
Incorporating Contextual Knowledge
Into Human-Robot Collaborative Task

Execution

Ahmed Faisal Abdelrahman

Publisher: Dean Prof. Dr. Wolfgang Heiden

Hochschule Bonn-Rhein-Sieg Ű University of Applied Sciences,
Department of Computer Science

Sankt Augustin, Germany

March 2020

Technical Report 01-2020

ISSN 1869-5272 ISBN 978-3-96043-080-3

This work was supervised by
Prof. Dr. Paul G. Plöger
M. Sc. Alex Mitrevski

Copyright c÷ 2020, by the author(s). All rights reserved. Permission to make
digital or hard copies of all or part of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for proĄt or
commercial advantage and that copies bear this notice and the full citation on the
Ąrst page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior speciĄc permission.

Das Urheberrecht des Autors bzw. der Autoren ist unveräußerlich. Das
Werk einschließlich aller seiner Teile ist urheberrechtlich geschützt. Das Werk kann
innerhalb der engen Grenzen des Urheberrechtsgesetzes (UrhG), German copyright

law, genutzt werden. Jede weitergehende Nutzung regelt obiger englischsprachiger
Copyright-Vermerk. Die Nutzung des Werkes außerhalb des UrhG und des obigen
Copyright-Vermerks ist unzulässig und strafbar.

Digital Object Identifier https://doi.org/10.18418/978-3-96043-080-3

b

https://doi.org/10.18418/978-3-96043-080-3

Abstract

An essential measure of autonomy in service robots designed to assist humans is adaptivity to the

various contexts of human-oriented tasks. These robots may have to frequently execute the same action,

but subject to subtle variations in task parameters that determine optimal behaviour. Such actions are

traditionally executed by robots using pre-determined, generic motions, but a better approach could utilize

robot arm maneuverability to learn and execute different trajectories that work best in each context. In

this project, we explore a robot skill acquisition procedure that allows incorporating contextual knowledge,

adjusting executions according to context, and improvement through experience, as a step towards more

adaptive service robots.

We propose an apprenticeship learning approach to achieving context-aware action generalisation

on the task of robot-to-human object hand-over. The procedure combines learning from demonstration,

with which a robot learns to imitate a demonstrator’s execution of the task, and a reinforcement learning

strategy, which enables subsequent experiential learning of contextualized policies, guided by information

about context that is integrated into the learning process. By extending the initial, static hand-over

policy to a contextually adaptive one, the robot derives and executes variants of the demonstrated action

that most appropriately suit the current context. We use dynamic movement primitives (DMPs) as

compact motion representations, and a model-based Contextual Relative Entropy Policy Search (C-REPS)

algorithm for learning policies that can specify hand-over position, trajectory shape, and execution speed,

conditioned on context variables. Policies are learned using simulated task executions, before transferring

them to the robot and evaluating emergent behaviours.

We demonstrate the algorithm’s ability to learn context-dependent hand-over positions, and new

trajectories, guided by suitable reward functions, and show that the current DMP implementation limits

learning context-dependent execution speeds. We additionally conduct a user study involving participants

assuming different postures and receiving an object from the robot, which executes hand-overs by either

exclusively imitating a demonstrated motion, or selecting hand-over positions based on learned contextual

policies and adapting its motion accordingly. The results confirm the hypothesized improvements in the

robot’s perceived behaviour when it is context-aware and adaptive, and provide useful insights that can

inform future developments.

iv

Acknowledgements

I would like to begin by thanking Prof. Paul G. Plöger, to whom I am grateful for sparking my

interest in several topics that were essential to my research during the year leading up to the completion

of this report, and for supporting my pursuit of this project.

I would like to extend special thanks to my second supervisor Alex Mitrevski, for providing

supportive guidance throughout the project and being a constant source of valuable advice, as well as

introducing me to various intriguing facets of this research, without which this work would not have

successfully materialized.

I would also like to express my deepest gratitude to my family, and to my parents in particular,

whose immense support and endless encouragement never cease to be my primary source of motivation.

Finally, I would like to acknowledge the help provided by the participants of our user study, who

had graciously volunteered to contribute to one of the main findings of this project.

————————

v

vi

Contents

List of Symbols 1

List of Abbreviations 3

1 Introduction 5

1.1 A Representative Use Case: Robot-to-Human Object Hand-Over 6

1.2 The Importance of Adaptivity . 8

1.3 The Learning/Modeling Problem . 9

1.4 Problem Statement . 10

1.5 Proposed Approach . 11

2 State of the Art 15

2.1 Robot Motor Skill Learning and Generalization . 15

2.1.1 Context in Robotics . 17

2.1.2 Control-based Approaches . 20

2.1.3 Learning from Demonstration (LfD) . 23

2.1.4 Improvement Through Reinforcement Learning (RL) 29

2.1.4.1 Hierarchical Policy Search . 35

2.1.4.2 Contextual Policy Search . 37

2.2 Human-Robot Object Hand-overs . 41

3 Preliminaries 47

3.1 Reinforcement Learning . 47

3.1.0.1 Episodic and Infinite-Horizon Tasks . 48

3.1.0.2 Policies . 49

3.1.0.3 Value Functions . 50

3.1.0.4 Exploration and Exploitation . 51

3.1.0.5 On-policy and Off-policy Learning . 51

3.1.0.6 Model-free and Model-based RL . 52

3.1.0.7 Inverse Reinforcement Learning (IRL) . 53

3.1.1 Value-based Reinforcement Learning . 53

3.1.1.1 Bellman Optimality Equations . 54

3.1.1.2 Dynamic Programming (DP) . 55

3.1.1.3 Monte Carlo (MC) Methods . 56

3.1.1.4 Temporal Difference (TD) Learning . 56

3.1.1.5 Value Function Approximation . 57

vii

3.1.1.6 Notable Algorithms . 58

3.1.2 Policy-based Reinforcement Learning (Policy Search) 58

3.1.2.1 Model-free and Model-based Policy Search 60

3.1.2.2 Policy Gradient-based Policy Search . 61

3.1.2.3 EM-based Policy Search . 61

3.1.2.4 Information-theoretic Policy Search . 62

3.1.2.5 Contextual Policy Search . 62

3.1.2.6 Notable Algorithms . 63

3.2 Dynamic Movement Primitives . 64

3.3 Gaussian Processes . 66

4 Methodology 69

4.1 Set-up . 69

4.1.1 Evaluating Learning Performance . 73

4.1.2 Evaluating Learned Behaviour . 75

4.2 Experimental Design . 76

4.2.1 Experiment Setting . 76

4.2.2 Experiment Procedure . 76

4.2.3 Result Analysis . 77

5 Solution 79

5.1 Proposed Algorithm . 79

5.2 Implementation . 84

5.2.1 The Hand-Over Skill . 84

5.2.2 Obtaining a Demonstration of the Task . 86

5.2.3 Capturing Trajectories in Dynamic Movement Primitives 87

5.2.4 Learning to Generalize to Different Contexts . 88

5.2.5 Executing Context-aware Hand-Overs . 92

5.2.6 Contributions . 92

6 Evaluation 97

6.1 Learning Context-dependent Hand-Over Positions . 97

6.1.1 Formalization . 97

6.1.1.1 Context Vectors and Exploration Random Restarts 100

6.1.2 Reward Functions . 103

6.1.3 Result . 105

6.2 Learning Context-dependent Hand-Over Trajectories . 111

6.2.1 Formalization . 111

6.2.2 Reward Functions . 115

6.2.3 Result . 119

viii

6.3 Learning Context-dependent Hand-Over Speeds . 123

6.4 Limitations of the Implementation . 125

7 Results 127

7.1 Quantitative Analysis . 128

7.2 Qualitative Analysis . 132

8 Conclusions 135

8.1 Contributions . 136

8.2 Lessons Learned . 138

8.3 Future work . 139

Appendix A Candidate Algorithms 143

A.1 Probabilistic Inference for Learning Control (PILCO) . 143

A.2 Black-box Data-efficient Robot Policy Search (Black-DROPS) 145

A.3 Gaussian Process Relative Entropy Policy Search (GPREPS) 147

A.4 Model-Based Guided Policy Search (M-GPS) . 149

Appendix B Study Questionnaire 153

References 157

ix

x

List of Symbols

Symbol Description

t time

st or xt state at time-step t

at or ut action at time-step t

A set of applicable actions

S set of possible states

R reward function/model

P or T state-transition model

π policy

π∗ optimal policy

π(st) deterministic policy

π(at|st) stochastic policy

rt immediate reward at time-step c context

τ roll-out

Gτ
t return of roll-out τ , from time-step t onwards

Jπ policy performance measure

γ discount factor

N number of policy iterations

M number of roll-outs (per policy iteration)

c context vector

C context set

Dc dimensionality of context vector

µ(c) context distribution

N (ω|µ(c),Σ) context-dependent linear-Gaussian model

a linear-Gaussian policy parameter

A linear-Gaussian policy parameter

Σ covariance matrix

θ upper-level policy parameters

ω lower-level policy parameters

Dω dimensionality of lower-level policy parameter

p(c, ω) trajectory distribution (REPS)

