisierter Landmarken bei der Erhebung personenbezogener Daten

entsteht. Deshalb muss sichergestellt werden, dass der Aufwand für die Datenerhebung

im Vergleich zu den Vorteilen, welche die Bereitstellung personalisierter Landmarken

mit sich bringt, gerechtfertigt ist.

In dieser Arbeit ermitteln wir, welche persönlichen Dimensionen eine Rolle bei

der Identifikation personalisierter Landmarken spielen und konzentrieren uns auf

vorheriges räumliches Wissen und persönliche Interessen. Auf Basis der Dimensionen

personalisieren wir bestehende mathematische Modelle. Aus der Fülle möglicher

Modelle beschränken wir unsere Untersuchungen auf vier ausgewählte: das gewichtete

Summenmodell, das gewichtete Produktmodell, ein Entscheidungsflussdiagramm und

ein Entscheidungsbaummodell. Wir trainieren und implementieren die personalisierten

Modelle und verwenden sie, um die von den Teilnehmern einer Studie ausgewählten

Landmarken zu identifizieren. Die Ergebnisse der Modelle werden mit statistischen

Methoden ausgewertet und verglichen. Des Weiteren trainieren wir konventionelle,

nicht personalisierte Modelle und verwenden sie ebenfalls zur Identifikation der

von Teilnehmern ausgewählten Landmarken. Wir vergleichen die Ergebnisse beider

Modelle, personalisiert und konventionell, um festzustellen, ob die Personalisierung

Vorteile bietet.

Der Vergleich zeigt, dass obwohl die personalisierten Modelle sensitiv auf per-

sönliche Dimensionen reagieren, ein personalisiertes Modell nicht signifikant mehr

von den Studienteilnehmern ausgewählte Landmarken als ein konventionelles Modell

identifiziert. Dies bedeutet, dass der Aufwand für die Erhebung personalisierter Daten

vermutlich nicht gerechtfertigt ist. Daher ist es höchstwahrscheinlich ausreichend,

sich auf vorhandene konventionelle, nicht personalisierte Modelle und auf deren

Verwendung in Wegfindungsanwendungen für Fußgänger zu konzentrieren.

Landmarkenidentifikation, Personalisierung, Räumliches Wissen, Persönliche Inter-

essen
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Chapter 1

Introduction

’Go straight ahead to the small square where the kiosk is, then turn into

Karl-Strasse and go past the old garden, where once the mining director

lived. Then - just behind the allotment gardens you will find the scrap

yard’(translated from Vahle (2014)).

This is what Anne’s grandmother in the famous children’s book Anne Kaffekanne

(Vahle 2014) says when Anne wants to get to the scrap dealer where she hopes to

find her missing coffee pot. Here Anne’s grandmother gives route directions which

are enriched with personalised landmarks - salient objects that are suitable to Anne’s

needs. The grandmother knows that Anne is familiar with the area and knows where

the mining director used to live. Furthermore, the grandmother is aware of the fact

that Anne knows the kiosk where she sometimes buys something there for herself.

In fact, Anne finds the way without any problems and without getting lost. Even

though ’there was little to see of the old garden and the house’ (translated from Vahle

(2014)) of the mining director.

Anne’s grandmother has intuitively chosen route directions with personalised

landmarks perfectly fitting her granddaughter. They are tailored to her prior spatial

knowledge and adapted to her specific and personal interests. Today’s pedestrian

wayfinding applications are far from providing such personalised landmarks. Most of

them use the same strategies as car navigation systems and include only a pedestrian

mode. They provide route directions tailored to the needs of car drivers but not

adequate for pedestrians. The resulting route directions consist of compass directions,

distances, and street names. Such a wayfinding system would give Anne the following

route direction:
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’Head north on the square and then continue onto Karl-Strasse. After

177 meters the destination will be on the right.’

We think most of You can agree that with these route directions Anne would

not have found the way as easily as with those from her grandmother. Today’s

pedestrian wayfinding applications rarely include landmarks. Nevertheless, we know

that humans prefer them for navigation (Chapter 2). There are even models available

which identify objects that are suitable as a landmark, i.e. objects that ’stick out of

their surrounds and, thus, may be assigned a landmarkness property’ (Richter 2017,

p. 136). A personalised landmark may have different aspects - so-called dimensions -

to explain its landmarkness. Currently available conventional landmark identification

models consider only landmark dimensions, which are static and dependent on an

object itself. They identify landmarks that are used for route directions of the form:

’Go straight ahead to the small square with the monument, then follow

the Karl-Strasse until the house with the stucco façade. Then - just

behind the grey house you will find the scrap yard’.

A route direction that most likely makes Anne neither curious nor can guarantee

that she knows what a stucco façade is. These landmark identification models

obviously miss personal dimensions which depend on Anne’s prior spatial knowledge

and personal interests.

However, what grandmother has done so easily is rather hard for an automated

system to replicate. To be able to generate route directions with personalised

landmarks, an application would have to collect a lot of personal data about Anne. It

has to know where Anne has been before and that she likes to buy something at the

kiosk. In order to find that out the application would have to ask Anne a number

of questions before she would be able to receive route directions. Anne would, very

likely, be unwilling to answer all these questions, because she wants to reach the scrap

yard as soon as possible.

The highest cost for the provision of personalised landmarks is personal data

collection. Therefore, we need to make sure that the data collection effort is justified

in relation to the advantages that can be achieved through the provision of personalised

landmarks. Currently, neither we know which personal dimensions play a role for

the identification of personalised landmarks nor whether these dimensions have an

impact on personalised landmark identification. Therefore, our aim is to find out
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whether a personalised landmark identification model that incorporates prior spatial

knowledge and personal interests identifies more landmarks selected by humans than a

conventional, non-personalised model. If this is not the case, it is most likely sufficient

to focus on existing conventional, non-personalised models and to concentrate on

their use in applied pedestrian wayfinding applications.

1.1 Hypothesis and Goals

We define landmarks as salient objects that may attract our attention (Richter

& Winter 2014) (for a detailed definition of landmarks see Section 2.1.2). The

property that turns a conventional geographic object into a landmark is called

salience (Raubal & Winter 2002, Elias 2003b). There is a general distinction between

approaches to landmark identification and landmark integration (for details see

Section 2.2). Landmark identification models concern the assessment of object

salience for navigation and result in a pool of potential landmarks (Richter & Winter

2014). Currently available conventional landmark identification models consider

only landmark dimensions, which are static and dependent on an object itself. We

make a contribution to landmark identification and develop personalised landmark

identification models to support the creation of cognitively ergonomic route directions

(Klippel et al. 2009). Such route directions consider aspects of personalisation such

as the ’user’s familiarity with an environment, as well as personal styles’ (Klippel

et al. 2009, p. 231). Therefore, we focus on prior spatial knowledge of a traveller and

personal interests as important personal dimensions in our personalised landmark

identification models. Our hypothesis is the following:

A personalised landmark identification model that incorporates prior spatial

knowledge and personal interests identifies more landmarks selected by humans

than a conventional, non-personalised model.

In order to test this hypothesis we investigate possible personal dimensions,

formalise and implement personalised landmark identification models, and compare

their results to conventional models. The following steps help to reach these goals:

1. Investigate dimensions playing a role for personalised landmark identification

with a focus on personal interests and prior spatial knowledge.

2. Investigate salience measures of the personal dimensions, personal interests and

prior spatial knowledge.

3
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3. Develop landmark identification models both conventional and personalised.

4. Implement the landmark identification models.

5. Collect data for landmark dimensions and collect personal dimensions and

landmarks in the framework of a survey to feed the landmark identification

models.

6. Create the landmark identification models with the help of the collected data.

7. Test the performance of the models on collected data and compare the models

results (identified landmarks) with landmarks selected by the participants of

the survey.

8. Perform a sensitivity analysis to identify the dimensions which influence the

results of the personalised landmark identification models.

9. Compare the results of the personalised landmark identification models with

the results of the conventional landmark identification models.

1.2 Approach

A personalised landmark may have different dimensions to explain its landmarkness.

The first step of our approach is the investigation of these dimensions playing a role

for personalised landmark identification. Winter et al. (2012) identify the need for

context-dependent identification of landmarks focusing on:

1. the context that represents the appearance, the efficacy from all directions, or

cultural importance of the landmark itself and

2. the context that represents preferences of the traveller as an individual (e.g.

mobility, gender, age, education, or home town).

The former is static and dependent on an object itself. The latter changes with

each individual traveller, because whether an object becomes a landmark is not only

affected by the object itself but also by the perspective of the traveller (Caduff &

Timpf 2008). We differentiate the following dimensions based on Winter et al.’s

(2012) work:

1. landmark dimensions and

2. personal dimensions.
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We build on the definitions of Sorrows & Hirtle (1999) and Raubal & Winter (2002)

for landmark dimensions. These are the visual, the semantic, and the structural

dimension. Additionally, we add a landmark interest dimension to consider the topic

of interest. We identify attributes and attribute values for the landmark dimensions.

There are several personal dimensions: personal knowledge, personal interests,

personal goals, personal background, and individual traits (Brusilovsky & Millán

2007). We focus on prior spatial knowledge and personal interest in this thesis. We

investigate attributes and attribute values for these personal dimensions.

Furthermore, we investigate salience measures of the dimensions. We adapt

existing salience measures from Raubal & Winter (2002) and Nuhn et al. (2012) for

the landmark dimensions. We introduce a salience measure for the landmark interest

dimension. In addition, we investigate methods to calculate salience of the personal

dimensions and develop salience measures for prior spatial knowledge and personal

interests.

Then, we develop landmark identification models. The conventional models built

on landmark dimensions and the personalised models add the personal dimension.

Due to the amount of possible models which could be used as basis we limit our

investigations to three mathematical models that are based on theory and a machine

learning model that has the ability to learn from data (Samuel 1959):

1. Models based on theory

• Weighted Sum Model (wSm) Raubal & Winter (2002) propose a wSm

for modelling landmark salience. This model is widely used for landmark

identification (e.g. Winter (2003), Nothegger et al. (2004)). We use

this model as a Conventional Weighted Sum Model (CwSm) and extend

this model with personal dimensions (Personalised Weighted Sum Model

(PwSm)). The result of these models is an overall measure of landmark

salience for an object.

• Weighted Product Model (wPm) A wPm is an alternative to a wSm.

We are not aware of an existing wPm for landmark identification. We

build a Conventional Weighted Product Model (CwPm) and a personalised

model (Personalised Weighted Product Model (PwPm)). The result of

the PwPm and the CwPm is an overall landmark salience measure for an

object.

• Decision Flow Chart (dFc) There is a long tradition of using diagrams

for a large variety of tasks. Such flowcharts are based on knowledge of
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experts or literary research and involve decisions and processes. Since a dFc

for landmark identification does not exist, we build both a Conventional

Decision Flow Chart (CdFc) and a Personalised Decision Flow Chart

(PdFc). The models result in one or more landmarks for a decision point.

2. Machine Learning Model

• Decision Tree Model (dTm) There are numerous machine learning

methods. One model is the dTm, which is similar to a dFc but it does not

consider processes and concentrates only on decisions and their results.

dTms are already used for landmark identification (Elias 2006). We create

a Conventional Decision Tree Model (CdTm) and a personalised one

(Personalised Decision Tree Model (PdTm)). The resulting models are

able to classify objects in landmark (LM) and objects which are not a

landmark (NAL).

This results in eight models: four conventional and four personalised landmark

identification models.

The next step of our approach is the implementation of these models. We im-

plement all the models and methods using ESRI’s ArcGIS 10.5.1 together with

Python toolboxes using Python 2.7.13. The python site package ArcPy provides an

environment for developing Python scripts and enables writing customised ArcGIS

applications and scripts (ESRI 2018). In addition, we use several packages e.g. the

statistical packages scipy.stats and scikit-learn which provide simple and efficient

tools for data mining and data analysis (Pedregosa et al. 2011).

We collect data for landmark and personal dimensions. While landmark dimen-

sions are extracted from official databases or acquired during field surveys, personal

dimensions are collected by a survey. We perform the survey in the inner city of

Augsburg and ask participants to select landmarks (LM) and objects which are not

landmarks (NAL). Furthermore, we ask them to provide information on personal

dimensions.

We use a part of the collected data to create (train) the landmark identification

models (training set) and the other part to test the models’ performances (test set).

The machine learning models, CdTm and PdTm, learn their model parameters from

the training set. The conventional models based on theory have no unknown model

parameters, whereas the model parameters of the personalised models that are also

based on theory need to be identified. This concerns the weights of both: PwSm and

the PwSm and the flow of the PdFc as well.
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Figure 1.1: Architecture of a pedestrian wayfinding application.

After the models are created we have conventional and personalised models that

are able to identify whether a sample of a new unseen dataset is a LM or a NAL

(testing). We identify how the models perform on the test set and compare their

identified landmarks with landmarks selected by the participants of the survey. We

compare the results of the models and identify which of the models deliver better

results.

Furthermore, we perform a sensitivity analysis to identify the dimensions which

influence the output of the personalised models. We vary one dimension at a time to

investigate the effect that changes in dimensions have on the outputs of the models.

The last step of our approach focuses on the comparison of the results of the

personalised landmark identification models with the results of the conventional

landmark identification models. We perform an analysis to find out whether there

are statistically significant differences between the conventional and the personalised

models.

1.3 Scope and Methods

The general idea of this thesis is to integrate the personalised landmark identification

models in a pedestrian wayfinding application generating routes with personalised

landmarks. Figure 1.1 shows a possible architecture of such an application with

an input module, the personalised landmark identification model, as well as the

processing of the result of the model in a routing algorithm. The input module of

such an application would need three different input types to output a route with
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personalised landmarks:

1. values of the landmark dimensions,

2. start and destination of the route, and

3. values of the personal dimension.

The personalised landmark identification models allow the determination of an

overall landmark salience measure for objects or a classification of objects in landmarks

or objects that are not landmarks. This result will then be integrated in the generation

of a route between the defined start and destination, i.e. it can be introduced in a

shortest path algorithm. The result of the routing algorithm is an optimal route in

terms of personalised landmarks.

Within the scope of this thesis we concentrate on personalised landmark identifi-

cation models for pedestrians in European urban inner city environments. We do not

include other environments or other modes of transport in this thesis.

In this thesis a landmark might be any urban structure (buildings as well as e.g.

monuments). That means, this work is not restricted to buildings but also treats

other geographic objects in an urban environment (e.g. water wheels, information

panels, or dust bins). There is a distinction between local and global landmarks in

landmark research (for details see Section 2.1.2). In this thesis we focus exclusively on

local landmarks. Another differentiation is in two and three-dimensional landmarks

(for details see Section 2.1.2). Here, the focus is on local three-dimensional landmarks.

This might be either a building such as a shop, a restaurant, or a school but also

towers, city gates, or city walls or even point-like objects, such as street signs, bus

stops, or advertisement pillars.

We assume that a street network consists of nodes (street intersections) and edges

(street segments). A decision point (DP) is a node of a street network where actions

(e.g. re-orientations) are performed (Klippel & Winter 2005). We consider objects at

decision points and assume that there is at least one object at each decision point

available as input for our models. We do not consider objects along street segments

in this thesis, although the landmark identification models might be transferred. We

divide objects in landmark (LM) and not a landmark (NAL) at decision points.

We collect personal information in the framework of a survey. We control that

the participants are not visually impaired or disabled because then their information

needs and their landmark selection would differ (Golledge et al. 2000, Loomis et al.

2001).
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We use mathematical models as basis for the conventional landmark identification

models. There might be methods to improve the results of these conventional models.

However, the improvement of the conventional models is not within the scope of this

thesis.

1.4 Expected Result and Contributions

The main contribution of this thesis is an answer to the question whether a personalised

landmark identification model incorporating prior spatial knowledge and personal

interests identifies more landmarks selected by humans than a conventional, non-

personalised landmark identification model. In order to achieve this result this thesis

makes the following contributions:

• An analysis of personal dimensions playing a role for personalised landmark

identification. We contribute attributes and attribute values for the identified

dimensions.

• An analysis of salience measures for prior spatial knowledge and personal

interests forming the basis for personalised landmark identification models.

• An adaptation of mathematical models for landmark identification - conventional

and personalised - in the context of pedestrian wayfinding applications.

• An implementation of the conventional and personalised landmark identification

models.

• A survey for the collection of personalised landmarks and personal dimensions.

• A comparison of the different models and their ability to identify landmarks

selected by participants of a survey.

• A sensitivity analysis to identify attributes of landmark and personal dimensions

influencing the output of the personalised landmark identification models.

• A statistical evaluation and comparison of the results of the personalised land-

mark identification models in contrast to the results of conventional landmark

identification models.
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1.5 Thesis Outline

The structure of this thesis is as follows. In the next chapter (Chapter 2) we discuss

the theoretical background and related work. We review what has already been done

in the field of landmarks and human wayfinding and give a detailed definition and

characterisation of landmarks (Section 2.1). Furthermore, we look at existing methods

for modelling landmarks for route directions (Section 2.2) and review research towards

personalised landmarks (Section 2.3). Chapter 2 concludes with implications for the

modelling of personalised landmarks (Section 2.4).

Chapter 3 introduces mathematical models as well as analysis methods. We intend

to use models that are based on theory and a machine learning model for landmark

identification (Section 3.1). In Section 3.2.1 we discuss the traditional approach to

train and test the machine learning models. Inspired by this approach, we investigate

in Section 3.2.2 methods to ’train’ and test the models based on theory. Furthermore,

we elaborate on how to perform sensitivity analysis of the models in order to evaluate

the effects of the inputs on the models’ behaviour (Section 3.3). Afterwards, we

evaluate a comparison method for the results of the models (Section 3.4). We close

with an outlook on the study setup of this thesis (Section 3.5).

Chapter 4 deals with landmark identification models. It investigates which dimen-

sions play a role for the inclusion in such models and identifies attributes and possible

attribute values for landmark and personal dimensions (Section 4.1). We investigate

salience measures for the attributes of these dimensions (Section 4.2). Finally, we

describe in Section 4.3 the conventional and the personalised models to calculate the

overall salience of an object.

The focus of Chapter 5 is on data collection and preparation. We describe how

we extract attributes for the landmark dimensions from official databases or how we

acquire them via field surveys (Section 5.1.1). Furthermore, we describe the setting of

a survey in the inner city of Augsburg to collect personal information and landmarks

(Section 5.1.2). Then, we calculate salience measures for the collected data and

present the input data for the models (Section 5.2). We divide our collected dataset

into a training set and a test set (Section 5.3). We conclude the chapter with the

calculation of overall landmark salience according to the conventional models and

compare the results (Section 5.4).

In Chapter 6 we describe in detail how we carry out the training and testing of

the personalised landmark identification models. First, we describe how to train

the models with the collected dataset from Chapter 5 (Section 6.1). We use the
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traditional approach for the machine learning model and the approach based on the

traditional approach for the other models respectively. Then, we use the models to

identify landmarks and present the results (Section 6.2). We close the chapter with a

discussion of the results of the training and the testing of the personalised models

(Section 6.3).

We start Chapter 7 with a sensitivity analysis of the personalised models (Section

7.1). Furthermore, we carry out a statistical evaluation of the model results and

compare them to the results of the conventional models (Section 7.2). Finally, we

draw conclusions of the results of the sensitivity analysis and the comparison of the

models with regard to our hypothesis (Section 7.3).

In Chapter 8 we discuss the results and investigate a number of reasons for them:

not considered further dimensions (Section 8.1), the methods to calculate salience

measures (Section 8.2), the models to calculate overall salience (Section 8.3), the

dataset (Section 8.4), and the survey design (Section 8.5).

Chapter 9 summarises the research of this thesis (Section 9.1). We present results

and conclusions (Section 9.2) and present ideas for future research on the modelling

of personalised landmarks (Section 9.3). Finally, we conclude with some remarks

(Section 9.4).

The appendix shows tables and figures that do not add to the argument being

made in the main text but should be included for the sake of completeness (Appendix

A).

11





Chapter 2

Related Work

This chapter presents the previous work in pedestrian wayfinding and landmark

research. The first Section 2.1 explores theories about landmarks in human wayfinding.

The second Section 2.2 investigates methods to identify landmarks and methods to

integrate them in route directions. The third section 2.3 reviews research towards

personalised landmarks. The chapter concludes with a summary and implications for

the modelling of personalised landmarks (Section 2.4).

2.1 Landmarks in Human Wayfinding

This section highlights cognitive aspects of human wayfinding and then evaluates

definitions and characteristics of landmarks.

2.1.1 Cognitive Aspects of Human Wayfinding

In this thesis we address a topic part of the research work in the field of location

based services and pedestrian wayfinding applications (Huang et al. 2018). Human

wayfinding research is part of cognitive science. It investigates the process that takes

place when humans orient themselves and navigate through the environment (Raubal

& Winter 2002). Various theories try to explain how people find routes in space,

which information they need to find these routes and how they communicate route

directions (Allen 1997, 1999, Daniel & Denis 1998, Golledge 1999, Kuipers 1978).

The following sections elaborate on these core points of human wayfinding.

Wayfinding Definition, Tasks, and Means

’Wayfinding describes a person’s ability, both cognitive and behavioral, to reach

spatial destinations’ (Passini 1984, p. 154). According to Montello (2005) human
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wayfinding is one of two components of navigation. He defines it as a ’goal-directed

and planned movement of one’s body around an environment’ (Montello 2005, p. 259).

It requires from people to solve problems and to make decisions (e.g. choosing routes,

creating shortcuts, scheduling trips) (Montello & Sas 2006). In contrast, locomotion,

the second component, requires coordination with the local or near surroundings

directly accessible to sensory and motor systems of humans (Montello 2005, Montello

& Sas 2006).

People pursue different goals while travelling through space. Wiener et al. (2009)

subdivide unaided wayfinding into travelling with a specific spatial goal and travelling

with a non-spatial goal. Allen (1999) categorises wayfinding tasks according to

functional goals:

• Travel with the goal of reaching a familiar destination The focus of

travelling with a specific spatial goal is primarily on reaching a particular

destination. This is a very common task. An example from everyday life is

commuting between home and work place (Allen 1999).

• Travel with the goal of reaching a new destination In this case the

specific spatial goal is unknown. Travelling towards an unfamiliar destination is

mostly carried out with different kinds of wayfinding aids (e.g. maps or verbal

route directions, for an overview see Elias (2006)).

• Exploratory travel In contrast to travelling with a specific spatial goal in

mind, the reason for travelling with a non-spatial goal is for example to explore

a new environment (e.g. after moving to a new town, for touristic issues, or

just to walk on the beach (Wiener et al. 2009)). The goal of exploratory travel

is to discover and to return to the starting point (Allen 1999).

These three wayfinding tasks can be accomplished by a variety of means (Allen

1999). One means is piloting between landmarks. This method is equally applicable

to all three wayfinding tasks. It is an efficient means for reaching familiar or new

destinations. The success of this means is dependent on the recognition of landmarks

and remembering the spatial relations between them (Allen 1999). In exploratory

wayfinding the traveller selects landmarks rather than relying on familiar or prescribed

ones (Allen 1999).

Which Information Do People Need to Find Routes in Geographic Space?

Wayfinding includes determining and following a route between a starting point and

a destination (Golledge 1999). In order to find routes in space travellers must have a
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mental representation of the environment of the route. These mental representations

are called cognitive maps (Tolman 1948, Downs & Stea 1974, O’keefe & Nadel 1978).

Individuals acquire spatial arrangements and navigation possibilities while moving

through space and acquire environmental knowledge by experiencing or interacting

with the environment (Golledge 1991). Spatial knowledge as a part of a cognitive map

is commonly divided into three stages of knowledge with interdependent contents:

landmark, route, and survey knowledge (Siegel & White 1975).

• Landmark knowledge During spatial knowledge acquisition, landmarks are

the first spatial cues that are available in no particular order on a cognitive

map (Couclelis et al. 1987). Landmark knowledge is the knowledge where solely

landmarks are remembered (Schmauks 1998). This means that only outstanding

geographical elements (namely landmarks) in a disordered form are available in

memory (Elias 2006).

• Route knowledge The knowledge how to get from one place (or one landmark)

to another is called route knowledge (Wender 1998). It includes a fixed sequence

of locations or landmarks as experienced in traversing a route (Werner et al.

1997). Route knowledge consists of information about the order of landmarks

along a route and knowledge of directions such as ’continue straight on’ or ’turn

right’ inbetween those landmarks (Montello 1998).

• Survey knowledge Survey knowledge integrates knowledge from different

experiences into one single model (Wender 1998). It is the result of the

mental integration of two or more routes (Herrmann et al. 1998). This is

in contrast to route knowledge which is related to only one route. With the

availability of survey knowledge, new routes can be detected and shortcuts can

be generated through the environment (Schmauks 1998). Survey knowledge is

usually generated from route knowledge through integration into a cognitive

map (Herrmann et al. 1998).

The individual stages of spatial knowledge are acquired with different goals,

requirements, or tasks influencing the completeness of the spatial knowledge. It can

be assumed that spatial knowledge acquisition is faster under time pressure and

high attention than if it is acquired implicitly and incidentally (Herrmann et al.

1998). It can be acquired unintentionally in such a way that travellers are not able

to indicate how and why they acquired it (Perrig et al. 1993). Spatial knowledge

is a dynamic component, thus, it may change over time. Travellers learn new

environments thereby increasing their spatial knowledge and getting more familiar
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with an environment. Likewise, the familiarity may decrease when the traveller

has not visited the environment for a longer time and objects did change during

this time period (e.g. marks on geographic features, new buildings, disappeared

objects, ...). The links between objects and location are lost over time because

people forget the environment over time (Pertzov et al. 2012). Spatial knowledge

can become elaborate and extensive and supports wayfinding and direction giving

(Montello 1998). The three stages framework of Siegel & White (1975) follows the

idea that landmark knowledge is a prerequisite for route knowledge, which again

is mandatory for survey knowledge (Ishikawa & Montello 2006). Montello (1998)

identifies this as a problem of what he called the dominant framework from Siegel &

White (1975) and offers a more conceptually coherent one. He postulates different

types of knowledge that are acquired simultaneously. According to Montello (1998)

spatial knowledge is quantitatively accumulated and continuously refined, starting at

the point of first exposure to the environment. Because of this idea of continuous

acquisition of spatial knowledge in new environments this framework is referred to as

the continuous framework.

How Do People Communicate Route Directions?

’Route directions are a form of procedural discourse that exploits a vast domain of

human knowledge, spatial knowledge, and intends to have other people construct new

knowledge to guide their action in the environment’ (Denis et al. 1999, p. 171). They

are answers to a question of the kind ’How do I get from the university to the station?’.

Once persons have acquired spatial knowledge of an environment they are able to give

detailed descriptions of a specific route to a traveller. The communication of route

directions can be divided in four phases: initiation, route description, securing, and

closure (Allen 1997). The initiation phase starts with a question e.g. ’How can I get to

the train station?’ from a traveller to a respondent. Such questions include elements

such as the point of origin and constraining conditions. The initiation phase often

includes a destination query or a state-of-knowledge query (e.g. ’Ho well do you know

the inner city?’). The second phase of route communication is the route description

itself, which is then followed by a securing phase, which includes the travellers reaction

to the directions (Allen 1997). Clarification queries and confirmation statements are

followed by the closure phase, which is a social convention that allows both parts to

end the communication (Allen 1997).

Lovelace et al. (1999) identify three major steps as the central part of route

directions. The first step is the activation of the spatial knowledge of the environment
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to be described at an appropriate scale. This knowledge is presumed to be stored in a

non-linguistic format. The second step is the choice of a specific route. Lovelace et al.

(1999) mention several selection criteria, such as the mode of travel, the desired route

characteristics, and the expected spatial knowledge of the traveller (i.e. familiarity

with the environment). The last step is the translation of the chosen route into verbal

directions (Lovelace et al. 1999) which are communicated to the traveller.

The route directions itself include four characteristics (Daniel & Denis 1998): their

function, their content, their structure, and the perspective they impose on their

users (usually an egocentric perspective). The main function of route directions is to

explain to a person the route to a desired goal in a particular environment (Daniel

& Denis 1998). They usually contain a number of instructions for behaviour, such

as ’turn right’, ’going up’, ’looking for’. In addition, they include an object or place,

which specifies where the behaviour should take place (Daniel & Denis 1998, Passini

1984). Route directions consist of two basic actions: locomotion and reorientation

(Daniel & Denis 1998). Locomotion is needed to reduce the distance between the

current position and the destination. Reorientation describes the reduction of the

angle between the current direction and the direction to the destination (Daniel &

Denis 1998). However, route directions do not only consist of these two basic actions.

Consider the following example: ’Proceed 15 meters; stop; rotate 90 degrees to the

right; proceed 25 meters; stop; rotate 45 degrees to the left; proceed 20 meters. You

are here.’ (Daniel & Denis 1998, p. 46). Such directions are very detailed and precise

and would be highly useful for guiding a robot. But a person with perceptual access

to the environment would never use or produce such directions (Daniel & Denis 1998).

Even the shortest direction communicated by a human includes various elements, e.g.

landmarks, turns, or descriptive information (Lovelace et al. 1999).

Landmarks in Route Directions

A number of studies deal with route directions and their elements. They show that

landmarks are of major importance. The frequency with which they are mentioned is

dependent on individual differences. For instance, there are studies clearly indicating

that women use landmarks more frequently to describe routes than men do (Dabbs Jr

et al. 1998, Galea & Kimura 1993, Sandstrom et al. 1998, Choi et al. 2006, Wang

et al. 2019). Independent of these individual differences, landmarks are nearly always

used in route directions (Allen 2000, Fontaine & Denis 1999, Michon & Denis 2001).

Michon & Denis (2001) even show that directions without landmarks are negatively

perceived. In an experiment people were given only minimal information on a route
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they had to walk. The directions were limited to procedural information, referring to

street names and directions (e.g. ’take the street Saint-Antoine on your right’). After

walking the route participants were asked to write down their difficulties with these

limited descriptions and to suggest possible solutions. Most solutions were related to

landmarks and descriptive elements along the route, such as length specifications or

the number of roads that had to be passed (Michon & Denis 2001).

Tversky & Lee (1999) show that landmarks are used in verbal route directions as

well as in drawn maps. They conducted a survey on an university campus in which

passengers were stopped and asked if they knew the route to an off-campus fast food

restaurant. If they answered affirmatively, they were asked to give either a short

written description of the route or to sketch a map. The results varied, especially the

written descriptions. While some of the participants only mentioned essential turning

directions, others used complete sentences with detailed landmark descriptions. In

fact, more than 90% of the sketch maps and directions included additional information,

such as arrows, distances but especially landmarks and landmark descriptions.

Tom & Denis (2003) state that landmarks work better than street signs for

wayfinding. They report an experiment where participants were either equipped with

street-based directions or with landmark-based directions. Route directions referring

to landmarks appeared to be more effective than those referring to streets. A second

experiment showed that when people generate route directions they do include more

landmark descriptions than references to street names. Finally, Tom & Denis (2003)

state that although street names offer an ideal reference in route directions, they

appear to be poor guides in contrast to landmarks.

2.1.2 Definition and Characterisation of Landmarks

Many definitions, characterisations, and categorisations of landmarks have been made

over the years and a satisfactory one is somewhat elusive (Presson & Montello 1988).

What is a Landmark?

One of the most fundamental definitions of a landmark is introduced by Lynch (1960).

In an experiment he asked participants to sketch their home town. Comparing the

results, Lynch (1960) identified five basic elements in the Image of the City :

1. Paths Channels used by pedestrians customarily, occasionally, or potentially.

These are streets, side walks, canals, rail roads, and other channels on which

people travel. Lynch (1960) shows that paths are the predominant elements
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in people’s images of the city. All other elements are arranged and related to

them.

2. Edges Linear elements that are not paths but boundaries. Examples are walls,

rail road cuts (which cannot be crossed), or shores. Such boundaries close one

area off from the other or define a line along which two regions are related and

joined together. They are not as dominant as paths but essential for people to

organise objects within a city.

3. Districts A two-dimensional medium for a large area in a city, e.g. a part of

a city which shares common design elements and identifying characteristics.

Individuals are able to enter and leave these areas. The city is structured mostly

in districts, individual differences depending on whether paths or districts are

the predominant elements.

4. Nodes Points and spaces which the traveller can physically enter. Nodes are

primarily junctions i.e. a crossing or convergence of paths. The concept of

nodes is strongly connected to the concept of paths as junctions define the

convergence of paths.

5. Landmarks ’Point references considered to be external to the observer, are

simple physical elements which may vary widely in scale’ (Lynch 1960, p. 78).

Landmarks might be buildings, signs, stores, mountains, or other geographic

objects.

Years after Lynch (1960), Presson & Montello (1988) state that everything standing

out from a scene can be a landmark. Whether an object becomes a landmark is

not only affected by the object itself but by the perspective of the observer, the

surrounding environment, and the other geographic objects involved (Caduff & Timpf

2008). The number of geographic objects that become a landmark depends as much

on how familiar an observer is with the surrounding environment as upon the objects

themselves (Lynch 1960). Different observers find different objects to be most useful

as a landmark in a given situation (Götze & Boye 2016). Additionally, different people

perceive the significance of an object in different ways (Krisp 2016). Most people

would agree that the Eiffel Tower is a landmark, however, not so many would agree

that the postbox at the street corner is a landmark (Richter & Winter 2014). Thus,

the Eiffel tower is a prototype of a landmark (Rosch 1973, Rosch et al. 1976, Rosch

1978), while the postbox has only a grade of membership to the landmark category.

Additionally, this grade of membership to the landmark category depends on the
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context (Richter & Winter 2014). Winter et al. (2012) strengthened the importance

of context-dependent parameters such as mobility, gender, age, education, home town,

and other socio-demographic characteristics that influence which object becomes a

landmark. This is in line with the early findings of Lynch who already stated in

the 1960’s that attributes such as age, gender, culture, occupation, temperament, or

familiarity of an observer influence the production of the environmental image and

the definition of landmarks.

Richter & Winter (2014) summarise the prior results of other researchers and

propose the definition of landmarks that is used within this thesis:

’Landmarks are geographic objects that structure human mental representations of

space’ (Richter & Winter 2014, p. 7) and that ’may grab our attention’ (Richter

& Winter 2014, p. 206).

A landmark is something that is dependent on people’s ’embodied experience and

cognitive processing of their living environment’ (Richter & Winter 2014, p. 7). A

landmark is outstanding because of some attributes or because it generates an experi-

ence for an individual structuring the environmental knowledge of a person (Couclelis

et al. 1987). Additionally, a landmark contributes to the mental representation of the

environment (Richter & Winter 2014).

Characteristics Influencing Salience of Landmarks

The property that turns a conventional geographic object into a landmark is called

landmark salience (Raubal & Winter 2002, Elias 2003b). A landmark should have at

least one salient aspect. According to Lynch (1960) the key physical characteristic of a

landmark is its singularity that makes this object unique and memorable. Furthermore,

Lynch (1960) identifies a clear form, figure-background contrast, and prominence of

spatial location as important aspects of an object’s salience. A location at decision

points or a certain activity attached to an object (e.g. a theatre in a building) may

strengthen its importance as a landmark (Lynch 1960).

Inspired by Lynch (1960), further studies regarding the characteristics of landmarks

were carried out. Appleyard (1969) determines why people divide urban objects

into Lynch’s five elements. He discovers the attributes of buildings that capture

the attention of people and, therefore, hold a place in their mental representation

of a city. He asked a group of inhabitants of the city Ciudad Guayana (Venezuela)

about their perception of the city. The inhabitants mentioned a number of buildings,
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establishments, and other landmarks. These elements were then rated according to a

variety of attributes (physical form, visibility attributes, and attributes of use and

significance) from which Appleyard (1969) assumed that they might be important for

their identification and recall. These ratings were then correlated with the frequencies

of element recall in order to identify the relevant attributes. Attributes of physical

form (i.e. movement in front of a building, contour, size, and shape of a building

as well as its surface), visibility attributes (viewpoint significance and immediacy

of a building to the viewing system), attributes of use and significance (such as

use intensity and singularity), and other attributes such as recency showed a high

influence over recall.

Appleyard (1969) assumes that the relative salience of a building might be more

important than any absolute attribute of an object. Therefore, buildings were rated

on the basis of their absolute intensity and singularity, both in a local neighbourhood

as well as in the whole city. The subsequent regression analysis confirmed that the

recall of a building does depend as much on its relation to the context as on any

absolute attributes.

A further milestone in landmark research is the characterisation of landmarks

proposed by Sorrows & Hirtle (1999). Inspired by Lynch (1960) and Appleyard

(1969) their framework defines three key characteristics of an object that influence its

salience (Sorrows & Hirtle 1999):

1. Visual Salience A geographic object can have salience because of outstanding

visual attributes. Visual salience gives information about the visual characteris-

tics of an object in contrast with surrounding objects (e.g. salient shape, colour,

or façade area).

2. Cognitive Salience An object with an outstanding meaning can have cognitive

salience. It may be a landmark because of its typical, but also because of its

atypical meaning in the surroundings. The object might have cultural or

historical importance or a contrasting content to the surrounding objects.

3. Structural Salience A structural salient object is outstanding because of its

location in the structure of the environment. Structural landmarks are highly

accessible and may have a prominent location (e.g. directly at a decision point).

Burnett et al. (2001) propose alternative characteristics influencing the salience

of an object. They suggest permanence, visibility, usefulness of location, uniqueness,

and brevity of a landmark description as the main characteristics of landmarks. Their
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study focuses on landmarks in terms of usability for car navigation and revealed

that salience is dependent on the mentioned characteristics. The characteristics of

Burnett et al. (2001) do largely correlate with those of Sorrows & Hirtle (1999). That

means, visual salience is equivalent to visibility as structural salience is to usefulness

of location (which deals with the location of a landmark in relation to a decision

point).

These categories are not mutually exclusive (Duckham et al. 2010). Normally, an

object shows more than one characteristic that determines its overall salience as a

landmark. Whether an object becomes a landmark is not only affected by exogenous

factors but also endogenous factors. Caduff & Timpf (2008) model these factors as a

three-valued vector. The components of the vector include exogenous/passive and

endogenous/active modes within this model. Perceptual salience is the passive mode

and defines the potential of a geographic object for acquisition of visual salience.

Cognitive salience, as the active mode, is triggered by informative cues and provides

advance information about a target location. It subsumes endogenous factors that

influence the overall salience, which are dependent on the observer’s experience and

knowledge (Silva et al. 2006). Finally, Caduff & Timpf (2008) introduce contextual

salience as the third value of the vector. Contextual salience is tightly coupled with

modality describing the mode of transportation and task to be performed in the

assessment of potential landmarks.

Categorisation of Landmarks

There are a number of ways to categorise landmarks. Possible categorisations are for

example according to their location, with regard to a specific route, or according to

their spatial extent.

One possible categorisation is in distant/global and local landmarks (Lynch 1960,

Steck & Mallot 2000). Global landmarks are visible from many angles and distances

(Lynch 1960) and define a ’global reference frame that does not change when the

observer moves a small distance’ (Steck & Mallot 2000, p. 69). Global landmarks

have some sort of compass function, such as towers, mountain peaks, or skyscrapers.

Mobile points (such as the sun) whose motion is slow and regular might be used as

a global landmark. In contrast, local landmarks are visible only in restricted areas

(Lynch 1960, Steck & Mallot 2000). These are stores, restaurants, metro stations, or

signs in an urban environment. Navigating with local landmarks includes a sequence

of intermediate goals with local landmarks at theses goals (Steck & Mallot 2000).

They are increasingly used for navigation as an observer becomes more familiar with
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an environment (Lynch 1960). Steck & Mallot (2000) conduct an experiment showing

that both, global and local landmarks, are used by travellers. However, some of the

participants used only global landmarks while other only used local ones. There

were participants who used both types of landmarks. Even though some participants

showed a preference for one landmark type, Steck & Mallot (2000) show that the

other type was nevertheless present in their memory and available for navigation.

Global and local landmarks are also known as on-route (not located at a decision

point) and off-route (not in the vicinity of the route) landmarks (Lovelace et al. 1999).

This categorisation is supplemented by landmarks located at decision points and

landmarks at potential decision points (Lovelace et al. 1999). Lovelace et al. (1999)

carry out an experiment investigating the use of landmarks in directions for familiar

and unfamiliar routes. They show that for familiar routes landmarks at potential

decision points are important for the quality of the directions. In addition, they

state that for unfamiliar routes landmarks at decision points are most important.

Lovelace et al. (1999) explain this difference in landmark type used may stem from

experience. Familiar people may remember more landmarks, and, thus, also landmarks

independent of decision points, because they had likely used them in the past. For

unfamiliar routes the decision points and which way to turn at these points is maybe

all that participants can remember after just one exposure (Lovelace et al. 1999).

However, Michon & Denis (2001) confirm the clear tendency for landmarks located

at decision points. They prove that landmarks are more likely to be mentioned when

they are close to a decision point. Further, they find out that a large number of

landmarks are mentioned around the starting point of a route and in the vicinity of

the destination.

Another possible characterisation is dependent on the spatial extent of a landmark.

There are two-dimensional landmarks, ’public thoroughfares’ (Michon & Denis 2001,

p. 295), such as places, streets, and channels and three-dimensional geographic

objects, such as monuments, buildings, or fountains (Michon & Denis 2001). Michon

& Denis (2001) show that in directions of different routes the average number of

mentioned landmarks from each category is constant. Overall more three-dimensional

landmarks are included in directions (Michon & Denis 2001). Further, they report a

difference between women and men. In their experiment women tended to mention

more two-dimensional landmarks. Even the route itself or intersections of roads can

be a landmark (Klippel & Winter 2005). In contrast, there is no difference between

women and men in mentioning three-dimensional landmarks (Michon & Denis 2001).
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Figure 2.1: Landmark identification and integration (modified from Elias (2003a)).

2.2 Modelling of Landmarks for Route Directions

Over the past decades a lot of research was carried out in the field of landmark

modelling. There is a distinction between approaches to landmark identification and

to landmark integration (Richter & Winter 2014):

1. Landmark identification concerns the assessment of object salience for navigation

and results in a pool of potential landmarks and

2. Landmark integration determines landmarks from the potential landmarks

that can be used for a specific route or calculates routes based on landmark

information.

Both approaches are important steps in modelling landmarks, but in existing

approaches they are performed by different algorithms and research addresses either

one or the other (Figure 2.1). The following sections give an overview of the most

important approaches.

2.2.1 Landmark Identification

In the research seen here landmark identification considers similar steps (Sadeghian

& Kantardzic 2008):

1. specifying a neighbourhood around a potential decision point,

2. identifying objects with outlier characteristics with the help of different methods

in the specified neighbourhood, and

3. establishing these salient objects as landmarks.
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The following paragraphs elaborate on possible statistical, data mining, hierarchical,

and crowdsourcing methods for landmark identification.

Statistical Analysis Methods

Raubal & Winter (2002) propose the first approach towards a formal measure of

object salience. They use a weighted sum model based on the characteristics of

Sorrows & Hirtle (1999) (Section 2.1.2). Instead of cognitive salience they use the

term semantic salience, which focuses on the meaning of an object.

There are several studies which extend the basic model of Raubal & Winter (2002).

Nothegger et al. (2004) extend and test the approach on built-up features, namely

façades. They evaluate the concept with human judgement and with real world data.

They show that the model from Raubal & Winter (2002) allows for the automatic

identification of features which are highly correlated with human choices of landmarks.

Further, Winter (2003) includes advance visibility of an object in the basic model. He

presumes that an object is more suitable as a landmark if it is visible early along a

route in contrast to an object that can only be seen at the very last moment. Winter

(2003) takes the direction of travel into account to calculate advance visibility of

an object. Klippel & Winter (2005) consider positions of point-like objects along

a route dependent on the direction of travel. The position of a landmark along

the route influences the ease of conceptualising turning actions in route directions

and determines the ease of understanding such directions (Richter & Klippel 2007).

This inclusion of structural salience in route directions is an approach which may be

attached to either landmark identification or integration (Section 2.2.2).

Data Mining and Hierarchical Methods

Raubal & Winter (2002) and other researchers who build on their work, need many

different data sources to collect the information for all the attributes (visual, semantic,

structural). They use data sources such as digital city maps, rectified geo-referenced

images, and navigation graphs for the actual means of travel. Elias (2003b, 2006)

explicitly identifies this time-consuming and expensive data collection process as the

weak point of landmark identification approaches. Therefore, she proposes to use

existing spatial databases instead of manual collection methods. She focuses on point-

like buildings as landmark candidates and uses spatial attributes from topographic

and cadastral datasets to automatically extract landmarks using data mining methods.

She specifies a neighbourhood to investigate dependent on the density of the buildings

around a decision point. In case of a low density of buildings (i.e. areas with open
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spaces and parks) she selects a larger neighbourhood for her analysis (Elias 2003b).

She uses a small neighbourhood if there are a lot of buildings available. The buildings

within the specified neighbourhood have attributes that either refer to land use

attributes or to geometrical ones (size of building, orientation to road, number of

corners, ...). Elias (2003b, 2006) aims to identify objects with outlier attributes to

determine buildings which are unique in the specified neighbourhood. She uses an

adaptation of a classical decision tree machine learning approach based on the entropy

principle, namely ID3 (Quinlan 1986) to identify such buildings.

Winter et al. (2008) propose a computational model for the generation of a

hierarchy of landmarks, combining the approaches of Raubal & Winter (2002) and

Elias (2006). The hierarchy presents a ranking order for landmarks based on their

individual saliences. The landmark is seen as an anchor point of the region in which

the landmark is the most prominent object. Neighbouring landmarks are compared by

prominence and only the most salient ones are taken into the next level of hierarchy.

This results in a classified hierarchy (Winter et al. 2008) which is usable for various

tasks (e.g. for destination descriptions (Tomko & Winter 2009)).

Volunteered Geographic Information (VGI) and Crowdsourcing Methods

The idea of citizen involvement in carrying out various activities relating to geo

information systems (See et al. 2016) emerged from different disciplines in past

years: e.g. wikification of geospatial information for the wide masses (Boulos 2005),

crowdsourcing (Howe 2006), user-generated content (Krumm et al. 2008), and VGI

(Goodchild 2007), to name just a few.

Tezuka & Tanaka already recognised in 2005 that the internet provides a rich

source of spatial information. They investigate how geographic objects are expressed

by humans and extend existing methods of text mining in such a way that spatial

context is considered. They show that using these methods improves the precision of

extracting landmarks from web documents.

Quesnot & Roche (2014) argue that social location sharing datasets are a reliable

data source to retrieve the semantic salience of landmarks. Richter (2017) highlights

the increasing availability of user-generated content with geographic components which

could be exploited for identifying landmarks. A number of VGI and crowdsourcing

methods deal with the use of OpenStreetMap (OSM) data which are made available

via the web. Richter & Winter (2011) report on integrating landmarks in OSM

and demonstrate the advantages of user-generated content for extracting semantic

information. Another approach assesses the suitability of an object as a landmark
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using a landmark index based on attribute values of buildings extracted from OSM

(Nuhn et al. 2012). The data are complemented by 3D city models (e.g. for height

information). Nuhn et al. (2012) investigate if an attribute value of a building is

salient or differs from the attribute values of the surrounding buildings. They obtain

a landmark index by adding the salience of the individual attributes and dividing

the sum by the number of attributes. A building is classified as a landmark if the

landmark index exceeds a predefined threshold.

Wolfensberger & Richter (2015) propose another crowdsourced approach, which

uses OSM data. They introduce a mobile application, which enables a user-generated

collection of landmarks. Based on a photo taken by a smartphone the application

calculates and ranks potential landmark candidates taking the current visibility area

into account. The most probable landmark candidate is calculated by allocating

measurable attributes to characteristics of Sorrows & Hirtle (1999) (Section 2.1.2).

The landmarks are presented to the user who then may choose the intended one.

Kattenbeck (2015, 2016) addresses the lack of available data sources within his

work and identifies the use of crowdsourced data acquisition approaches to overcome

this problem. He proposes an empirically validated model and an approach to survey-

based assessment of the salience of an object. In his work, he uses a structural

equation model and incorporates the results of prior studies and features which are

important salience indicators. The model was empirically tested in the framework of a

large scale in-situ experiment. Kattenbeck (2015, 2016) reveals a high impact of visual

salience on visibility in advance, which, in turn, had an influence on structural salience.

Another interesting finding is that he identifies emotional salience and familiarity as

two possibly missing subdimensions of salience of a geographic object. Kattenbeck’s

(2016) model was transferred to another city to assess the invariance with respect to

the environment, its objects, and the observers (Kattenbeck et al. 2018). The results

showed that the relationships between the subdimensions of salience does not differ

significantly in another environment. Hence, authors state that the model can be

used to calculate salience across different environments.

2.2.2 Landmark Integration

While there has been a lot of research on landmark identification, there is only little

research on landmark integration. There are two main directions: firstly, determining

landmarks for a specific route and secondly, calculating optimal routes based on

identified landmarks.

27



CHAPTER 2. RELATED WORK

Determination of Landmarks for a Specific Route

Tomko (2004) proposed to assess the suitability of data from the world wide web

to provide information for pedestrian navigation even before all the definitions of

VGI and crowdsourcing became popular (Section 2.2.1). His experiment provides

landmark based directions along a path generated by a web service, which is tested

and evaluated with human subjects. The results show that, already at this early stage

of internet development, the web is capable to provide elements that can complement

and enhance route directions.

Klippel & Winter (2005) take into account the location of a landmark relative to a

turn at a decision point and the kind of wayfinding action that needs to be performed

(Section 2.2.1). Apart from advance visibility (Winter 2003) their model considers

the configuration of the street network as well as the route along the network. The

result is a mathematical measure that describes the ideal position of a landmark at

an intersection. Röser et al. (2012) examine the different landmark positions in two

experiments. First, from a bird’s eye perspective and second, from an egocentric

perspective. Their results provide evidence to support the assumption of Klippel &

Winter (2005) that visibility and structural salience are interdependent empirically.

Richter (Richter 2007, Richter & Klippel 2007, Richter 2008) integrates landmarks

that allow for the easy conceptualisation of spatial situations. He reflects on how

landmarks are referred to in human route directions and employed concepts such

as ’before’ or ’after a turn’ (Klippel & Winter 2005). Richter exploits ordering

information to determine a landmark’s relative location to a turn using point-like

as well as linear and areal landmarks in different spatial situations. The concept

is implemented and tested in a system called GUARD (generation of unambiguous

adapted route directions).

Winter et al. (2009) and Duckham et al. (2010) propose a completely different

approach to integrate landmarks in route directions. While other methods are

based on visual or geometric characteristics of individual objects, their approach

relies solely on information about the types of landmarks. Sorrows & Hirtle (1999)

introduce the concept of prototypicality which goes back to the work of Rosch et al.

(1976) and describes how typically a landmark represents a category. The aspect

of prototypicality plays an important role in the model of Duckham et al. (2010).

They develop a weighting system that assigns weights to Point of Interest (POI). The

weights are dependent on the suitability of a typical POI category as a landmark

and the likeliness that a POI category is typical. Properties of categories of POIs

(e.g. ubiquity, length of description, permanence, ...), such as might be found in a
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directory service such as the Yellow Pages (e.g. Hotels, Restaurants, Parks, Museums,

etc.) are considered. Duckham et al. (2010) assign the weights to the POIs and

use a standard algorithm (e.g. Dijkstra (Dijkstra 1959) or A* (Hart et al. 1968)) to

generate a route. They select the POI which coincides with a decision point on the

route and that shows the highest weight and include it in the route directions. This

approach is implemented in the WhereIS route service (Sensis 2017) using categories

from the Yellow Pages.

Currently, there is a focus on determining global landmarks for a specific route

(Wenig et al. 2017, Credé et al. 2017). Wenig et al. (2017) present Pharos, a new

system to include global landmarks in route directions. They show that the visibility

of global landmarks can be derived from existing and publicly available geotagged

images which is an advantage over hard to select local landmarks. They demonstrate

that participants navigate more confidently and build a more accurate cognitive map

by including global landmarks.

Other approaches focus on the modelling of landmark-based navigation directions

from open source data. Dräger & Koller (2012) present an approach for car navigation

that relies exclusively on OSM data. Their system chooses appropriate landmarks at

decision points and includes them in route directions. Rousell et al. (2015), Rousell

& Zipf (2017) propose an approach to integrate landmarks in route directions for

pedestrians based on identifying the contextual type of an object from OSM data.

Additionally, they consider geometric calculations in relation to a decision point. The

implementation shows that suitable landmarks can be successfully extracted and

integrated into route directions for a specific route from the OSM dataset.

Calculation of Optimal Routes Based on Landmark Information

A second way of landmark integration, besides determining landmarks for a specific

route, is calculating optimal routes based on landmark information. Caduff & Timpf

(2005a,b) propose the Landmark-Spider-Algorithm to calculate the clearest route in

terms of landmarks. It navigates a traveller along a route with selected landmarks

used to give route directions at every decision point. Authors select landmarks

based on the salience of spatial objects and on distance and direction of the traveller

with respect to the objects. They present the results of this algorithm in a spatio-

analogical way which supports wayfinding decisions. Rüetschi et al. (2006) propose

another approach to incorporate landmarks in route generation algorithms. They

use landmarks as parts of route directions and map them to sets of edges in a street

network. They build auxiliary graphs in such a way that a standard shortest path
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algorithm can be used to find an optimal route.

Other approaches use a modified Dijkstra algorithm (Dijkstra 1959) to determine

optimal routes regarding landmark information (Elias & Sester 2006, Chandrasekara

et al. 2016). Elias & Sester (2006) use point-like buildings as landmarks which are

identified using the approach of Elias (2006). They apply the Dijkstra algorithm

to identify an optimal route based on landmark quality. Their idea is to describe

the cognitive complexity of a route in relation to the quality of landmarks and

the corresponding route directions. Elias & Sester (2006) adapt weights according

to the visibility, usefulness of location, uniqueness, permanence, and brevity of a

landmark description. This leads to the identification of an optimal route in terms

of cognitive load to remember and follow the route direction. A recent approach

makes also use of the Dijkstra algorithm. Chandrasekara et al. (2016) consider

besides distance information the strength of landmarks along a route. They derive the

strength of landmarks based on landmark density along an edge and their significance

for navigation. To determine landmark salience horizontal spread, height, and the

visibility of landmarks at different times of the day as well as the social/cultural

salience is considered. The approach is implemented using OSM data and verified

and tested in Sri Lanka.

2.3 Towards Personalised Landmarks

Landmark salience is not the same for every person and dependent on parameters

such as age, gender, education, or familiarity of the traveller with an environment

(Lynch 1960, Winter et al. 2012). A large body of research deals with the adaptation

of the content and appearance of maps based on user preferences (e.g. Sarjakoski et al.

(2007), Sarjakoski & Sarjakoski (2008), Reichenbacher (2007), Wiebrock (2011)). For

example, the knowledge-based system by Sarjakoski et al. (2007) considers aspects

such as the time (e.g. seasons or time of the day), the use case for which a map

is needed (e.g. outdoor, cycling, or emergency), or the user’s age group. However,

they discuss no other parameters about the traveller’s knowledge or experience and

especially no landmarks are considered. Burnett et al. (2001) are one of the first who

show that travellers being familiar with an environment choose other landmarks for

route directions than people unfamiliar with an environment. In an experiment, two

conditions were adopted, whereby participants provided route directions based on

either long-term experience or single experience. Participants with single experience

had no prior experience of the route whereas long-time experienced participants

had lived and/or worked in the area for at least five years. The study shows that
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participants with single experience of an environment refer more to general salient

objects related to the street (e.g. pedestrian lights, churches, and petrol stations)

whereas people with long-term experience refer to more specific things (e.g. specific

restaurants, bingo halls, or toy shops).

Winter et al. (2005) propose an approach to adapt Raubal & Winter’s (2002)

model to different user-contexts. They include context information by modelling

weights for the salience measures (Section 2.2.1). In addition, they investigate the

proposed method in a thorough human subject test. They find evidence that the

variation of the context changes the selection of the landmark. However, their work

focuses on weights based on different contexts (here, the time of the day). Apart from

gender differences in weighting landmarks by day and by night, no other personal

attributes are treated. Although the familiarity with the environment was collected

from test persons on a simple binary scale this attribute is not further evaluated.

The crowdsourced data acquisition approach of Kattenbeck (2016) (Section 2.2.1)

includes, amongst others, questions on demographic data. This includes e.g. the

background of a traveller and the knowledge about a place. Kattenbeck (2016)

assumes that ’knowledge about a local neighbourhood may have an effect on several

dimensions of salience’ [p.91]. However, this information was captured to minimise

the bias in salience estimations of objects but was not further evaluated.

More recent studies show that famous buildings are more easily recognised than

unfamiliar ones (Hamburger & Röser 2014). These differences cannot be explained

by visual characteristics, because authors choose comparable visual salient buildings

for the experiment. These results provide empirical evidence for the assumption

that familiarity or cognitive salience (Caduff & Timpf 2008) is relevant for overall

salience of a landmark. Based on these findings Quesnot & Roche (2015) assume that

travellers unfamiliar with an environment prefer different landmarks than travellers

who know the area well. They confirm this assumption and show that persons familiar

with an environment prefer landmarks with cognitive or semantic salience respectively.

In contrast to that, for unfamiliar people visual salience is more important than

semantic salience (Quesnot & Roche 2015). Recently, Sameer & Bhushan (2017)

investigate the effect of familiarity and degree of recognition as important components

of cognitive salience. They draw the same conclusion as the other researchers and

indicate that familiar buildings are better landmarks than unfamiliar ones.

Current work investigates differences between classical route directions and modi-

fied route directions: firstly, non-personalised modified directions including irrelevant

information about landmarks, and secondly modified directions including information
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of personal interests associated with landmarks (Gramann et al. 2017, Wunderlich &

Gramann 2018). Participants of a study provided individual preferences such as taste

of food, music, or favourite animals. Gramann et al. (2017), Wunderlich & Gramann

(2018) used this information to modify the directions and include this personal inter-

ests. The authors confirmed enhanced spatial memory performance and landmark

recognition for the modified route directions without further differentiating between

personalised and non-personalised directions. This means, the modified directions

with personal interests did not perform better than the modified non-personalised

directions.

Meng (2005) shows that the usability of egocentric mobile maps is dependent on

subjective parameters, such as e.g. the users emotion (e.g. joyfulness or irritation)

during map interaction. Schroder et al. (2011) highlight the importance of emotions

towards features, although they state that emotion is an aspect of landmark salience

which is difficult to model. Balaban et al. (2014) focus also on emotion and especially

on affect (Balaban et al. 2017). They introduce a new landmark salience category:

emotional landmark salience. In their studies they consider the mood condition

(positive, negative, neutral). An experiment revealed that participants show higher

wayfinding performance for negatively laden landmarks than for positively laden

landmarks and a higher performance for positive landmarks than for neutral landmarks.

In addition, negative landmarks are better remembered than positive and neutral

landmarks because recognition performance hardly decreased over time for these

landmarks. Furthermore, Palmiero & Piccardi (2017) show that both, positively and

negatively laden landmarks, equally support path learning and, therefore, influence

the acquisition of spatial knowledge. They show that positive emotional landmarks

improved the reproduction of a path on the map compared to negatively or neutrally

laden landmarks. Ruotolo et al. (2018) support the finding that emotional factors

influence perception and memorisation of spatial dimensions. They show that positions

of landmarks along a route with neutral or negative values are remembered less

accurately than the positions of positive landmarks.

Götze & Boye (2013, 2016) propose to learn individual salience models for land-

marks that are referred to in route directions. They model every landmark a person

refers to as a feature vector including several attributes (e.g. distance and angle to a

landmark as well as name and type extracted from OSM data). Then, they calculate

the salience of a landmark as a weighted sum of the elements of the feature vector.

They derive a person’s salience model that calculates which object is most suitable

to be used in route directions. The evaluation of their models show promising results,
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since their model was often able to predict the landmark chosen by a person.

There is a new direction or research aiming at exploring interesting landmark

recommendations based on geo-tagged photos (Shi et al. 2011, Chen et al. 2013,

Han & Lee 2015). Shi et al. (2011) base their recommendation on the assumption

that a traveller in a new city may like landmarks that are already favoured by other

users with similar landmark visiting experiences in other cities in the past. A similar

approach is followed by Han & Lee (2015) who compute the significance of an object

for a traveller based on their trips’ spatial and temporal properties. Based on travel

trajectory history they generate clusters of landmarks with similar or related themes

for recommendations.

Personalisation is ’the process of making something suitable for the needs of a

particular person’ (Cambridge Dictionary 2019). Nuhn & Timpf (2016) present the

first ideas of identifying suitable landmarks for the needs of specific persons with

the help of a multidimensional model for personalised landmarks. In Nuhn & Timpf

(2017b) they identify personal dimensions of landmarks as a basis for such a multidi-

mensional model and their attributes. Nuhn & Timpf (2017a,c) propose a conceptual

framework for a multidimensional model for personalised landmarks that integrates

three dimensions: a dimension describing the landmark, an environmental dimension,

and a personal dimension. They identify and discuss attributes as well as attribute

values for each of the dimensions and develop salience measures for them (Nuhn &

Timpf 2017a). Nuhn & Timpf (2018) include the personal dimensions prior spatial

knowledge, personal interests, and personal background in their multidimensional

model. They present a conceptual model without the empirical evidence that the

addition of personal dimensions to a landmark salience model may result in more

identified landmarks than a conventional model without personal dimensions.

.

2.4 Implications for Modelling Personalised Landmarks

In this chapter we investigated cognitive aspects of human wayfinding and identified

piloting between landmarks as an efficient means of travelling to familiar and novel

destinations. Piloting between landmarks to accomplish a wayfinding task is the

means dealt with in this thesis. We identified spatial knowledge as an important

information to enable people to find routes in geographic space and we investigated

the three stages: landmark, route, and survey knowledge (Siegel & White 1975). We

will build on these three stages for the modelling of the personal dimension prior

spatial knowledge. Furthermore, we showed that even the shortest route directions that
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a human communicates include landmarks (Lovelace et al. 1999) and we evaluated

definitions and characteristics influencing the salience of these landmarks. Richter

& Winter (2014) summarised the prior results of other researchers and proposed a

definition of landmarks. Sorrows & Hirtle (1999) defined three key characteristics of

an object that influence its salience, which are the basis for our landmark dimensions:

the visual, the semantic, and the structural dimension.

We showed that over the past decades a lot of research was carried out in the field

of landmark modelling. There is a distinction between the approaches to landmark

identification and those to landmark integration (Richter & Winter 2014). We gave an

overview of the most important approaches and found out that landmark identification

and integration are performed by different algorithms and that research addresses

either the one or the other respectively. We base this work on landmark identification

models and investigate amongst other models the existing weighted sum model for

landmark identification proposed by Raubal & Winter (2002). Furthermore, we

intend to use a decision tree model which is a machine learning approach already

used for landmark identification in the past (Elias 2006).

We discussed prior work concerning personalised landmarks and it actually reveals

that landmark salience is not the same for every person but dependent on several

parameters (Lynch 1960, Winter et al. 2012). Based on the landmark definition of

Richter & Winter (2014) and the definition of personalisation (Cambridge Dictionary

2019) we define a personalised landmark as follows:

Personalised ’landmarks are geographic objects that structure human mental

representations of space’ (Richter & Winter 2014, p. 7), that ’may grab our

attention’ (Richter & Winter 2014, p. 206), and that are suitable for our needs.

We revealed familiarity as one important parameter resulting in different landmark

preferences (Hamburger & Röser 2014, Quesnot & Roche 2015, Sameer & Bhushan

2017). Therefore, we assume that the suitability of a geographic object as a per-

sonalised landmark is dependent on prior spatial knowledge. We found first studies

investigating personal interests and personalised landmarks (Gramann et al. 2017,

Wunderlich & Gramann 2018). These studies do not suggest that there might be ben-

efits of considering personal interests compared to other information about landmarks.

However, we consider this dimension in our personalised landmark identification

models to confirm or reject these findings.

We investigated in this chapter first efforts to identify personalised landmarks.

Winter et al. (2005) adapted the model of Raubal & Winter (2002) focusing on weights
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based on different contexts. Apart from gender differences in weighting landmarks

by day and by night, no other personal attributes are treated. We will build on

the approach of Raubal & Winter (2002) focusing on weights based on personal

dimensions. Nuhn & Timpf (2018) include the personal dimensions prior spatial

knowledge, personal interests, and personal background in a multidimensional model

to identify personalised landmarks. They present their conceptual model without the

empirical evidence that the addition of personal dimensions to a landmark salience

model may result in more identified landmarks than the conventional model without

personal dimensions. This empirical evidence is still missing.

We assume that the collection of personal data is the highest effort for the identi-

fication of personalised landmarks. Therefore, we need to make sure that the data

collection effort is justified relative to the benefits that can be achieved through

the provision of personalised landmarks. However, so far, there is no computational

landmark identification model available that includes personal dimensions. Thus,

there has been no comparison possible between a conventional and a personalised

landmark identification model. This means it is an open question whether a per-

sonalised landmark identification model incorporating prior spatial knowledge and

personal interests identifies more landmarks selected by humans than a conventional,

non-personalised model. We intend to develop models for personalised landmark

identification and compare them with conventional, non-personalised models. For

this calculation several mathematical models and analysis methods are possible and

we will investigate them in the following chapter.
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Chapter 3

Mathematical Models and

Analysis Methods

The aim of our landmark identification models is to find all objects at a decision point

that are able to be a (personalised) landmark. Therefore, we need to use models that

are able to do so. A landmark might be identified by either calculating an overall

salience measure or by classifying objects as landmark (LM) and not a landmark

(NAL). In this chapter (Section 3.1) we investigate three models based on theory: a

weighted sum model (wSm), a weighted product model (wPm), and a decision flow

chart (dFc). In addition, we investigate a decision tree model (dTm) which is an

approach in the field of machine learning. The wSm and the wPm calculate an overall

measure of landmark salience for an object, whereas the dTm and the dFc classify

objects as LMs and, in the case of the dTm, NALs.

We intend to build conventional and personalised landmark identification models

(Section 4.3). The machine learning models both, conventional and personalised,

learn their behaviour from examples and are able to generalise after learning. For this

to happen, the model needs to learn its model parameters from data via a process

called training. The resulting models are able to identify whether an object of a new

unseen dataset is a LM or a NAL (testing). In Section 3.2.1 we discuss the traditional

machine learning approach for training and testing. The conventional models based

on theory have no unknown model parameters, whereas the model parameters of the

personalised models that are also based on theory need to be identified. Inspired by

the traditional machine learning approach, we investigate in Section 3.2.2 methods to

’train’ and test these models based on theory.

The training results in conventional and personalised landmark identification

models ready to identify landmarks of a new unseen dataset. We investigate methods
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to analyse the trained models and their results. This includes methods for sensitivity

analysis (Section 3.3) and for the comparison of the model results (Section 3.4). We

close this chapter with an outlook on the study setup of this thesis (Section 3.5).

3.1 Mathematical models

We investigate a weighted sum model (wSm), a weighted product model (wPm), and

a decision flow chart (dFc) inspired by theoretical considerations. In addition, we

investigate a decision tree model (dTm), which is an approach in the field of machine

learning.

3.1.1 Models based on Theory

In this section we investigate models inspired by theoretical considerations. In contrast

to machine learning models, these models do not learn from data but are based on

predefined established models and algorithms (Srinivasan 2016).

Weighted Sum Model (wSm)

A widely used model is the wSm (Triantaphyllou 2000). It applies the additive utility

hypothesis, which ’implies that the overall value of every alternative is equivalent

to the products’ total sum’ (Kolios et al. 2016, p. 5). The wSm is best suited for

problems with attributes of the same units. In case of varying units (e.g. quantitative

and qualitative attribute values) normalisation schemes should be employed (Kolios

et al. 2016). If there are m alternatives and n attributes, then the best alternative is

obtained with the following formula (Fishburn 1967):

AwSm = max

n
∑

j=1

aij ∗ wj, for i = 1, 2, 3, ...,m. (3.1)

AwSm: wSm score of the best alternative

aij: score of the i-th alternative with respect to the j-th attribute

wj: weight for the j-th attribute

n: number of attributes

m: number of alternatives

Assume that you want to choose the best alternative among A1, A2, and A3. The

attributes are a1, a2, and a3. Table 3.1 shows example aij values and weights wj .
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Table 3.1: Example of alternatives and attributes for Weighted Sum Model (wSm)

and Weighted Product Model (wPm).

Attributes

Alternatives a1 a2 a3

Wj 0.3 0.3 0.4

A1 25 50 100

A2 50 75 100

A3 100 50 50

When the Formula 3.1 with the data delivers: A1 = 62.5, A2 = 77.5, and A3 = 65.

Based on these results A2 is the best choice, because the value of A2 is the highest of

the values of the alternatives.