φ(c) context feature vector (REPS)

p[i] trajectory sample weight (REPS)

η and θ̃ Lagrangian parameters (REPS)

g DMP goal pose parameter

w DMP basis function weights (trajectory shape parameters)

1

Contents

W trajectory shape parameters vector

τ DMP time-scale parameter

y DMP system state (controlled variable)

x DMP phase variable

f DMP forcing term

Ndmps DMP number of basis functions

Nbfs DMP number of basis functions

ψ DMP basis functions

V (s) State-value function

Q(s, a) Action-value function

ǫ relative entropy bound

δt TD error

κ bounding box height-width ratio

d(·, ·) distance measure

z force sensor readings

2

List of Abbreviations

Acronym Full Form

APID Approximate Policy Iteration with Demonstration

Black-DROPS Black-box Data-efficient Robot Policy Search

CBA Context-based Architecture

CECER Covariance Estimation with Controlled Entropy Reduction

CK Contextual Knowledge

CMB Context-mediated Behaviour

C-MORE Contextual Model-based Relative Entropy Stochastic Search

CPS Contextual Policy Search

C-REPS Contextual Relative Entropy Policy Search

CrKR Cost-Regularized Kernel Regression

DDPG Deep Deterministic Policy Gradients

DLJ Dimensionless Jerk

DMP Dynamic Movement/Motion Primitive

DOF Degree of Freedom

DP Dynamic Programming

DQfD Deep Q-Learning from Demonstrations

DQN Deep Q-Network

EM Expectation-Maximization

GMM Gaussian Mixture Model

GMR Gaussian Mixture Regression

GP Gaussian Process

GPDMP Global Parametric Dynamic Movement Primitive

GPR Gaussian Process Regression

GPREPS Gaussian Process Relative Entropy Policy Search

GPS Guided Policy Search

HER Hindsight Experience Replay

HiREPS Hierarchical Relative Entropy Policy Search

HMM Hidden Markov Model

HO Hand-Over

HRI Human-Robot Interaction

HRL Hierarchical Reinforcement Learning

HROHO Human-Robot Object Hand-Over

HSR Human Support Robot

IF Information Fusion

IRL Inverse Reinforcement Learning

3

Contents

LfD Learning from Demonstration

LWR Locally Weighted Regression

MC Monte Carlo

MDP Markov Decision Process

MP Movement/Motion Primitive

NAC Natural Actor-Critic

NP-REPS Non-parametric Relative Entropy Policy Search

PCA Principal Component Analysis

PbD Programming by Demonstration

PG Policy Gradient

PI2 Policy Improvement by Path Integrals

PILCO Probabilistic Inference for Learning Control

PoWER Policy learning by Weighting Exploration with Returns

ProMP Probabilistic Movement/Motion Primitive

PS Policy Search

PWTD Point-wise Trajectory Differences

REPS Relative Entropy Policy Search

RL Reinforcement Learning

SAL Spectral Arc Length

TD Temporal Difference

WMLE Weighted Maximum Likelihood Estimation

4

1

Introduction

In the near future, service robots deployed to autonomously interact with and assist people in

commonplace tasks must possess degrees of adaptivity that exceed those of today’s prototypical robots.

The highly uncertain and dynamic environments they are expected to occupy with humans, learn from,

and act intelligently in necessitate methods more advanced than conventional adaptation strategies,

especially as our conception of robot intelligence, and thus expectations, evolve beyond simple reactive and

goal-directed behaviours. The execution of common physical tasks, such as serving drinks or opening doors,

can be significantly enhanced when made adaptive to and dependent on different operating conditions, as

opposed to static, pre-defined actions, whose results may not satisfy variations of the same task.

In robotics research, complex human-inspired behaviours are often pursued by studying and

extracting human tendencies and concepts in order to transfer them to robots: an approach we can take

to work towards more intelligent robot adaptivity. The concept of context is a vital factor we humans take

into consideration to optimize the things we say, the ways in which we act, and how we adapt best to the

current situation. Despite being an inherently vague concept, it is difficult to deny that people’s actions

can have drastically varying outcomes in different contexts, and that mediating behaviour according to

context is a natural human instinct. In much the same way, autonomous robots’ actions should adhere to

differences in contexts relating to their task, particularly when they involve interacting or collaborating

with humans, which can be achieved by endowing them with similar capabilities of context awareness and

adaptivity. These would constitute an additional dimension of a robot’s decision making processes, and

could potentially increase their robustness to variations in human-oriented tasks, in particular.

In this project, we propose utilizing some form of contextual knowledge to improve a robot’s

execution of a collaborative task, by adapting its activity to the current perceived context. We refer to

context as some representation of the current state of the environment, task, and/or persons involved,

which dictates the optimal manner in which the task can be performed. The aim is to represent an action

such that it could be generalized to different contexts, and potentially improvable through experience.

This capability is expected to equip a robot with an added degree of adaptivity, such that it produces

more appropriate and efficient task executions according to a given situation.

To that end, we review the literature on context representations and various approaches to robot

motor skill generalization in order to identify a viable method for learning context-aware behaviour in a

chosen task. We then implement and evaluate the results attained under the proposed approach, through

5

1.1. A Representative Use Case: Robot-to-Human Object Hand-Over

quantitative and qualitative means. The primary contributions of this project are an implementation of a

context-aware robot motor skill, and a user study conducted to confirm hypothesized improvements over

a more conventional non-adaptive approach to task execution, in order to justify further pursuing the idea

of incorporating contextual knowledge into a robot’s human-oriented activities.

In this chapter, we introduce and formalize our problem, then present the solution devised in this

project. Section 1.1 introduces the robot task we employ as a use case throughout the project, section 1.2

discusses the main motivation of the work, section 1.3 elaborates on a relevant challenge concerning the

underlying dilemma of ’learning versus modelling’, section 1.4 formulates the problem addressed in the

project more precisely, and section 1.5 presents the approach we propose for addressing the problem.

1.1 A Representative Use Case: Robot-to-Human Object Hand-Over

Among the most rudimentary, and possibly the most essential, instances of a collaborative task is

the act of handing on object over to a person, which is inarguably vital for everyday interactions and

routine tasks. Object hand-overs are considered to be one of the elementary actions with which a robot

can physically interact and cooperate with people, and even collaborate and assist in simple, repetitive

tasks [7] [115]. Fairly early research highlighted the importance of hand-overs as a collaborative task,

particularly in the exploration of human-robot coordination ([55]), and investigated human hand-overs to

uncover underlying principles that could pave the way for deriving similar behaviours in robots ([98]). For

these reasons, and its relative simplicity in concept and implementation, human-robot object hand-overs

have been chosen as a suitable test bed for applying the notion of contextual adaptivity and studying its

implications on robot behaviour and consequent user perceptions.

Intuitively, the problem of human-robot object hand-overs generally involves the appropriate

exchange of some object, whether the robot is the giver or the receiver. Particularly in the context of

robotics, the dyadic task is often segmented into discrete phases such as the approach, passing, and

retraction phases ([74]), and thus modeled as a sequence of independent actions. In this work, we

concentrate on robot-to-human hand-overs, and frame the problem as one in which a service robot must

suitably present a held object to a person they have approached (Figure 1.1). More concretely, the focus

of the task is on the movement of the object along some trajectory towards a chosen hand-over position,

amounting to the ’passing phase’. It is this characteristic motion that affords rich measures of contextual

adaptivity.

Traditionally, robot hand-overs are accomplished in a pre-defined motion that acceptably fulfils

the objective of the task, often as a pre-planned trajectory or the output of a tracking controller that

ensures the robot’s end-effector reaches some hard-coded position, in each execution. Instead, a different

approach could utilize the manoeuvrability of a robot’s arm and the range of trajectories it can generate

to more intelligently choose the way it executes the hand-over, given the knowledge that some trajectories

work better in some contexts than others. Examples include placing the object lower for a seated person,

or following a slower velocity profile to account for an object’s fragility or a person’s impairment. This

approach to transforming the robot’s hand-overs from a mere repetitive action to a contextualized motor

skill constitutes the contextual adaptivity we seek to implement and evaluate in this project, with the

6

Chapter 1. Introduction

(a) (b)

(c) (d)

Figure 1.1: Examples of typical human-robot object hand-overs: a) Object exchange with a PR2
robot (CARIS, The University of British Columbia), b) Handing off an object to BERT-2 (Bristol
Robotics Laboratory), c) Jido Robot Object Hand Over using a Human Aware Manipulation Planner
(RoboticsLAAS), d) Accepting an object from El-E, a robot designed to aid users with mobility impairment
with everyday tasks (Rob Felt/Georgia Tech University).

aforementioned examples demonstrating contextual knowledge that is instinctive to humans and would

have to be incorporated in the robot’s skill.