Weighted Product Model (wPm)

Bridgman (1922) introduces the wPm. It is an alternative to the wSm but is not

widely utilised (Yoon & Hwang 1995). The main difference to the wSm is that a

product is applied in the model instead of a sum. Because the attributes are connected

by multiplication normalisation schemes are not needed (Azar 2000) in case of varying

units. The wPm sets the weights as exponents of each attribute value. The formula

for the best alternative is as follows (Budiharjo & Abulwafa 2017):

AwPm = max
n
∏

j=1

awj
ij , for i = 1, 2, 3, ...,m. (3.2)

AwPm: wPm score of the best alternative

aij: score of the i-th alternative with respect to the j-th attribute

wj: weight for the j-th attribute

n: number of attributes

m: number of alternatives

The Formula 3.2 with the numbers in Table 3.1 delivers A1 = 53.59, A2 = 74.51,

and A3 = 61.56. Thus, the wPm produces the same result as the wSm. A2 remains

the best choice, because the value is the highest one of the alternatives.
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Figure 3.1: Flowchart symbols (modified from Myler (1998)).

Decision Flow Chart (dFc)

There is a large body of knowledge available on landmarks, landmark salience, and

dimensions influencing the landmarkness of an object (Section 2). In order to take

this knowledge into account we intend to build a decision flow chart to depict assumed

interdependencies between landmark as well as personal dimensions and the landmark

salience of an object. There is a long tradition of using diagrams to represent decision

problems. Gilbreth & Gilbreth (1921) introduce the first method for documenting

processes. This fundamental work serves as a basis for a standard for flow process

charts (ASME 1947). A flowchart is a graphical representation. There are flowchart

symbols provided by the ISO in 1970 and revised in 1985 (ISO 1985). Figure 3.1

shows some of the common flowchart symbols.

Fryman (2002) differentiates types of flowcharts including decision flowcharts.

Building a decision flowchart consists of several steps (Fryman 2002, LucidChart

2018, Graham 2004):

1. Defining the area of focus.

2. Conducting a thorough literature research.

3. Identifying the steps in chronological order.

4. Generating hypotheses in order to identify decisions, processes, inputs, and

outputs.

5. Establishing decision rules for accepting or rejecting hypotheses.

6. Drawing the flowchart.

7. Confirming the flowchart with validation data.

Flowcharts flow from left to right and top to bottom (Myler 1998). Decisions may

be multiple choice or two-way decisions (Fryman 2002). It depends on the application,

which symbols and decision types are included in the flowchart.
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Figure 3.2: A sample decision tree (modified from Kamiński et al. (2018)).

3.1.2 Machine Learning Model

Machine learning is a research field that gives a model the ability to learn its behaviour

from data (Samuel 1959). There are numerous machine learning methods. We intend

to apply a model similar to the dFc. One popular approach of machine learning for

classification is a decision tree model (dTm) (Rokach & Maimon 2005). These are

flow chart-like structures (Gupta et al. 2017), whose main difference to a dFc is that

they do not consider processes and concentrate only on decisions and their results.

The idea is to break up a complex decision problem into a number of simpler decisions

(Safavian & Landgrebe 1991). After every decision another decision follows until a

conclusion about the class of the object is reached (Tan et al. 2006). This technique is

used in applied fields such as finance, marketing, engineering, and medicine (Rokach

& Maimon 2015). Hyafil & Rivest (1976) state that decision trees are np-complete

because of the large effort put into finding efficient optimal algorithms for constructing

optimal binary trees.

Decision trees are generated from training sets of the form:

(x, Y ) = (x1, x2, x3, ..., xn, Y ) (3.3)

Y is the dependent target variable for the classification. The target variable can

take at least two values (e.g. LM and NAL). The vector x has attributes i = 1....n that

are used for the classification (Safavian & Landgrebe 1991). The tree is constructed

using a directed graph with nodes V and edges (branches) E: G = (V,E), E ⊂ V 2.

The set of nodes V consists of three disjoint sets V = R ∪ C ∪ T (Kamiński et al.

2018).

• the root node (R) is the initial state of the decision tree (Apté & Weiss 1997),

it has no incoming edges and zero or more outgoing edges,
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• a number of internal nodes (C) with one incoming edge and two or more

outgoing edges (Tan et al. 2006), and

• a terminal or leaf node (T), which is the end node with one incoming edge and

no outgoing edges (Tan et al. 2006).

In Figure 3.2 there are nodes R = r, C = c, and T = t1, t2, t3 and edges

E = (r, c), (r, t3), (c, t1), (c, t2) (Kamiński et al. 2018).

Generally, there are many decision trees that can be built from a given dataset

(Tan et al. 2006). Finding an optimal tree is feasible only in small problems (Rokach

& Maimon 2005). Efficient algorithms are developed to induce a reasonably accurate

decision tree in a reasonable amount of time (Tan et al. 2006). There are four most

widely used decision tree models (Lin et al. 2006, Song & Lu 2015): Classification

and Regression Trees (CART) (Breiman et al. 1984), C4.5 (Quinlan 2014), CHAID

(Chi-Squared Automatic Interaction Detection) (Kass 1980), and QUEST (Quick

Unbiased, Efficient, Statistical Tree) (Loh & Shih 1997).

Most algorithms generate the tree in a top-down approach (Apté & Weiss 1997)

meaning the number of attributes becomes smaller as the tree is traversed (Tan et al.

2006). The algorithm starts tree growing with the entire dataset in the root node

(Ture et al. 2009). Each iteration of the algorithm splits each node into two or more

internal nodes according to a certain discrete function (Rokach & Maimon 2005). The

goal is to produce data subsets which are as homogeneous as possible with regard to

the target variable Y (Breiman et al. 1984). There are a number of different functions

available for splitting, such as impurity based criteria. One widely used function is

the gini-index (Breiman et al. 1984, Gelfand et al. 1989), which is the probability

of obtaining two different outputs and calculates as follows (Breiman et al. 1984,

Gelfand et al. 1989):

gini = 1−
J
∑

i=1

pi2, for i = 1, 2. (3.4)

J : number of classes

pi: the fraction of objects labelled with class i in the dataset

Further possible functions are entropy or information gain to construct a decision

tree (Quinlan 1986).

Based on the number of edges at the nodes, decision trees are divided in binary and

non-binary trees. Most decision tree induction algorithms apply the splitting function

to one attribute at a time (Tan et al. 2006). There are multivariate linear decision
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trees that use multiple attributes for the splitting conditions in the internal nodes

(Brodley & Utgoff 1995, Heath et al. 1993, Breiman et al. 1984). There are solutions

dealing with nominal, ordinal, or continuous values (Tan et al. 2006). However,

finding an optimal multivariate linear split is more difficult than finding the optimal

univariate split and for some feature evaluation rules even intractable (Murthy 1998).

The splitting process results in fully grown trees until a stopping criteria is reached.

One problem of fully grown trees are that they are likely to overfit the data (Bramer

2007, Dietterich 1995). A decision tree overfits the training data if the tree depends

too much on irrelevant attributes of the training set. The result is that its performance

is poor on unseen data (Bramer 2007). Pruning is carried out to reduce the size

of a decision tree (Tan et al. 2006, Mingers 1989). There are various methods for

decision tree pruning. Generally, there is a distinction between pre-pruning and

post-pruning (Fürnkranz & Widmer 1994). Post-pruning means that the decision

tree is generalised after the growing phase. Popular post-pruning algorithms are

reduced error pruning (Brunk & Pazzani 1991) or cost-complexity pruning (Bradford

et al. 1998). Pre-pruning is applied during decision tree growing and uses some sort

of stopping criteria for the model parameters (e.g. depth of a decision tree, minimum

samples in a leaf) or condition related criteria (Quinlan 1990, Fürnkranz 1994b).

Pre-pruning is very efficient and less computationally expensive as post pruning but

sometimes post pruning is more accurate (Fürnkranz 1994a).

However, there are a lot of decision tree models available for different applications.

It depends on the target variable, the values of the attributes, and the general goal,

which decision tree model is the most suitable one. We investigate in Section 4.3.7

which one is the most suitable one to identify (personalised) landmarks.

3.2 Model Training, Validating, and Testing

The machine learning models learn their model parameters from training sets of

the form as shown in Formula 3.3 via training. A training set includes objects with

attributes and a target variable whose value is known, i.e. whether an object is a LM

or a NAL. After the model training is complete, the model is used for testing, i.e. to

identify landmarks on a test set. In section 3.2.1 we describe the traditional machine

learning approach for model training and testing. The conventional models based on

theory do not have any unknown model parameters. However, we need to identify

the model parameters of the personalised models based on theory. These models

based on theory differ from machine learning models because they are explicitly

predefined models and are not learned from any data. However, we decide to pursue a
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comparable approach to ’train’ the models based on theory and adjust the traditional

machine learning approach (Section 3.2.2). In Section 3.2.3 we investigate methods

how to split a dataset in training and test set.

3.2.1 Traditional Machine Learning Approach

Figure 3.3 shows the traditional machine learning approach for training and testing.

The initial dataset is divided into a training set and a test set (Section 3.2.3). The

machine learning models learn their behaviour from the objects of the training set

and are able to generalise after learning on new unseen data of the test set. The

training set includes LMs and NALs and the test set only includes LMs since we

are only interested in the identification of landmarks. During the training the test

set is entirely separate, locked away, and only employed after all model training is

completed (Russell & Norvig 2016).

The first step of the training is to feed the model with data from the training set for

whose objects it is known whether an object is a LM or a NAL (Figure 3.3). A useful

practice to find the optimal model parameters is a grid-search (Chicco 2017). ’Grid

Search is the process of scanning data to configure the optimal parameters for a given

model’ (Reyhana et al. 2018, p.98). For each combination of model parameters of the

grid-search we build a model with the goal of identifying the best one (Cambridge

Coding Academy 2019). A complete grid-search might be time-consuming. Therefore,

Hsu et al. (2016) recommend a two-step approach: first, a coarse grid-search, and

after identifying a good region on this grid, a finer grid-search on that particular

region.

However, scanning through all possible model combinations, building models, and

evaluating them on the test set will provide the combination of model parameters

that performs best, but these parameters might not generalise well on new unseen

data (Cambridge Coding Academy 2019). A solution for this problem is k-fold cross-

validation (Stone 1974, Geisser 1975). For each combination of model parameters of

the grid-search the training set is splitted into k subsets (folds) (Figure 3.3). Since

the training set includes LMs and NALs, the k-folds also include both. One of these

folds is called validation fold and the other k-1 folds are generally called training folds

(Russell & Norvig 2016). We use the training folds to create the model. Subsequently,

we use the created model to identify the LMs and NALs of the validation fold. Thus,

the validation fold is used to evaluate the model in order to get an early estimate of

the model’s performance during training and without using the locked away test set.
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We derive the accuracy of the model from a confusion matrix (Hay 1988) (Table

3.2) that includes information on:

• Identified LMs : The object is a LM and is identified as a LM.

• Identified NALs : The object is a NAL and is identified as a NAL.

• Unidentified NALs : The object is a NAL but is identified as a LM.

• Unidentified LMs : The object is a LM but is identified as a NAL.

The formula to calculate the accuracy of our machine learning model is as follows:

accuracy =
Identified LMs+ Identified NALs

all Objects
(3.5)

all Objects = Identified LMs+ Unidentified LMs

+Identified NALs+ Unidentified NALs

Cross-validation uses each fold of the training set only once as a validation fold

to calculate the accuracy for a model trained on the other k-1 folds (Kohavi 1995).

This process is repeated k times and results in k cross-validation accuracies. These k

accuracies are averaged to one k-fold cross-validation accuracy to give an indication

on the models performance (Figure 3.3). This can be done for several models with

different model parameter combinations, then, the set of model parameters that

defines the model achieving the highest average accuracy is selected (Schaffer 1993).

A key issue of k-fold cross-validation is the number of folds. There are many

empirical studies verifying that a reliable estimate can be obtained with k = 10 for

a dataset with a sample size greater than 100 (Borra & Di Ciaccio 2010). There

are a number of ways for 10-fold cross-validation - following Kohavi (1995) we use

stratified cross-validation. It divides the dataset in disjoint folds with equal class

distributions and is preferable both, in terms of bias and variance, compared to

regular cross-validation (Kohavi 1995). The folds of stratified cross-validation contain

approximately the same ratio of classes as the original dataset (Figure 3.3). Usually,

the target values are used as classes for stratified cross-validation in the traditional

machine learning approach (LMs and NALs in our case).

The final model is built using the parameter combination with the highest average

accuracy (Figure 3.3). The locked away part of the dataset - the test set - is used

to qualify the performance of this model (Kuhn & Johnson 2013). As we are only
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Table 3.2: Confusion matrix for landmark identification.

Model LM NAL

LM Identified LM Unidentified NAL

NAL Unidentified LM Identified NAL

interested in landmark identification, the test set includes only landmarks. We use the

final model to identify LMs of the test set and count Identified LMs and Unidentified

LMs. A performance measure considering only LMs is the recall (Buckland & Gey

1994):

Recall =
Identified LMs

Identified LMs+ Unidentified LMs
(3.6)

The recall does not consider NALs but gives us a hint about the proportion of

LMs that has been identified by the model. The trained model is further investigated

using sensitivity analysis (Section 3.3) and the results are further evaluated with a

McNemar’s test (Section 3.4).

3.2.2 ’Training’ of Models based on Theory

Models based on theory differ from machine learning models as the model is based

on explicitly predefined models. This means they do not learn their behaviour from

data. However, inspired by the traditional machine learning approach we divide our

dataset in two sets (Figure 3.4). The training set in order to create the model and

the test set to qualify the performance of the model (Kuhn & Johnson 2013). We do

not need NALs for training and testing for the models based on theory. Therefore,

their datasets include only landmarks.

Grid-search with cross-validation is identified as a useful practice to find the

optimal model parameters for traditional machine learning approaches (Chicco 2017).

Following this practice we split the training set into folds using stratified 10-fold

cross-validation to get training and validation folds (Stone 1974, Geisser 1975). Again

we use the stratified approach as recommended by Kohavi (1995). To do so, we need

classes to be able to build stratified folds with equal class distributions. Traditional

machine learning approaches usually take their target values as classes. The models

based on theory do not have target values. Therefore, we need other classes to be

able to build disjoint folds with equal class distributions. An important prerequisite
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for the training’s success is the availability of landmarks of different decision points of

the training set in the folds. Thus, we use the decision points as classes in stratified

cross-validation for the models based on theory to be sure to have folds having the

same proportion of landmarks from one decision point.

For the traditional machine learning approach we consider both the training and

the validation folds (Section 3.2.1). Since the models based on theory are not learned

from data we neglect the training folds and only take the validation folds to get an

estimate of built models and their performance (Figure 3.4).

We build different personalised wSms and wPms respectively with different model

parameter combinations. As the models based on theory do not consider NALs, we

only consider the LMs in our performance measure. Therefore, we calculate the recall

(Formula 3.6) instead of the accuracy of the built models and select the built model

that achieves the highest average recall (Figure 3.4). As recommended by Hsu et al.

(2016) for traditional machine learning approaches, we start for the personalised wSm

and the wPm also with a coarse grid-search, and after identifying a good region on

this grid, a finer grid-search on that particular region follows.

The personalised dFc does not have model parameters because it is built on

decisions and processes. Hence, we vary the flow of the model to ’train’ it and

calculate the recalls of the validation folds. The flow obtaining the highest average

recall is the best personalised dFc.

The training results are models based on theory that identify landmarks based

on input data. We use the test set to investigate the performance of the models

on new unseen data (Figure 3.4). We count the Identified LMs and Unidentified

LMs and calculate the recall (Formula 3.6). The trained models based on theory are

further investigated using sensitivity analyses (Section 3.3) and the results are further

evaluated with a McNemar’s test (Section 3.4).

3.2.3 Division in Training and Test Set

For training and testing of the machine learning models we need two independent

datasets (James et al. 2013). It is challenging to estimate the optimal ratio for the

division of the initial dataset in training and test set. There is no official rule of

thumb on the split ratio for training and test set (Wang et al. 2018). Most of the

community uses ratios of 50:50 or 80:20 (Sa et al. 2017). Previous research indicates

that the test set ratio is proposed to be inversely proportional to the square root of

the number of freely adjustable parameters if this number is greater than one (Guyon

1997, Amari et al. 1997).
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There are several methods to choose independent training and test sets (Bahn &

McGill 2013): independent collected data, temporally independent data, and spatially

independent data. In case the intended application of the model is to make predictions

in new geographic spaces, then spatially independent data should be chosen (Bahn &

McGill 2013). We will investigate in Section 5.3 which method and ratio are suitable

to split our dataset.

3.3 Sensitivity Analysis of the Models

’The parameter values and assumptions of any model are subject to change and error’

(Pannell 1997, p. 139). Sensitivity analysis investigates these changes and errors

and their impact on the results of the model (Baird 1989). It investigates how the

change of the inputs affects the output of a numerical model (Pianosi et al. 2016).

Its importance is widely recognised in several disciplines (Fiacco 1983). Sensitivity

analysis follows a simple idea: change the model and observe the results (Pannell

1997). There are many different approaches (for an overview see Pannell (1997))

divided in local and global sensitivity analysis methods (for an overview see Morio

(2011)). For the global analyses all parameters are allowed to vary, whereas the local

sensitivity analyses involve variation of only one input parameter at a time which

then enables to analyse the effect on the output (Saltelli et al. 2008, Homma & Saltelli

1996). We are interested in identifying the dimensions which actually impact the

model results and which do not. Therefore, we perform local sensitivity analysis and

vary only one dimension from its minimum value to its maximum value at a time

while keeping the values of the other dimensions constant, and then we investigate the

outputs. We apply a sensitivity index (SI) to obtain information about the sensitivity

of results to different dimensions. There are a number of indices available (Hamby

1994) to measure sensitivity. Comparative assessment of several methods by Hamby

(1995) show that the SI proposed by Hoffman & Gardner (1983) performs best. The

SI is calculated as follows:

SI =
(Dmax −Dmin)

Dmax
(3.7)

Dmax: resulting output value when the dimension is set to its maximum

Dmin: resulting output value when the dimension is set to its minimum

The SI gives information about the magnitude of differences and the direction in

which the model results changes (Jonietz 2016). We determine in Section 7.1 whether
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Table 3.3: McNemar’s contingency table.

Model M2

Identified Unidentified

Model M1

Identified N++ N+−

Unidentified N−+ N−−

different values of the dimensions affect the outputs of the personalised landmark

identification models.

3.4 Comparison of Model Results

The choice of the right statistical test for the comparison of model results is a chal-

lenging problem (Brownlee 2019). Dietterich (1998) recommends to use McNemar’s

test in cases where the models compared are only evaluated on one test set instead of

repeated evaluations. A contingency table summarises the results for any two models

M1 and M2 (Everitt 1992) (Table 3.3).

The total number of landmarks in the test set results from

nLandmarks = N−− +N+− +N−+ +N++. (3.8)

N−−: number of unidentified LMs by both models (M1 and M2).

N+−: number of identified LMs by M1 but unidentified by M2.

N−+: number of unidentified LMs by M1 but identified by M2

N++: number of identified LMs by both models (M1 and M2)

The null hypothesis of McNemar’s test claims that the two models have the same

performance meaning that the number of unidentified landmarks by M1 but correctly

identified by M2 equals the number of unidentified landmarks by M2 but correctly

identified by M1 (Dietterich 1998). The null hypothesis of McNemar’s test is given

by H0 : N−+ = N+− and the alternative hypothesis is HA : N−+ 6= N+− (Kim & Lee

2017).

McNemar’s test statistic follows a chi-square distribution with one degree of

freedom and is calculated as follows (Kim & Lee 2017):

MN2 =
(N+− −N−+)

N+− +N−+
(3.9)
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Table 3.4: Example McNemar’s contingency table.

Model M2

Identified Unidentified

Model M1

Identified 9 9

Unidentified 7 17

In McNemar’s test discrete values are taken into account. Since the chi-square

distribution is continuous, there is an approximation error. To reduce the error,

Edwards (1948) proposes a continuity correction. This results in the following test

statistic:

MN2 =
(|N+− −N−+| − 1)2

N+− +N−+
(3.10)

If the null hypothesis is correct, the probability that the test statistic is greater

than X 2
1,0.95 = 3.841459 is less than 0.05 (Dietterich 1998). The p-value calculated

by the test can be interpreted as follows with regard to a given significance level α

(Brownlee 2019):

• p > α: fail to reject H0, no difference in the performance of the models.

• p ≤ α: reject H0, significant difference in the performance of the models.

Table 3.4 shows an example. Amongst these data 17 landmarks being unidentified

by both models (M1 and M2), seven are unidentified with M1 but correctly identified

with M2, nine are unidentified by M2 but correctly identified by M1 and nine are

correctly identified by both models.

A McNemar’s test of these data gives the following result:

MN2 =
(|9− 7| − 1)2

9 + 7
= 0.063 (3.11)

This has an associated two-tailed p-value of 0.8026. Thus, p > α in case we apply

α = 0.05. In our example we fail to reject H0 and cannot detect any statistically

significant difference in the performance of the models. We use the McNemar’s test

for comparing the conventional and personal models among themselves (Section 5.4.5

and Section 6.2). Furthermore, we will compare the results of the conventional models

with the results of the personalised models to test our hypothesis (Section 7.2).
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3.5 Study Setup

In this chapter we investigated mathematical models and analysis methods as a basis

for further investigations. We introduced three models based on theory and one

machine learning model (Section 3.1). In the next chapter we will build conventional

and personalised landmark identification models (Section 4.3). We will build a

conventional weighted sum model (CwSm), a conventional weighted product model

(CwPm), a conventional decision flow chart (CdFc), and a conventional decision

tree model (CdTm) based on landmark dimensions. In addition, we will build a

personalised weighted sum model (PwSm), a personalised weighted product model

(PwPm), a personalised decision flow chart (PdFc), and a personalised decision tree

model (PdTm) including personal dimensions but based on the conventional models.

We intend to compare landmarks identified with the conventional and the personalised

models to those selected by survey participants. In the framework of a survey we will

collect data (Section 5.1.2). We will divide the resulting dataset into a training and a

test set using the methods provided in Section 3.2.3. Then, we will train the machine

learning models both, conventional and personalised, on the training set following

the traditional approach for the machine learning model (Section 3.2.1).

The conventional models based on theory have no unknown model parameters,

whereas the model parameters of the personalised models that are also based on

theory need to be identified. The task at hand is to identify the weights of both,

PwSm and PwPm, as well as an optimal flow of the PdFc. Inspired by the traditional

machine learning approach, we use the ’training’ method provided in Section 3.2.2 for

the models based on theory. The training results are models that identify landmarks

based on input data. Subsequently, we will feed each model with the test set to

identify landmarks and calculate their recall (Formula 3.6).

Then, we will analyse the models and their results. We will perform a sensitivity

analysis using the methods proposed in Section 3.3 in order to investigate whether

changes in the inputs of the dimensions affect the outputs of the models. Afterwards,

we will compare the landmarks collected by the survey with the identified landmarks

of the models - conventional as well as personalised - and determine whether the

collected landmarks are identified correctly or remain unidentified. To detect whether

there are any statistically significant differences in the performances of our models

we will apply the McNemar’s test (Section 3.4).
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Chapter 4

Landmark Identification Models

Chapter 3 introduced mathematical models as basis for conventional and personalised

landmark identification. Landmarks may have different dimensions explaining their

landmarkness. The first Section 4.1 of this chapter discusses the dimensions considered

in the models and identifies attributes for them. Based on the property of salience

that turns a conventional geographic object into a landmark, we investigate salience

measures for all attributes in Section 4.2. The final section presents the models for

the identification of landmarks both conventional and personalised (Section 4.3).

4.1 Dimensions of Landmark Identification Models

This section identifies dimensions as basis for landmark identification models. There

are dimensions that are dependent on the landmark itself and personal dimensions de-

pendent on the individual traveller. The conventional models consider only landmark

dimensions, whereas the personalised models consider both landmark and personal

dimensions. This section investigates and discusses the corresponding attributes of

the dimensions.

4.1.1 Landmark Dimensions

This thesis builds on the definitions of Sorrows & Hirtle (1999) and Raubal & Winter

(2002) for landmark dimensions. The models define the landmark dimensions visual,

semantic, and structural dimension. Additionally, we add a dimension to consider

the topic of interest.
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Figure 4.1: Examples of objects with irregular surface structures.

Visual Dimension

There are four attributes of the visual dimension: surface structure, surface area,

height, and colour. Raubal & Winter (2002) refer to the façade of a building. Because

this thesis considers also other urban structures, the attributes relate to the visible

surface of an object.

Surface structure Objects with irregularly shaped façades or surfaces are easier to

recognise than objects with even surfaces. People tend to notice buildings that have

salient façades in comparison to the façades of neighbouring buildings (Nothegger

et al. 2004). Buildings are visually salient if they show e.g. bay windows, balconies, or

outstanding façades. Surfaces of other objects are irregular if they are not uniformly

shaped (e.g. a water wheel with its blades or an advertisement pillar with different

colours (Figure 4.1)).

Surface area Another attribute that classifies an object as salient, is one with a

surface different from all the others. Already the participants in Lynch’s (1960) study

about the image of a city called ’varied roof tops’ (p. 162) as an important aspect.

A building with a tent roof in a neighbourhood where saddled roofs are dominant

is outstanding (Figure 4.2a). Other objects such as stationary bollards with round

surface areas (Figure 4.2b) or a street light with a peaked roof (Figure 4.2c) might

be considered as outstanding.

Height A different height from all the other surrounding objects can give an object

a salient appearance. For example, television towers, hilltops, and city skylines might

be valuable global landmarks (Steck & Mallot 2000). Vice versa: small objects

(monuments, garbage bins, or park benches) might be outstanding because of their

height. A variation in height of local objects sets up a contrast with nearby elements

(Lynch 1960).
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(a) Tent. (b) Round. (c) Peaked.

Figure 4.2: Examples of objects with outstanding surface areas.

Colour Colour is another attribute of the visual dimension. An object can stand

out because of its colour from surrounding objects (Raubal & Winter 2002). Colour

is a cure for structuring and identifying the environment (Lynch 1960). For example,

a blue house in a street with grey houses would attract attention from a traveller.

A red telephone box in an otherwise grey environment might be visually attractive

because of its colour.

Semantic Dimension

In this thesis the use of the notion of semantic attraction of an object is the same

as Raubal & Winter (2002) and similar to that of cognitive attraction (Sorrows &

Hirtle 1999). The models consider cultural, historical importance, and explicit marks

as attributes of the semantic dimension.

Cultural importance Landmarks are defined by a combination of attributes in-

cluding cultural importance (Sadalla et al. 1980). An object is culturally important

if it promotes culture or arts or is a place of leisure or entertainment. This in-

cludes buildings that accommodate sport centres, public swimming pools, cinemas,

or museums, but also places such as parks, entertainment areas, or marketplaces.

Historical importance Semantic attraction of an object might result from histor-

ical importance (Sorrows & Hirtle 1999). Buildings with historical importance often

stand out because of their architecture (e.g. in an urban environment city walls or

old historic buildings). In addition, structures that are different from buildings such

as monuments with a historic meaning or historic places have a certain importance.
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Figure 4.3: Attributes of the structural dimension (modified from Maass (1996)).

Explicit marks Objects with explicit marks are of great value to a traveller because

they are easy to identify. An explicit mark on an object specifies its semantics to

the traveller (Raubal & Winter 2002). For example, when a building is marked as

Museum, then its use is immediately apparent. Street signs or monuments with

explicit marks might be valuable navigation aids as well. Explicit marks are an

additional information of an object, which cannot be identified solely by its visual

attributes.

Structural Dimension

Objects are structurally salient as soon as they have prominent spatial locations within

an environment (Sorrows & Hirtle 1999) or if they are highly accessible. Attributes of

the structural dimension are location at a decision point and distance to the decision

point.

Location at a decision point Decision points are of particular importance because

they are mostly linked to actions, such as ’turn left’ or ’go straight’ (Montello 1998).

In order to take account of the fact that objects at decision points are more valuable

for route directions, objects are salient if they are located at decision points.

Distance to the decision point Objects close to a decision point are useful for

navigation purposes (Waller et al. 2000). A traveller normally restricts his attention

to an area of perception around a decision point (Maass 1996). Within this area of

perception the traveller focuses on a spatial area of attention (Figure 4.3). Objects

near a decision point and within the area of attention are preferred as a navigation

aid.
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Landmark Interest Dimension

An object might be outstanding because of the topic of interest it belongs to. There

are a number of topics of interest that may be attached to urban objects, such as

gastronomy or shopping but also historical or cultural interest. A building hosting a

restaurant may attract attention for people who like to go out and visit a restaurant.

Other urban objects might be attractive because of their history, such as city walls

or monuments.

In Section 5.1.1 we analyse objects of Augsburg’s innercity because we need to

identify possible topics of interest. Two of them are the topics of interest cultural

interest and historical interest (Table 5.1). They overlap with the attributes cultural

importance and historical importance of the semantic dimension. However, the

information on the topic of interest needs to be explicitly available for the assessment

of the personal dimension personal interests in the PdFc (Section 4.3.6). It investigates

whether a traveller has some personal interest in a topic. In this case the model

selects objects that are part of this particular topic. To enable the PdFc to do so, the

objects must be assigned to those topics of interest they belong to. The landmark

interest dimension provides the information to which topics of interest an object

belongs to.

4.1.2 Personal Dimensions

This section deals with the definition of personal dimensions of objects for the inclusion

within a personalised landmark identification model. In general, five dimensions are

important when viewing a person as an individual (Brusilovsky & Millán 2007):

1. Personal knowledge,

2. Personal interests,

3. Personal goals,

4. Personal background, and

5. Individual traits.

There might be more other not yet identified personal dimensions. However, for

this first approach on modelling personalised landmarks we base ourselves on the

dimensions provided by Brusilovsky & Millán (2007).

Probably the most important dimension to consider for personalised landmark

identification is personal knowledge. In this thesis personal knowledge refers to the
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prior spatial knowledge of the traveller. A highly personalised landmark such as my

working place or the home of a friend is a good landmark only if the traveller has

spatial knowledge of the environment. Personal interests constitutes an important

dimension, because a travellers level of interest enhances memory for some information

(McGillivray et al. 2015). The traveller’s personal goal represents the immediate

purpose for a traveller’s work with a personalised application (Brusilovsky & Millán

2007). It is the most variable dimension of the above-mentioned ones and has

an impact on the amount of required route directions and on the distribution of

landmarks. The personal background of the traveller is a common name for a number

of attributes related to the travellers previous experiences outside the landmark or

navigation domain (Brusilovsky & Millán 2007). The personal background influences

the way objects are recognised and perceived. Individual traits subsume the features

of the traveller that together define a traveller as an individual and might influence

how objects are perceived. The following sections discuss the personal dimensions

and their attributes in detail.

Prior Spatial Knowledge

Probably the most important dimension to consider for the provision of personalised

landmarks is the prior spatial knowledge of a traveller. We use discrete qualitative

categories based on the dominant framework proposed by Siegel & White (1975)

(Section 2.1.1). This thesis proposes landmark, route, and survey knowledge as

attributes of the dimension prior spatial knowledge. In addition, it adds a fourth

attribute - no knowledge, for those areas where the traveller has never been before.

Landmark knowledge Travellers notice various objects and encode images of the

environment while first encountering an unfamiliar area (Thorndyke 1980). Von Stülp-

nagel & Steffens (2013) show that self-contained movement through an environment

leads to the encoding of landmark knowledge. Then, people are able to recall the

objects they have seen and to remember e.g. names of certain buildings and locations.

These objects are the first spatial cues that are available in no particular order on a

cognitive map (Couclelis et al. 1987). Travellers with only landmark knowledge are

not familiar with routes and not able to find short cuts and detours although they

are not completely unfamiliar with the environment to navigate.

Route knowledge Previous experiences with a route through an environment

lead to changes in potential wayfinding effectiveness (Allen & Kirasic 2003). Route

knowledge enables to navigate from a starting point to a destination without any
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aids (e.g. maps, navigation systems, route directions). The availability of knowledge

of a sequence of landmarks along a route and the knowledge of how to get from

one landmark to another influences the granularity of route directions (Tenbrink &

Winter 2009). There are many reasons to remember objects previously used in route

directions (Winter 2003). Objects next to an already navigated route are structurally

salient and their location along the route is cognitively easy to conceptualise (Klippel

& Winter 2005).

Survey knowledge Survey knowledge is usually generated from route knowledge

through integration of the routes into a cognitive map (Tolman 1948, Downs & Stea

1974, O’keefe & Nadel 1978). Survey knowledge implies that the traveller is familiar

with a certain environment. Quesnot & Roche (2015) show that travellers familiar

with a specific environment prefer objects with semantics as landmarks. Such objects

have personal meanings solely because of their semantics, e.g. the place where I once

lived or my doctor (Richter & Winter 2014) - even a bright-coloured door might be

a landmark if it is for example your own (Lynch 1960). The higher the degree of

familiarity the higher is the possible degree of personalisation of a landmark. For

example, the house of a friend in a building ensemble, although structurally and

visually identical to the other buildings, may become a landmark. These personal

semantic or cognitive landmarks might be missed by travellers unfamiliar with the

environment, unless there are some explicit marks (Sorrows & Hirtle 1999).

No knowledge The fourth attribute of the personal dimension prior spatial knowl-

edge is no knowledge. In case travellers have never been to the environment to

navigate before and have never seen a map or photos, then we assume that they have

no prior spatial knowledge at all. Quesnot & Roche (2015) show that people not

familiar with an environment prefer landmarks because of their visual or structural

salience. For these travellers highly visible landmarks located at strategic decision

points of the route should be provided.

Personal Interests

Undoubtedly, preferences for certain objects and for activities involving the objects

exists (Fink 1991). Travellers turn their attention towards certain objects in their

environment to keep these objects within their field of perception. Travellers must

look around in order to perceive things, especially when navigating with landmarks.

They walk through the streets keeping their eyes open for the next landmark. But

looking around is not enough to perceive objects (Rensink et al. 1997). A traveller
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whose mind wanders during walking may often miss out on important things, even

when these are highly salient (Simons 2000). People are easy to distract and as a

consequence they may miss important objects, such as landmarks (Arthur & Passini

1992). Rensink et al. (1997) argue that the key factor for perceiving things is attention,

which is dependent on the degree of interest. Without attention many people have

no awareness at all of some objects along a route and are inattentionally blind (Rock

et al. 1992, Mack et al. 1998). Banerjee et al. (2015) confirm that the observer’s level

of interest in an object influences the voluntary focus of attention on environmental

inputs. They show that participants perform better in a visuospatial task of spatial

target detection of high interest items. Personal interests may result in selective

attention which is related to the locus of eye fixations during navigation. This,

according to Viaene et al. (2016), may point to recognition or use of a landmark for

wayfinding. In addition, studies show that people show an improved memory for

information that they are curious about (Gruber et al. 2014, McGillivray et al. 2015).