As a requisite for realizing some form context-aware hand-overs, it is important to consult the

wealth of literature on inter-human and human-robot object hand-overs to gather some general insights.

Due to the ubiquity of the task and interest in the complex mechanisms that enable humans to execute it

with impressive ease, various researchers have conducted human studies to extract strategies applied and

considerations taken by people as they perform hand-overs ([46][100][92][94]). Among the resulting findings

are the multiple reasons for which humans adapt hand-overs, including preferences, mutual comfort, and

mobility, and the fact that implemented robot hand-overs are best received by users when their parameters

(pose, trajectory, etc.) are tuned to respect these factors. Other studies investigated human preferences

for robot hand-overs more thoroughly, particularly how natural and appropriate different robot hand-over

configurations are perceived ([20]), and preferred robot approach distances, hand-over positions, and

so on ([58]). The results of these studies and several others collectively indicate users’ preference for

multi-faceted adaptivity, as opposed to lack thereof, which lends some credibility to the idea of robot

7

1.2. The Importance of Adaptivity

context-awareness being a worthwhile pursuit.

Our objective, then, is to construct a generalized robot hand-over skill, by providing a robot with

some expression of contextual knowledge and the ability to dynamically change trajectory characteristics

based on that information to adapt hand-overs to contexts. The virtue of this is then verified by evaluating

whether it improves the robot’s behaviour, as perceived by standard users.

1.2 The Importance of Adaptivity

The primary motivation of this work is exploring and validating an approach to achieving a

human-inspired form of task adaptivity. The concept of adaptivity in behaviour is undoubtedly among

the foremost requirements for the success of robots in unstructured real-world environments, whether it

involves simple reconfiguration protocols, learning capabilities, or other adaptation strategies. As we focus

on adaptivity of service robots in high-level task execution, particularly in association with humans, we

may associate this desired form of adaptivity with the term versatility : the capability of satisfying various

functions, or conditions of a task, competently. We postulate that adaptivity to varying task contexts and

possessing versatile actions or, more appropriately, ’skills’ whose characteristics can be adjusted to these

contexts is an important capability for autonomous service robots.

The virtue of adaptive behaviours in robots designed to interact and collaborate with humans is

increasingly apparent from the conclusions of various user studies. People perceive adaptive robots as being

more competent and intelligent, as opposed to their non-adaptive counterparts, even evoking terms such

as ’helpful’, ’attentive’, and ’courteous’ in users asked to describe their behaviour, and achieving superior

results in metrics including user experience and task performance when tested in domestic, workplace, and

healthcare settings ([6][73][43]). Measures of adaptivity which elicit such positive perceptions in target users

thus increase chances of the ubiquitous deployment of assistive robots, since they appeal to our instinctive

preferences and inclinations. In cases of physical collaborations, user experience considerations are just

as important as maximizing task performance in the course of designing robot assistants ([46]). Various

studies on robot hand-overs, in particular, have highlighted user preferences for adaptive behaviours,

mainly in the form of context-aware execution adjustments ([72]). Robot actions that do not conform to

contextual differences risk seeming unnatural and unsatisfactory to users, in the best case scenario, or

possibly failing to accomplish their objective, in the worst.

The field of human-robot collaboration (HRC) generally aims to attain robust robot execution

of collaborative, human-oriented tasks; a goal that is primarily hindered by the unpredictable nature of

humans. This substantial obstacle in the way of deploying robots that can work alongside humans has

prompted attempts at human intent prediction and long-term learning strategies, as well as extensive

studies of peoples’ tendencies, to cope with variability in task specifics and people. The difficulty in

dealing with this variability motivate designing adaptive robot behaviours and/or skills, such that robots

are equipped to adapt and reasonably cope with it ([39]). Versatile skills are then expected to facilitate

handling different peoples’ attributes, such as physical traits, mobility, preferences, etc., and situational

task contexts to produce more natural executions, as inspired by human competence.

Inflexible robot behaviour and actions can be inefficient for collaboration and joint tasks in particular,

8

Chapter 1. Introduction

due to such tasks usually being highly dynamic and significantly dependent on contextual differences. For

example, the act of collaboratively carrying an object with a person requires adapting to their stature,

movement gait, and any unorthodox movements, while the optimal way to hand an object over depends on

the receiver’s posture and capabilities, their preferences, and the object’s characteristics. While humans

are efficient at conforming to dynamic changes, it remains a significant challenge to contemporary robots,

which do not generally possess an awareness of or adaptivity to context. Therefore, identifying and

applying viable methods to achieve the intended adaptivity in robots is an issue this project aims to

address, at least in part.

1.3 The Learning/Modeling Problem

As previously mentioned, this work is motivated by the importance of robot adaptivity to different

contexts of a task, which introduces a significant challenge to service robots designed for operating around

and with humans. These robots must be equipped to handle uncertainty in situations and attributes of

people to cope with the dynamic real-world environments they are envisioned to operate in. Conventional

approaches suggest adopting one of two ways to achieve such capabilities, both of which have limiting

drawbacks, and together give rise to the familiar learning versus modeling dilemma.

The first direction involves employing traditional machine learning strategies to exclusively learn

the best mode of action for every conceivable scenario. Example candidate methods include training

deep neural networks in a supervised fashion with data indicating optimal behaviour in each context,

such that the robot performs the best action given some input on the situation. Unfortunately, this

would necessitate large amounts of training data, particularly pertaining to the robot’s context-specific

executions, and thus prohibitive amount of trials on the robot.

An orthogonal approach could be to construct explicit models of the action, incorporating the

dynamics that drive the motions of the robot as it pursues the objective of its task. However, it is generally

difficult to obtain accurate, unbiased dynamics models for high-dimensional problems, making it potentially

more complicated than a learning approach. In addition, this difficulty would be exacerbated by possibly

having to obtain adequate models that independently satisfy every mode of behaviour corresponding

to a respective context, or constructing a single model that sub-optimally satisfies as many contexts as

possible.

Neither extreme is suitable for handling all possible context-dependent variations of the same

action, due to foreseeable tractability concerns, or unsatisfactory resultant behaviour. More promising

approaches could involve combining the two methods or devising more novel solutions based on human

tendencies, which this project aims to investigate. Considering that repetitive robot actions such as

object hand-overs usually exhibit subtle task variations, a model of an exemplary execution can initially

be learned or captured. Then, this would be utilized to subsequently construct a generalizable skill by

equipping the robot with the ability to learn derivative variants of the execution that work best in each

context, and thus tuning behaviour to observed contexts. Finding such a solution thus emerges as a

primary challenge.

An ideal approach could obviate the need for either exclusive learning or comprehensive modelling,

9

1.4. Problem Statement

both alleviating their respective limitations and approaching the kind of strategies us humans would

apply. The latter consideration is important, since it is subsequently more likely to produce a measure of

adaptivity that would appeal to users in general. As an example, more fluent robot object hand-overs

would result from generalizing the motions required by the robot to different conditions, such as the

posture of the receiver, as a normal person would, obviating the need for explicit programming of every

possible scenario, and avoiding reliance on a single, non-adaptive motion.

1.4 Problem Statement

In this project, we aim to identify practical approaches to incorporating contextual knowledge

into repetitive collaborative robot actions, and evaluating the applicability and efficacy of a concrete

implementation. A robot may frequently be required to perform the same action (such as helping a person

carry an object), but subject to subtle variations that affect the optimal execution of the task (such as the

height and dexterity of the person). On the one hand, modeling or learning all possible scenarios for such

an action is inconceivable, while static, context-independent actions risk being too rigid and unnatural

for human standards. Skill representations that allow for adjustments according to varying contexts and

improvement with experience are expected to increase the robustness of collaborative robots.

As a requisite to achieving context-aware behaviours, it is pertinent to provide a comprehensive

overview of any existing works that tackle the same problem of contextual adaptivity, or suggest promising

solutions. This would provide a clearer picture of the state-of-the-art in the addressed problem.

Having selected human-robot object hand-overs as an adequate use case on which to base our work,

we must formulate the characteristics of the task and define contextual variations associated with it. The

hand-over action is then implemented on a robot platform capable of accomplishing the task, such that

subsequent evaluations of emergent behaviours are made on the basis of the robot’s performance.