Interests are conceptualised from either a situational perspective or a personal

perspective (Schraw & Lehman 2001, Hidi & Renninger 2006). Some authors dif-

ferentiate between preferences and interests (Weiβenberg et al. 2006). Preferences

or situational interests are caused by certain conditions and/or concrete features

of the environment (Renniger & Su 2012). They are dependent on the situation

of the traveller and external factors. There are simple and complex preferences

(Weiβenberg et al. 2004). For example, consider travellers not much interested in

historical monuments. During their holidays they may prefer these monuments to

get to know the culture; this is referred to as complex preference. On the other

hand, there are personal interests (also referred to only as interests (Weiβenberg

et al. 2004)), which reflect personality-specific orientation. Personal interests are

static and application specific parameters and are defined before using an application

(Weiβenberg et al. 2004). Personal interests provide important categories for action

goals in a situation when travellers are free to do as they please (Krapp et al. 2017).

There are many different possible interests for a traveller in an urban environment.

For example, a traveller who loves to go to bars and restaurants, but is bored by

art and culture, will obviously be more attentive to gastronomy-related objects than

urban features such as statues or monuments.

62



4.1. DIMENSIONS OF LANDMARK IDENTIFICATION MODELS

Personal Goals

Objects are classified as landmarks as soon as they are helpful aids to achieve a goal.

The salience of an object is not dependent on the traveller’s goal because it depends

much more on the object’s attributes and on personal dimensions (e.g. prior spatial

knowledge or personal interests). It is, however, important to know the traveller’s

goals, because it makes a difference in the number and the distribution of landmarks.

In human wayfinding three goals are distinguished: travel with the goal of reaching a

familiar or a novel destination and exploratory travel (Section 2.1.1). Depending on

the particular situation travellers pursue different goals.

Known goal When travellers are navigating to a known goal their focus is primarily

on reaching a particular location. This may be a specific spatial goal (e.g. the house of

a friend). In this case, travellers need no landmarks around the destination, because

they are already familiar with it. The distribution of landmarks along the rest of the

route depends on the familiarity of the traveller with the route.

New goal Travelling with the goal to reach a novel destination is mostly carried

out with different kinds of aids (Section 2.1.1). There is a need for more landmarks

around the destination when it is unknown. Michon & Denis (2001) show that the

frequency with which landmarks are mentioned in route directions increases in the

vicinity of the destination. At points where a change in direction is required or along

long route segments confirmatory landmarks should be provided. We assume that if

the goal is unknown, the route or at least parts of the route are unknown as well.

Exploratory travel The situation during exploratory travel is different to travelling

to a known or unknown goal. In this case travellers may be interested in extra

landmarks along the route. Additionally, informative landmarks are helpful to get to

know the environment.

Personal Background

Personal background is a common name for attributes describing a traveller’s expe-

rience outside of a specific application (Brusilovsky & Millán 2007) - in this case

navigation and wayfinding. The personal background is mainly described by demo-

graphic data - objective facts (Kobsa et al. 2001) - and gives information about the

personal characteristics of a traveller. Data describing the personal background may

include record, geographic, psycho-graphic, or customer qualifying data as well as data
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(a) The Netherlands. (b) Spain. (c) Germany.

(d) Germany. (e) United Kingdom.

Figure 4.4: Examples of objects with different sizes, shapes, or colours.

describing the travellers characteristics (Kobsa et al. 2001). Important demographic

data are geographic data (country of residence, cultural background) and data about

the traveller’s characteristics (education, gender, age).

Country of residence The first geographically-related attribute is the country

of residence. It is an important attribute, because travellers not living within the

country of the environment to navigate, may be used to environments and objects

shaped differently (Kattenbeck 2016). There are quite a number of objects which have

different sizes, shapes, or colours in different countries (e.g. compared to Germany,

telephone boxes in the United Kingdom have a different colour and shape and glass

containers have a different size and shape in the Netherlands and Spain (Figure 4.4)).

Cultural background The second geographically-related attribute is the cultural

background of the traveller. Here, the same applies as for the country of residence:

travellers, who did not grow up within the environment to navigate may be used to

completely different objects and shapes. Consider travellers who grew up in a small

rural village, they have a different background compared to travellers who grew up in

the middle of a large modern city.

64



4.1. DIMENSIONS OF LANDMARK IDENTIFICATION MODELS

Education There are attributes of the personal background important for the

identification of personalised landmarks concerning the traveller’s characteristics.

One of them is the education of the traveller. Berry & de Rosis (1991) reveal that

a user’s knowledge in a domain varies considerably according to their background

and job. Concerning navigation and wayfinding, the education of a traveller may

influence the way visual and structural dimensions are perceived (Kattenbeck 2016).

Consider e.g. sculptors that have a perspective on statues or art work or surveyors

who take special note of measuring points or benchmarks whereas others do not even

notice these spatial objects.

Age A further attribute concerning a traveller’s characteristics is age. The age

of travellers is found to be an important attribute in spatial cognition because of

strong differences in orientation abilities (Jansen-Osmann et al. 2007) and route

memorisation (Wang et al. 2019). Jansen-Osmann & Wiedenbauer (2004) show

that younger people rely more on the presence of landmarks than adults. Goodman

et al. (2005) show that a pedestrian wayfinding application including landmarks

is particularly useful for older people and indicate a need for personalisation for

elderly people. Age may have a particular impact on the structural salience of objects

(Kattenbeck 2016).

Gender The third attribute of the traveller’s characteristics is gender. There are

known differences regarding spatial cognition between women and men (Coluccia &

Louse 2004, Wang et al. 2019) and use of landmarks (Ward et al. 1986). Wang et al.

(2019) state that males pay less visual attention to landmarks than females. Other

studies report differences between women and men in the importance of structural

salience (Quesnot & Roche 2015).

Individual Traits

Individual traits deal with the attributes of travellers that define them as an individual

(Brusilovsky & Millán 2007). Examples are personality traits (e.g. introvert/extrovert),

cognitive styles (holist/serialist), cognitive factors (e.g. working memory capacity),

and learning style (Brusilovsky & Millán 2007). Individual traits are stable parameters

of a traveller that either do not change at all or only change over a long period of

time. These parameters might be identified with specially designed psychological

tests (Brusilovsky & Millán 2007). Existing work on modelling individual traits for

personalisation mostly deals with cognitive styles and learning strategies (Riding

& Rayner 1998). Goren-Bar et al. (2006) investigate personality traits together
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with adaptivity, which is a ’technological approach whereby systems monitor and

manipulate personal needs and interests’ [p. 32]. They show that personality traits

relating to the notion of control have a selective effect on adaptivity acceptance.

They outline that any evaluation of a mobile application might be biased unless the

personality of the users is taken into account.

4.2 Salience Measures for the Dimensions

The goal of the landmark identification models is either to determine an overall

salience measure of landmarks or to classify objects in landmark (LM) and not a

landmark (NAL). These calculations are based on salience measures for the visual (vis),

the semantic (sem), and the structural (str) dimension. In this section we investigate

salience measures for the attributes of the landmark dimensions. Furthermore, we

investigate measures to consider the salience of personal dimensions.

4.2.1 Landmark Dimensions

This thesis assigns landmark salience values in percent to the object as soon as an

attribute value is different or differs from the attribute values of the surrounding

objects. In case all attribute values of a dimension are salient, the object gets a 100%

salience for this dimension. Consider e.g. an object meeting all the requirements of

the visual dimension, then it is awarded 100% visual salience. An object that is for

example only visually attractive because of its surface area and structure only gets a

50% salience. An object must fulfil specific conditions to be considered salient (Table

4.1). Salience is based on threshold values from Raubal & Winter (2002) and Nuhn

et al. (2012).

Visual Dimension

For the attributes of the visual dimension, surface structure, surface area, height, and

colour threshold values are defined indicating when their values differ significantly

from the values of the surrounding objects in a local neighbourhood. The local

neighbourhood may be a buffer of a specific size. This thesis follows Raubal & Winter

(2002) and assumes that each of the attributes of the visual dimension have the same

effect on the overall salience of an object. We assign a salience value of 25% in case

the attribute is salient (Table 4.1, column Salience (Attribute)). Zero percent means

that the attribute is not salient.
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Table 4.1: Rules for the computation of landmark salience.

Dimension Attribute Salient Salience

(Attribute)

Salience

(Dimension)

Visual

Surface Struc-

ture V s

If True sV s
∈ {0, 25}

svis[%] = sV s

+ sV a
+ sV h

+ sV c

Surface Area

V a

See text

below

sV a
∈ {0, 25}

Height V h sV h
∈ {0, 25}

Colour V c sV c
∈ {0, 25}

Semantic

Cultural im-

portance Sc If True

sSc
∈ {0, 25} ssem[%] =

sSc
+ sSh

+

sSeHistorical im-

portance Sh

sSh
∈ {0, 25}

Explicit

marks Se

sSe
∈ {0, 50}

Structural
Location at

a Decision

Point Stl

If True sStl ∈ {0, 50} sstr[%] =

sStl + sStd

Distance to

the

Decision

Point Std

If Std =

min(Std1,...Stdi)

sStd ∈ {0, 50}

Interest Belonging to

a topic of in-

terest ILM

If True siLM ∈ {0, 1}

siLM
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Surface structure A building with an outstanding façade or an object with an

irregular surface gets the Boolean value True - and False otherwise. The surface

structure is salient as soon as this building or object has an attribute value True.

Surface area The value of the attribute surface area is a String describing the

kind of surface area (e.g. tent, flat for buildings or round, peaked for other objects).

The surface area is salient as soon as the String value is different from all the others

in a local neighbourhood. That means, e.g. if a building with a tent roof is classified

salient because of its surface area, it is the only one with that kind of roof.

Height Each object has its individual height. The attribute value of the attribute

height is a number. The assessment whether this attribute value is significantly

different from mean characteristics within a local neighbourhood is done by hypothesis

testing. The null hypothesis claims that the attribute value of height is not significantly

different from the others. In case the null hypothesis is rejected, the object has a

significant height.

Colour The attribute value of colour is a String (e.g. red, blue, or yellow). An

object is salient because of its colour being different from all the other colours of the

objects in a local neighbourhood. This might be for example, a telephone box with

the colour red, whilst all the other objects around do not have the colour red.

Semantic Dimension

The salience of the attributes of the semantic attributes - cultural and historical

importance as well as explicit marks - is independent of the other objects in the

neighbourhood. They are measured with Boolean values and considered as salient if

they are True. The attributes get different salience values (see below). The semantic

salience is zero if there are respectively neither cultural nor historical importance nor

explicit marks.

Cultural importance Cultural importance receives a salience of 25% (Table 4.1,

column Salience (Attribute)) if the object has a cultural value. An object that does

not promote culture gets the salience value zero.

Historical importance This thesis assigns a 25% salience to historical importance

if the objects are meaningful in history. If the value for this attribute is False, the

objects get no salience for historical importance.

68



4.2. SALIENCE MEASURES FOR THE DIMENSIONS

Explicit marks We assume that the availability of explicit marks is of a higher value

than cultural or historical importance. Therefore, explicit marks get a percentage

salience value of 50% as soon as there is an explicit mark available.

Structural Dimension

The attributes of the structural dimension must meet certain conditions to be salient.

Similar to the case of visual attributes of the landmark dimension this thesis assumes

that each of the attributes has the same effect on the overall salience of the dimension

and assigns a salience value of 50% (Table 4.1, column Salience (Attribute)). If the

attribute of an object is not salient, it gets zero percent. The following paragraphs

explain the conditions that must be met.

Location at a decision point In case an object is located at a potential decision

point, it gets the Boolean value True for that attribute. More than one object at a

decision point can get True for that attribute, because there normally is more than

one object located at a decision point. An object located at street segments gets the

Boolean value False for that attribute. Since we focus in this thesis on landmarks

at decision points, each object is salient and gets the Boolean value True for that

attribute.

Distance to the decision point The distance to the decision point is stored as a

number. The object with the smallest distance to the decision point gets a percentage

of a salience value. The other objects get a salience of zero for the attribute distance

to the decision point.

Landmark Interest Dimension

Some objects belong to a number of topics of interest. Consider a restaurant which

belongs to the topic of interest gastronomy. In case the buildings architecture is

outstanding, it might belong to the the topic of interest architecture. As soon as an

object belongs to a topic of interest, it gets a landmark interest (iLM) salience value

of siLM = 1 for that particular interest. Zero means that the object is not interesting

for that particular topic of interest.
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Table 4.2: Stages of prior spatial knowledge (PspK).

sPspK Been before at the

street intersection?

Knowledge The traveller...

1 Yes Survey ... has been in the area before and

knows short-cuts and detours.

2 Route ... has been in the area before and

knows some routes through the area.

3 Landmark ... only knows some important points

in the area.

4 No Survey ... has been in the area before and

knows short-cuts and detours.

5 Route ... has been in the area before and

knows some routes through the area.

6 Landmark ...only knows some important points

in the area.

7 No ... has never been in the area before.

4.2.2 Personal Dimensions

This thesis is a first approach on modelling personalised landmarks. Following (Klippel

et al. 2009) who identified ’user’s familiarity with an environment, as well as personal

styles’ (p. 231) as important aspects of cognitively ergonomic route directions, we

focus on prior spatial knowledge and personal interests in this thesis. We start with

these two personal dimensions and concentrate on how they might be incorporated

in personalised landmark identification models. We discuss reasons why the other

dimensions are treated elsewhere below.

Prior Spatial Knowledge

In Section 4.1.2 we identify stages of prior spatial knowledge (PspK), namely landmark,

route, survey, and no knowledge. In addition to these stages we differentiate if the

traveller has been before at the investigated decision point or not. We differentiate

seven stages of prior spatial knowledge (Table 4.2). Prior spatial knowledge is an

aspect that influences the other dimensions and their attributes. For that reason

their salience is not expressed by percentage values but by numbers (sPspK ∈ {1, ....,

7}). These numbers are either transferred to weights in the PwSm (Section 4.3.2)
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and the PwPm (Section 4.3.4) or directly used in the PdFc (Section 4.3.6) and the

PdTm (Section 4.3.7).

Personal Interests

We assume that the travellers interests in topics influence their landmark selections.

We focus solely on personal interests (pInt) dealing with person-specific orientation

in general. Situational interest is treated elsewhere (Section 4.1.2). The interest in

different topics varies considerably between different travellers. Rating scales are one

way to measure personal interests which estimate the travellers interest in a topic by

a single value on a specific scale. A travellers interest in a topic might range from one

(no interest), two (low), three (medium), four (high), to five (very high interest). This

results in a personal interests salience spInt ∈ {1, ...., 5}. Another approach consists

of not considering scales of interest, but only interested or not interested. To transfer

the five point interest scale to the two point scale we consider spInt ∈ {1, 2, 3} as not

interested and spInt ∈ {4, 5} as interested. Then the interest salience is spInt ∈ {0, 1}.
The salience is - as was the case with prior spatial knowledge - transferred to weights

or directly considered in the personalised landmark identification models.

Personal goals

Wayfinding goals have an impact on the number and the distribution of landmarks

along a route. The salience of an object is not dependent on the traveller’s personal

goals for wayfinding. That is why we do not further discuss personal goals explicitly

but make references at some points where personal goals might influence the results.

Personal background

We do not discuss personal background further at this point. The incorporation of

this dimension would require deeper analysis of its influence on the overall salience of

objects. This would involve user studies with psychological tests regarding gender

and age and a study on how objects are perceived in different countries from people

with different cultural background. This is beyond the scope of this thesis, which

gives a first approach on modelling personalised landmarks.

Individual Traits

Unlike the other dimensions individual traits can only be determined through especially

designed psychological tests. Such tests would involve sound psychological knowledge,
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which can only be contributed by experts. For this reason, this thesis does not

incorporate individual traits in the models.

4.2.3 Salience Vector

After determining the salience measures for the individual dimensions we model the

salience of every object oji from a set Oj of objects for each traveller as a salience

vector of dimensions:

~sov =

























svis

ssem

sstr

siLM

sPspK

spInt

























We assume that at every decision point j at least one object oji is available as

input for our models. In the next Section 4.3 we investigate models for identifying

landmarks for the decision point.

4.3 Overall salience

This section presents the models we use to identify landmarks - conventional as well

as personalised models. The P/CwSm (Section 4.3.1 and Section 4.3.2) and the

P/CwPm (Section 4.3.3 and Section 4.3.4) calculate an overall salience measure for

each object. The P/CdFc (Section 4.3.5 and Section 4.3.6) classify objects as LMs

and the P/CdTm (Section 4.3.7) in LMs and NALs.

4.3.1 Conventional Weighted Sum Model (CwSm)

The CwSm is used for landmark identification by Raubal & Winter (2002). They use

the well-established visual, semantic, and structural dimensions but include slightly

different attributes from those presented here (Section 4.1). Raubal & Winter (2002)

determine values for each attribute and investigate whether an attribute value is

significantly different from the others in a given neighbourhood. Therefore, authors

use hypothesis testing. They set the significance value to 1 in case there are significant

differences, i.e. the attribute is salient for a specific object. Otherwise, the significance

value is zero. We use the approach from Raubal & Winter (2002) but include our

attributes and consider the attribute values as salient as soon as they fulfil the salience
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conditions in the column Salient in Table 4.1. We use the salience defined in column

Salience (Attribute) in Table 4.1.

Then, Raubal & Winter (2002) group the salience values for visual, semantic, and

structural dimensions (Table 4.1, column Salience (Dimension)). They determine

the total measure of landmark salience for each object by adding up the grouped

salience values (Formula 4.1). The landmark with the maximum overall salience is

established as a potential landmark and is used to enrich route directions. Raubal &

Winter (2002) set the weights to one. They propose to adapt the weights in their

total salience measure to the context or individual user preferences but do not discuss

this any further.

sCwSm = (wvis ∗ svis + wsem ∗ ssem + wstr ∗ sstr)/100 (4.1)

wvis = wsem = wstr = 1

We use percentage values for svis, ssem, and sstr to determine landmark salience

(Table 4.1). The overall salience measure is divided by 100 in Formula 4.1 for the

sake of clarity.

4.3.2 Personalised Weighted Sum Model (PwSm)

The PwSm is quite similar to the CwSm (Section 4.3.1). We adapt the weights in the

CwSm for the consideration of personal interests as well as prior spatial knowledge

within the PwSm (Formula 4.2). We assign weights according to spInt and sPspK .

The weights cannot be zero because this results in empty terms for the visual, the

semantic, and the structural dimension.

sPwSm = (wvis ∗ svis + wsem ∗ ssem + wstr ∗ sstr)/100 (4.2)

wvis = f(spInt; sPspK)

wsem = f(spInt; sPspK)

wstr = f(spInt; sPspK)

We divide the overall salience measure in Formula 4.2 by 100 for the sake of clarity.

The result of the PwSm is a measure of landmark salience for an object. There might

be one or more objects with the highest salience measure at a decision point. In

Section 6.1.1 we determine weights for the PwSm.
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4.3.3 Conventional Weighted Product Model (CwPm)

We are not aware of any existing wPm to identify landmarks. We build the model

similar to the CwSm. We determine the values for each attribute of the dimensions.

Then we investigate whether an attribute value is salient according to Table 4.1

and salience values are grouped. The CwPms overall measure of landmark salience

considering only landmark dimensions is calculated with weights set to one (Formula

4.3). We divide the salience measure by 100 for the sake of clarity.

sCwPm = (swvis

vis ∗ swsem

sem ∗ swstr

str )/100 (4.3)

wvis = wsem = wstr = 1

4.3.4 Personalised Weighted Product Model (PwPm)

We build the PwPm quite similar to the CwPm (Section 4.3.3). The total measure of

personalised landmark salience is gained with weights dependent on spInt and sPspK

(Formula 4.4).

sPwPm = (swvis

vis ∗ swsem

sem ∗ swstr

str )/100 (4.4)

wvis = f(spInt; sPspK)

wsem = f(spInt; sPspK)

wstr = f(spInt; sPspK)

Again, we use percentage values to determine landmark salience and, for the sake

of clarity, divide it by 100 . The result of the PwPm is again a landmark salience

measure. There might be, as in the case of the PwSm, more than one object with

the highest measure at a decision point. Section 6.1.1 investigates the determination

of weights for the PwPm.

4.3.5 Conventional Decision Flow Chart (CdFc)

We build a basic CdFc following the steps in Section 3.1.1 and using the symbols

provided. Our area of focus is the identification of an object that is suitable as a

landmark. We follow the results from our literature research (Section 2.1.2) to identify

the steps of the flow in chronological order. The first process investigates the visual
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Figure 4.5: Conventional Decision Flow Chart.

salience of an object, followed by a process assessing the semantic salience, and a

process determining the object with the maximum structural salience (Figure 4.5).

The input of the CdFc is every object oji from a set Oj of objects at a decision

point. It flows from left to right considering the next process provided there is still

more than one object available (|Oj | > 1). The CdFc directly proceeds to the output

(LM ) in case there remains only one object as a result of a process. For a better

overview these connections are not depicted in Figure 4.5.

4.3.6 Personalised Decision Flow Chart (PdFc)

For the identification of personalised landmarks we build a personalised decision

flowchart following the steps in Section 3.1.1 and using the symbols provided. Our

area of focus is to identify the most personal object that is suitable as a landmark

oi,max(pers). For the identification of the steps in chronological order we follow the

results from our literature research (Section 2.3). The most important dimension to

consider is the familiarity or the prior spatial knowledge of the traveller (Hamburger

& Röser (2014), Quesnot & Roche (2015), Caduff & Timpf (2008)). Therefore, the

first component of the flowchart deals with the decision about the particular prior

spatial knowledge at the decision point (Figure 4.6). This prior spatial knowledge is

reflected in the importance of visual, semantic, and structural salience. We consider

landmark dimensions (visual, semantic, and structural) next in the flow, followed by

the investigation of personal interests.
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The flowchart considers every object oji from a set Oj of objects at a decision

point as input (Figure 4.6). It flows from left to right considering the next decision

or process provided there is still more than one landmark available (|Oj | > 1). In

case there remains only one object as a result of a decision or a process, the flowchart

directly proceeds to the output (oi,max(pers)) and accepts this object as the most

personal one. For reasons of simplification these connections are not depicted in

Figure 4.6.

The chart starts with the decision if the traveller is familiar with the street

intersection. People unfamiliar with an environment use highly visual and structurally

attractive landmarks (Quesnot & Roche 2015). Thus, the landmark with the maximum

visual salience and then (if there is more than one landmark) the one with the

maximum structural salience is determined. If there is more than one landmark

passing both processes, the flowchart continues with a decision about the interest

salience. The PdFc divides in interested and not interested resulting in an interest

salience spInt ∈ {0, 1}. In case siLM = spInt = 1 the landmark is interesting for the

traveller. Supposing that there is still not one unique landmark, we have to decide if

it is beneficial to have more than one suitable landmark available (e.g. for exploratory

travel). Otherwise, a decision criterion might be applied (e.g. the object with the

shortest distance to the decision point is used).

Travellers with sPspK ≤ 3 already have familiarity. Thus, semantics are important

and a process to determine the object with the maximum semantic salience is

included. How detailed this familiarity is depends on the knowledge of the surrounding

environment. Therefore, the next decision of the flowchart is if the traveller has

landmark, route, or survey knowledge of the surrounding area.

We assume for sPspK = 3 that travellers already know some important POIs with

semantic and visual salience. Semantic salience is already confirmed for all objects

at decision points where the travellers have been before, therefore, a process for the

determination of the maximum visual salience follows. In case there is more than

one landmark with maximum visual salience, the flowchart proceeds with the interest

salience before it reaches a decision.

sPspK = 2 means that travellers already know some routes in the environment of

the decision point. While passing these routes, their attention might be attracted

by structural salient objects. Thus, the flowchart considers structural salience. The

interest salience is investigated if there remains more than one landmark.

In case sPspK = 1 the traveller is very familiar with the environment. Nevertheless,

it is not quite sure whether all available objects are familiar. In addition, we assume
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that some landmarks are familiar because of their semantic salience but some because

of their visual or structural salience. Therefore, the process to identify the object with

the highest visual salience is followed by a process to determine the landmark with

the maximum structural salience. Supposing there is still more than one landmark

left, the decision rule for the interest salience is applied followed by the final decision

on the most personalised landmark.

The PdFc provides one or more landmarks for a decision point. Figure 4.6 shows

the flowchart. In Section 6.1.2 we investigate and test the PdFc with our training set

and - if needed - change the flow.

4.3.7 Conventional Decision Tree Model (CdTm) and Personalised

Decision Tree Model (PdTm)

The structures of the CdTm and the PdTm are quite similar. Numerous decision

tree algorithms are conceivable as a basis for decision tree models for landmark

identification. Which decision tree is the most suitable one depends on the target

variable, the values of the attributes, and the general goal. Our general goal is to

identify whether an object is a (personalised) landmark or not. Thus, the target

variable can take two values either landmark (LM) or not a landmark (NAL).

The attributes used for the classification are numerical values. Visual, semantic,

and structural salience are numeric by default. Prior spatial knowledge and personal

interests ratings, however, could be processed either as numerical or categorical values.

Categorical data often require more than two decisions resulting in more than two

internal nodes (e.g. we might have one node for every topic of interest and every

possible interest rating) which makes it nearly intractable with plenty of possible

values. The large number of outcomes is not desirable because the number of data

associated with each partition might be too small for any reliable prediction (Tan

et al. 2006). One way to overcome such a problem is the restriction to binary splits.

Instead of having internal nodes with more than two decisions (Figure 4.7a) we

have a binary tree with two decisions (Figure 4.7b). Thus, we treat all attributes as

numerical attributes.

There are numerous algorithms for decision tree growing. We prefer an algorithm

which is able to handle numerical data and to construct binary trees. We use CART

(Breiman et al. 1984), which has been used extensively in the past years (Apté &

Weiss 1997). In addition, to meeting all criteria, the algorithm has the advantage

that it is not significantly affected by outliers in the input space (Mubayi 2017).

This effect is due to the fact that the splitting does not happen on absolute values
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(a) Multiway Split. (b) Binary Split.

Figure 4.7: Splitting conditions for different attribute types (modified from Tan et al.

(2006)).

but on a proportion of samples within the split ranges (Nisbet et al. 2009). This is

particularly useful because there might be objects in our data whose attribute values

differ from the attribute values of the other objects (e.g. an object with a higher

visual salience than all the others). A further benefit of CART is that it can use the

same parameters more than once in different parts of the tree (Nisbet et al. 2009).

This capability can reveal complex relationships between sets of parameters. For

example, semantic salience might be interdependent on survey knowledge but also on

route knowledge. Finally, CART can be used in conjunction with other prediction

methods to select the input set of parameters (Nisbet et al. 2009). This is particularly

important for decision tree pruning. We use CART together with cross-validation - a

pre-pruning method which stops the growing of the tree earlier, before it perfectly

fits the training set and, thus, avoids overfitting (Dietterich 1995). The resulting tree

is able to classify objects in LM and NAL. We train the CdTm in Section 5.4.4 and

the PdTm in Section 6.1.3.
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Chapter 5

Data Collection and Preparation

In this chapter we describe the data collection for both, landmark and personal

dimensions (Section 5.1). We start with landmark dimensions for objects along an

inner city route through Augsburg (Section 5.1.1). The route starts and ends at the

Königsplatz, is around 640 meters long, and includes 10 decision points (Figure 5.1).

Some of them are famous places of Augsburg such as Moritzplatz and Fuggerplatz.

The objects at the decision points consist of 44 buildings, two fountains, and a statue.

All personal dimensions are collected by a survey (Section 5.1.2). Section 5.2 discusses

the calculation of salience focusing on the collected data for the objects along the

route. We describe the division of the collected dataset for the training and testing

of the models (Section 5.3). We calculate overall salience measures of the objects and

classify objects in landmark (LM) and not a landmark (NAL) with the help of the

conventional models at the end of this chapter (Section 5.4).

5.1 Data Collection for the Dimensions

This section describes the data collection for both landmark and personal dimensions.

While landmark dimensions are extracted from official databases or acquired during

field surveys, personal dimensions are collected by a survey.

5.1.1 Landmark Dimensions

Identifying landmarks requires attribute data (i.e. visual, semantic, and structural) of

the objects as well as information on the corresponding topic of interest. This thesis

uses OSM data, official databases, and field survey data. The attributes surface area,

height, and colour of the visual dimension are salient only if their values differ from

the values of the surrounding objects in a local neighbourhood. Therefore, we collect
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Figure 5.1: Route with decision points.

these attribute values not only for the objects at the decision points, but also for

objects in a buffer of a specific size. Following Raubal & Winter (2002) we apply a

buffer size of 100 meters (see Figure 5.1).

There are buildings located in backyards within the buffer (Figure 5.2). For these

buildings it is not possible to determine colour and surface area. As these objects

are not visible from the street, they do not influence salience of the other objects.

Therefore, we exclude them from further analysis.

We describe the data sources for the landmark dimensions in the following sections.

Figure 5.3 shows a sample landmark.

Visual Dimension

We collect attribute values for the visual dimension during a field survey. In addition,

we use OSM data and an official city model as data source.

Surface structure Each single object located at a decision point of the route is

investigated on site. Surface structure is one of the attributes directly assessable from

the street.
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Figure 5.2: Buildings in backyards.

Figure 5.3: Visual (vis), semantic (sem), and structural (str) dimensions as well as

landmark interest dimension (shopping (shop), cultural (cult), historical (hist), and

gastronomy (gast)) of a sample landmark.
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(a) Dome. (b) Gable. (c) Tent. (d) Hip.

(e) Hood. (f) Mansard. (g) Flat. (h) Pent.

Figure 5.4: Different types of surface area.

Surface area We identify the surface area of the objects on-site. We distinguish

among several types of surface area (Figure 5.4). We use Google Maps imagery to

identify the shape of the roof should it not be visible from the street.

Height An official 3D city model (LOD1 - block model) provides the height of the

buildings. We manually estimate the height of the other objects (three fountains and

a statue).

Colour There is no official database concerning colour. Hence, we capture the

colour of the objects during the field survey.

Semantic Dimension

We collect values for the attributes of the semantic dimension on-site. Additionally,

we use an official database.

Cultural importance There are along the route eight objects being classified as

cultural important. These are two churches, two fountains, a statue, a museum, and

the entrances to the town market.
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Historical importance There is an official list of historic monuments in Augsburg

(Bayerisches Landesamt für Denkmalpflege 2018). We consider objects that are part

of this list as historically important.

Explicit marks Explicitly marked objects must be visible from the street. We

capture these on-site.

Structural Dimension

We derive the attributes of the structural dimension from OSM data. OSM provides

footprints of the objects (see Figure 5.3). We investigate the topological relations

between these footprints and the nearest decision point.

Location at a decision point All objects along the route are located at decision

points. Thus, they all receive the Boolean value True for that attribute.

Distance to the decision point For each object we calculate the euclidean dis-

tance of the nearest point (e.g. the nearest house corner) to the decision point. We

use the footprints from OSM (see Figure 5.3).

Landmark Interest Dimension

We analyse the objects in the inner city of Augsburg in order to identify possible

topics of interest. This identification is rather subjective and might change dependent

on the person who is doing it. We use aids and check the topics of interest with the

help of Google Maps and OSM data and validate them with on-site investigations

to avoid subjectivity as much as possible. Table 5.1 shows the resulting topics of

interest. The eight culturally important objects (see Section 5.1.1, semantic dimension,

cultural importance) are also culturally interesting. Objects belonging to the topic of

interest historic are objects from the official list of historic monuments in Augsburg

(Bayerisches Landesamt für Denkmalpflege 2018). We classify two buildings hosting

a bank as financially interesting. One building is a charitable organisation and,

therefore, socially interesting. We classify the two churches as of religious interest.

There are 30 shopping facilities and 15 places with gastronomy, such as bakeries,

snack bars and restaurants. We assign the entrances to the town market to shopping

and gastronomy because they are in close connection to all the food offers and the

small shops and stands on the market. There is one language school on the route we

classify as interesting because of the educational character and four buildings with
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Table 5.1: Number of objects belonging to different topics of interest at the decision

points.

Topic of Interest Number of Objects Topic of Interest Number of Objects

Cultural 8 Gastronomy 15

Historic 21 Sports 0

Supplier 0 Leisure 0

Arts 0 Education 1

Financial 2 Tourism 2

Social 1 Health 4

Religious 2 Nature 0

Shopping 30 Architecture 1

medical practices or pharmacies which we classify with health. There are a lot of

objects which might be interesting for tourists in an inner city area. However, there

is no database for touristic monuments and that is why we only classify the building

with the tourist information and the station building at the Königsplatz as of touristic

interest (Figure 5.5). The Königsplatz is an important inner-city transport hub

and, therefore, in our eyes interesting for tourists. The topic of interest architecture

is elusive and difficult to measure because most of the buildings in an inner city’s

historical area show some outstanding architecturally interesting attributes. We only

classify the station building at the Königsplatz as of architectural interest because

its appearance is totally different from the other buildings next to the route (Figure

5.5). We do not assign objects to the topic of interest supplier since there are no such

facilities (e.g. electricity supply companies) along the route. There are no artificial

objects along the route as well as no sports or leisure facilities. There are no natural

objects such as trees or green areas at the decision points.

As Table 5.1 shows most of the objects are of cultural or historical interest, or are

shops or gastronomy objects. There are only a few objects available for the other

topics of interest. Therefore, we decide to consider only the personal interests cultural

(cult), historical (hist), shopping (shop), and gastronomy (gast) in our models. Each

decision point along the route hosts objects belonging to different topics of interest.

Figure 5.3 shows an example object with the topics of interest it belongs to.
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Figure 5.5: Architecturally and touristically interesting building at Königsplatz.

5.1.2 Personal Dimensions

We use ESRIs Survey123 for data collection for the personal dimensions. The tool

allows to create and publish survey forms (Survey123 2018). This section describes

the survey, gives an overview on the participants who completed the survey, and

discusses the results.

Participants

One challenging objective was to find a group of participants that is diverse regarding

age, education, place of residence, and place of birth. A number of students completed

the survey during university lectures. To have participants outside the typical

university age and outside the geoinformatics domain, we acquired participants also

via personal contacts. In total, 51 people, 24 of whom females, participated in the

survey. The average age of the participants is 33.1 (min = 19 years, max = 73 years,

sd = 15.16). 23 participants live in Augsburg, 7 of them since their early childhood

(age ≤ 10) or birth. Most of the participants (except six) are born in Germany.

Persons willing to participate had to confirm that they understood that the data

collected is used for scientific purposes exclusively. They were told that the data

are not forwarded to third parties at any time and that data collection is based on

pseudonyms. To this end, they had to confirm that their device’s ID will be stored

in addition to the data they explicitly enter. In an early version of the survey this

confirmation was not included but this survey was completed with students of a

university lecture who were notified orally.
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Figure 5.6: Maps in Survey123.

The participants completed the survey between October 2018 and February 2019.

We did not collect data in the last week of November and the whole month of

December 2018 because of the Christmas market stands. Some of them blocked the

view on the objects, especially the stands that were installed around the fountains

and the statue.

Procedure

The participants were informed of the starting point of the route. To avoid the

influence of turning directions they did not know the whole route in advance. The

application guided them from one decision point to the next with the help of maps

(Figure 5.6). Most of the participants were guided along the route, some participants

completed the survey alone after a comprehensive introduction (installation, procedure,

objects to select).

The survey contains a questionnaire focusing on the background of the participants

including questions about gender, age, place of residence, and education (Figure 5.7a).

It contains questions about personal interests (Figure 5.7b), prior spatial knowledge

(Figure 5.7c), and about objects at the decision points along the route (Figure 5.8).

Personal interests The interest questionnaire contains questions about the partic-

ipant’s interest in culture, arts, tourism, historical monuments, nature, architecture,

financial things, gastronomy, and facilities of sports, suppliers, leisure, social life,

shopping, education, medicine, and religion (Figure 5.7b). Responses to the interest

questionnaire are rated on a rating scale with items no, low, medium, high, and very

high.
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(a) Background questionnaire. (b) Interest questionnaire.

(c) Spatial knowledge questionnaire. (d) Object selections.

Figure 5.7: Survey for personal data collection.
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Table 5.2: Interest ratings for the personal interests (pInt) on a rating scale (1=no,

2=low, 3=moderate, 4=strong, and 5=very strong interest).

Interest 1 2 3 4 5 Interest 1 2 3 4 5

Cultural 0 6 21 19 5 Gastro 0 2 15 26 8

Historic 1 6 24 17 3 Sports 5 10 12 11 13

Supplier 2 16 11 21 1 Leisure 5 2 29 12 3

Arts 0 16 23 7 5 Education 2 13 19 13 4

Financial 6 13 22 10 0 Tourism 2 17 17 12 3

Social 1 6 9 21 14 Health 4 14 18 12 3

Religious 12 19 14 4 2 Nature 0 1 9 20 21

Shopping 3 8 12 19 9 Architecture 2 6 20 16 7

Prior spatial knowledge At each particular decision point the participants answer

questions about their specific spatial knowledge at the individual street intersection

and in the area of the street intersection. Based on Table 4.2 participants are first

asked if they have been at the street intersection before (Figure 5.7c). According to

the response of the participant the survey asks about survey, route, and landmark

knowledge (for yes) or survey, route, landmark, or no knowledge (for no) in the area

of the intersection (Table 4.2).

Objects at decision points The survey shows a map giving information how to

proceed to the next decision point (Figure 5.6). The application additionally shows

photos of the objects at the decision points (Figure 5.7d). However, the photos are

meant to help the participant to identify the objects in reality. Participants have to

look at the real objects to be able to do the selection. We assume that in the case

that travellers ask us for route directions, we automatically infer things about the

travellers themselves. Therefore, we told participants that they should imagine not

common but personally addressed route directions. Based on this assumption they

had to select an object they like as a landmark (LM) and one object they do not like

(not a landmark (NAL)) (Figure 5.7d) for such a route direction. For both questions

the same objects are provided. In addition, we ask survey participants to provide

a reason for their selections. The survey repeats the procedure for all 10 decision

points.
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Table 5.3: Numbers of selections for prior spatial knowledge (PspK) (Table 4.2).

sPspK 0 1 2 3 4 5 6 7 8 9 ∅

1 21 23 23 24 22 20 21 23 22 20 21.9

2 15 11 12 13 13 14 10 9 11 13 12.1

3 9 9 7 6 8 8 9 9 8 9 8.2

4 0 0 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0 0 0 0

6 3 1 1 1 0 0 1 0 1 2 1

7 3 7 8 7 8 9 10 10 9 7 7.8

Results

This section investigates the results of the survey. The outcome is a dataset consisting

of personal interests ratings, information on prior spatial knowledge, as well as objects

that participants selected as LM and objects which they selected as NAL for a

personally addressed route direction.

Personal interests The survey results in ratings for topics of interest for all 51

participants. As there are only a few objects available for the other topics of interest,

we decided to restrict ourselves in this work to the topics of interest shopping, culture,

historical monuments, and gastronomy. Nevertheless, for the sake of completeness,

we list the other interest ratings (Table 5.2).

Most of the participants showed a high interest in gastronomy. Two participants

stated that their interest in gastronomy is low. There were three participants showing

a very high interest in historical monuments. Except for seven persons who had no

or low interest in historical monuments, the majority showed a medium or even a

high interest. There were five persons with a very high interest in culture. Most of

the participants showed a medium or a high interest in culture. Six stated only a

low interest. None of the participants stated no interest in culture. There were nine

people with a very high interest in shopping and three with no interest. The others

rated their interest in shopping somewhere inbetween.

Prior spatial knowledge Participants provided information on their prior spatial

knowledge at the street intersections. Table 5.3 shows the collected data. On average,

21.9 participants said that they knew the street intersection and that they are familiar

with the area. Route knowledge ranked second place (on average 12.1 participants).
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Table 5.4: Number of selected objects as landmark (LM)/not a landmark (NAL) at

the decision points.

DP O1 O2 O3 O4 O5 O6

0 16/6 18/3 3/35 10/2 3/4

1 8/21 14/4 0/2 24/7 4/16

2 36/0 9/7 4/2 2/23 0/19

3 5/4 0/17 41/1 1/9 3/19

4 6/3 6/1 0/9 0/19 0/18 39/1

5 26/6 11/7 12/10 2/28

6 19/7 8/20 7/12 16/11

7 3/10 13/11 5/23 27/4

8 9/7 23/3 1/11 3/25 15/5

9 12/14 8/4 23/13 8/20

On average 8.2 participants said that they know the street intersection as well as

some important points in the area. Options 4 and 5, implying that a participant who

is not at all familiar with the street intersection but has survey or route knowledge

of the area, were not chosen at all. On average 1 participant stated that s/he is at

this intersection the first time, however knows some important points in the area.

The last option, no knowledge of the intersection nor the area was chosen by 7.8

participants on average.

Objects at decision points In total, 47 objects were presented by the survey with

a mean of 4.7 (min = 4, max = 6) objects per decision point. We expect that all

participants select one object for a LM and one for NAL and that both objects differ.

Unfortunately, this was not always the case. As for LMs and NALs the same objects

were provided, there were decision points where participants selected the same object

for LM and NAL. These decision points are excluded for these participants from

further analysis. In total, we collected 503 LMs and the same number of NALs. Table

5.4 lists the number of selections for the LMs and NALs at the decision points. O3

at decision point 3 is the object most frequently chosen for a LM (Figure 5.8a). In

addition, it is selected only once as a NAL. This is not surprising as this object has

high visual, semantic, and structural salience. The participants state that they like

it primarily because of its colour. People familiar with the intersection and its area

state that it is even a famous landmark in Augsburg.
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(a) Most frequently as a LM

(O3 at DP 3).

(b) Most frequently as a

NAL (O3 at DP 0).

(c) Selected only as LM (O1

at DP 2).

(d) Selected only as NAL

(O3 at DP 1).

(e) Selected only as NAL

(O5 at DP 2).

(f) Selected only as NAL

(O2 at DP 3)

(g) Selected only as NAL (O3, O4, and O5 at DP 4).

Figure 5.8: Object selections as LMs and NALs.
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Completely different: O3 at decision point 0 is most frequently selected as a NAL

(Figure 5.8b). This object changes its appearance during summer and winter - in

summer it is a fountain with a figure in winter it is within a box. It has no semantic

salience and is only visually salient in height. Participants state that the box is too

inconspicuous, small and not well visible, and some of them did not even know what

it is. There is one object selected only as LM (Figure 5.8c, decision point 2, O1). The

participants did not select the objects in Figures 5.8d - Figure 5.8g as LMs.

5.2 Calculating Salience for the Dimensions

In this section, we discuss briefly how salience values are calculated for landmark as

well as for personal dimensions from the collected data. In addition, we present the

resulting datasets which are used as input datasets for the personalised landmark

identification models.

5.2.1 Landmark Dimensions

We calculate the salience values for the attributes of landmark dimensions according

to Table 4.1. Then we group the salience values for the visual, the semantic, and the

structural dimension. This results in percentage values for svis, ssem, and sstr.

We check each object whether it belongs to the topics of interest shopping, culture,

historical monuments, or gastronomy. In case the object belongs to a specific topic of

interest we classify it as salient for this topic. Thus, we need no further processing

for obtaining siLM .

5.2.2 Personal Dimensions

The survey is interest-oriented and allows to rate it on a five point rating scale. The

PdFc distinguishes between interested and not interested (Section 4.3.6). We consider

the ratings no, low, and medium as not interested and high and very high ratings

as interested. This results in a salience of spInt ∈ {0, 1} for the PdFc. For the other

models we consider the original interest ratings (spInt ∈ {1, ...5}).
Survey participants rate their prior spatial knowledge on a rating scale with values

between 1 and 7 (Table 5.3). We need no further calculations to obtain the salience

sPspK and use the ratings of the participants directly in our models.
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5.2.3 Input Data for the Models

The results of the salience calculations are the input data for the landmark identifica-

tion models. The P/CwSm, the P/CwPm, and the P/CdFc only use the LMs for the

training (Table 5.5 and Table 5.6). The P/CdTm uses both, LMs and NALs and,

therefore, needs this information in the input data (Table 5.7).

Table 5.5: Input data for the P/CwSm and P/CwPm.

DP ID Landmark Personal

svis ssem sstr sPspK spInt

shop cult hist gast

2 O1 25 50 50 5 4 2 3 5

3 O3 75 75 100 5 4 2 3 5

Table 5.6: Input data for the P/CdFc.

DP ID Landmark Personal

svis ssem sstr siLM sPspK spInt

shop cult hist gast shop cult hist gast

2 O1 25 50 50 0 1 1 0 5 1 0 0 1

3 O3 75 75 100 1 0 1 0 5 1 0 0 1

Table 5.7: Input data for the P/CdTm.

DP ID Landmark Personal LM/NAL

svis ssem sstr sPspK spInt

shop cult hist gast

2 O1 25 50 50 5 4 2 3 5 LM

2 O5 25 0 50 5 4 2 3 5 NAL

3 O2 0 50 50 5 4 2 3 5 NAL

3 O3 75 75 100 5 4 2 3 5 LM
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The input data for the conventional models contain only information on landmark

dimensions, whereas the data for the personalised models additionally include the

personal dimensions. Personal dimensions are prior spatial knowledge at the particular

street intersection and personal interests ratings for shop, cult, hist, and gast. The

PwSm, the PwPm, and the PdTm consider the original interest ratings of the

participants of the survey with values from one to five. As the PdFc distinguishes

only between interested and not interested, the personal interests of the participants

are expressed with zeros and ones in its input data (Table 5.6). In addition, PdFc

needs information on the assignment of the objects to topics of interest, which is an

additional dimension of the landmark dimensions.

5.3 Data Division in Training and Test Set

We divide our collected dataset into a training set and a test set. We use the

training set to train the machine learning models both CdTm and PdTm. The

conventional models based on theory (CwSm, CwPm, and CdFc) have no unknown

model parameters, whereas the weights of the PwSm and the PwPm and the flow of

the PdFc as well need to be identified with the help of the training set. After the

training we investigate their performance with the test set. There are three freely

adjustable model parameters for the PwSm and the PwPm (Section 6.1.1) and five

model parameters for the PdTm (Section 6.1.3). The PdFc does not have model

parameters as it is built on decisions and processes. Hence, the training/testing ratio

should be in the range of 1/
√
3 and 1/

√
5 (Section 3.2.3). For reasons of comparability

we use a 50:50 training/testing ratio for all models.

There are several options to divide the dataset in training and test set (Section 3.2).

Independently collected data is not an option in our case, because we use only one test

route. We might split our dataset according to the months in which the survey was

completed. However, temporal autocorrelation might lead to dependent training and

test sets. This, in turn, might lead to overly optimistic identification of landmarks

(Bahn & McGill 2013). We intend to apply the models to identify landmarks also in

new geographic spaces, thus, we are required to use spatially independent training

and test sets (Bahn & McGill 2013). We choose two sets that do not overlap spatially.

We use 50% of the data to train the models and the remaining 50% to test their

performance. We divide our dataset consisting of data for the 10 decision points into

two sets of equal size: the first five decision points (0 - 4) belong to the training set

and the other five (5 - 9) to the test set (Figure 5.9).

The training and test sets for the P/CdTm differ from the ones for the P/CwSm,
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Figure 5.9: Training and test area.

P/CwPm, and P/CdFc. The training set for the P/CdTm includes 252 LMs and

252 NALs, while the training sets for the other models include only 252 landmarks.

For PwSm and PwPm it is important that the prior spatial knowledge and personal

interests ratings appearing in the test set also appear in the training set (Section

6.1.1). Therefore, we exclude landmarks with a combination of prior spatial knowledge

and personal interests ratings not appearing in the training set from the test set.

The resulting test set consists of 232 landmarks. We do not need NALs for testing

(Section 5.2.3) since we are only interest in the identification of landmarks.

5.4 Overall Salience according to Conventional Models

This section discusses the identification of landmarks with the conventional models.

We use the results of the conventional models for the comparison and the assessment

of the results of the personalised landmark identification models (Section 7.2). The

CwSm, the CwPm, and the CdFc have no unknown model parameters, whereas the

model parameters of the CdTm need to be identified (trained). For the training of

the CdTm and testing of all the conventional models we use the datasets presented

in Section 5.2.3.
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Table 5.8: Recalls of the conventional models obtained with the training set (accuracy

in brackets for the CdTm).

CwSm CwPm CdFc CdTm

Recall [%] 66.27 60.71 60.71 56.75 (73.61)

Table 5.9: Recalls of the conventional models obtained with the test set.

CwSm CwPm CdFc CdTm

Recall [%] 40.95 40.95 31.46 67.67

5.4.1 Conventional Weighted Sum Model

We identify landmarks with the CwSm proposed by Raubal & Winter (2002) (Section

4.3.1). We need no training to identify optimal weights because the CwSm is based

on theory and weights are set to one (wvis = wsem = wstr = 1). Thus, we apply the

CwSm directly to the training and the test set. In case we apply the CwSm to the

whole dataset the recall is 54.13%. The recall on the training set is 66.27% (Table

5.8). For the test set the recall is lower and reaches only 40.95% (Table 5.9). Out of

the 232 test set landmarks the CwSm correctly identifies 95. Figure 5.10 (upper left)

shows the identified landmarks. The model identifies at least one landmark at each

decision point (n = 17). The average number of landmarks at a decision point is 1.7

(min = 1 (intersections 2, 3, 7, and 9), max = 3 (intersection 4)).

5.4.2 Conventional Weighted Product Model

The CwPm considers weights of one (wvis = wsem = wstr = 1) and needs no training

because it is based on theory (Section 4.3.3). The recall on the whole dataset is

51.23%. The recall on the training set is with 60.71% again higher as the one obtained

with the test set (40.95%). Figure 5.10 (upper right) shows the landmarks identified

with the CwPm applied to the test set. The model identifies at least one landmark

at each decision point (n = 15). It determines either one or two landmarks for a

decision point (mean = 1.5, min = 1 (intersection 1, 2, 3, 7, and 9) and max = 2

(intersection 0, 4, 5, 6, and 8)). The CwPm identifies 95 of 232 landmarks correctly

for the test set.
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Figure 5.10: Landmarks according to conventional models.
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5.4.3 Conventional Decision Flow Chart

For the CdFc we follow the flow chart developed in Section 4.3.5 (Figure 4.5). The

recall on the whole dataset is 46.69%. We reach a recall of 60.71% for the training

set, whereas the recall of the test set is only 31.46%. This corresponds to 73 correctly

identified landmarks. Figure 5.10 presents the results of the CdFc in the lower left.

The average of the landmarks is 1.4 (n = 14, min = 1 (intersection 1, 2, 3, 7, 8, and

9) and max = 2 (0, 4, 5, and 6)).

5.4.4 Conventional Decision Tree Model

In Section 4.3.7 we identify CART as suitable for our purposes. The CdTm learns its

behaviour from the training set. Section 6.1.3 describes the exact training method

for the PdTm. We apply the same method for the CdTm. The Appendix contains

the training parameters (Table A.1 and Table A.2). We present the results of the

CdTm at this point (Figure 5.10, lower right) without going further in details. The

CdTm identifies a total of 20 landmarks (min = 1 (intersection 1, 2, 7), max = 3

(intersection 5, 6, 9)). It identifies 300 landmarks for the whole dataset (61.98%).

Out of the 232 test set landmarks the CdTm identifies 157 correctly which equals

67.67%. The recall for the training set is lower (56.75%) than the accuracy (73.61%)

(compare Formula 3.5 and Formula 3.6).

5.4.5 Results of the Conventional Models Discussed

The recalls that the CwSm, the CwPm, and the CdFc obtain on the whole dataset is

around 50%. The results for the training set are around 60% (Table 5.8), whereas

the recalls for the test set merely reach around 40% (Table 5.9). The CdFc reaches a

recall of only 31.46% for the test set. The question arises whether training and test

set are well-chosen. In case we reverse the training and test set, decision points 0 - 4

become the test set and decision points 5 - 9 the training set. In this case the CwSm,

the CwPm, and the CdFc deliver a recall of around 40% for the training set and a

better recall of 60% for the test set. We might modify the training and test set in

such a way that they achieve a recall of 50% for both training and test set. This is

because the models are theoretically constructed and do not learn their behaviour

from the training set. Therefore, we cannot expect any other results from our dataset,

except that the obtained recalls for the training and the test set might shift. We do

not modify the training and test set and proceed with the specified ones.

The weights of the CwSm and the CwPm are set to one. There are studies saying
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that different landmark dimensions have a different impact on successful landmark

identification which outlines the importance of weighting each dimension relative to its

significance (Kattenbeck 2016, Sadeghian & Kantardzic 2008). However, the question

whether the recall of the CwSm and CwPm might be improved by considering weights

remains open at this point but is discussed in Section 8.3.1.

We build a basic CdFc delivering a similar or even identical training recall as the

CwSm and the CwPm respectively. However, the recall on the test set is with 31.46%

the lowest and not half as high as the recall of the CdTm. We do not learn the flow

from the training set. However, when varying the flow from Figure 4.5 by changing

the process of visual and semantic salience, we do not get better results.

The CdTm uses information from LMs as well as from NALs for training. It

obtains an accuracy of 73.61% with the training set (Table 5.8, in brackets). The

result differs, however, for the recall (56.75%, Table 5.8). The reason for this might

be found in the tree (Figure A.11). The CdTm shows a terminal node of the class

NAL having 97 samples of the class LM and 148 samples of the class NAL. This is

not a pure terminal node at all because it shows a gini-index of 0.478 (Section 3.1.2).

As this terminal node is declared as the class NAL, a number of objects which are

actually selected as landmarks end up in this node and are consequently identified

as NALs. However, the training of the CdTm with cross-validation and grid-search

identifies the model parameters of the CdTm in Table A.2 as the ones yielding the

highest average accuracy. Therefore, we continue with the CdTm built on these

model parameters. The recall of the CdTm obtained with the test set is higher (Table

5.9) than the one obtained with the training set. This means the CdTm is better

able to identify the landmarks in the test set than in the training set.

Table 5.10 shows the results of a McNemar’s test applied to the model results on

the test set (Section 3.4). The difference of the CdTm to the other three models is

considered to be statistically significant and is p ≤ 0.0001 for all cases. We are not

able to calculate a McNemar’s test statistic and a p-value for the comparison of the

CwSm and the CwPm because no landmarks changed from unidentified to correctly

identified or vice-versa. The comparisons between the CwSm and the CdFc or the

CwPm and the CdFc respectively show that the difference is extremely statistically

significant with a p < 0.0001 . There are 30 discordant pairs when comparing the

CwSm or the CwPm with the CdTm. There are 26 pairs where the CdTm correctly

identifies a landmark but CwSm/CwPm does not, and 4 pairs where CwSm/CwPm

correctly identifies a landmark but CdTm does not.
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Table 5.10: Results of McNemar’s Test for the conventional models.

CwPm CdFc CdTm

CwSm

Identified → Unidentified 0 65 4

Unidentified → Identified 0 3 26

Test Statistic NaN 54.72 14.7

p-Value 0 <0.0001 0.0001

CwPm

Identified → Unidentified 65 4

Unidentified → Identified 3 26

Test Statistic 54.723 14.7

p-Value <0.0001 0.0001

CdFc

Identified → Unidentified 4

Unidentified → Identified 88

Test Statistic 74.88

p-Value <0.0001

Summarising the above, we conclude that the CdTm delivers the highest recall

and its results differ significantly from the results of the other models. One reason for

this might be that the model identifies more landmarks than the other conventional

models (n = 20). As a consequence it identifies more landmarks selected by survey

participants. Another reason for this behaviour might be that the model is not based

on theoretical considerations but learns from the training set. For a further discussion

on this topic see Section 6.3.
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Chapter 6

Training and Testing of the

Personalised Models

This chapter describes the creation of the personalised landmark identification models

and the subsequent identification of personalised landmarks. In Section 5.3 we divided

the collected dataset in training and test set. In Section 6.1 we train the machine

learning model on the training set using the traditional approach presented in Section

3.2.1 and we ’train’ the models based on theory with an approach inspired by this

traditional approach (Section 3.2.2). Subsequently, we use the created models to

identify the landmarks of the test set and compare the identified landmarks with

the landmarks selected by the participants of the survey (Section 6.2). We close this

chapter with a discussion of the results of the training and testing (Section 6.3).

6.1 Training of the Models

In this section we train the personalised landmark identification models with the

collected data. The models based on theory, the PwSm, the PwPm, and the PdFc,

only use landmarks (LMs) for training whereas the machine learning model (PdTm)

needs also information on objects, which are not a landmark (NALs). The PwSm and

the PwPm calculate a salience measure, whereas the PdTm and the PdFc classify

objects as LMs and, in the case of the PdTm, NALs.

We use the methods proposed for ’training’ of models based on theory (Section

3.2.2) to identify model parameters for the PwSm and the PwPm and an optimal

flow for the PdFc. For the PdTm we use the traditional machine learning approach to

identify the model parameters (Section 3.2.1). In the following sections we evaluate

the results of the model training.
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6.1.1 Personalised Weighted Sum Model and Personalised Weighted

Product Model

We use the methods proposed for ’training’ of models based on theory (Section 3.2.2,

Figure 3.4) to identify model parameters for the PwSm and the PwPm. The first step

for the training of the PwSm and the PwPm is to specify initial weights. This section

first describes the search for such weights and subsequently, investigates individual

results of the PwSm and the PwPm.

Finding Initial Weights

The PwSm and the PwPm have three freely adjustable model parameters: wvis, wsem,

and wstr (Formulas 4.2 and 4.4). They reflect the influence of the traveller’s personal

interests (pInt) and the prior spatial knowledge (PspK) on the personal salience of an

object. The first step is to find initial weights for wvis, wsem, and wstr. We analyse

the objects selected as landmarks by survey participants with different pInt and PspK

ratings. For each combination we determine the average of visual, semantic, and

structural salience (svis, ssem, and sstr, Table A.3). Column No in the table shows

that some combinations of PspK and pInt ratings appear only once in the training

set. In Section 7.2.5 we investigate how this affects the identification of personalised

landmarks.

We use initial relative weights to train the PwSm and the PwPm. The minimum

value of svis, ssem, and sstr (Table A.3) is used as a reference value to calculate the

relative weights:

mins = min(svis, ssem, sstr)

wvisRel =
svis
mins

wsemRel =
ssem
mins

wstrRel =
sstr
mins

(6.1)

It might be that either the PwSm or the PwPm do not fit the data with these

initial relative weights and, therefore, obtain a low recall (Formula 3.6). For this

reason we introduce model parameters pvis, psem, and pstr, and multiply them with

the initial relative weights (Formula 6.2).
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~w =









pvis ∗ wvisRel

psem ∗ wsemRel

pstr ∗ wstrRel









(6.2)

We set the initial relative weights manually in advance before the training starts

dependent on the PspK and the pInt ratings. Then we build different personalised

PwSms and PwPms respectively with different model parameters. Following the

method proposed in Section 3.2.2 we calculate the average recalls of the validations

folds for each combination of model parameters. The following sections describe the

details for the PwSm and the PwPm.

Training Personalised Weighted Sum Model

For the determination of optimal model parameters for the PwSm we start with a

coarse grid-search setting pvis = psem = pstr = 1 and increase them alternately by

0.5 until 10. We calculate the average recall of the 10 validation datasets checking

each combination of model parameters. We obtain average recalls varying between

39.03% and 62.30%. There are several combinations obtaining the highest average

recall thereof, pvis = 2, psem = 1, and pstr = 1 is the one with the smallest values.

Table 6.1 shows that the neighbouring combinations of model parameters deliver a

lower recall.

Table 6.1: Average recalls for initial coarse grid-search PwSm.

pvis psem pstr Average Recall [%]

1.5 10 10 40.53

2 1 1 62.30

2 1 1.5 43.33

As these recalls are much lower we do not expect to obtain a better average

recall with a finer grid-search. However, for the finer grid-search we vary the model

parameters around the best values of the coarse search. We start with pvis = 1.9,

psem = 0.9, and pstr = 0.9 and increase the model parameters alternately by 0.1 until

pvis = 2.1, psem = 1.1, and pstr = 1.1. Table 6.2 shows an extract of the results. The

finer grid-search confirms the result of the coarse search.

We build the final PwSm with the model parameters obtained:
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Table 6.2: Average recalls for finer grid-search PwSm.

pvis psem pstr Average Recall [%]

1.9 0.9 0.9 60.30

... ... ... ...

2.0 0.9 1.1 55.56

2.0 1.0 0.9 61.07

2.0 1.0 1.0 62.30

2.0 1.0 1.1 58.36

2.0 1.1 0.9 61.10

2.0 1.1 1.0 60.30

... ... ... ...

2.1 1.1 1.1 59.56

sPwSm = (pvis ∗ wvisRel ∗ svis + psem ∗ wsemRel ∗ ssem + pstr ∗ wstrRel ∗ sstr)/100

= (2 ∗ wvisRel ∗ svis + 1 ∗ wsemRel ∗ ssem + 1 ∗ wstrRel ∗ sstr)/100 (6.3)

The recall on the given training set is 62.30% (Table 6.5). In Section 6.2.1 we

apply the PwSm to the test set and elaborate on the results.

Training Personalised Weighted Product Model

The PwPm has the same three freely adjustable parameters as the PwSm. Similarly

to the approach used for the PwSm we start a coarse grid-search with pvis = psem =

pstr = 1 and increase the values alternately by 0.5 until 10. The obtained average

recalls vary between 38.93% and 60.70%. The best recall appears with more than

one combination of pvis, psem, and pstr. Table 6.3 shows the combination of model

parameters with the minimum values obtaining the best average recall.

Table 6.3: Average recalls for initial coarse grid-search PwPm.

pvis psem pstr Average Recall [%]

1 1.5 10 38.93

1 2 1 60.70

1 2 1.5 53.13
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Table 6.4: Average recalls for finer grid-search PwPm.

pvis psem pstr Average Recall [%]

0.9 1.9 0.9 60.70

0.9 1.9 1.0 60.70

0.9 1.9 1.1 59.53

0.9 2.0 0.9 60.70

0.9 2.0 1.0 60.70

0.9 2.0 1.1 59.90

0.9 2.1 0.9 60.70

... ... ... ...

1.0 2.0 1.0 60.70

... ... ... ...

1.1 2.1 1.1 60.70

Table 6.3 shows that the neighbouring values from initial coarse grid-search deliver

lower average recalls. Therefore, we do not expect better values from a finer grid-

search. However, similarly as for the PwSm, we vary the model parameters around

the best values of the coarse search. We start with pvis = 0.9, psem = 1.9, and

pstr = 0.9 and increase the values alternately by 0.1 until pvis = 1.1, psem = 2.1, and

pstr = 1.1. Table 6.4 shows an extract of the result.

For most of the parameter combinations the model results in a 60.70% recall on

average. With two exceptions for pvis = 0.9, psem = 1.9, and pstr = 1.1 and pvis = 0.9,

psem = 2.0, and pstr = 1.1 resulting in slightly lower recalls.

We use the minimum model parameters expressed with a whole number as model

parameters for the PwPm. We build the model as follows:

sPwPm = (spvis∗wvisRel

vis ∗ spsem∗wsemRel

sem ∗ spstr∗wstrRel

str )/100

= (s1∗wvisRel

vis ∗ s2∗wsemRel

sem ∗ s1∗wstrRel

str )/100 (6.4)

The recall on the given training set is 60.71% (Table 6.5). We evaluate the

performance of our model on the test set in Section 6.2.2 .
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Table 6.5: Recalls of the personalised models obtained with the training set (accuracy

in brackets for the PdTm).

PwSm PwPm PdFc PdTm

Recall [%] 62.30 60.71 64.68 78.97 (78.17)

6.1.2 Personalised Decision Flow Chart

The PdFc does not have model parameters because it is built on decisions and

processes. Hence, we vary the flow of the model and use the methods proposed for

’training’ of models based on theory (Section 3.2.2, Figure 3.4) to identify an optimal

flow for the PdFc. The average recall for the flow in Figure 4.6 is 60.29% (Table 6.6).

We investigate whether it is possible to achieve a higher recall and train the model

with the following modifications:

• Adjust the flow for sPspK(Intersection) > 3 and skip max(sstr).

• Adjust the flow for sPspK(Intersection) > 3 and skip max(svis).

• Adjust the flow for sPspK(Intersection) ≤ 3 and follow sPspK = 3.

• Adjust the flow for sPspK(Intersection) ≤ 3 and follow sPspK = 2.

• Adjust the flow for sPspK(Intersection) ≤ 3 and follow sPspK = 1.

• Adjust the flow for sPspK(Intersection) ≤ 3 and skip max(svis) and

max(sstr).

The modifications result in several combinations. Table 6.6 shows their average

recalls for the 10 validation folds. The best average recall is obtained by the adjusted

flow for sPspK(Intersection) > 3 and skip max(sstr) together with the adjusted flow

for sPspK(Intersection) ≤ 3 and skip max(svis) and max(sstr). This flow obtains an

average recall of 64.69%. Figure 6.1 shows the adapted flow chart. When calculating

the results for this flow, we obtain a recall of 64.68% in the training set (Table 6.5).

We tested a flowchart which considers first the decision siLM = spInt = 1 and only

afterwards the decisions on sPspK (Figure A.12). Table A.4 shows an extract of the

average recalls. However, we reject this option because the average recalls are lower

than the other way round. In Section 6.2.3 we test how many landmarks the flow in

Figure 6.1 is able to identify for the test set.
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Table 6.6: Average recalls for different flows.

sPspK(Intersection) Average Recall [%]

>3 ≤ 3

see Figure 4.6 see Figure 4.6 60.29

skip max(sstr) see Figure 4.6 63.89

skip max(svis) see Figure 4.6 56.36

see Figure 4.6 flow sPspK = 3 60.29

skip max(sstr) flow sPspK = 3 63.89

skip max(svis) flow sPspK = 3 56.36

see Figure 4.6 flow sPspK = 2 60.29

skip max(sstr) flow sPspK = 2 63.89

skip max(svis) flow sPspK = 2 56.36

see Figure 4.6 flow sPspK = 1 60.29

skip max(sstr) flow sPspK = 1 63.89

skip max(svis) flow sPspK = 1 56.36

see Figure 4.6 skip max(svis) and max(sstr) 61.10

skip max(sstr) skip max(svis) and max(sstr) 64.69

skip max(svis) skip max(svis) and max(sstr) 57.16
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6.1.3 Personalised Decision Tree Model

We use the traditional machine learning approach (Section 3.2, Figure 3.3) to identify

the model parameters of the PdTm. It has several freely adjustable model parameters

that can be tuned to optimise the identification result. The most common ones are

(Scikit 2018, Pedregosa et al. 2011):

• Criterion The function which measures the quality of the split. It can be gini

or entropy (Section 3.1.2).

• Splitter The method used to select the split at each node. In case best is

selected, the tree splits on the most relevant feature. In case of random, the

tree takes a random feature and splits it.

• min_samples_split The minimum number of samples required to split a

tree node. A split is not performed as soon as there are less than a certain

number of samples.

• min_samples_leaf The minimum number of samples required to be at a

leaf, at the base of the tree.

• max_depth The maximum depth of the tree indicates how deep the tree can

grow. The depth is the length of the longest path from the root node to a leaf.

It captures more information the deeper it is and the more splits it has.

There are model parameters giving the opportunity to weight things higher than

others (e.g. the target values LM or NAL or e.g. a specific PspK or a pInt). However,

we give none of them a higher weight, therefore, PspK and pInt have equal weights

and the target values are supposed to have weight one (Scikit 2018). The number of

dimensions to consider when looking for the best split might be considered to train

the tree. As we do not want to restrict the possible results, we use all dimensions

and perform no attribute subset that could be selected during decision tree growing.

We use grid-search with cross-validation to identify optimal model parameters

(Section 3.2). For the PdTm we need training folds as well as the validation folds

because the model learns from the training set (Figure 3.3). Table 6.7 shows the

initial model parameter settings for the coarse grid-search. We evaluate and compare

the results of the cross-validation looking at the model parameters obtaining the

highest average accuracy. We identify the highest average accuracy with 76.78% for

the model parameters shown in Table 6.7.
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Table 6.7: Parameter values for initial coarse grid-search PdTm.

Parameter Value Best Value

Criterion gini, entropy entropy

Splitter best, random random

min_samples_split [5, 10, ..., 50] 30

min_samples_leaf [5, 10, ..., 50] 5

max_depth [5, 10, ..., 50] 10

Average Accuracy [%] - 76.78

Table 6.8: Parameter values for finer grid-search PdTm.

Parameter Value Best Value

Criterion gini, entropy gini

Splitter best, random random

min_samples_split [25, 26, ..., 35] 34

min_samples_leaf [1, 2, ..., 10] 5

max_depth [5, 6, ..., 15] 9

Average Accuracy [%] - 77.38

In a next step we conduct a finer grid-search, varying the values of min_samples_leaf,

min_samples_split, and max_depth around their best values obtained by the coarse

grid-search. Table 6.8 shows the best average accuracy with the model parameters

of the finer search. After we found the best parameters, we train the PdTm on the

training set to generate the final classifier. Figure 6.2 shows the resulting tree.

The nodes and leaves of the PdTm are coloured by their class (orange = LM, blue

= NAL). They indicate the splitting criterion used, namely the gini-index (Section

3.1.2). The intensity of the colour gives information on the height of the gini-index.