Generalizing the robot’s hand-over skill to different contexts requires identifying an appropriate

method or algorithm that enables it to utilize contextual knowledge to guide its execution of the task. In

this case, the knowledge would constitute indications of the optimal hand-over positions or velocities, for

example, that match context factors such as the posture of a person, their physical ability, the presence of

an intermediate counter, etc., such that the controllable aspects of the motion are varied to respect these

conditions. As previously alluded to, this is consistent with human behaviour: we change the way we

perform this action after perceiving such differences, and the chosen method should produce a similar

effect.

Ultimately, we aim to address the absence of a systematic evaluation of a context-adaptive approach

on a real robot task involving collaborating with a human. Although promising solutions were initially

identified, such as the contextual policy search approach of the GPREPS algorithm ([66]), they have not

been, to the best of our knowledge, applied and tested in a real autonomous robot scenario. Therefore, we

conduct a user study in which emergent, contextually adaptive behaviours applied to the hand-over task

are compared to traditional, robot-centric executions. This study would involve experiments that would

allow us to conclusively validate the improvements that the applied method brings to robot behaviour, as

perceived by human users. This then provides empirical evidence either confirming or invalidating our

10

Chapter 1. Introduction

hypothesis concerning the expected benefits of contextual adaptivity to human-oriented task execution,

and thus justify pursuing this idea further in the future.

1.5 Proposed Approach

We propose an apprenticeship learning approach to the problem of learning a generalizable robot

motor skill that achieves contextually adaptive object hand-overs. The strategy combines learning from

demonstration (LfD) and reinforcement learning (RL), such that the former enables the robot to learn the

action from an expert’s example, and the latter facilitates subsequent experiential learning of contextualized

policies, with which different derivatives of the demonstrated action are executed according to what is

most fitting for the current context. This method mimics the way we acquire motor skills: grasping the

’ideal’ way to perform an action, then learning to adjust it to different contexts as required.

We implement the object hand-over action on the Toyota HSR robot, which must learn to present

a grasped object to a person most suitably. In this use case, we consider factors such as the posture of the

receiver: whether they are standing, sitting, or lying down, as one of the contexts of the task, since various

studies have distinctly identified it as a variable of prime importance to consider for hand-overs, according

to users ([114][58][99]). Other factors could include object fragility or potential spillage (for drinks), the

presence or absence of an intermediate surface, and so on. The task is characterized by the movement of

the object from the initial grasping position to a chosen hand-over position along some trajectory, and the

particular execution should adhere to the aforementioned context parameters.

Figure 1.2 illustrates the basic stages of our proposed approach to learning a context-aware

hand-over skill.

Figure 1.2: The main stages of the proposed apprenticeship learning procedure to learning a context-aware
hand-over skill.

The first step of the approach is to acquire an expert’s demonstration, which must be captured in

some manner and encoded in an appropriate representation, as the robot’s initial hand-over policy. Using

an existing approach ([76]), we utilize motion capture to demonstrate a trajectory shape to the robot, and

encode the motion in dynamic movement primitives (DMPs). DMPs enable recording and reproducing

goal-directed motions such as that of the hand-over, as well as altering the goal position, trajectory shape,

and execution speed to generate unique execution variants. Among their various favourable properties are

spatial and temporal invariance, their compact representation of trajectory shapes, and their extensibility

to capabilities such as real-time obstacle avoidance.

Learning from demonstration is a natural learning paradigm often utilized by humans in which

knowledge of experts can be exploited to greatly speed up learning of complex tasks, in particular. It

11

1.5. Proposed Approach

has been successfully applied to robots in various motion-related tasks, serving to similarly make efficient

use of expert knowledge, as opposed to manually programming desired behaviour, which is often tedious

and produces motions that do not seem as natural. When applied to hand-overs, for example, LfD has

been shown to produce more ’natural, usable, and appropriate’ executions than those produced by a

conventional planner ([20]).

The problem then involves learning to select the DMP parameters that produce the most appropriate

reproduction of the hand-over trajectory, according to the current context. In essence, we provide the

robot with the necessary contextual knowledge to learn specialized variants of the demonstrated trajectory,

by extending the initial, static hand-over policy to a contextually adaptive one. To that end, we propose

a contextual policy search approach.

We present a model-based version of the Contextual Relative Entropy Policy Search (C-REPS)

[89] algorithm which facilitates learning contextualized policies initialized from a demonstration.

The application of RL is based on the premise that robots which are equipped to explore and

learn from experience possess a comparatively more literal form of ’autonomy’. Additionally, learning by

reinforcement after observing a demonstration is an instinctive skill acquisition strategy: learning both

from a teacher and from personal experience, hence the term apprenticeship learning. As opposed to

value-based RL, a policy search (PS) approach is adopted for its proven adequacy for robotics applications

and high-dimensional search spaces, in which value function computations become a significant burden

([35][70][101]). Moreover, PS enables seamless integration of initial expert knowledge, in the form of

demonstrations, requires fewer parameters, and better deals with continuous action spaces ([88][59]).

Our model-based implementation of C-REPS, inspired by the GPREPS algorithm ([66]), employs

contextual policy search, which attempts to learn a policy that is optimal conditioned on the values of a

context parameter, through a hierarchical structure of policies. A stationary lower-level policy, in the

form of DMPs, is parameterized by the output of an upper-level policy, which selects the meta-parameters

of the former according to the current context. As a result, the lower-level policy is made generalizable to

different contexts: we learn hand-over position and trajectory parameters that satisfy the context values

which signify observed receiver posture, for example. The algorithm utilizes an information-theoretic policy

update strategy, which bounds consequent updates in the search distribution to mitigate unstructured

exploration and limit information loss, thus retaining the main characteristics of the demonstrated

execution.

Crucially, we implement a model-based version of the algorithm, such that we can learn contex-

tualized policies in simulation, before transferring them to the robot. This strategy is often applied in

complex RL problems to boost learning speed and reduce possibly prohibitive system interaction time,

thus conserving time and effort, minimizing expenses, and eliminating safety concerns. It is often termed

mental rehearsal to draw parallels with the way humans mentally rehearse an intended action before taking

it. Contrary to initial plans of employing Gaussian Process (GP) models, we alternatively utilize a DMP

implementation that enables simulating hand-over trajectories and their expected outcomes (hand-over

position, trajectory, etc.), which we use to drive the learning process, in a relatively simpler procedure.

The results of our implementation in simulations are then evaluated through quantitative and

12

Chapter 1. Introduction

qualitative analyses, both to study the characteristics of C-REPS and to determine how well it produces

the intended behaviour. We particularly examine the algorithm’s policy representation and update

strategy, its properties, and its limitations, in addition to the number of artificial executions (roll-outs)

required to achieve good results, the number of parameters to be learned, exploration behaviour, and

other relevant metrics. With regards to the algorithm’s results, the output of the learned policies, we

measure the quality of emergent behaviour based on closeness to the desired, and its handling of the

multitude of contexts, under different reward function formulations. These assessments are made based

on the algorithm’s inherent measure of performance: accumulated rewards.

Finally, we transfer learned hand-over policies to the robot, and evaluate resultant behaviour and

its implications on user perceptions. In order to empirically validate the hypothesized superiority of

contextually adaptive behaviours learned through apprenticeship learning over an antithetical approach,

we conduct a user study. The study involves participants assuming different postures and being handed

objects over by the robot, under a context-aware behaviour setting, in which it executes hand-overs

guided by learned contextual policies, and a context-unaware behaviour, in which it simply imitates the

demonstrated movement.

We conclude that behaviour under a contextual policy that selects hand-over positions based on

receiver postural context, as learned in simulations, is strongly preferred by users over the traditional

alternative, especially in factors such as naturalness, perceived suitability to context, and likeness to

human executions. We demonstrate how this result accomplished solely through a demonstration, a simple

form of contextual knowledge, and guidance through a scalar reward signal by C-REPS, which achieves

these results despite being currently inadequate for some aspects of contextual trajectory learning, as we

discuss in the report.

13

1.5. Proposed Approach

14

2

State of the Art

In this chapter, we present a systematic review of the literature concerning the multi-faceted

problem addressed in this report: generalization of a robot object hand-over skill to different contexts.

This review of the state of the art covers pertinent research of influential publications as well as more

recent works whose findings, extensions, and innovations merit a methodical analysis. The aim is to

provide a reasonably broad perspective on the pool of possible approaches to this end, and judiciously

highlight their respective strengths and limitations.

We start in section 2.1 by introducing the concept of robot motor skills, how it may be realized, and

the diverse methods with which they can be learned and made adaptive to concepts. This is further divided

into sub-sections: we survey the use of explicit contextual knowledge and context-based architectures

in robots in subsection 2.1.1, pure control approaches that achieve contextual adaptivity through more

implicit means in subsection 2.1.2, leveraging human demonstrations to facilitate imitating skills in

subsection 2.1.3, and the promising concept of apprenticeship learning, which augments imitations with

reinforcement learning, in section 2.1.4. Finally, section 2.2 reviews a range of studies and notable work

relating to our representative use case: human-robot object hand-overs.