In the root node of the PdTm (Figure 6.2) the probability of obtaining two different

outputs is 0.5. The tree shows in the left part a terminal node with gini = 0. This is

a pure terminal node because at this point the tree always identifies the object as a

NAL. This means a 100% accuracy in identifying the right class for the training data.
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Figure 6.3: Part of the Personalised Decision Tree Model.

The model parameters (Table 6.8) define where decision tree growing stops before

yielding all pure leaf nodes. In the case of a fully grown tree, there would be, for

example, another decision after the evaluation of spInt(cult) (at the bottom of Figure

6.2). Since this is not the case the terminal node of the LM-class shows gini = 0.499

meaning a 50% chance of classifying the objects correctly. In case of the NAL-class

the gini-index is only 0.32 being more clear about the classification.

The PdTm is built on a training set. In case the tree would be fully grown it

would likely overfit the training set and this might result in a low recall for the test

set. We stop growing the tree before yielding all pure leave nodes, although this

would mean a lower gini-index.

Figure 6.2 shows that the PdTm generates terminal nodes with the same class

in a number of parts of the PdTm (e.g. class NAL in Figure 6.3). Why the

algorithm does not stop one step earlier is because of the way the algorithm works.

In case min_samples_split, min_samples_leaf , or max_depth is not reached the

algorithm continues until it produces only leaf nodes that contain the minimum number

of samples. As we set min_samples_leaf = 5 and min_samples_split = 34 as

the optimal parameters for the optimal tree (Table 6.8), the algorithm stops before it

can yield all pure leaf nodes. In Figure 6.3 the node on the right shows 4 samples of

the class LM and 20 samples of the class NAL. Would the decision tree growing stop

earlier it would produce the node above with 26 samples belonging to the class NAL

and 9 samples identified as class LM which is far less useful.

We obtain a training accuracy of 78.17% and a slightly higher recall (78.97%,
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Table 6.9: Recalls of the personalised models obtained with the test set.

PwSm PwPm PdFc PdTm

Recall [%] 40.95 32.33 35.34 66.38

Table 6.5). The difference is not as large as the difference obtained for the CdTm

obtained on the training set (Table 5.8), meaning that the PdTm identifies LMs just

as good as NALs. Section 6.2.4 investigates the performance of the trained PdTm on

the test set.

6.2 Testing of the Models

We run the models on the test set and compare their identified landmarks with

landmarks selected by survey participants. Then, we count identified landmarks

of the models and calculate the recall (Table 6.9). We compare the results of the

personalised models with a subsequent McNemar’s test (Section 3.4). We always

compare two models at a time with the test. In case there is no association between

the two models, we expect the number of landmarks which the first model identifies

but the second model does not to be equal to the number of landmarks which the

second model identifies but the the first model does not. In this way we identify

landmarks which change from identified correctly to unidentified and the other way

round. Table 6.10 shows the results which we discuss in the following sections.

6.2.1 Personalised Weighted Sum Model

We apply the PwSm to the test set using Formula 6.3. The PwSm identifies 95 out

of 232 landmarks correctly. It achieves a recall of 40.95% on the test set (Table

6.9). Subsequently, we perform a McNemar’s test, comparing two models at a time

(Table 6.10). The largest difference occurs between the PwSm and the PdTm with

a McNemar’s test statistic of 33.307 and a p − value < 0.0001. There are 101

discordant pairs. 21 pairs where a correctly identified landmark of the PwSm changes

to an unidentified landmark of the PdTm. In contrast, there are 80 pairs where

PdTm identifies a landmark but the PwSm does not. This difference is extremely

statistically significant by conventional criteria (p < 0.05). The difference to the

PwPm is considered to be extremely statistically significant. The test statistic is

with 18.050 lower than the one to the PdTm. This is because between the PwSm

and the PwPm no landmark changed from unidentified to correctly identified. The
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difference to the PdFc is considered to be statistically significant. There are only

eight landmarks changing from unidentified to correctly identified and 21 landmarks

changing the other way round.

6.2.2 Personalised Weighted Product Model

We identify landmarks with the PwPm applying the Formula 6.4. It identifies 75 out

of 232 landmarks of the test set correctly. The performance of the PwPm is with

32.33% worse than those of the other models (Table 6.9). A subsequent McNemar’s

test shows that the largest difference is observed to the PdTm with 91 discordant

pairs (Table 6.10). Six pairs where the PwPm identifies a landmark but the PdTm

does not, and 85 pairs where the PdTm identifies a landmark but the PwPm does

not. The difference to the PwSm is extremely statistically significant but has only 20

discordant pairs. Thereof, none of the landmarks changed from an unidentified of the

PwSm to a correctly identified landmark of the PwPm. The p-value for the difference

between the PwPm and the PdFc equals 0.146. This difference is not statistically

significant. Only 12 landmarks change from an unidentified to a correctly identified

landmark and only five the other way around between the PwPm and the PdFc.

6.2.3 Personalised Decision Flow Chart

The PdFc identifies landmarks following the flow in Figure 6.1. It identifies with

35.34% a recall similar to the PwPm, identifying seven more landmarks correctly (82

out of 232, Table 6.9). The McNemar’s test confirms that the difference between the

PwPm and the PdFc is considered to be not statistically significant with a p-value

of 0.146 (Table 6.10). There are only 17 discordant pairs, which is the smallest

observed difference between two models. In contrast, the difference to the PwSm

is considered to be statistically significant. Although the PwSm only results in a

5.61% higher recall than the PdFc. In total there are 29 discordant pairs between

these two models. The largest difference is observed to the result of the PdTm with

a p− value < 0.0001 and a McNemar’s test statistic of 54.793, which is considered to

be extremely statistically significant. This means, there are only 10 pairs changing

from an unidentified landmark of the PdTm to a correctly identified landmark of the

PdFc whereas there are 82 pairs changing vice versa.

6.2.4 Personalised Decision Tree Model

We identify landmarks with the PdTm shown in Figure 6.2. The PdTm achieves with

66.38% the best result on the test set (Table 6.9). It identifies 154 landmarks of 232
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Table 6.10: Results of McNemar’s test of personalised models.

PwPm PdFc PdTm

PwSm

Unidentified → Identified 0 8 80

Identified → Unidentified 20 21 21

Test Statistic 18.050 4.966 33.307

p-value <0.0001 0.026 <0.0001

PwPm

Unidentified → Identified 12 85

Identified → Unidentified 5 6

Test Statistic 2.118 66.857

p-value 0.146 <0.0001

PdFc

Unidentified → Identified 82

Identified → Unidentified 10

Test Statistic 54.793

p-value <0.0001
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correct. McNemar’s test reveals an extremely statistically significant difference to all

the other models (p − value < 0.0001) (Table 6.10). The largest difference occurs

to the PwPm with a McNemar’s test statistic of 66.857. There are 91 discordant

pairs, thereof 85 changed from unidentified landmarks of the PwPm to correctly

identified landmarks of the PdTm. The difference to the PdFc ranks second with a

test statistic of 54.793. Here, 82 correctly identified landmarks of the PdTm changed

to unidentified landmarks with the PdFc. Ten pairs are found where the PdFc

identifies a landmark but the PdTm does not. The difference to the PwSm is as well

extremely statistically significant with a McNemar’s test statistic of 33.307. There

are 101 discordant pairs thereof 80 changed from an unidentified landmark with the

PwSm to a correctly identified landmark with the PdTm.

6.3 Results of the Training and the Testing Discussed

This section discusses the results of the training and the testing of the personalised

landmark identification models and the achieved recalls. The recalls obtained on the

training set (Table 6.5) vary for the PwSm, the PwPm, and the PdFc around 60%.

The recall for the the PdTm is higher with 78.97% .

The PwSm as well as the PwPm obtain the best average recall with more than one

combination of model parameters. We use the combination with the minimum whole

numbers obtaining the best average recall for the PwSm and the PwPm respectively.

The PwSm identifies the minimum combination with pvis = 2, whereas the PwPm

sets psem = 2. The other model parameters are set to one. An interesting finding is,

that the PwPm obtains the same recall for pvis = 2, psem = 1, and pstr = 1 as well

as for pvis = 1, psem = 2, and pstr = 1. However, we use the combination of model

parameters with the minimum whole numbers for testing.

We expected from the knowledge of related work (Section 2.3) that a sPspK ≤ 3

would result in a higher semantic salience, whereas a sPspK > 3 would result in a

higher visual and structural salience. We expected that these tendencies reflect in the

models parameters. However, the values of svis, ssem, and sstr in Table A.3 do not

allow any conclusions that prior spatial knowledge or personal interests respectively

have an impact on salience.

The overall results of the personalised landmark identification models show that

the recalls achieved on the training set (Table 6.5) are higher than on the test set

(Table 6.9). We already made this observation for the conventional models. The

models better fit the data in the training set than in the test set. However, there

might be a number of additional reasons for this result and we discuss them in the
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following paragraphs.

Different data distributions of training, validation, and test set The train-

ing, the validation and the test set might have different distributions. We ensured

that training and validation sets have equal class distributions by applying stratified

folds. The training and test set might show different distributions because we divide

our dataset in two sets that do not overlap spatially. However, we expect that our

data in the training and the test set overlap instead of having completely different

distributions. Nevertheless, the test recall is much lower than the training recall.

This especially applies for the PwSm, the PwPm, and the PdFc which are not learned

from data as the PdTm. A possible solution for this problem might be to take

the whole dataset (including all 10 decision points) and randomly shuffle it. Then,

we might split the resulting dataset into training and test set. However, with this

solution the training and test set would not be spatially independent anymore and

that is important for our use case because we aim to develop personalised landmark

identification models suitable in different spatial environments.

The models based on theory versus the machine learning model The PdTm

performs with much higher recall compared to the other models (66.38%, Table 6.9).

One reason for the deficits in recall of the PwSm, the PwPm, and the PdFc might be

that they are based on theoretical considerations, whereas the PdTm learns from the

training set. We only use the 10 validation folds to get an estimate of the performance

of the PwSm, the PwPm, and the PdFc (Figure 3.4). Thus, the training folds are

never touched and, thus, do not reflect in the model results. The PdTm learns the

tree from the training set in order to identify decisions and identify LMs and NALs.

This seems to lead to a higher recall of the PdTm.

Overfitting of the models to the training set Another issue which might lead

to a low test recall is the already mentioned overfitting of the PdTm to the training

folds and of the PwSm, the PwPm, and the PdFc to the validation folds. However,

we applied cross-validation to avoid this phenomenon as much as possible. There

might be additional solutions such as feature selection (Section 9.3) to tackle this

problem. Since we need to consider all the personal dimensions we use the total

number of dimensions and perform no subset selection during model training.

Overlapping of salience values of LMs and NALs A further issue concerns

the overlapping of svis, ssem, and sstr of LMs and NALs. There are objects in our
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survey, which are selected as both LM and NALs. This results in identical values

for svis, ssem, and sstr appearing for LMs as well as for NALs in the training set.

Thus, an object with a particular combination of svis, ssem, and sstr classified in the

training set as a NAL might appear in the test set as a LM. This might result in a

number of unidentified landmarks and, thus, keep the recall low.

The most important influence on the identification of landmarks is still

unknown One possible interpretation of our results is that we have not yet found

the most important dimensions for the identification of personalised landmarks. The

present results suggest that prior spatial knowledge and personal interests are not

the major dimensions for the identification of personalised landmarks. We might

be either missing additional landmark or personal dimensions respectively or there

might be dimensions, which have not been detected yet. For a discussion of other

dimensions compare Section 8.1.
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Chapter 7

Analyses and Comparison of the

Models

The main goal of this chapter is to find out whether a personalised landmark identifi-

cation model incorporating prior spatial knowledge and personal interests identifies

more landmarks selected by survey participants than a conventional, non-personalised

landmark identification model. We start this chapter with a sensitivity analysis to

identify whether the personal dimensions influence the outcomes of the personalised

models (Section 7.1). Subsequently, we use McNemar’s test for the statistical com-

parison of the results of both conventional and personalised models (Section 7.2). We

close the chapter with a conclusion of the results of the sensitivity analysis and the

comparison of the models with regard to our hypothesis (Section 7.3).

7.1 Sensitivity Analysis of the Personalised Models

In this section we determine whether different values of the dimensions affect the

outputs of the personalised landmark identification models. This sensitivity analysis

investigates one dimension at a time, e.g. the effect that changes in personal interests

(pInt) or prior spatial knowledge (PspK) ratings have on the outputs of the models.

We vary one dimension from its minimum value to its maximum value, while keeping

the values of the other dimensions constant (Section 3.3). The landmark dimensions

svis and ssem have five values to vary (0, 25, 50, 75, 100), sstr has only three values

(0, 50, 100). pInt have five values (from one (no interest) to five (very high interest))

and PspK has seven possible values to vary (Table 4.2). Subsequently, we calculate

the sensitivity index (SI) (Formula 3.7). We use examples from our test set. In cases

where no suitable data are available, we use appropriate examples.
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Table 7.1: Example for sensitivity analysis of the PwSm to the landmark dimensions.

ID svis ssem sstr siLM(shop) siLM(cult) siLM(hist) siLM(gast)

1 0...100 50 50 1 1 1 1

2 50 50 50 1 1 1 1

3 50 50 50 1 1 1 1

7.1.1 Personalised Weighted Sum Model

In this section we perform a sensitivity analysis of the PwSm. We present and discuss

the results.

Sensitivity Analysis of the PwSm and Results

The result of the PwSm is a salience measure which determines whether an object

functions as a landmark or not (Formula 6.3). The SI gives information about the

magnitude and the direction in which the salience measure changes depending on the

input values of the dimensions.

As a first step, we investigate the sensitivity of the PwSm to the landmark

dimensions. We use an example because there are no suitable data in our test set. We

start to investigate the sensitivity of the model to svis using the values in Table 7.1.

We set constant values to sPspK = spInt(shop) = spInt(cult) = spInt(hist) = spInt(gast)

= 3 and we vary svis of object 1 from 0 to 100 using steps of 25. Table 7.2 shows that

the number of identified landmarks changes with svis. In case svis < 50 the PwSm

identifies object 2 and 3 as landmarks. In the case of svis = 50, all three objects

show the same salience measure because they have identical values for the landmark

dimensions. Object 1 is the unique landmark in case svis ≥ 75. We calculate a SI =

0.56 for object 1. As the other objects do not change their salience measures during

the sensitivity analysis, their SI is zero. However, the PwSm reacts sensitively to svis.

The sensitivity analysis of svis is representative for the other landmark dimensions.

The Appendix shows the results for ssem (Table A.5) and sstr (Table A.6). Their SI

is 0.47. This means that svis exerts the highest influence of the landmark dimensions

on the output of the PwSm.

For the initial weights for the PwSm we analysed the objects selected as landmarks

by survey participants with different pInt and PspK ratings. For each combination

we determined the average of visual, semantic, and structural salience (Section 6.1.1).

As described in Section 5.3, there are combinations of PspK and pInt ratings which
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Table 7.2: Results of sensitivity analysis of PwSm to svis.

ID svis SI

0 25 50 75 100

1 1.56 2.06 2.56 3.06 3.56 0.56

2 2.56 2.56 2.56 2.56 2.56 0

3 2.56 2.56 2.56 2.56 2.56 0

do not appear in the training set. The result is that the average salience svis, ssem,

and sstr are not available for all combinations (Table A.3). Thus, we are not able

to calculate the salience measure with the PwSm for all combinations of PspK and

pInt ratings. For the sensitivity analysis this means that if we vary the values of

PspK and keep the values of the other dimensions constant, there are at most four

average salience values available. Consider the pInt ratings spInt(shop) = spInt(cult) =

spInt(hist) = spInt(gast) = 4. There are average salience values for sPspK = {1, 2, 3,

7} available in Table A.3. Consequently, we are not able to calculate the salience

measure of the PwSm for sPspK = {4, 5, 6}.

Table 7.3: Objects at decision point 8 (Figure A.9).

ID svis ssem sstr siLM(shop) siLM(cult) siLM(hist) siLM(gast)

O1 50 50 100 0 1 1 0

O2 0 50 50 0 0 0 0

O3 50 75 50 1 0 1 0

O4 0 50 50 1 0 0 0

O5 50 50 100 0 1 1 0

For the investigation of the model’s sensitivity to sPspK we use the objects at

decision point 8 (Table 7.3). Table 7.4 shows the results for the available combinations

of PspK and pInt ratings. sPspK has a different effect on the salience measure of each

object depending on svis, ssem, and sstr. The SI varies in magnitude (SI ∈ {-0.27 -

-0.07}) giving information of the direction of the change of the salience measure. The

salience measure decreases with an increasing value of sPspK . This has an impact on

the number of detected landmarks. The PwSm identifies two objects as landmarks in

case sPspK ≤ 3 (Table 7.4, O1 and O5). In case sPspK = 7, the PwSm identifies an

additional object (O3) as landmark. The average sensitivity index (avgSI) is -0.20.
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Table 7.4: Results of sensitivity analysis of PwSm to sPspK .

ID sPspK SI

1 2 3 7

O1 3.80 3.50 3.06 3.00 -0.27

O2 1.80 1.63 1.39 1.50 -0.20

O3 3.20 3.00 2.75 3.00 -0.07

O4 1.80 1.63 1.39 1.50 -0.20

O5 3.80 3.50 3.06 3.00 -0.27

avgSI -0.20

We conclude that the dimension PspK affects the outputs of the PwSm since the

number of objects identified as landmarks changes according to sPspK .

Next, we evaluate the sensitivity of the PwSm to pInt. We take again the objects

from decision point 8 as an example (Table 7.3). When varying pInt at most two

average salience values with the same combinations of PspK and pInt ratings are

available (Table A.3). We set constant values sPspK = 7 and spInt(shop) = spInt(cult) =

spInt(hist) = spInt(gast) = 4 and vary spInt(shop), spInt(cult), and spInt(hist) successively.

We have to take different values for spInt(gast) to be able to use an example from

our test set. We set sPspK = 3, spInt(shop) = 2, and spInt(cult) = spInt(hist) = 3 when

investigating spInt(gast). However, the sensitivity analysis reaches the same conclusion

for spInt(gast) as for the other pInt (Table 7.5 and Table 7.6). The PwSm identifies

different numbers of landmarks according to the interest ratings. Generally, we can

identify a difference between a pInt rating ≤ 3 and a rating > 3. Similarly to the

sensitivity analysis results of sPspK the PwSm identifies two landmarks for a pInt

rating ≤ 3 and three landmarks for a rating > 3. The magnitude of the sensitivity

varies and results in an avgSI ∈ {-0.10 - 0.04}.

Results of the Sensitivity Analysis of the PwSm discussed

The PwSm shows the lowest sensitivity to variation in the inputs of the pInt, fol-

lowed by the sensitivity to PspK. We found the highest sensitivity to the landmark

dimensions, this means that they have the highest influence on the outcomes of the

PwSm.

We investigate the model’s sensitivity to the landmark dimensions with an example

because of the lack of appropriate data. The influence of a change in a landmark

dimension on the model’s results is dependent on the values of the landmark dimensions
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of the other objects at an investigated decision point. For example, in case all other

objects in our example would have svis = ssem = sstr = 100 (Table A.7), object 1

would only become a landmark in case svis = 100 (Table A.8).

Table 7.5: Results of sensitivity analysis of PwSm to spInt(shop) and spInt(cult).

ID spInt(shop) SI spInt(cult) SI

2 4 3 4

O1 3.29 3.00 -0.10 3.33 3.00 -0.11

O2 1.57 1.50 -0.05 1.67 1.5 -0.11

O3 3.00 3.00 0.00 3.17 3.00 -0.06

O4 1.57 1.50 -0.05 1.67 1.5 -0.11

O5 3.29 3.00 -0.10 3.33 3.00 -0.11

avgSI -0.06 -0.10

Table 7.6: Results of sensitivity analysis of PwSm to spInt(hist) and spInt(gast).

ID spInt(hist) SI spInt(gast) SI

3 4 2 4

O1 3.15 3.00 -0.05 3.13 3 -0.04

O2 1.45 1.50 0.03 1.38 1.5 0.08

O3 2.83 3.00 0.06 2.69 3.00 0.10

O4 1.45 1.50 0.03 1.38 1.5 0.08

O5 3.15 3.00 -0.05 3.13 3.00 -0.04

avgSI 0.01 0.04

The PwSm differentiates between sPspK ≤ 3 and sPspK = 7. This makes sense

because a rating ≤ 3 means that the survey participant is familiar with the street

intersection, whereas a rating of seven means that the survey participant has never

been there. Table A.3 shows that for sPspK = 7 and spInt(shop) = spInt(cult) =

spInt(hist) = spInt(gast) = 4 average salience values of ssem = 100 and svis = sstr

= 50 apply. This results in a relative weight wsemRel = 2 (Formula 6.1) which is

higher than for the other PspK ratings. The result is that object O3 becomes a

landmark for sPspK = 7. This is in contrast to the findings of the literary research

(Section 2.3) saying that for unfamiliar people visual salience is more important than

semantic salience. However, since the combination of PspK and pInt rating (sPspK
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= 7 and spInt(shop) = spInt(cult) = spInt(hist) = spInt(gast) = 4) appears only once in

the training set (Table A.3, Column No), this result might not accurately reflect the

actual preferences of travellers with these ratings. The other PspK ratings in Table

7.4 with spInt(shop) = spInt(cult) = spInt(hist) = spInt(gast) = 4 are chosen more often

by the survey participants, and, therefore, seem to be reliable.

Although we use slightly different constant values to show sensitivity to all pInt

an interest rating ≤ 3 results in two, wheres a high interest rating > 3 results in

three identified landmarks. Thus, the output of the PwSm changes according to the

ratings of pInt. We identify for object O3 in the sensitivity analysis of spInt(shop) a

salience measure of 3.00 in any case (Table 7.5). This results in a SI = 0. While we

do not identify this object for spInt(shop) = 2, for spInt(shop) = 4 the object becomes a

landmark although it does not change its salience measure. However, because the

other objects change their salience measures object O3 becomes one of the most

salient ones. The highest magnitude of SI shows spInt(cult). Nearly for all objects the

SI is -0.11, with a decreasing salience measure.

7.1.2 Personalised Weighted Product Model

The sensitivity analysis of the PwPm is similar to the analysis of the PwSm. In the

following we present the results and discuss them.

Sensitivity Analysis of the PwPm and Results

We use Formula 6.4 to calculate the salience measure that defines which object becomes

a landmark. We calculate the SI giving us information about the magnitude of the

differences of the salience measures while changing input values of the dimensions.

We start with a sensitivity analysis of the PwPm to the landmark dimensions.

We use the same example as for the sensitivity analysis of the PwSm (svis and the

values in Table 7.1). We set constant values to sPspK = spInt(shop) = spInt(cult) =

spInt(hist) = spInt(gast) = 3. We vary svis of object 1 from 0 to 100 using steps of

25. Table 7.7 shows that the number of identified landmarks changes with svis. It is

identical to the results of the PwSm: in case svis < 50 the PwPm identifies object 2

and 3 as landmarks, in case svis = 50 all three objects are identified as landmarks,

and in case svis ≥ 75 object 1 becomes the unique landmark. The SI is 1 for object 1

because the value for Dmin is zero (Formula 3.7). We can conclude that the PwPm

reacts sensitively to svis. The sensitivity analysis of svis is representative for the

other landmark dimensions ssem and sstr. The Appendix shows the results for ssem

(Table A.9) and sstr (Table A.10). As svis = 0 leads to a Dmin = 0, SI = 1 applies
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Table 7.7: Results of sensitivity analysis of PwPm to svis.

svis ID

1 2 3

0 0 42412775.26 42412775.26

25 21206387.63 42412775.26 42412775.26

50 42412775.26 42412775.26 42412775.26

75 63619162.89 42412775.26 42412775.26

100 84825550.52 42412775.26 42412775.26

SI 1 0 0

in any case. The SI is 1 for all three landmark dimensions, and consequently, they

have the same influence on the model results.

Here, as in the case of the sensitivity analysis of the PwSm, we have to handle

combinations of PspK and pInt ratings not appearing in the test set. For the sensitivity

analysis this means that for varying PspK and constant pInt, there are at most four

average salience values available. For the investigation of the PwPm to PspK, we

refer again to the objects of decision point 8 (Table 7.3). We set constant values

to spInt(shop) = spInt(cult) = spInt(hist) = spInt(gast) = 4. We vary sPspK from one 1

to 7. Table 7.8 shows the results for the values of sPspK = {1, 2, 3, 7}. The other

combinations of PspK and pInt ratings are not available.

Table 7.8: Results of sensitivity analysis of PwPm to sPspK .

ID sPspK SI

1 2 3 7

O1 1366702592.41 197642353.76 18783314.88 312500000 -3.37

O2 0 0 0 0 0

O3 1250564384.05 198313053.74 24049552.14 791015625 -0.58

O4 0 0 0 0 0

O5 1366702592.41 197642353.76 18783314.88 312500000 -3.37

avgSI -1.47

sPspK has different effects on the salience measures each object has depending on

the values of svis, ssem, and sstr. In case one of the landmark dimensions is equal to

zero the salience measure is also zero. In this case the SI is not calculable because of
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Table 7.9: Results of sensitivity analysis of PwPm to spInt(shop).

ID spInt(shop) SI

1 2 4

O1 39434834.03 625000000 18783314.88 -1.10

O2 0 0 0 0

O3 50432651.36 527343750 24049552.14 -1.10

O4 0 0 0 0

O5 39434834.03 625000000 18783314.88 -1.10

avgSI -0.66

a division by zero (Formula 3.7). To be able to average the SI, we treat these values

as zero. This results in a SI ∈ {-3.37 - 0} for sPspK . The PspK has an effect on the

identified landmark as well as on the number of identified landmarks. In case sPspK

= 1 the PwPm identifies two objects as landmarks (O1 and O5). For all the other

investigated PspK ratings the PwPm identifies only one landmark which is different

from the one identified with sPspK = 1. For the objects O1 and O5 we calculate a

high SI = -3.37. These are the objects identified as a landmark for sPspK = 1 but not

for the other ratings. Consequently, the PwPm is sensitive to the PspK of a traveller.

In the next step we evaluate the sensitivity of the PwPm for the pInt. We use

again decision point 8 as an example (Table 7.3). At most three average salience

values with the same combination of PspK and pInt ratings are available in our test

set (Table A.3). We set constant values to spInt(shop) = spInt(cult) = spInt(hist) =

spInt(gast) = 4 and vary the values of one pInt at a time. We have to set different

values for the constant value of sPspK to be able to demonstrate sensitivity with data

from our test set. Thus, for spInt(shop) and spInt(cult): sPspK = 3 and for spInt(hist)

and spInt(gast): sPspK = 1. We have to set different constant values for spInt(gast) in

case we want to use an example from our test set. We set sPspK = 1, spInt(shop) = 5,

and spInt(cult) = spInt(hist) = 3.

Table 7.9 - Table 7.12 show the results of the sensitivity analyses of the pInt. The

sensitivity analysis of spInt(shop) considers three stages of pInt: spInt(shop) ∈ {1, 2, 4}
(Table 7.9). It reveals a sensitivity resulting in either one or two identified landmarks

for different values of spInt(shop). Although the salience measure increases between an

interest rating of spInt(shop) = 1 and spInt(shop) = 2 the SI is negative. This shows that

the salience measure of the PwPm decreases between the minimum rating (spInt(shop)

= 1) and the maximum rating (spInt(shop) = 4).
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Table 7.10: Results of sensitivity analysis of PwPm to spInt(cult).

ID spInt(cult) SI

3 4

O1 36550221.73 18783314.88 -0.95

O2 0 0 0

O3 33942986.18 24049552.14 -0.41

O4 0 0 0

O5 36550221.73 18783314.88 -0.95

avgSI -0.46

Table 7.11: Results of sensitivity analysis of PwPm to spInt(hist).

ID spInt(hist) SI

3 4

O1 7179364.72 1366702592.41 0.99

O2 0 0 0

O3 9725356.88 1250564384.05 0.99

O4 0 0 0

O5 7179364.72 1366702592.41 0.99

avgSI 0.60

Table 7.12: Results of sensitivity analysis of PwPm to spInt(gast).

ID spInt(gast) SI

3 4

O1 965282565.59 52265689.43 -17.47

O2 0 0 0

O3 851988913.52 57366173.64 -13.85

O4 0 0 0

O5 965282565.59 52265689.43 -17.47

avgSI -9.76
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The sensitivity analyses of spInt(cult) = spInt(hist) = spInt(gast) reach the same

conclusion: they identify different numbers of landmarks for spInt = 3 and spInt = 4

(Table 7.10 - Table 7.12). However, the magnitude of the sensitivity varies considerably

and results in an avgSI ∈ {-9.76 - 0.60}. The negative SI shows that the salience

measure of the PwPm decreases with and increasing pInt rating.

Results of the Sensitivity Analysis of the PwPm discussed

The PwPm shows sensitivity to all dimensions - landmark as well as personal dimen-

sions. We observe the lowest avgSI for spInt(shop), spInt(cult) and spInt(hist), whereas

spInt(gast) shows the highest observed SI. The SI for sPspK and the SIs for the

landmark dimensions range inbetween.

Similar to the PwSm we investigate the model’s sensitivity to the landmark

dimensions with an example. It shows that the influence of a change in a landmark

dimension results in a change of the identified or the number of identified landmarks

respectively. It depends on the values of the other objects at an investigated decision

point, whether an object becomes a landmark.

The PwPm reacts sensitively to the inputs of PspK. In case sPspK = 1 two

landmarks are identified which are different from the one identified for the other PspK

ratings. However, the result of the sensitivity analysis of PspK is not as obvious as

for the PwSm. We are not able to confirm a differentiation between no prior spatial

knowledge and prior spatial knowledge. There are only indications that the PwPm

differentiates between a traveller familiar with the street intersection and the area

and all the other possible stages of PspK.

Considering the sensitivity analysis of the PwPm concerning the pInt, two average

salience values of PspK and pInt ratings are available for a variation of spInt(cult),

spInt(hist), and spInt(gast). The sensitivity analysis shows that a spInt = 3 (medium)

results in different and, in addition, in a different number of identified landmarks than

a spInt = 4 (high). However, for spInt(cult) = spInt(gast) = 3 the PwPm identifies two,

whereas for spInt(hist) = 3 the PwPm identifies only one landmark (Tables 7.10 - 7.12).

We can conclude that the PwPm reacts sensitively to the inputs of the pInt spInt(cult),

spInt(hist), and spInt(gast). For spInt(shop) we also detect sensitivity, but are not able

to differentiate between interested and not interested participants. This means the

PwPm identifies the same landmark for a spInt(shop) = 1 (no) and spInt(shop) = 4

(high). The SI varies considerably between the pInt, ranging from an avgSI = -9.76

for spInt(gast) to an avgSI = 0.6 for spInt(hist). The highest influence of the pInt on

the outcomes of the PwPm shows spInt(gast).
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Table 7.13: Results of sensitivity analysis of PdFc to svis with sPspK = 7.

ID svis SI

0 25 50 75 100

1 NAL NAL LM LM LM 1

2 LM LM LM NAL NAL 1

3 LM LM LM NAL NAL 1

avgSI 1

Table 7.14: Results of sensitivity analysis of PdFc to svis with sPspK = 1.

ID svis SI

0 25 50 75 100

1 LM LM LM LM LM 0

2 LM LM LM LM LM 0

3 LM LM LM LM LM 0

avgSI 0

7.1.3 Personalised Decision Flow Chart

This section investigates whether the PdFc reacts sensitively to the inputs of both the

landmark as well as the personal dimensions. Furthermore, it presents and discusses

the results.

Sensitivity Analysis of the PdFc and Results

We follow the flow in Figure 6.1 which results in one or more identified landmarks for

a decision point. We investigate the result of the model when the dimension is set to

its maximum and to its minimum respectively. The SI = 1 in case an investigated

object changes from identified LM to NAL or vice versa.

As a first step, we evaluate the sensitivity of the PdFc to the landmark dimensions.

We set the personal dimensions to the constant values sPspK = 7 and spInt(shop) =

spInt(cult) = spInt(hist) = spInt(gast) = 1. Consider the example in Table 7.1. We vary

svis of object 1 from 0 to 100. Table 7.13 shows that the identified landmarks change

with svis. In case svis ≤ 25 the PdFc identifies the objects 2 and 3 as landmarks.

In case svis = 50 all objects of the example are identified as landmark and in case

svis ≥ 75 object 1 is the only object qualifying as a landmark. Thus, the PdFc reacts
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Table 7.15: Objects at decision point 7 (Figure A.8).

ID svis ssem sstr siLM(shop) siLM(cult) siLM(hist) siLM(gast)

O1 25 75 100 1 1 0 1

O2 25 50 100 0 0 0 1

O3 50 25 50 0 0 1 0

O4 25 50 50 1 0 0 0

sensitively to the inputs of svis.

Now we set sPspK = 1 keeping the values of the pInt as they are. In this case

the PdFc identifies all objects as landmarks because the model only examines ssem

(Figure 6.1). Thus, the sensitivity gets lost and SI = 0 (Table 7.14).

The PdFc behaves vice versa for ssem. As long as sPspK ≤ 3 the PdFc is sensitive

to the inputs of ssem. sstr does not appear in the model and, therefore, we cannot

say anything about the sensitivity of sstr.

The second step investigates the sensitivity of the PdFc to the personal dimensions.

Unfortunately, we are not able to demonstrate the model’s sensitivity to all dimensions

with the data from our test set, thus, for some dimensions we have to refer to examples.

For sPspK we are able to demonstrate the model’s sensitivity using decision point

7 and its objects (Table 7.15) . We take constant values spInt(shop) = 2, spInt(cult)

= spInt(hist) = 3, and spInt(gast) = 4 from our test set. We vary sPspK from 1 to

7. Table 7.16 shows the results. There are no values for sPspK = {2, 4, 5} and the

defined constant values for the pInt in our test set. Nevertheless, there are enough

values for sPspK to draw a conclusion about the model’s sensitivity. We can see in

the Table 7.16 that in case sPspK ≤ 3, object O1 is identified as landmark, in case

sPspK ≥ 6, it changes to object O3. For the objects O1 and O3 at decision point 7

the SI = 1 and the avgSI = 0.5. We conclude that the PdFc is sensitive to sPspK .

We are not able to demonstrate sensitivity to pInt with data from our test set.

We take the objects at decision point 5 and exemplary personal data as an example

(Table 7.17). The PdFc differentiates only between interested and not interested.

It follows spInt ∈ {0, 1}. We start with evaluating the sensitivity of the PdFc to

spInt(gast). We use exemplary constant values sPspK = 1 and spInt(shop) = spInt(cult)

= spInt(hist) = 0. Table 7.18 shows the result for sensitivity analysis of spInt(gast). In

case spInt(gast) = 0, the PdFc identifies two landmarks. Given spInt(gast) = 1, the

number of landmarks decreases to one. The SI for object O2 is 1. The avgSI = 0.25

for decision point 5. Thus, the PdFc reacts sensitively to the inputs of spInt(gast).
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Table 7.16: Results of sensitivity analysis of PdFc to sPspK .