2.1 Robot Motor Skill Learning and Generalization

As service robots, particularly humanoid ones, rapidly approach integration into households and

workplaces, their possession of competences and cognitive qualities similar to ours becomes a natural

requisite. One such aspect is that of motor skills: intricate movements performed with the intent of

achieving some goal or accomplishing some task, characterized by acquisition and refinement through

learning processes, and being generalizable to reasonably novel situations. They can range from gross

motor skills such as walking and kicking a ball, to finer ones such as handwriting and playing a guitar.

Although recently applied with demonstrable success in robots for tasks such as learning to walk (hexapod)

[24], playing table-tennis [66], and pouring drinks [119][83], equipping robots with the entailed capabilities

required to achieve such complex behavior remains a significant challenge.

In a broad sense, the difficulty of designing adaptive robot skills can be attributed to three

constituent parts of the problem: action representation, efficient learning, and generalization to multiple

operating conditions. The issue of learning desirable behavior is preceded by the question of how

that physical behavior is to be embodied on the robot, with representations ranging from conventional

15

2.1. Robot Motor Skill Learning and Generalization

parameterized controllers to movement/motor primitives [52] (see section 2.1.3). In addition to enabling

the reproduction of desired movement trajectories or patterns, skill representations must be compliant to

behavioral adjustments. This facilitates applying some form of learning procedure, in direct analogy to

human experience acquisition, such that an autonomous robot is capable of iterative improvement over

time and, possibly, independent skill development. A significant challenge in its own right, implementing

adequate machine learning techniques to realize these desiderata is further compounded by the fact that

skills must be robust to changes in the context of a task. This concept of contextual adaptivity suggests

that motor skills and actions should be applicable to a range of different contexts or situations that

the robot could conceivably encounter in its attempts to achieve some goal, in a manner that does not

necessitate drastic measures such as re-learning the behavior.

Apart from the understandable appeal of adaptive robot skills to the human intuition, the pursuit of

this non-trivial approach to ’intelligent’ behavior is justified by more practical considerations. The nature

of truly autonomous service robots and the environments in which they are envisioned to operate, by

virtue of their unpredictability and high margins of uncertainty, make robustness particularly difficult. In

human-oriented applications, a special form of task variability which dictates the optimal way to perform

an action is born out of the multiplicity of situational contexts, due to which non-adaptive behaviors may

be unsatisfactory. At best, they may lead to user inconvenience and discontent; at worst, they may cause

execution failures. For instance, various studies on user preferences for object hand-overs have supported

the hypothesis that factors like posture, approach direction, individual capability, etc., should be taken

into account by a robot [58][16][15]. It follows that programming a robot to execute the same motion

or action: equipping it with a static skill, for all cases it may face, is undesirable. On the other hand,

learning separate modes of task execution for each context is inarguably inefficient. The compromise,

then, is to have a single adaptive representation of the motion(s) required to fulfill a task, in the form of a

motor skill that is tolerant to expected situational variations.

Having established this connection between the generalizability of motor skills and the concept of

contextual adaptivity, we delve into a rich body of literature which reveals multiple potential approaches.

Section 2.1.1 reviews the direct application of context-awareness in robot system design, and the explicit

incorporation of contextual knowledge (CK) and reasoning processes that guide behavior selection and

adjustment, as task contexts vary. In section 2.1.2, an orthogonal approach to skill adaptivity is considered,

which endeavors to apply conventional optimal control methods to implicitly build tolerance to contextual

variance into the system. In favor of a more human-guided skill acquisition process, the works presented

in section 2.1.3 advocate the use of Learning from Demonstration (LfD) to directly teach robots the skills

in the desired manner of execution, by capturing demonstrated movements in robust motor primitive

representations, with natural extensions to enable contextual differentiation between demonstrated

movements. Finally, section 2.1.4 further builds upon this concept, introducing reinforcement learning

techniques as a paradigm both for independent learning of motor primitives, as well as optimizing and

generalizing those learned using LfD to new situations. These techniques are of particular interest, owing

to their similarity to the way motor skills are realized in humans: a combination of muscular activity

(motor primitives) and cognitive processes (such as reinforcement learning).

16

Chapter 2. State of the Art

2.1.1 Context in Robotics

Various researchers and research groups have highlighted the importance of equipping robots

with representations of situational contexts, as humans would understand them, particularly when their

operations involve interactions and collaborations with humans, especially if they are to stand a chance of

being regarded as ’intelligent subordinates’ ([120]). Nevertheless, when it comes to utilizing this concept

in robot behavior, like many other human-centered concepts, the idea of context suffers from the curse of

ambiguity: we can easily perceive its impact on the way we conduct our behavior in daily interactions, and

would readily recognize its significance, but most people would struggle to articulate a coherent definition

of context. Bloisi et. al., who investigate the use of context in robotics, provide in [19] two definitions of

different granularity: context can be thought of as ”the information that surrounds a situation of interest

in the world”, and ”an identifiable configuration of features which are meaningful to characterize the

world state, and useful to influence the decision process of a robotic system” (or human).

One of the earliest principled works concerning design for context-sensitivity introduced an approach

named context-mediated behavior (CMB), based on contextual-schemas (c-schemas): knowledge structures

containing descriptive knowledge about a context, and prescriptive knowledge about the implied optimal

behavior. In [108], Turner et. al. lay the groundwork for this explicit treatment of context in artificial

intelligence, which would later influence a significant portion of the reviewed literature. In an AI-oriented

perspective, they define context as ”any identifiable configuration of environmental, mission-related, and

agent-related features that has predictive power for behavior”. Motivated by the ideas that context-free

behavior can not be generally ’appropriate’, and artificial agents that do not adhere to contexts are useless,

they propose recording ’features’ of a situation in c-schema that encode a coherent view of the context of

a task, and specifying a mode of execution that best suits it. The generalization, then, lies in the agent’s

ability to match perceived situations to c-schemas stored in memory, possibly merging information from

multiple c-schemas to formulate novel contexts, and subsequently using this information to augment other

reasoning processes. The possible uses of this contextual knowledge include better interpretation of sensory

data, auto-modulated behaviors, focusing attention on relevant goals, and selection of actions appropriate

to the context. A demonstrated application is to an intelligent mission controller for AUV oceanographic

missions, Orca: a schema-based, adaptive reasoner composed of multiple modules, one of which is a CMB

context manager that optimizes AUV task execution with respect to context. Although the framework

reduces planning burden through context-awareness, can reasonably generalize to unseen contexts, and

could facilitate autonomous adjustments of contextual knowledge with experience, its applications may be

limited to fairly similar systems. It relies on explicit enumeration of context features in a Common Lisp

Object System (CLOS) framework, and does not seem compatible with motor skill refinement on a robot,

for example.

A decade later, context-based architectures (CBAs) for robotic systems, founded on the formulations

of context put forward by Turner et. al., were implemented as described by Calisi et. al. in [22]. In a

similar approach, the authors aimed to exploit the use of CK: available information to the system, which

characterizes the task-related context of the current situation in which the robot operates. Their objective

17

2.1. Robot Motor Skill Learning and Generalization

was to adjust the behavior or functionalities of a mobile robot dynamically to fit the perceived situation,

hence improving its adaptivity to changing conditions. Referring to past approaches that used CK in

individual tasks including navigation and exploration, localization and mapping, and perception, they

proposed an architecture for system-wide contextual-sensitivity, stating that CK is not fully exploited when

it is built into separate system modules. This system-agnostic CBA is designed as a feedback loop added

to some robotic system, inserting modules that convert sensory data into some internal representation

of context, reason about it, and convert it to direct commands that subsequently influence a robot’s

control policies. Crucially, the reasoning elements are designed such that they utilize CK in driving and

adapting different tasks that the robot must accomplish, making its compound behavior adherent to the

context. The benefits of the CBA, and its easy implementation on existing platforms, is demonstrated on

a search-and-rescue robot, whose SLAM modules are augmented with the design, and its performance is

shown to improve in efficiency for an exploration and search task, as well as a navigation and mapping

experiment. The applicability of the architecture to different platforms and tasks, however, remains

doubtful since it was only evaluated on the mobile robot in the scenario chosen by the authors. This

is exacerbated by the requirement of having a robust representation of context that fits the reasoning

module, which may be fairly complex to ground for certain applications.

In [38], Gomez-Romero et. al. explore the use of CK in information fusion (IF) applications such

as video surveillance, ambient intelligence, and context-aware systems. In their work, the authors apply a

’context layer’ in a computer vision framework, define an ontological representation of context information,

and an inference engine for abductive reasoning about perceived scenes, with the aim of justifying context

exploitation strategies in the aforementioned applications. Despite not focusing on robotics, the authors

highlight various challenges that directly correspond to those in our present work, including whether

context is to be represented quantitatively, symbolically, ontologically, or otherwise, and understanding

that the choice affects the nature of the implemented algorithm or learning process, which is usually forced

to cater to it. While empirical results derived from this study reflect the power of ontology-based context

representations and reasoning, the evidence is ultimately deficient in proving its suitability to adaptive

robot motor skills, a rather incompatible problem.

Context-aware selection of behaviors/actions can also be paired with programming by demonstration,

in a perception-based perspective on context differentiation, as illustrated by Narayanan et. al. in [80]. This

work involves identifying different contexts of a scenario, through matching observed perception feature

histories, and choosing a particular, demonstrated behavior, acquired through partial tele-operation, that

best suits the identified context. Here, this is applied to visual-based navigation of indoor environments

with varying obstacle formations, which the authors claim is bound to fail if a monolithic model of the

relations between individual perceptions and actions is used, due to the variability. An idea of contexts is

then introduced as sets of visual perceptions along with the curvature of the recent path of the robot.

This visual robot behavior learning achieves a form of context-awareness that increases its robustness to a

range of controlled situations, but remains dependent on perceptual data, a form of feedback that may

not apply to applications that involve different sensor modalities.

The same formalism used in the seminal work on context-mediated behavior (CMB) ([108]) has

18

Chapter 2. State of the Art

since been extended to a multi-agent system scenario in [109]. The importance of context for teams of

agents was motivated by factors such as the complex scenarios they may operate in, their heterogeneity,

dynamic re-formulation of team composition, and compensating for collaborator shortcomings, all of which

necessitate context-dependent abilities of adjustment. Additionally, identifying global context can enable

individual agents to better interpret sensory information and choose actions that fit the context best, with

respect to actions of the party. Interestingly, the aforementioned concept of c-schemas, including all its

desirable properties, is shown to be directly applicable to this more complicated scenario, notwithstanding

expected issues of multi-agent communication: distributing context assessments, merging CK and using it

effectively, and so on. A major portion of the authors’ work involves choosing an appropriate language

and shared ontology for multiple agents to communicate with and form a global understanding of context.

An intriguing approach to the use of CK applies it to accomplish context-aware grasp planning in

shared autonomy, as presented by Witzig et. al. in [118]. The main motivation is similar to our own,

but in the context of grasping: a robot’s manipulator is capable of a variety of potential grasps of an

object in a described scenario, but some may be better applicable to some contexts than others. The

authors introduce a probability distribution on a set of enumerated grasp type hypotheses , which consider

reachability constraints and collisions, among which the best is picked according to the context. In this

case, the CK is a combination of high-level information provided by a user through a novel dialog-based

UI (task type, container fill level, etc.), and auto-generated information derived from online perception

(object size, side graspability, etc.). The concept of shared autonomy comes into play in the learning

process: the system enumerates possible grasp poses and displays them to a user, who selects positive

examples for the given context, then updates its probability model to reflect the user’s suggestions. In

addition, if the robot fails to find an appropriate grasp during normal execution, the user is consulted

through the UI to provide a suggestion, with which the model is refined. This helps in tackling scarcity in

training data, and reducing failures of error-prone auto-generalization, but seems to suggest limitation to

the supervised learning paradigm.

A recent publication by the research group who published [22] provides a novel classification of

existing context-representation methods in robotics, and a context-aware framework for information

fusion (IF) ([19]). The authors re-iterate the importance of contextual adaptivity in robotics in order

to accommodate multiplicity in operational conditions, referring to its proven usefulness for cognition-

based systems, by improving performance and scope of applicability through context representations

and subsequent reasoning. It is interesting to note that, in direct contradiction to a sentiment expressed

in their previous work ([22]), they advocate using context in individual components of a system, where

needed, as opposed to the usual holistic approach, which can be taken as an indication of the difficulty in

designing for contextual adaptivity. When it comes to robots, CK is taken to be the sum of environmental

knowledge (lighting, terrain properties, etc.), task-related knowledge (constrains like time, priorities,

locations, etc.), and self-knowledge (e.g. of internal status). Applications to which each of these aspects

of context-sensitivity is demonstrated are described, including surface maps for terrain conditions (E),

robotic walkers for parkinson’s patients (T), and robot behavior specialization through smooth transitions

between behaviors, as dictated by CK of system status (S). Valid and implemented context representations

19

2.1. Robot Motor Skill Learning and Generalization

are grouped into embedded, logic-based from (rule-based ontologies to first-order logic), and probabilistic

(such as Bayesian Networks) approaches. The major contribution of this work lies in its extensive survey

of these perspectives, the choice of which may constitute the biggest obstacle in incorporating CK into

robot task execution.

2.1.2 Control-based Approaches

A radically different, but fairly plausible, solution to the problem of adaptive robot motor skills does

not rely on explicit representations of context, but designs adaptivity to changing contexts implicitly, using

optimal controllers which satisfy specified criteria. Overlooking the virtual elimination of the learning

aspect with these techniques, one may rightfully argue that the reviewed works accomplish some form of

contextual adaptivity, even if it does not entail context-awareness, which justifies consideration of this

approach as a valid alternative. Here, we sample and review some demonstrations of this approach but

with a focus on those relating to our use case, both to ensure reasonable relevance and to constrain the

otherwise vast reserve of implementations in this vein of research.

The work by Sisbot et. al. in [99] presents a robot manipulation planner that takes human presence

and activity explicitly into account, producing motions following reasoning about a person’s safety, field of

view, accessibility, postures, and preferences. The planner is applied in the context of a robot-human object

hand-over task, and focuses on enabling the robot to compute and execute the best human-oriented, or

’socially acceptable’, trajectories. The authors attempt to study what can be done at the motion planning

and control level, in order to facilitate awareness of the human, and subsequent behavioral adaptation. To

this end, the planner computes the best object transfer position, as a cell in a 3D grid overlaid around

a person, which maximizes three crafted cost functions representing safety, visibility, and human arm

comfort, while taking the path of the object and required robot motions into account. Experimental results

of user case studies, in which comparisons are drawn with a baseline planner, illustrate the improvements

in resultant robot motion trajectories, which are validated using subjective (user feedback) and objective

measures. The incorporation of the person in this planning process is significant, due to the importance of

prioritizing safety in shared-manipulation scenarios [82], and the proven preference of users for motion-level

robot adaptation, particularly for human-robot joint performance fluency [68]. A consequence of these

optimized cost functions is minimum-jerk, more human-like hand-over trajectories which makes them

superior to more rough, unpredictable ones [90], possibly produced by baseline planners, and whose

smoothness properties are known to be decidedly preferred [84]. Nevertheless, this manual optimization

of cost functions, after which controller behaviour is virtually static, exposes a latent issue: the criteria

defining good manipulation trajectories varies across users, tasks, and environments [53], and is fairly

difficult to anticipate during controller design [54]. Another conceivable drawback is the exclusion of

biological differences among object receivers, who are treated as ’average’ individuals with similar physical

capabilities. However, studies show that generic behaviour in tasks such as object hand-over are made

inapplicable [47], due to situation-dependent differences such as the perceived ability of the other party

[102], and ergonomic preferences and/or motion restrictions due to age, injury, disability, and so on [15].

These factors make it difficult to argue that the resultant behavior has the ability to conform to different

20

Chapter 2. State of the Art

contexts, an outcome we ideally aim to achieve.

A more novel approach similarly attempts to generate ’optimal’ hand-over positions, whose quality

is quantified by the amount of discomfort of, or forces having to be exerted by, the person being handed

an object, utilizing constructed bio-mechanical models, as presented by Suay et. al. in [102]. These

individual-specific custom models guide the search for a hand-over position which considers the person’s

range of motion and static strength limits, addressing one of the deficits of [99]. The authors’ algorithm

generates this obstacle-free point on-line, starting with taking in the person’s gender, height, and weight

as inputs, and constructing a bio-mechanical model using OpenRAVE, a robot motion planning simulator.

They highlight that sophisticated human models that include muscle dynamics exist, but are rather

superfluous for the purposes of their work, since such a simple model can enable sufficient hand-over

position analysis. Using OpenRAVE tools, they derive joint forces and moments in a simulated reaching

out motion for a generated bio-mechanical model, using an inverse kinematics solver. Subsequently,

candidate hand-over positions are sampled, filtered by performing a k-NN search to find the positions

most resembling what was observed in human demonstrations, and optimized to account for perceived

obstacles, etc. In a comparative analysis, the authors conclude that the peak muscle activity recorded for

a person while reaching out to a generated position was interestingly less, on average, than that of an

arbitrary position chosen by the person themselves. Catering to different people’s physical capabilities

and constraints is an important consideration to account for in robotics, particularly for human-robot

interaction, and makes this form of skill adaptivity a vital one for service robots. It is also worth noting

that the low computational overhead of the authors’ algorithm, considering the low number of parameters

they require as input, makes it particularly useful in such applications for which on-line computations are

necessary. However, these very inputs raise the question of autonomous adaptivity, since they would have

to be manually input by a person, and the robot would lack the ability to truly adapt autonomously during

operation. In addition, reliance on the bio-mechanical models that can be made using OpenRAVE may

introduce restrictions on representable contexts and limit practical extensions to more complex problems.