ID sPspK SI

1 3 6 7

O1 LM LM NAL NAL 1

O2 NAL NAL NAL NAL 0

O3 NAL NAL LM LM 1

O4 NAL NAL NAL NAL 0

avgSI 0.5

Table 7.17: Objects at decision point 5 (Figure A.6).

ID svis ssem sstr siLM(shop) siLM(cult) siLM(hist) siLM(gast)

O1 50 75 100 1 0 1 1

O2 50 75 100 1 0 1 0

O3 25 50 100 0 0 0 0

O4 25 50 50 1 0 0 1

The other pInts show the same behaviour.

Now we set spInt(shop) = 1. The other constant values remain the same. As a

result the PdFc identifies the same two landmarks (Table 7.19) independent of the

value of spInt(gast). The reason for this is that objects O1 and O2 both belong to

the topic of interest shopping. This means, the PdFc identifies these two objects as

landmarks as long as spInt(shop) = 1. This results in a avgSI = 0. In this case the

PdFc is no longer sensitive to spInt(gast). The other pInt show the same behaviour.

Results of the Sensitivity Analysis of the PdFc discussed

We identify the sensitivity of the PdFc to landmark as well as to personal dimensions.

However, there are some restrictions. The model’s sensitivity to svis and ssem

respectively is highly dependent on sPspK . This is obvious because the model makes a

clear distinction between sPspK ≤ 3 (meaning prior spatial knowledge) and sPspK > 3

(meaning no prior spatial knowledge) (Figure 6.1). In case sPspK > 3 the model

investigates only svis while ssem is not considered. For sPspK ≤ 3 it is just the

opposite.

The PdFc makes a distinction between sPspK ≤ 3 and sPspK ≥ 6. Remember,

survey participants did not choose the sPspK = 4 or sPspK = 5, therefore, we are
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Table 7.18: Results of sensitivity analysis of PdFc to spInt(gast).

ID spInt(gast) SI

0 1

O1 LM LM 0

O2 LM NAL 1

O3 NAL NAL 0

O4 NAL NAL 0

avgSI 0.25

Table 7.19: Results of sensitivity analysis of PdFc to spInt(gast) with spInt(shop) = 1.

ID spInt(gast) SI

0 1

O1 LM LM 0

O2 LM LM 0

O3 NAL NAL 0

O4 NAL NAL 0

avgSI 0

not able to draw conclusions about theses values. Nevertheless, we may conclude

that the PdFc divides between familiarity and no familiarity and dependent on that

different landmarks are identified and we expected that because of the first decision

of the PdFc (Figure 6.1).

Table 7.18 shows sensitivity to pInt - in this case using the example of spInt(gast).

However, all pInt behave the same way. This is due to the flow of the PdFc. The

PdFc has a number of objects available after passing the process for the max(svis)

or max(ssem) respectively. The objects satisfying the decision siLM = spInt = 1 are

identified as landmarks (Figure 6.1). This means, in most cases this decision narrows

down the number of objects available, and, thus, the number of identified landmarks.

The PdFc reacts sensitively to the inputs of the pInt under investigation in case all

the other spInt = 0. However, the sensitivity to the pInt under investigation gets lost

as soon as the analysis is extended to other pInt when there are objects that are part

of the interest. In this case the prerequisite siLM = spInt = 1 is fulfilled for more

than one object and, thus, the results of the PdFc are more identified landmarks.
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Table 7.20: Results of sensitivity analysis of PdTm to landmark dimensions (B =

depends on other dimensions whether LM or NAL).

Landmark 0 25 50 75 100 SI

svis B B B LM LM 1

ssem B B B B B 1

sstr B B B 1

7.1.4 Personalised Decision Tree Model

In this section we evaluate the PdTm with a sensitivity analysis. We present and

discuss the results.

Sensitivity Analysis of the PdTm and Results

The result of the PdTm is not a salience measure (as in the case of the PwSm or the

PwPm) but a class. The results are either LM or NAL. This results in a SI ∈ (0, 1).

When considering the design of the PdTm, it is striking that the dimensions influence

each other (Figure 6.2). This means, the sensitivity of the PdTm to a dimension is

dependent on the values of the other dimensions. For example, the branch where

spInt(shop) is located is only entered when 39.021 < svis ≤ 69.758.

First, we start evaluating the sensitivity of the PdTm to the landmark dimensions.

It turns out that the PdTm is sensitive to all three dimensions (Table 7.20). This is

particularly obvious for svis because in case svis > 69.758 the object is a landmark in

any case. For ssem and sstr it depends on the values of the other dimensions, whether

the PdTm reacts sensitively. For example, for svis ≤ 39.021 and sstr > 70.517 it

depends exclusively on ssem whether an object becomes a LM or a NAL (Figure 6.2).

Next, we evaluate the sensitivity of the PdTm to the personal dimensions. The

right branch of the tree hosts sPspK . However, to enter the branch a number of

requirements must be met: 39.021 < svis ≤ 69.758, ssem ≤ 90.673 and sstr ≤ 57.043.

In case sPspK > 6.108 an object is identified as a landmark in any case. In case

sPspK ≤ 6.108 the classification as LM or NAL depends on spInt(cult), ssem, and

spInt(shop). In case spInt(cult) > 2.545, ssem > 63.719, and spInt(shop) > 3.318 the

PdTm identifies an object as a NAL. Thus, as soon as spInt(shop) ≤ 3.318 the PdTm

identifies an object as a landmark. This means, the model shows a clear sensitivity

to the input values of spInt(shop) (Table 7.21).

spInt(cult), spInt(hist), and spInt(gast) are all located in the left branch of the tree

135



CHAPTER 7. ANALYSES AND COMPARISON OF THE MODELS

Table 7.21: Results of sensitivity analysis of PdTm to personal dimensions (B =

depends on other dimensions whether LM or NAL).

Personal 1 2 3 4 5 6 7 SI

sPspK B B B B B B LM 1

spInt(shop) LM LM LM NAL NAL 1

spInt(cult) NAL NAL LM LM LM 1

spInt(hist) B B B NAL NAL 1

spInt(gast) B B B B LM 1

(Figure 7.1). We use as constant values svis = 25 and ssem = sstr = 50 to enter this

branch. We do not need to set values for sPspK and spInt(shop) because they do not

appear in this part of the tree. We set spInt(cult) = 2, spInt(hist) = 3, and spInt(gast)

= 4. We vary the values of the analysed dimensions (spInt(cult), spInt(hist), and

spInt(gast)) from their minimum value (1) to their maximum value (5) and investigate

the resulting SI (Table 7.21).

The sensitivity analysis shows that the PdTm reacts sensitively to all three

dimensions, but it is for spInt(hist) and spInt(gast) dependent on the values of the other

dimensions. First, we investigate spInt(cult). The PdTm is sensitive to spInt(cult) with

the above defined constant values. As soon as spInt(cult) > 2.753 the PdTm identifies

an object as a landmark (Figure 7.1).

Second, we investigate spInt(hist). The model’s sensitivity to spInt(hist) is partly

dependent on the values of spInt(cult). In case spInt(hist) > 3.554 an object is a NAL

in any case. In case spInt(hist) ≤ 3.554 it depends on spInt(cult) whether an object is

identified as a LM or a NAL.

The PdTm is sensitive to spInt(gast) (Table 7.21). In case spInt(gast) > 4.954 an

object becomes a landmark. The model’s sensitivity to spInt(gast) is also dependent

on spInt(cult) and spInt(hist). As soon as spInt(hist) > 3.554, the object becomes a NAL.

In case spInt(hist) ≤ 3.554 and spInt(cult) > 2.753, the object becomes a LM. spInt(gast)

appears also in the right branch of the decision tree confirming the threshold between

a rating of 4 (high interest) and a rating of 5 (very high interest) (spInt(gast) > 4.073).

In the right branch of the PdTm it is dependent on ssem, whether an object becomes

a NAL or a LM in case spInt(gast) ≤ 4.073. In case ssem remains 50 (as defined above

for constant values), the object becomes a NAL.
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Figure 7.1: Decision Branch of the Personalised Decision Tree Model.

Results of the Sensitivity Analysis of the PdTm discussed

The PdTm shows sensitivity to all dimensions - landmark and personal respectively.

For svis ≥ 75 an object is a landmark in any case, whereas the sensitivity of the

PdTm to the other landmark dimensions depends on correlations with the other

dimensions.

The PdTm divides between sPspK = 7 (no prior spatial knowledge) and all the

other prior spatial knowledge ratings. Survey participants did not choose the ratings

4 and 5. The results show that on average only one survey participant chose sPspK

= 6 (Table 5.3). This suggests that this rating does not influence the splitting

during tree growing. Thus, the distinction between no familiarity at all and the other

ratings seems to be plausible. For the pInt we observe that spInt(shop), spInt(cult), and

spInt(hist) either split between spInt = 2 and spInt = 3 or spInt = 3 and spInt = 4. This

means, the tree detects a difference between survey participants which are interested

and which are not. spInt(gast) represents an exception of the pInt as it makes the

distinction between very high and all the other ratings.

There are personal dimensions appearing on more than one leave in the tree.

However, most of them appear with the same decisions. Somehow different, however,

behaves spInt(cult). It appears twice - once with the decision spInt(cult) ≤ 2.753 and

once again with spInt(cult) ≤ 2.545. Although the threshold values are similar, the

decision whether the object is a LM or a NAL is contradictory. On the basis of the

PdTm it is nevertheless comprehensible because whether an object classifies as a

landmark is also dependent on the values of the other dimensions.
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7.1.5 Results of the Sensitivity Analyses

In this chapter we perform a sensitivity analysis of our models to investigate the

relationship between the input values of the dimensions and the model results. We

use the data from our test set - in cases where no data are available we use suitable

examples. The analysis reveals that all the models react sensitively to all the

dimensions both landmark and personal dimensions. We present the results for the

models below.

• PwSm

– Landmark Dimensions We found the highest sensitivity of the PwSm

to the landmark dimensions. This sensitivity is not only dependent on the

values of the attributes of the landmark dimensions of the investigated

object but also on the values of the other objects at the decision point.

– Prior Spatial Knowledge The sensitivity to prior spatial knowledge

ranges between the sensitivity to the landmark dimensions and the sensi-

tivity to personal interests. We identify a differentiation between sPspK ≤ 3

(meaning prior spatial knowledge) and sPspK = 7 (meaning no prior spatial

knowledge) for the PwSm.

– Personal Interests The PwSm shows the lowest sensitivity to a variation

in the inputs of the personal interests. However, the input values influenced

the number of identified landmarks with the PwSm, meaning an interest

rating ≤ 3 results in two, wheres a high interest rating > 3 results in three

identified landmarks.

• PwPm

– Landmark Dimensions The sensitivity of the PwPm to the landmark

dimensions ranges between the sensitivity to spInt(gast) and the other

personal interests. It is dependent on the values of the attributes of the

landmark dimensions of the other objects at the decision point, whether

the model reacts sensitively to the landmark dimensions.

– Prior Spatial Knowledge The sensitivity to the prior spatial knowledge

ranges between the sensitivity to spInt(gast) and the other personal interests

but the SI is higher than the sensitivity for the landmark dimensions. It

is the only model not confirming a differentiation between prior spatial

knowledge and no prior spatial knowledge. Although it reacts sensitively to
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the inputs of prior spatial knowledge it only makes a distinction between

sPspK = 1 and the other possible prior spatial knowledge ratings.

– Personal Interests We observe the lowest sensitivity for the personal

interest spInt(shop), spInt(cult), and spInt(hist), whereas spInt(gast) shows the

highest observed sensitivity. The sensitivity analysis shows that a spInt = 3

(medium) results in different and, in addition, in a different number of

identified landmarks than a spInt = 4 (high). However, spInt(shop) is an

exception for the PwPm. Although the model is sensitive to spInt(shop), it

makes no general distinction between no or high personal interests ratings.

• PdFc

– Landmark Dimensions The sensitivity of the PdFc to svis and ssem

respectively is highly dependent on sPspK . This is obvious because the

model makes a clear distinction between prior spatial knowledge and no

prior spatial knowledge (Figure 6.1). sstr does not appear in the model

and, therefore, we cannot say anything about the sensitivity of sstr.

– Prior Spatial Knowledge The PdFc is sensitive to the inputs of prior

spatial knowledge. We identify a differentiation between sPspK ≤ 3 (mean-

ing prior spatial knowledge) and sPspK ≥ 6 (meaning no prior spatial

knowledge) for the PdFc.

– Personal Interests The PdFc is sensitive to the personal interests because

the model narrows down the identified landmarks according to the topics

interesting for the traveller.

• PdTm

– Landmark Dimensions The PdTm is sensitive to all landmark dimen-

sions. It is dependent on the values of the attributes of the landmark

dimensions of the investigated object whether a variation of the inves-

tigated dimension influences the output of the model. However, there

is one exception: the PdTm identifies an object as a landmark in case

the svis > 69.758 independent from the values of the other landmark

dimensions.

– Prior Spatial Knowledge The PdFc is sensitive to the inputs of prior

spatial knowledge. It distinguishes between sPspK = 7, meaning no famil-

iarity at all, and the other ratings.
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– Personal Interests The PdTm is sensitive to the pInt and splits either

between a spInt = 2 (low) and spInt = 3 (medium) or between spInt = 3

(medium) and spInt = 4 (high) for most of the dimensions. Solely for

spInt(gast) the PdTm makes the distinction between spInt = 5 (very high)

and the other ratings.

The survey participants did not select sPspK = 4 and sPspK = 5. In addition, the

survey results show that on average only one survey participant chose sPspK = 6

(Table 5.3). This suggests that these ratings do not influence the models. This becomes

obvious for the PwSm and the PdTm since both models differentiate between a rating

sPspK ≤ 3 (meaning prior spatial knowledge) and a rating sPspK = 7 (meaning

no prior spatial knowledge). We conclude that the PwSm and the PdTm follow a

differentiation between participants familiar with the street intersection and all the

others.

For most of the personal interests we identify a differentiation between spInt = 2

(rated low) or spInt = 3 (rated medium) and a spInt = 4 (rated high). The fact

is that the medium rating is either assigned to the lower ratings or to the higher

ratings. The strategy of choosing a midpoint can be explained by a phenomenon

called survey optimising (Krosnick 1991). This behaviour occurs under cognitive load

and when survey participants attempt to be fully diligent. As a consequence people

sometimes try to avoid this effort but they want to answer responsibly (Krosnick

1991, Krosnick & Fabrigar 1997). Thus, the pInt rating medium might be either

chosen by a participant who is actually interested as well as by a participant who is

not.

7.2 Comparison of Model Results

We compare the results of the conventional models with the results of the person-

alised models to test our hypothesis. We count correctly identified landmarks and

unidentified landmarks of the models and analyse the differences. For the comparison

we use McNemar’s test (Section 3.4). Table 7.22 shows the results - we discuss them

in the following sections.

7.2.1 Conventional and Personalised Weighted Sum Model

The PwSm identifies the same number of landmarks as the CwSm. There are

no landmarks changing from an unidentified to a correctly identified and also no

landmarks changing vice versa (Table 7.22). Therefore, we are neither able to calculate
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Table 7.22: Results of McNemar’s test for the comparison of the conventional and

the personalised models.

PwSm/CwSm PwPm/CwPm PdFc/CdFc PdTm/CdTm

Identified → Unidentified 0 0 11 33

Unidentified → Identified 0 20 2 36

Test Statistic - 18.050 4.923 0.058

p-Value - <0.0001 0.027 0.810

a p-value nor a McNemar’s test statistic. We conclude that there is no difference

between these models and results can be considered as identical.

7.2.2 Conventional and Personalised Weighted Product Model

In order to find out whether there are differences between the PwPm and the CwPm

we perform McNemar’s test. We detect 20 discordant pairs all changing from an

unidentified landmark with the PwPm to a correctly identified landmark with the

CwPm (Table 7.22). The p-value is <0.0001 and McNemar’s test statistic equals

18.050. This difference is considered to be extremely statistically significant. That

means, there are no associations between the PwPm and the CwPm. We conclude

that the PwPm identifies significantly less landmarks than the CwPm.

7.2.3 Conventional and Personalised Decision Flow Chart

Comparing the results of the CdFc and the PdFc, we find 13 discordant pairs (Table

7.22). There are 11 pairs where a landmark changes from an identified landmark with

the PdFc to an unidentified with the CdFc and 2 pairs where a landmark changes

vice versa. The p-value is calculated with a McNemar’s test statistic of 4.923 and

equals 0.027. This difference is considered to be statistically significant. This means,

the PdFc identifies significantly more landmarks than the CdFc.

7.2.4 Conventional and Personalised Decision Tree Model

The CdTm identifies slightly more landmarks than the PdTm. To determine, whether

this difference is significant we perform McNemar’s test (Table 7.22). There are 69

discordant pairs, thereof 33 pairs where the PdTm identifies a landmark but the

CdTm does not. The p-value equals 0.810 with a McNemar’s test statistic of 0.058.

By conventional criteria this difference is considered not to be statistically significant.
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This means, that the CdTm does not identify significantly more landmarks than the

personalised model.

7.2.5 Results of the Comparison Discussed

We compare the results of the personalised landmark identification models and the

conventional models. It turns out that the CwSm identifies the same number of

landmarks as the PwSm. The PwPm identifies - and that is extremely significant -

less landmarks than the CwPm. We calculate the average of visual, semantic, and

structural salience from the objects selected as landmarks by the survey participants.

These average values are the basis of the initial weights for the PwSm and the PwPm.

One issue with these weights is that some combinations of PspK and pInt ratings

appear only once in the training set (compare Table A.3, Column No). We do not

know how this has an affect on the results, but are aware that this might have an

influence. One solution for this problem might be to consider only combinations of

PspK and pInt ratings with an equal number of selections for the training of both

models. The problem of this approach would be that we would not be able to identify

many landmarks of the test set due to the missing initial weights of some combination

of PspK and pInt ratings respectively. Therefore, for this initial investigation of

personalised models, we do not consider the number of selections and use all the

ratings available in both training and test set.

Another problem of the PwSm and the PwPm is that the PspK and the pInt are

highly correlated. This mainly influences the search for optimal weights because the

initial weights are dependent on both PspK and pInt. How to deal with that is still a

field of research and methods have to be identified.

The PdFc is the only model that identifies - which is statistically significant - more

landmarks than the corresponding conventional model. However, in absolute terms

the PdFc shows the second-worst performance (Table 6.9). The CdFc even shows the

worst performance of the conventional models (Table 5.9). The recall is less than

one half of the recall of the CdTm. The poor CdFc result might be explained by the

fact that we use a basic flow (Figure 4.5) because there is no other flow available.

Maybe a modification of the CdFc similar to the training of the PdFc, as described

in Section 6.1.2, would lead to better results. We built this basic flow to be able to

compare the results of the PdFc to a model only considering landmark dimensions.

We do not further evaluate or modify the flow of the CdFc as we did for the PdFc.

An issue of the PdFc is that the decision siLM = spInt = 1 (Figure 6.1) restricts

the number of objects identified as landmarks. Thus, for a survey participant stating
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spInt = 0 for all possible topics of interest this decision is not applicable and the

objects passing the preceding process in the flow chart are all identified as landmarks.

In most cases this results in more identified landmarks for a survey participant with

no interests than for a survey participant stating an interest in a topic. That, in

turn, has an impact on the number of landmarks identified by the PdFc because more

identified landmarks mean a higher possibility that the one selected by the survey

participant is amongst them.

The difference between the PdTm and the CdTm is not statistically significant

and consequently, they identify approximately the same number of landmarks. The

PdTm identifies a landmark for each decision point for each survey participant in this

work. However, it might occur that the PdTm only identifies NALs for a decision

point. One solution to solve this problem, is to stop the classification of an object

not in the terminal leave but in another leave where it is still possible that the object

becomes a landmark.

7.3 Conclusion from the Analyses and Comparison

In this chapter we performed a sensitivity analysis of our models to investigate the

relationship between the input values of the dimensions (landmark and personal

dimensions) and the model results. The analysis revealed that all the models react

sensitively to all the dimensions. We compared the results of the personalised landmark

identification models with the results of the conventional models. The PwSm, the

PwPm, and the PdTm do not identify more landmarks than their corresponding

conventional models. It turns out that the CwSm identifies the same number of

landmarks as the PwSm. The PwPm identifies significantly less landmarks than

the CwPm. The differences between the CdTm and the PdTm are not statistically

significant. The only model that identified statistically more landmarks than the

corresponding conventional model is the PdFc. However, in absolute terms this model

shows the second-worst performance (compare Table 6.9). The recall of the CdTm

is more than twice as high as the recall of the CdFc (Table 5.9). The reason for

the poor result of the CdFc might be the basic flow (Figure 4.5) that we built as

a CdFc is not existing. We conclude that the comparison of the results of PdFc

and CdFc are not conclusive enough to confirm the hypothesis. Thus, although

the personalised landmark identification models react sensitively to the personal

dimensions, we have to reject the hypothesis that a personalised model considering

prior spatial knowledge and personal interests identifies more landmarks selected by

humans than a conventional model.

143





Chapter 8

Discussion of the Results

In Section 7.3 we concluded that we have to reject the hypothesis of this work. The

most obvious interpretation for the rejection of our hypothesis is that the personal

dimensions prior spatial knowledge and personal interests are not important for

personalised landmark identification. However, there are a number of other reasons

for this result. This chapter discusses five major points that might have influenced

our result: missing other dimensions (Section 8.1), the methods to calculate salience

values (Section 8.2), the models to calculate overall salience (Section 8.3), the dataset

(Section 8.4), and the survey design (Section 8.5).

8.1 Further Dimensions

In this thesis we considered landmark dimensions as well as personal dimensions.

However, there might be a number of other dimensions which might play a role

for personalised landmark identification (Figure 8.1). These might be landmark

dimensions influencing the underlying conventional models, personal dimensions

influencing the personalised models, and other not yet identified dimensions.

8.1.1 Landmark Dimensions

In this thesis we considered the landmark dimensions visual, semantic, and structural

dimensions. There might be a number of other important landmark dimensions influ-

encing the underlying conventional models (Figure 8.1). During this thesis we came

across two additional landmark dimensions: the permanence and the descriptiveness

of an object.
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Figure 8.1: Dimensions of personalised landmark identification models.

Permanence

Burnett et al. (2001) suggest amongst other factors permanence as an important

characteristic of landmarks. Studies investigate whether stable objects (fountains or

monuments) are more informative than relatively unstable objects. Results show that

there is a difference in degree how stable and unstable objects influence performance

(Scrivner-Limbaugh 2015). Landmarks might change in various ways. They may

be vacant objects (e.g. the building where the post office used to be) but they can

also change their use (e.g. a clothes shop may become a restaurant or vice versa).

Objects might change their size or appearance. For example we had the fountain

at decision point 0 which changes its looks during winter (Figure 8.2a) and summer

(Figure 8.2b). As during winter time it is just a box, survey participants did not

really like this object, and we may assume that in summer time the result would be

different. We cannot completely exclude that other objects did change during the

survey, and might influence the results.

Descriptiveness

Another important dimension of a landmark is its descriptiveness. The brevity of a

landmark description relates to the conciseness of the description needed to describe

an object (Burnett et al. 2001). Richter & Duckham (2008) state that compact

route directions together with landmarks are easier to understand. People may

select a landmark because they know a brief and concise description for it, such

as ’the coloured house’ (DP 3, O3, Figure A.4) compared to the ’grey small house

with the dome roof’ (DP 3, O5, Figure A.4). Two messages with different content

146



8.1. FURTHER DIMENSIONS

(a) Winter. (b) Summer.

Figure 8.2: Non permanent object.

and length can communicate the same message, this concept is known in GIScience

as pragmatic semantics (Frank 2003). Any object can be refereed to in a number

of ways using different perspectives (Schober 1998). An example might be found

in our introduction (Section 1): ’where once the mining director lived’ and ’the

house with the stucco façade’ might refer to the same object, although these are

completely different descriptions. There are findings that the names of POIs change

with geographic distances (Hu & Janowicz 2018) suggesting that the description

needed is dependent on the spatial knowledge of the wayfinder and may influence the

selections of our survey participants.

8.1.2 Personal Dimensions

The identified personal dimensions are the basis for our calculations. We investigated

prior spatial knowledge, personal interests, personal goals, personal background, and

individual traits. Finally, we concentrated on prior spatial knowledge and personal

interests. Here we give some ideas how the other not yet considered personal dimen-

sions might have influenced our result. We are aware that there might be other not

yet identified personal dimensions (Figure 8.1).

Personal Goals

Personal goals are already extensively discussed in Section 4.1.2. We divide three

wayfinding tasks (Allen 1999): known goal, new goal, and exploratory travel. Personal
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goals might be included by adjusting the number and the distribution of landmarks

along the route. The setting of our survey did not allow us to capture personal goals.

All of the participants had the same goal: to complete the survey along the predefined

route. Otherwise, we would need to change the survey settings to investigate the

influence of personal goals (Section 8.5).

Personal background

There are a number of attributes discussed concerning the personal background in

Section 4.1.2. We include questions on the background of the participants in our

survey. In this thesis these data are only used in order to get an overview of the

distribution of age, place of residence, and education of the participants. Nevertheless,

the personal background of our survey participants might have influenced the results.

Consider on the one hand participants living since their early childhood or birth in

Augsburg and on the other hand participants that were in town before simply for

shopping. Participants of both groups might state that they have been at the street

intersection before and that they are familiar with the area. Are there differences in

their behaviour of landmark selection?

There are hints that the age of the participants influences results. Participants

older than 50 mentioned reasons often related to visibility for the selection of objects

(’explicit mark is clearly visible’, ’big letters and visible colour’, or ’too small’).

Younger participants mentioned visibility associated reasons but they were primarily

connected to the walking direction (’small and out of sight’ or ’visible from walking

direction’). There might be other attributes of the personal background influencing

our survey results.

Individual Traits

Unlike the other dimensions, individual traits can only be determined through specially

designed psychological tests. For this reason, in this thesis individual traits are not

further discussed although, they may affect results of the survey as it is for example

known that emotions influence landmark selections (Section 2.3), which may be

influenced by individual traits.

Other Personal Interests

In this thesis positive personal interests are treated. However, individual interests

might be driven by the needs of a specific navigation task. Travellers might remember

objects because a situation or personal need makes them pay attention even if it
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does not belong to the traveller’s topic of interest. Personal interests are treated in

a positive way in this thesis. However, interest may have neutral or even negative

values. Landmarks part of negative topics are avoided during navigation, e.g. dirty

or dangerous places in a city. Our interest is closely linked to emotions (Section 2.3).

A place might have a high identifiability on a subjective basis because it is linked to

negative experiences (e.g. this is the place where my car broke down).

However, our point is that there seems to be no influence on the survey results

because of negative interest. Participants are asked to select one LM and one NAL

for a personalised route direction. The participants comments showed that they

associated the objects they did like and selected as a LM obviously with positive

emotions (’like the architecture looks friendly’, ’friends live here’, or ’I like the beauties

who are working here’), whereas objects they did not like were described with negative

wordings (’low quality’, ’boring house’, or ’ugly building’).

8.1.3 Other Dimensions

There might be other not yet identified dimensions besides landmark and personal di-

mensions (Figure 8.1). Two additional dimensions might be environmental dimensions

and context dimensions.

Environmental Dimensions

The determination of landmarks for a specific route is known as landmark integration

(Richter & Winter 2014). The focus is on environmental dimensions investigating

the environment of the landmark as well as the route and the relationship to objects

located nearby. This thesis investigates landmark identification models without such

an environmental dimension. Nonetheless, there are hints that the environment of the

objects as well as the whole route influenced landmark selections. Although we tried

to avoid the influence of turning and walking directions by not letting the people

know the itinerary route, participants always knew the approaching direction to the

intersection. This knowledge seems to be reflected in the object selections because

participants seem to choose landmarks simply because of their position. A number

of participants state that they like the object because it is ’visible from walking

direction’, ’face to face when you come out of that street’, or the ’center of view’.

A reason mentioned repeatedly for dislike was that the participants ’have to look

back’ to see the object. These are environmentally dependent dimensions already

extensively studied (Wang & Spelke 2000, Hollands et al. 2002, Röser 2015, Albrecht

& von Stülpnagel 2018) appearing to influence the object selections in our survey.
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Context Dimensions

There are several dimensions of context which might impact the results. One of

them are weather conditions. We collected the data between October and February

2019. As it was wintertime, there were days when the objects along the route were

covered with snow. Kattenbeck (2016) does not find severe differences between

landmark salience ratings when objects are covered with snow and ratings without

snow. Therefore, we assume that we may neglect the influence of snow. However, all

objects were recognisable under snow and, if at all, their surface areas were covered

only. We avoided the Christmas market because stands would hide the fountains and

the statue and undertake no surveys during that time. All surveys were completed

during day when there still was light.

8.2 Methods to Calculate Salience Values

We investigated and developed methods to calculate salience values for the landmark

dimensions as well as for the personal dimensions prior spatial knowledge and personal

interests and included them in our models. There might be other salience measures

leading to more accurate model results.

8.2.1 Landmark Dimensions

This thesis assigned landmark salience values in percent to an object as soon as an

attribute value was different or differed from the attribute values of the surrounding

objects. In case all attribute values of a landmark dimension are salient, the object

gets a 100% salience for this dimension. An object must fulfil specific conditions to be

considered as salient (Table 4.1). We based our salience measures on threshold values

from Raubal & Winter (2002) and Nuhn et al. (2012). They present - just as we do in

this thesis - their salience measures without the empirical evidence that they lead to

better results compared to other salience measures. Thus, the salience measures and

the conditions which must be fulfilled for the attributes to be considered salient are

based on many assumptions. These assumptions might be validated in the framework

of a future empirical study.

8.2.2 Personal Dimensions

In this thesis we use the framework which Montello (1998) named the dominant

framework (Siegel & White 1975) to measure prior spatial knowledge salience. Ishikawa

& Montello (2006) identify the idea that landmark knowledge is a prerequisite for
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route knowledge, which again is mandatory for survey knowledge as a problem of

this framework. As a solution they postulate different types of knowledge that are

acquired simultaneously. This framework is referred to as the continuous framework.

The survey participants did not select prior spatial knowledge saliences sPspK = 4

and sPspK = 5. In addition, the survey results show that on average only one survey

participant chose sPspK = 6 (Table 5.3). A continuous framework might be more

useful to capture these stages of prior spatial knowledge and to differentiate more

stages of no prior spatial knowledge.

Perhaps it would have sufficed to measure prior spatial knowledge salience only in

two-stages: prior spatial knowledge and no prior spatial knowledge at the respective

street intersections. This would be in line with Winter et al. (2005) who measured

familiarity on a simple binary scale (but did not evaluate it further). The PdFc for

example performs best when its flow contains only no prior spatial knowledge and

prior spatial knowledge at a particular decision point instead of dividing in landmark,

route, and survey knowledge. The PdTm and the PwSm provide hints and they

make a distinction between participants who have never been at a particular street

intersection before and the other participants. This might also be valid for the PwPm.

A weak point of the PdFc is that salience for personal interests is only measured

in two ways: interested and not interested. It does not play a role whether the

participant is interested in more than one topic of interest or just in one. Let us take

two persons: the one is interested in gastronomy and shopping while the other is

exclusively interested in gastronomy. Not withstanding their different interests, both

situations are treated in the same way.

The salience of an object is dependent on its assignment to topics of interest.

In order to be as objective as possible we used official databases. Furthermore, we

exclusively used the four top ranked interest: shopping, cultural, historical, and

gastronomy. However, we do not expect differences when considering all possible

topics of interest. At our decision points there were ≤ 4 objects for the topics of

interest not considered in this thesis (Table 5.1). The identification of effects would

not be very specific and informative and results might be interpreted with difficulty.

To investigate the models considering all the topics of interest, we would need an

investigation area with more objects that are part of all possible different topics of

interest.
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8.3 Models to Calculate Overall Salience

All four tested models in this work are reasonable from a theoretical perspective.

Other models or model settings might be useful as well and maybe would even deliver

better results.

8.3.1 Underlying conventional Models

We decided to use a CwSm, a CwPm, a CdFc, and a CdTm as conventional models.

During this thesis, it turned out that the conventional models are not as good in

landmark identification as expected. As regards the models based on theory, their

recalls for the training set are around 60% (Table 5.8), whereas their recalls for the

test set merely reach around 40% (Table 5.9). We can conclude that none of the

conventional models based on theory are good identifiers of landmarks.

As proposed by Raubal & Winter (2002) we used weights of one (wvis = wsem

= wstr = 1) for the CwSm. To be able to compare the results of the CwPm with

the results of the CwSm, we set its weights also to one. There are studies saying

that different landmark dimensions have a different impact on successful landmark

identification which outlines the importance of weighting each dimension relative to

its significance (Kattenbeck 2016, Sadeghian & Kantardzic 2008). In future work

it might be investigated whether the recalls of the CwSm and the CwPm can be

improved by considering weights other than one.

The CdFc shows the worst performance of the conventional models. It reaches

a recall of only 31.46% for the test set (Table 5.9). The poor CdFc result might be

explained by the fact that we use a basic flow (Figure 4.5). Maybe a modification

of the flow of the CdFc similar to the training of the PdFc, as described in Section

6.1.2, would lead to better results.

The CdTm is the only model that uses information from LMs as well as from

NALs for training. It obtains an accuracy of 73.61% with the training set identifying

LMs and NALs (Table 5.8, in brackets). The result differs, however, if we look only

at landmarks resulting in a recall of only 56.75% (Table 5.8). The recall of the

CdTm obtained with the test set is higher (Table 5.9) than the one obtained with

the training set. This means the CdTm is better able to identify the landmarks in

the test set than in the training set. The CdTm delivers the highest recall of all the

conventional models and its result differs significantly from the results of the other

models. Although the CdTm obtains the highest recall, there might be methods to

improve its result.
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8.3.2 Machine Learning Approaches

In addition to the models based on theory we investigated a machine learning model

for landmark identification. We generally noticed a difference in test recall between

this model (PdTm) and the models based on theory (PwSm, PwPm, PdFc). Maybe

other machine learning approaches are suitable. In particular, if it comes to decision

trees, one must admit the question: Why do we not use a model based on random

forest? (Ho 1995, Breiman 2001). A random forest is essentially an algorithm that

constructs a collection of decision trees. It randomly selects data entries and features

in order to build multiple trees and then averages the results. After the creation of a

number of trees, each tree chooses the class. The class that appears most often is

the output of the random forest algorithm. Especially in the cases of a large number

of data entries, the random forest achieves increased classification performance and

delivers accurate and precise results (Ali et al. 2012). Random forest algorithms

are opaque and act like a black box (Breiman 2001) and are not simple to interpret.