A novel human-inspired motion controller for bi-directional human-robot object hand-overs, in-

troduced by Medina et. al. in [74], is the result of an attempt to produce a hand-over dynamics model,

with which a controller could produce seamless motions that are independent of the particular phase

of the hand-over, an undesirable limitation present in conventional controllers. The authors contend

that it is highly desirable for hand-overs, as is the case with any human-robot collaborative task, to be

as fluid and natural as inter-human hand-overs, for arbitrary objects and situations; an instance of an

adaptive motor skill. They point to the traditional hand-over task formulation, which models it as a set

of successive, discrete phases (approach, passing, and retraction phases), as being unsatisfactory due to

the resultant rigidity in a robot’s executed motions. A human-human hand-over study was conducted to

gain actionable insights on the dynamics of natural hand-overs, which the authors then used to guide

their design to produce similar levels of motion fluidity. Leveraging this, and an extensive mathematical

formulation of object hand-over dynamics, they produce a controller that is able to reliably estimate

hand-over poses, continuously monitor the load share that governs efficient grip force, and being robust to

outside interference, mid-execution. With experimental trials illustrating the controlled robot’s ability to

21

2.1. Robot Motor Skill Learning and Generalization

appropriately grasp a plastic water bottle, track the receiving person’s hand, and apply the necessary grip

forces at the adequate time to release and re-grasp it, the authors demonstrate an overall enhancement

in task fluency. A noteworthy flaw found in the author’s presentation of their solution is a claim that

the controller produces hand-overs that are adaptable to different object types and shapes, which is not

actively validated or subsequently elaborated on in the paper. Among the notable accomplishments

of this work are continuous, minimum-jerk hand-over motions which are better accepted by users [47],

impressively efficient grasping and releasing of the object, which mitigates the positioning burden placed

on the person interacting on the robot [49], and reasonably fluent, synchronized execution, a persistent

challenge to natural human-robot hand-overs [65]. The paper’s insightful human hand-over study is

a valuable resource, as attested by related publications that advocate the investigation of underlying

principles in order to implement more fluent robot executions of the task and provide a credible formalism

of hand-overs in general ([49][65]). On the other hand, the method suffers from a lack of contextual

adaptivity, since issues like the different postures and positions of the person involved, for which the

handover characteristics may have to be altered (during run-time), as proven in user studies like [58]

and elucidated in discussions on context in robotics, like [19], are not considered. A familiar issue is

indistinction between user capabilities: the force responses and passing phase timings, which are the main

parameters with which the design is evaluated, may differ between people of different strengths, health

conditions, age, etc. As previously mentioned, behavioral adaptation to users is vital for human-robot

interaction [95], especially for assistive robots targeted towards elderly and disabled people, for which the

same motions would not be appropriate [37].

Another control-based approach to task adaptivity in a robot manipulation scenario is shown

by Kappler et. al. in [56], where real-time perception is combined with reactive motion generation

to compensate for uncertainties and unmodeled dynamics when planning motions to pick up objects

on a table. In order to investigate the improvements brought about by this integration, the authors

compare a trio of possible system architectures in a manipulation planning scenario: sense-plan-act, locally

reactive control, and reactive planning. The first involves initially perceiving the environment, planning an

optimal collision-free path, then strictly following it with a stiff controller, while the second relies solely on

perceptive feedback for local reactivity (as in visual servoing): the local geometry around the manipulator

is used to continuously compute the next optimal control command. A hybrid approach, reactive planning,

which combines perceptual feedback and also re-planning in the event of significant changes, is suggested

and compared against the other two in different, static and dynamic, on-table object pick-and-place tasks.

Experiments expose the failure of the sense-plan-act paradigm in dynamic environments (introducing

an unmodeled obstacle during task execution), and the susceptibility of short-sighted locally reactive

control to local optima, when the task requires longer planning horizons. Reactive planning, on the other

hand, provides a better trade-off, such that dynamic environments are handled reasonably well without

incurring too much re-planning costs. Although possibly somewhat limited in scope of applicability, this

approach demonstrates the virtue of perceptual feedback when aiming for adaptive robot behaviors, and

their ’robustification’ through more rudimentary means.

As can be concluded from the summarized deficiencies in each of the reviewed works, solely

22

Chapter 2. State of the Art

employing controllers, however dynamic, and designed cost functions is restrictive when applied to

the problem being addressed in this project. Since it is somewhat impractical to directly define and

control multiple context variables, for example, they may not be well-suited for the desired robot skill

generalization. These approaches are usually limited by the fact that controllers must be redesigned or

their parameters re-estimated for marginal modifications of a robot’s skill, or additional task constraints

[96], a problem addressed in part by some of the methods reviewed in the next section. These solutions

additionally better deal with the fact that human-like motions, which we tend to prefer, are difficult to

guarantee when the robot’s behaviour is dictated by planners and conventional controllers. A better

improvement still is the introduction of reinforcement learning, seen as a generalization synonymous

to adaptive optimal control, that does not have the same assumptions of perfect knowledge in system

descriptions, and operates directly on measured data and rewards from interaction [59], possibly yielding

more adaptive motor skills than pure optimal control.

2.1.3 Learning from Demonstration (LfD)

Learning from demonstration (LfD), also called programming by demonstration (PbD), or (the

biologically inspired) imitation learning, is a skill acquisition procedure and supervised learning framework

with which a robot can learn complex control policies or behaviors, usually movement trajectories, from

expert demonstrations. The technique was introduced to mitigate the tedium of manual programming,

and reduce developmental and maintenance costs, especially for complicated and intricate tasks. LfD

effectively allows desired reproduction of underlying movements that are possibly hard to explicitly model,

as in motor skills. LfD offers a form of bootstrapping when learning and improving on complex behaviors:

it acts as an initialization for imitation-driven learning, or as prior knowledge introduced into a control

policy, to effectively reduce search spaces and increase learning speed. With deep inspirations from

biological learning processes in humans, the use of LfD in robotics poses non-trivial questions of what,

how, when, and who to imitate: the former two can be addressed from the perspectives of learning and

encoding skills, respectively, while the latter two remain largely unsolved. A comprehensive overview of

LfD by Billard et. al. can be found in [17]. For a more recent survey of LfD in robotics by Argall et. al.

encompassing the terminology, common issues pertaining to demonstration techniques and media, policy

derivation from demonstrations, and a categorization of approaches, the reader is directed to [9].

LfD, by definition, presents a very suitable method for encoding human-like motor skills in

robots, and offering a starting point for autonomous improvement from there on. Among its benefits

is the reduction in search spaces for skill learning, directly affecting convergence and quality factors:

demonstrations enable starting from a promising subspace and eliminating conversely undesirable, or

even futile, regions. In policy-based reinforcement learning problems, demonstrations provide a form

of ’pre-structured policy’ that can increase problem tractability, next to neural networks, controllers,

and linear models [104]. As previously mentioned, LfD may also minimize requirements for tedious

programming, possibly increasing accessibility and user-friendliness of robots, to lay people, in a more

natural instruction paradigm. Human demonstrations have previously been encoded on robots using

kinesthetic teach-in, remote control of motor commands, and motion-capture set-ups (magnetic or optical

23

2.1. Robot Motor Skill Learning and Generalization

tracking; similar to what is used in the present work). The skills obtained from demonstrations can be

encoded in various ways: symbolically in pre-defined sets of controllers, on the trajectory-level using

statistical models like GMMs and HMMs, or in well-founded motor primitive formulations (see section 3.2

for a more detailed discussion). Learning demonstrated skills is, however, not devoid of complications

such as correspondence problems, robustness to perturbations, and potential for generalization, but

the literature reveals sustainable solutions to address each. Ultimately, LfD proves to be an invaluable

technique in the pursuit of learn-able, generalizable, robot motor skills, which warrants a review of the

concerned literature.