The simplicity of explanations was taken as a prerequisite for our work and is one

advantage of decision trees, encouraging us to apply them in this thesis.

8.3.3 Consideration of NALs

The machine learning models CdTm and PdTm are the only models that use NALs

for the training. Currently NALs are not used for the training of the PwSm, the

PwPm, and the PdFc. The machine learning model makes a clear classification of

objects in LMs and NALs. For the models inspired by theory, the process is somehow

different. They identify objects that are landmarks from a pool of objects at a decision

point. However, this does not necessarily mean that the other objects are NALs.

Nonetheless, these objects which are not identified as landmarks might be included

in the training as well. It would be worth to investigate whether the consideration of

the objects not identified as landmarks leads to a better performance of the models

based on theory.

In this thesis we included only landmarks in the test set and omitted NALs. This

ignores identified NALs and unidentified NALs (Section 3.2). The NALs are already

considered in the training of the machine learning models and we calculate their

accuracy (Formula 3.5). Identified and unidentified NALs could give us important

additional information on the accuracy of the models obtained with the test set.
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8.3.4 Weights for the Personalised Weighted Sum/Product Model

The PwSm and the PwPm have weights for the visual, the semantic, and the structural

salience (wvis, wsem, and wstr). These weights are composed of initial relative weights

and model parameters. We analysed the objects selected as landmarks by survey

participants with different personal interests and prior spatial knowledge ratings.

Then, we averaged their visual, semantic, and structural salience (svis, ssem, and

sstr, Table A.3) for each combination of ratings. We determined the initial relative

weights from these averages which were then multiplied with the model parameters

(Section 6.1.1).

Using the arithmetic average might have disadvantages because the average is

sensitive to extreme values. Imagine, for example, the visual saliences of 25, 25, 25,

25, and 100. The sum of the five saliences is 200 and their average is 40. This does

not necessarily tell us something about the traveller’s preferences of visual salience.

Therefore, the average might not be the best measure when there are extreme values

in the dataset. For such a case a measure based on the median of the data or based

on data distributions might be better alternatives. However, for this first approach

on modelling personalised landmarks we based ourselves on the arithmetic average to

calculate initial relative weights.

8.3.5 Global versus Local Rating

For the PwSm and the PwPm the sensitivity analysis shows that the sensitivity to

the landmark dimensions is not only dependent on the values of the investigated

object but also on the values of the other objects at the respective decision point. For

example: the PwSm identifies an object (O1) with a salience measure of 1.25 as the

most salient one for decision point one and an object (O2) with a salience measure of

2.5 as the most salient one for decision point two. Although their salience measures are

completely different, with the salience measure of O1 only half as high as the salience

measure of O2, they are both the most salient objects at their particular decision

point. This could be a hint that a local salience measure would be more appropriate

than the global one of the PwSm and the PwPm. Instead of taking absolute numbers,

maybe we should work with rankings, making it obvious, that relative values are not

to be taken as absolute ones. Such rankings might be useful measures for comparing

the objects at a particular decision point to identify landmarks.
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8.3.6 Overall Model

In this thesis we developed four personalised models for landmark identification.

All of these models identified landmarks for different travellers with different prior

spatial knowledge and different personal interests. But finally, the personalised

models are either not able to identify more landmarks selected by survey participants

than a conventional model or their performance is insufficient. We think it would

be definitively worth to investigate whether an individual model for each survey

participant identifies more landmark selections than one overall model. Survey

participants might be influenced by individual intangible parameters resulting in

individual landmark selections. This makes it difficult or even impossible to find one

optimal individual personalised landmark identification model.

8.4 Dataset

Banko & Brill (2001) made a comparison among four different machine learning

algorithms. They increased the training set size to millions and investigated the

trained models. They concluded that ’the performance of learners can benefit

significantly from much larger training sets’ (Banko & Brill 2001, p. 32). Compared

to their dataset, our dataset including 503 landmarks and the same number of NALs

is relatively small. We discuss points which might be negatively influenced due to

the small size of the dataset. Another point of discussion is that our dataset might

contain fuzzy and uncertain data influencing our model results.

8.4.1 Dataset size

A point of discussion is the small size of the dataset. This might have an impact

on our results and on their analyses. We discuss possible impacts in the following

sections.

Impact on the Results of the Machine Learning Approach

The relatively small dataset size might have an influence on the results of the machine

learning approach. There are studies confirming that the average accuracy of decision

tree models that are built with CART increases with a bigger sample size (Sug 2009).

However, increasing the training size does not necessarily lead to a better accuracy or

recall of landmark identification. Training the decision tree models using additional

training objects may lead to a high accuracy on the training set but to a less efficient

one on the test set. This happens because the decision tree model might overfit
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the training set (Dietterich 1995) and to an extent that it is difficult for the tree to

identify new unseen data.

We split the collected dataset of 503 LMs and the same number of NALs into a

training and a test set. This leads to an even smaller amount of data available for

the training of the model. However, in order to use the dataset as best as possible we

applied 10-fold cross-validation. We divided the dataset into 10 folds each having

10% of the full set. We created the machine learning model on 9 training folds and

calculated the model’s recall on the remaining validation fold. We repeated this

process 10 times using each fold once as a validation fold. This gave us 10 accuracies

of the model. Putting all the results together, we used 100% of the training set

to validate the model. This means for our training set for the P/CdTm, including

252 LMs and 252 NALs, that we end up with an average accuracy of our machine

learning models based on 504 objects (even if objects are not used simultaneously for

validating). However, in this thesis we used the collected dataset as best as possible.

We propose that a next step would be to increase the size of the dataset and evaluate

the outcomes of the models.

Impact on the Determination of Weights for the PwSm and the PwPm

The PwSm and the PwPm have weights for the visual, the semantic, and the structural

salience (wvis, wsem, and wstr). These weights are composed of initial relative weights

and model parameters. We analysed the objects selected as landmarks by survey

participants with different personal interests and prior spatial knowledge ratings. We

determined the average of visual, semantic, and structural salience (svis, ssem, and

sstr, Table A.3) for each combination of ratings. We determined the initial relative

weights from these averages which were then multiplied with the model parameters

(Section 6.1.1). Column No in Table A.3 shows that some combinations of prior

spatial knowledge and personal interests ratings appear only once in the training set.

We could have considered exclusively combinations of the ratings with approximately

the same number of selections for the training and the determination of weights for

both models. However, this would consequently lead to an even smaller size of the

training set and also of the test set. Thus, it would not be possible to identify many

landmarks of the test set due to the missing initial weights of some combinations of

prior spatial knowledge and personal interests ratings respectively. One possibility

to approach the problem of missing combinations of prior spatial knowledge and

personal interests ratings could be to selectively collect the data from people with

exactly these specific personal interests and that prior spatial knowledge. The main
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challenge of the approach, however, is to find such people. Thus, methods will have

to be identified to overcome the problem of missing combinations of prior spatial

knowledge and personal interests ratings.

Impact on the Sensitivity Analyses

For most cases we used examples from our test set to investigate the models’ sensitivity

to landmark and personal dimensions. In cases where no suitable data were available,

we used appropriate examples. That concerns missing combinations of prior spatial

knowledge and personal interests ratings forcing us to use other methods to be able

to demonstrate the sensitivity of the models to the dimensions. As already stated

above selectively collected data from people with this specific personal interests and

prior spatial knowledge might be a solution for this problem.

8.4.2 Fuzzy and Uncertain Data

The analysis of complex relationships with mathematical models with a number of

different dimensions is sometimes very vague and uncertain in many ways. Many fea-

tures are interdependent features and cannot be evaluated by conventional measuring

methods (Chen et al. 2011). In this thesis we do not consider fuzzy and uncertain

data but are aware that they might influence our results. Gerla (2001) discusses

the example of a red rose in the light of fuzzy logic. We can directly transfer this

discussion to our topic and the claim that α is a red object. The colour of the object

might not look exactly red. Then α is neither fully true nor fully false meaning it

is neither zero nor one but for example 0.8 (Gerla 2001). This discussion might be

extended to other attributes.

The personal dimensions are also affected by fuzziness. Due to perceptual dif-

ferences between humans the information on prior spatial knowledge and personal

interests of participants of the survey are affected by uncertainty. There are different

facets of uncertainty involved (Gasós & Saffiotti 1999). These facets include mainly

bad observations due to wrong self-assessment while filling out the questionnaire and

the vagueness introduced by the use of our deterministic rating scales.

8.5 Survey Design

All data of personal dimensions were collected by a survey. We led people along an

inner city route and asked them questions. One problem of the survey seems to be

the influence of the walking direction. Survey participants did not know the route
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before, thereby the influence of the direction in which the route leads was excluded.

However, the approach to the street intersection was always known. The reasons

given by participants indicate that exactly that had an influence on their selections.

The reasons were: ’directly visible from tram stops’, ’object is not well visible’, ’you

have to look back’.

The group of objects selected for our survey might limit the participant’s object

selections. Although participants may like all the objects at the decision point, they

have nevertheless to select an object they do not like as a NAL. There are hints in

their comments that they had sometimes difficulties to decide. Their comments were:

’There’s nothing. Can’t relate.’, ’all other objects are pretty nice.’, or ’it’s not that I

dislike it completely’.

Another issue might be that the survey provides identical objects for both LMs

and NALs. This results in objects that are selected as LM as well as for NALs. This

again results in identical values for svis, ssem, and sstr appearing for LMs as well as for

NALs in the training set. As a consequence an object with a particular combination

of svis, ssem, and sstr classified in the training set as a NAL might appear in the test

set as a LM. This might have an effect on the results of our models because it might

result in a number of unidentified landmarks and, thus, keep the recall low.

It turned out that survey participants did not chose the sPspK = 4 and sPspK = 5.

The results show that on average only one survey participant chose sPspK = 6 (Table

5.3). In addition, the results of the sensitivity analyses suggest that these ratings

do not influence the creation of the models. As a consequence we might neglect the

ratings sPspK = 4 to sPspK = 6 for prior spatial knowledge and focus exclusively on

sPspK = 7 for no prior spatial knowledge at the street intersection. The other ratings

concerning prior spatial knowledge at the street intersection (sPspK = 1 to sPspK =

3) may be maintained.
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Chapter 9

Conclusions and Future Work

This chapter first summarises our research (Section 9.1). We present the results of this

thesis and draw conclusions in Section 9.2. Based on our findings, we finally present

our ideas for future work (Section 9.3). We end this thesis with some concluding

remarks (Section 9.4).

9.1 Summary

In this work we investigated landmark identification models. We investigated person-

alised models and conventional models without personalisation. We hypothesised that

a personalised model that incorporates personal interests and prior spatial knowledge

identifies significantly more landmarks selected by humans than a conventional, non-

personalised model. For testing the hypothesis we developed four personalised models

for landmark identification and compared their outcomes to landmarks obtained from

a survey as well as to the outcomes of conventional models.

We started this thesis by giving an overview on related work that deals with

landmarks in human wayfinding, the modelling of landmarks for directions, and

approaches used in the identification of personalised landmarks. This related research

showed that a landmark is something individual for each traveller. Furthermore, the

thesis showed that up-to-date there is only limited work on personalised landmark

identification.

We continued our research by investigating mathematical models and analysis

methods in general. We introduced three models based on theory (the wSm, the

wPm, and a dFc) and one machine learning model (a dTm). We investigated the

traditional machine learning approach for model training and testing and identified a

method to ’train’ the models based on theory. Furthermore, we identified methods
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for sensitivity analysis and the statistical evaluation of the results of the models.

We identified both, landmark as well as personal dimensions, as important factors

to be considered in personalised landmark identification models. We built on existing

landmark dimensions (visual, semantic, and structural) and added an additional

landmark interest dimension to consider the topic of interest. We investigated

prior spatial knowledge, personal interests, personal goals, personal background, and

individual traits and identified attributes and attribute values for them. This thesis is a

first approach towards the identification of personalised landmarks. A full elaboration

of all five dimensions is beyond the scope of this work. Therefore, we focused on

prior spatial knowledge and personal interests.

We investigated methods to calculate salience of the dimensions. We adapted

existing salience measures from Raubal & Winter (2002) and Nuhn et al. (2012) for

the landmark dimensions and introduced a new salience measure for the additional

landmark interest dimension. In addition, we investigated new methods to calculate

salience of the personal dimensions and developed methods to calculate salience of

personal interests and prior spatial knowledge.

We investigated three models based on theory: a weighted sum model (wSm), a

weighted product model (wPm), and a decision flow chart (dFc). In addition, we

investigated a decision tree model (dTm) which is an approach in the field of machine

learning. The models differ both in number of detected LMs and classification of

NALs. wSm and wPm determine overall landmark salience measures. The result of

the dFc is a number of landmarks. dTm provides a classification in LMs and NALs.

wSm, wPm, and dFc do not make a clear statement on NALs. However, for our

purpose a statement on the most personalised landmark was sufficient. We developed

a conventional weighted sum model (CwSm), a conventional weighted product model

(CwPm), a conventional decision flow chart (CdFc), and a conventional decision

tree model (CdTm). In addition, we developed a personalised weighted sum model

(PwSm), a personalised weighted product model (PwPm), a personalised decision

flow chart (PdFc), and a personalised decision tree model (PdTm).

The next step was the implementation of the landmark identification models. We

implemented all the models and methods using ESRI’s ArcGIS 10.5.1 together with

Python toolboxes using Python 2.7.13. In addition, we used several tools for data

mining and data analysis.

A large part of this thesis was spent on data collection for landmark and personal

dimensions along an innercity route in Augsburg. Landmark dimensions were ex-

tracted from official databases or acquired via a field survey focusing on the objects
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at the decision points of the route. In addition, landmark dimensions were collected

for objects within the range of 100 meters as a basis for the salience calculations. The

personal dimensions were collected with a survey using ESRIs Survey123. The survey

contained questions about the personal background, the personal interests, and the

prior spatial knowledge at the decision points of the route. Furthermore, we asked

survey participants to select one object they like (landmark (LM)) and one object

they do not like (not a landmark (NAL)) from a group of objects at each decision

point for a personalised route direction. In total 51 participants completed the survey

and gave information on their personal dimensions. The resulting dataset was used

as input for our models.

The collected dataset was divided into a training and a test set. We established

a 50:50 training testing set ratio as most suitable and we divided our dataset into

two sets that do not overlap spatially. We applied the traditional machine learning

approach for the training of the machine learning model. Inspired by this traditional

approach, we ’trained’ the models based on theory and identified weights of both,

the PwSm and the PwSm, as well as an optimal flow of the PdFc.

After the models were fully created we used them to identify landmarks of our

test set. We compared their identified landmarks with landmarks selected by the

survey participants. To find the personalised landmark identification model which

performs best, we compared their results with a subsequent McNemar’s test.

We performed a sensitivity analysis to identify dimensions - landmark as well as

personal dimensions - influencing the output of the personalised models. This local

sensitivity analysis involving variation of only one dimension at a time analysed the

effects on the models outputs.

For testing the hypothesis we focused on the comparison of the results of the

personalised landmark identification models with the results of the conventional

landmark identification models. We performed a McNemar’s test to find out whether

there are significant differences between the personalised landmark identification

models and the conventional models.

9.2 Results and Conclusions

We investigated the results of the personalised landmark identification models and

compared them to the results of the conventional models. Furthermore, we performed

a sensitivity analysis. All models react sensitively to the landmark and the personal

dimensions. However, PwSm, PwPm, and PdTm do not identify more landmarks

than their corresponding conventional model. The PwPm even identifies significantly
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less landmarks than the CwPm. It turns out that the PdFc identifies statistically

more landmarks than the CdFc. Nevertheless, in absolute terms the model shows the

second-worst performance (compare Table 6.9). The recall of the CdFc is lower than

the recalls of the other conventional models (compare Table 5.9). The recall of the

CdFc is not even half as high as the one of the CdTm. The reason for the poor result

of the CdFc might be the basic flow (Figure 4.5) that we built as a CdFc is not existing.

For these reasons we conclude that the comparison of the results of PdFc and CdFc

are not conclusive enough to confirm the hypothesis. We conclude that according to

our results a personalised landmark identification model that incorporates personal

interests and prior spatial knowledge does not identify significantly more landmarks

selected by humans than a conventional, non-personalised model. Thus, we reject

the hypothesis of this work. Our result confirms the findings of Gramann et al.

(2017), Wunderlich & Gramann (2018) who also find that the additional effort of

personalisation does not lead to improved results (Section 2.3). This shows that

the data collection effort for obtaining information on prior spatial knowledge and

personal interests for a pedestrian wayfinding application is unlikely to be justified.

9.3 Future Work

The investigation of possible reasons for rejecting the hypothesis in Section 9.2

revealed a number of open research questions. In this section we address the ones we

think that they are worth further investigation.

How does the integration of further personal dimensions have an impact

on our results? We want to introduce the personal dimensions excluded in this

model in order to perhaps get a better landmark identification. Consequently, we

need to research on how to model the other personal dimensions and how to calculate

salience values. Especially the data of the personal background collected during this

survey are worth to be investigated. These data might be analysed further to learn

more about the relationship between personal background and the object selections

of the individual participant. A further aspect is how to consider personal goals.

We need to identify survey settings in order to get participants’ wayfinding tasks

with different wayfinding goals in mind. To be able to include individual traits in a

personalised landmark identification model, we need to investigate them in depth to

be able to identify possible modelling approaches. Psychological experts might be

valuable assistants to provide knowledge and support in this area.
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Does the inclusion of an environmental dimension in the models lead to

better results? In our survey the environment of the objects as well as the route

seem to influence the participants’ object selections. There is already a lot of research

regarding landmark integration (Section 2.2.2). We submit attributes and salience

values for an environmental dimension in Nuhn & Timpf (2017a, 2018) for the analysis

in a multidimensional model consisting of landmark, personal, and environmental

dimensions. Attributes include advance visibility of an object (it always can be clearly

seen from the route in all conditions (Burnett et al. 2001)), the traveller’s orientation

and position with respect to the object (Caduff & Timpf 2005a), and the uniqueness

of an object, which cannot be mistaken for other objects and which is unique in its

characteristics (Elias & Sester 2006). We make attempts to model these attributes in

Nuhn & Timpf (2017a, 2018). However, such a multidimensional model still needs to

be tested with real data, but research on the field should definitely be investigated

further.

Does the application of other salience measures for the landmark dimen-

sions have any affect on the results? In this thesis an object must fulfil specific

conditions to be considered as salient. Salience is based on threshold values from

Raubal & Winter (2002) and Nuhn et al. (2012). As soon as an object fulfils a salience

condition because of a particular attribute value, it receives a percentage of a salience

value for that particular attribute. Neither Raubal & Winter (2002) nor Nuhn et al.

(2012), nor we provide an empirical evidence for any salience measures. Therefore,

we do not know whether they are more suitable compared to other salience measures.

However, we assume that the use of other salience measures might lead to different

model results. Therefore, we recommend to conduct an empirical study applying

different salience measures to identify those that yield the best model recall.

Does the application of the continuous instead of the dominant framework

for prior spatial knowledge has any affect on the results? In this thesis we

propose salience values for prior spatial knowledge as well as for personal interests.

For prior spatial knowledge we base ourselves on what Montello (1998) named the

’dominant’ framework (Siegel & White 1975). However, Montello (1998) proposes to

use a continuous framework with different types of knowledge acquired simultaneously.

The transfer of our salience values into a continuous framework is worthwhile, but

needs a previous comprehensive analysis of spatial knowledge types.
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Is it worth considering more topics of interest? In our model we consider

the personal interests: shopping, cultural, historical and gastronomy. How do the

results of our models differ as soon as we include the other topics of interest (Table

5.1)? To do so, we need another survey environment with more objects belonging to

these topics of interest. In addition, we need guidelines for the classification of the

objects. Experiments should be carried out whether e.g. people that are interested

in shopping really prefer - as we assumed it especially for the PdFc - the shopping

related things. However, not all persons want to go to the city for shopping but like

the alternative to visit the internet. Such interest could be more differentiated and

humans should be interviewed to find out what interest really means and how its

consideration can contribute to a successful navigation.

Is it possible to improve the performance of conventional models? In this

work we take data that are easy to obtain for landmarks dimensions. Unfortunately,

the famous model of Raubal & Winter (2002) still needs to be tested in real life to have

a basis of comparison for our results. Nothegger et al. (2004) provide a first approach

but did not fully implement the whole model. They focus in their analysis only on one

class of features in urban environments (façades) and investigate exclusively visual

and semantic salience. As far as we know the overall model from Raubal & Winter

(2002) uses slightly different attributes from ours. The results of the conventional

models could be improved by adapting our visual, semantic, and structural attributes.

Furthermore, an additional effort might be spent on the collection and prepossessing

of data as basis for the calculation of the salience values of objects. In addition,

there are studies outlining the importance weighting the dimensions relative to their

significance in the conventional models (Kattenbeck 2016, Sadeghian & Kantardzic

2008, Kattenbeck et al. 2018). Further tests should be carried out to examine whether

the introduction of weights leads to better results of the CwSm and the CwPm.

At the moment the CdFc consists of three processes based on the visual, the

semantic, and the structural salience of an object. We could for example include

processes based on attributes of the dimensions to find out whether this improves the

recall of the CdFc.

One possible method to improve the performance of the machine learning model

might be feature selection (Stein et al. 2005, Sugumaran et al. 2007, Rao et al. 2019).

During feature selection a subset of relevant dimensions for the use in constructing

the model is selected. Generally not all dimensions are relevant (Stein et al. 2005)

and some of them might have a higher impact than others (compare results of the

sensitivity analyses, Section 7.1). However, the selection of good dimensions requires
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detailed domain knowledge (Sugumaran et al. 2007). It might be worth to investigate

whether the selection of only a few dimensions to train our machine learning model

might lead to a better recall then.

Does the inclusion of NALs in all the models lead to better results? Cur-

rently, the machine learning models CdTm and PdTm are the only models that use

NALs for the training. The other models based on theory neglect this information.

We think it would be definitively worth to investigate whether the inclusion of NALs

in the training set helps us to improve the models. Objects which are identified

as NALs with the models could be compared with the NALs selected by survey

participants. In addition to the recall of the model, we could then calculate its

accuracy (Formula 3.5) giving us additional information on the model’s performance.

Additional performance measures based on NALs such as the precision would be

possible (Buckland & Gey 1994). The precision is the ratio of the Identified LMs

and the sum of Identified LMs and Unidentified NALs (Table 3.2). It shows how

much the model correctly identifies a landmark out of all the objects which the model

identifies as a landmark (Buckland & Gey 1994). These measures might help us to

improve the models both machine learning and models based on theory.

Is one individual model for each traveller more suitable than an overall

model? In this thesis we chose to build one overall model incorporating the survey

results from all participants. Another approach would be to build one individual

model for each participant or for groups of participants with similar combinations

of prior spatial knowledge and personal interests ratings. Our approach is more

generalisable and avoids overfitting to one participant. However, landmark selections

might vary considerably between humans, therefore, one model for each traveller

might result in a higher recall. In future work one model might be created for each

participant and the performance of these individual models might be compared. It

might be assessed how the individual models may fit for a traveller or a group of

travellers and their performance might be compared to our overall model.

Is it more suitable to apply a larger dataset? We identified the small size of

the collected dataset as a weak point of this thesis. It might have a strong impact

on the results of the machine learning approach, on the weights of the PwSm and

the PwPm, and on the sensitivity analyses. In addition, there might be various

other impacts on the model results. Increasing the sample size would be worth a

further investigation. There are several methods to increase it: collecting additional
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data along our route, identifying other suitable datasets, or artificially increasing

the number of training samples. In his experiment Kattenbeck (2016) collected

demographic data such as the background of a traveller and the knowledge about a

place (Section 2.3). Kattenbeck et al. (2018) transferred his model from Regensburg

to Augsburg. Results showed that the relationships between the subdimensions of

salience do not differ significantly in the other city. Therefore, we may assume that the

transfer of collected data from Regensburg to Augsburg is possible. For this reason,

it would be worth to investigate whether Kattenbeck’s (2016) dataset of Regensburg

as well as the dataset of Kattenbeck et al. (2018) from Augsburg might be used to

extend our collected dataset. The knowledge about a place might be mapped to our

prior spatial knowledge and maybe this leads to additional combinations of prior

spatial knowledge and personal interests.

Is it more suitable to apply a fuzzy method to model the landmark and

personal dimensions instead of a deterministic one? The fuzzy set theory

is introduced by Zadeh (1965). This idea is used in many analysis models to solve

fuzzy problems (Mardani et al. 2015). There are approaches interpreting decision

trees by using fuzzy logic (Bhalchandra et al. 2015, Mendonça et al. 2007, Cintra et al.

2013). There exists research on flow charts and fuzzy sets (Tanaka & Mizumoto 1975,

Ostasiewicz 1982) associating decisions with a fuzzy relation and a fuzzy assignment.

Input, outputs, and decisions might represent fuzzy sets. Gasós & Saffiotti (1999)

discuss techniques to represent and use uncertain spatial knowledge in the field of

autonomous robotics which might be worth to be evaluated and transferred to our

use case.

What kind of results deliver other survey settings? The resulting data of our

survey might be a useful resource for further studies on both modelling personalised

landmarks as well as understanding preferences of travellers. However, there are a

number of possible ways to change the survey settings and to investigate the results.

What are the results when we first identify the landmarks with our models and then

present it to survey participants? They could rate how they like it, for example

on some rating scale. From the results of such a survey performance measures

for the models might be derived. What happens when survey participants choose

intersections part of different stages of their spatial knowledge and hosting objects

interesting for them? Participants could be told to select for each stage of prior

spatial knowledge a street intersection. In addition, participants might be directly

acquired for the survey according to their level of interest in a topic. Additionally, a
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higher number of survey participants may supply more data. Such an approach might

be especially useful to overcome the problem of the missing combinations of prior

spatial knowledge and personal interests ratings. What objects do participants select

when they are completely free? Participants may choose LMs and NALs completely

free without doing preselections. This might overcome the problem of having to select

an object although there is none that they either like or dislike.

9.4 Final Remarks

This thesis is a first approach on modelling personalised landmarks. In Chapter

1 we state that the highest cost for the provision of personalised landmarks is the

personal data collection. Furthermore, we outlined that we need to be sure that the

data collection effort is justified in relation to the advantages that can be achieved

through the provision of personalised landmarks. We found out that prior spatial

knowledge and personal interests play a role for the identification of personalised

landmarks and that the personalised models react sensitively to their input values.

We showed that a personalised landmark identification model that incorporates

prior spatial knowledge and personal interests does not identify more landmarks

selected by survey participants than a conventional, non-personalised model. The

most obvious interpretation for this finding is that these personal dimensions are

not important for landmark identification. We discussed a number of other reasons

for this result and revealed open research questions. However, we currently have to

conclude that the data collection effort for obtaining information on prior spatial

knowledge and personal interests for an applied system might not be justifiable. In

case future research confirms our findings it is most likely sufficient to focus on

existing conventional, non-personalised models and to concentrate on their use in

applied pedestrian wayfinding applications.
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Appendix A

Appendix

A.1 Tables

Table A.1: Parameter values for initial coarse grid-search CdTm.

Parameter Value Best Value

Criterion gini, entropy gini

Splitter best, random best

min_samples_split [5, 10, ..., 50] 5

min_samples_leaf [5, 10, ..., 50] 5

max_depth [5, 10, ..., 50] 5

Average Accuracy [%] 76.19

Table A.2: Parameter values for finer grid-search CdTm.

Parameter Value Best Value

Criterion gini, entropy gini

Splitter Best, Random Random

min_samples_split [2, 3, ..., 10] 2

min_samples_leaf [1, 2, ..., 10] 1

max_depth [1, 2, ..., 10] 4

Average Accuracy [%] 76.19
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Table A.3: svis, ssem, and sstr for PspK and pInt ratings.

sPspK spInt(Shop)spInt(Cult) spInt(Hist) spInt(Gast) svis ssem sstr

1 1 3 4 4 50.0 87.5 50.0 2

1 2 3 3 3 46.89 65.63 68.75 8

1 2 3 3 4 45.0 70.0 70.0 5

1 2 4 4 2 50.0 70.0 60.0 5

1 3 2 3 4 50.0 65.0 60.0 5

1 3 3 2 4 43.75 75.0 62.5 4

1 3 4 3 4 47.22 75.0 72.22 9

1 3 5 5 4 50.0 75.0 100.0 1

1 4 2 3 4 50.0 75.0 80.0 5

1 4 3 2 4 45.0 70.0 80.0 5

1 4 3 3 4 37.5 58.33 58.33 6

1 4 3 3 5 35.0 60.0 60.0 5

1 4 4 2 3 45.0 70.0 70.0 5

1 4 4 3 4 62.5 87.5 75.0 2

1 4 4 4 4 41.67 66.67 83.33 6

1 4 4 4 5 50.0 70.0 60.0 5

1 5 2 4 5 45.0 65.0 60.0 5

1 5 3 1 4 45.0 65.0 60.0 5

1 5 3 3 3 45.0 70.0 90.0 5

1 5 3 3 4 45.0 65.0 70.0 5

1 5 3 4 5 40.0 60.0 70.0 5

1 5 4 2 3 45.0 75.0 90.0 5

1 5 5 4 5 43.75 68.75 75.0 4

2 1 3 4 4 33.33 66.67 83.33 3

2 2 3 3 2 50.0 87.5 75.0 2

2 2 3 3 3 50.0 75.0 50.0 2

2 2 4 4 3 45.0 70.0 80.0 5

2 3 2 3 3 45.0 70.0 80.0 5

2 3 2 4 4 50.0 75.0 70.0 5

2 3 4 3 3 45.0 75.0 80.0 5

2 3 4 3 4 50.0 100.0 50.0 1

2 3 5 5 4 43.75 75.0 75.0 4

2 4 3 3 4 50.0 75.0 87.5 4

2 4 3 3 5 50.0 70.0 70.0 10
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Table A.3: Continued svis, ssem, and sstr for PspK and pInt ratings.

2 4 4 3 3 75.0 75.0 100.0 1

2 4 4 3 4 41.67 66.67 66.67 3

2 4 4 4 4 50.0 75.0 87.5 8

2 5 4 2 3 62.5 62.5 75.0 2

2 5 4 5 5 50.0 75.0 66.67 3

2 5 5 4 5 50.0 50.0 50.0 1

3 1 3 4 3 50.0 75.0 100.0 1

3 1 4 4 4 50.0 75.0 70.0 5

3 2 3 3 2 50.0 62.5 75.0 2

3 2 3 3 4 50.0 100.0 50.0 1

3 2 4 4 4 50.0 75.0 100.0 1

3 3 2 2 3 50.0 75.0 50.0 1

3 3 3 3 3 45.0 70.0 70.0 5

3 4 3 4 4 50.0 66.67 83.33 3

3 4 4 3 3 37.5 75.0 87.5 4

3 4 4 4 4 45.0 65.0 60.0 5

3 4 5 3 4 45.0 70.0 70.0 5

3 4 5 5 4 50.0 75.0 50.0 1

3 5 4 2 3 41.67 75.0 50.0 3

3 5 4 5 5 50.0 75.0 100.0 1

6 2 3 3 4 50.0 50.0 50.0 1

6 3 2 2 3 50.0 75.0 100.0 3

6 4 5 5 4 25.0 50.0 50.0 1

7 1 3 4 3 43.75 68.75 62.5 4

7 2 3 3 2 50.0 75.0 50.0 1

7 2 3 3 4 41.67 58.33 66.67 3

7 2 4 4 4 43.75 75.0 62.5 4

7 3 2 2 3 50.0 100.0 50.0 1

7 3 3 4 3 40.0 60.0 70.0 5

7 3 5 3 3 45.0 65.0 70.0 5

7 4 3 4 4 37.5 75.0 50.0 2

7 4 4 3 4 50.0 75.0 70.0 5

7 4 4 4 4 50.0 100.0 50.0 1

7 4 5 5 4 50.0 62.5 75.0 2

195



APPENDIX A. APPENDIX

Table A.4: Average recalls of different flow charts with personal interests first.

sPspK(Intersection) Average Recall [%]

>3 ≤ 3

see Figure A.12 see Figure A.12 55.12

skip max(sstr) siLM = spInt → skip

max(svis) and max(sstr)

59.12

Table A.5: Results of sensitivity analysis of PwSm to ssem.

ID ssem SI

0 25 50 75 100

1 1.78 2.17 2.56 2.94 3.33 0.47

2 2.56 2.56 2.56 2.56 2.56 0

3 2.56 2.56 2.56 2.56 2.56 0

Table A.6: Results of sensitivity analysis of PwSm to sstr.

ID sstr SI

0 50 100

1 1.78 2.56 3.33 0.47

2 2.56 2.56 2.56 0

3 2.56 2.56 2.56 0

Table A.7: Example for sensitivity analysis of the PwSm to the landmark dimensions.

ID svis ssem sstr siLM(shop) siLM(cult) siLM(hist) siLM(gast)

1 0...100 100 100 1 1 1 1

2 100 100 100 1 1 1 1

3 100 100 100 1 1 1 1
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Table A.8: Results of sensitivity analysis of PwSm to svis with svis = ssem = sstr =

100.

ID svis SI

0 25 50 75 100

1 3.11 3.61 4.11 4.61 5.11 0.39

2 5.11 5.11 5.11 5.11 5.11 0

3 5.11 5.11 5.11 5.11 5.11 0

avgSI 0.13

Table A.9: Results of sensitivity analysis of PwPm to ssem.

svis ID

1 2 3

0 0 42412775.26 42412775.26

25 4908614.51 42412775.26 42412775.26

50 42412775.26 42412775.26 42412775.26

75 149739425.95 42412775.26 42412775.26

100 366466647.78 42412775.26 42412775.26

SI 1 0 0

Table A.10: Results of sensitivity analysis of PwPm to sstr.

svis ID

1 2 3

0 0 42412775.26 42412775.26

50 42412775.26 42412775.26 42412775.26

100 124671037.42 42412775.26 42412775.26

SI 1 0 0
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A.2 Figures

Figure A.1: Objects at decision point 0.

Figure A.2: Objects at decision point 1.

Figure A.3: Objects at decision point 2.
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Figure A.4: Objects at decision point 3.

Figure A.5: Objects at decision point 4.
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Figure A.6: Objects at decision point 5.

Figure A.7: Objects at decision point 6.

Figure A.8: Objects at decision point 7.
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Figure A.9: Objects at decision point 8.

Figure A.10: Objects at decision point 9.

Figure A.11: Conventional Decision Tree Model.
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