In [21], Calinon et. al. already demonstrate a viable application of LfD in a framework that allows

a robot to learn the latent details of a demonstrated manipulation task, reproduce it, and generalize it

to different operating conditions. From multiple demonstrations by a human, as they guide a humanoid

robot’s manipulators through kinesthetic teach-in, the relevant features of the task at hand are extracted

by projecting joint motion data onto its principal components, using PCA. A probabilistic representation,

in this latent space, is encoded in Gaussian and Bernoulli Mixture Models, which are used to find the

relative importance of each motion variable (joint speeds, etc.) and dependencies across them, yielding a

time-dependent similarity measure with which the motions reproduced by the robot can subsequently be

evaluated. The algorithm then generates trajectories using Gaussian Mixture Regression (GMR), which

aim to optimize this measure for a certain ’context’ (i.e. different operating conditions of the task), given

the robot’s kinematic constraints and the position of objects to be manipulated. Here, GMR reconstructs

trajectories by estimating the conditional expectation and covariance of the spatial values of each motion

variable through regression, given consecutive temporal values as query points. Experiments with the

small Fujitsu HOAP-2 robot performing tasks like moving a chess piece, lifting a bucket, and picking up

and moving an object, show the extraction of variable correlations and the reproduction of the motions

for different conditions, such as initial object position and using the robot’s other, un-trained arm. This

method for motion learning in a lower-dimensional subspace would prove to be a popular approach to

LfD, relying on statistical models for skill encoding, as in this paper, and eventually stochastic processes,

as in other reviewed publications.

An exemplary instance of using LfD to learn and generalize motor skills for robot manipulation

tasks can be found in [83], in which Pastor et. al. present one of the earlier applications of dynamic

movement primitives (DMPs) to such scenarios. DMPs (which are more thoroughly discussed in section

3.2) enable learning and generation of discrete and rhythmic movement trajectories, and are encapsulated

in second-order differential equations. This formulation enables efficient manipulation of goal-directed

motions, including reshaping trajectories, spatial and temporal scaling, and goal (end-point) generalization.

Pastor et. al. demonstrate the use of DMPs for generalization of demonstrated trajectories by altering

goals, with robustness to perturbations, presenting a revised version of the DMP equations that tackles

some numerical issues of the original formulation. Additionally, they suggest and implement sequencing of

individually learned DMPs that encode ’primitive’ actions, to enable synthesis of compound, complex

tasks (grasp-place-release), subject to considerations such as starting a subsequent motion before the

first ends, such that jerky transitions are avoided. A drink pouring task is learned and made adaptive to

24

Chapter 2. State of the Art

different object positions as follows. An anthropomorphic Sarcos Slave arm is taught motions for grasping,

pouring, retracting, and releasing through demonstrations by kinesthetic teach-in, with the resultant

DMPs being stored in a library. For a drink serving task, these are sequenced manually and executed

to perform the complex skill, for different bottle and cup starting positions on a table. A second task

involving moving a cup between two arbitrary positions on the table, while an obstacle interferes with the

planned trajectory, is performed to demonstrate online adaptation through obstacle avoidance, which

is enabled by simply adding a coupling term to the differential equations ([45]). This work exhibits the

power of DMPs for encoding desired movements, reproducing them robustly, generalizing to different

contexts (at least when they manifest as goal attractor positions), and sequential compound movement

generation, making them highly suitable for representing robot motor skills, as we consider them in the

present work.

Similarly of the opinion that robot motion skills acquired through imitation must be adaptive to

different ’contexts’, Ude et. al. present in [110] a novel method to make skills encoded in DMPs, as in [83],

generalizable to unseen situations, using only provided demonstration data, as in [21]. However, in contrast

to such works that project this training data into a lower-dimensional latent space, possibly causing

over-smoothing and loss of relevant information, the authors take an uncommon approach: computing new

DMP (control policy) parameters online, directly from data samples. In essence, they tackle the problem

of generating DMPs, expressed in terms of shape parameters w, temporal scaling parameter τ , and

goal (attractor) parameter g, for new ’situations’ represented by task parameters q, given demonstrated

trajectories corresponding to some observed values of qk, as training data (note that these task parameters

are synonymous to context variables; the term is used here to adhere to the authors’ terminology). To

learn a mapping, q → [w, τ, g], the online learning procedure uses Locally Weighted Regression (LWR)

to estimate w, and the less computationally tame Gaussian Process Regression (GPR) (see section

3.3, for an overview on GPs and GPR) to estimate g and τ . This unknown functional relationship

between task parameters q, which are used as query points, and the optimal DMP parameters is thus

learned, such that motions not initially part of the example database can be generated to address novel

contexts of the particular task. The validity of this approach is proven through experiments, among

others, where humanoid robots, HOAP-3 and CB-i, perform reaching tasks with and without integration

of visual feedback, respectively, with task parameters representing desired Cartesian positions. As far

as one can judge, notwithstanding the impressive skill generalization ability of the authors’ method,

the assumption of adequate DMP parameters being a smooth function of task parameters q, and the

reliance on demonstrations being sufficient to approximate this mapping, using a Gaussian process, suggest

conceivable difficulties in practice.

An interesting extension of this work was shortly proposed by Forte et. al. in [36], where the

authors identified the prohibitive computational cost associated with the algorithm running in a real-time

feedback loop. The alternative presented to tackle this involves substituting conventional DMPs with

dynamic systems that encode a whole class of movements, in the form of a more general non-linear system

of differential equations. Similarly, the mapping between task parameters q and those of this complex

function is realized using GPs, with GPR enabling real-time computation of this general equivalent

25

2.1. Robot Motor Skill Learning and Generalization

of DMPs in a manner more conducive to real-time sensory feedback loops. In addition, the previous

memory-based approach, which would store demonstrated DMPs in a database, is improved upon to allow

on-line switching between motion primitives, given sensory feedback, through the use of this formulation.

Despite the notable enhancement, general, aforementioned limitations may still apply.

LfD need not be limited to relying solely on position data, and has been effectively applied with

force sensing to learn adequate compliance behaviors through adjustable impedance, facilitating physical

human-robot collaborative tasks. In Rozo et. al.’s [96], the importance of force sensory information

and variable impedance in these scenarios motivates utilizing LfD to learn complex collaborative skills

that incorporate time-varying compliance levels, and subsequently modulating behavior based on user

actions and task parameters, enabling collaborative object transportation and table assembly tasks, for

example. Here, demonstrations are encoded probabilistically in task-parameterized GMMs (TP-GMM),

where task parameters: variables in the form of reference frames attached to initial, goal, human, object,

and obstacle positions and orientations, that influence robot behavior, transform the model parameters

(mixing coefficients, means, and covariances) to induce appropriate trajectories. In addition, each Gaussian

component is coupled with a local stiffness matrix, capturing the local dynamics of the action. Conducted

experiments demonstrate that a robot can successfully capture the dynamics of a task, including ’stiffness

profiles’, and reproduce it while handling varying position and force constraints, imposed both by the

environment and reasonable human-induced variations in the task. The presented framework lends itself

well to human-oriented applications, where safety is a significant concern, and demonstrates a more

advanced manifestation of skill generalization, owing to the novel integration of force modalities. While

the defined task parameters work well in the tested scenarios, restricting them to mere reference frames of

task-relevant objects around the robot is potentially limiting in expressing and differentiating between

contexts, from a more general perspective.

Choi et. al. ([26]) enhance the robustness and user-friendliness of the typical LfD process, by

accommodating potentially unreliable demonstrations such that the assumption that they always come

from skilled experts is relaxed. Also using GPs to encode demonstrated movements, they introduce

leverage parameters that weight the reliability or importance of training samples, which are used to score

demonstrations in the range (−1, 1). The resultant leveraged Gaussian processes encode both positive and

negative examples in a unified regression framework, with the leveraged GPR being used to approximate

the optimal behavior using a ”sparse-constrained, leveraged optimization” procedure. This method is

shown to outperform baseline LfD methods (namely, LfD-GP and LfD-kNN), in a planar navigation policy

learning problem. The novelty of this work lies in addressing latent shortcomings of the LfD approach,

when applied to instruct robots in a sustainable way, including the dependence on possibly unreliable

’expert’ demonstrators, or lack thereof, and the foreseeable decline in the quality of behavior as different

demonstrators contribute to the robot’s skill acquisition process, to name a few.

When it comes to tasks involving rigid body motion trajectories and contextual differences in terms

of object positions and execution speeds, the invariant trajectory representation of a demonstrated skill,

introduced in by Vochten et. al. in [113], provides interesting advantages over others. This representation

extracts rudimentary kinematic motion features, aiming to remove context-specfic information not

26

Chapter 2. State of the Art

necessarily inherent to the demonstrated motion, such that it can be generalized to a wider range

of contexts without the need for too many demonstrations. Frenet-Serret invariants: coordinate-free

descriptions of trajectories, are used to ”eliminate the dependency of the trajectory coordinates on the

choice of a reference frame in which the coordinates are measured, and the initial position and orientation

(pose) from which (an) object starts moving...”, as put by the authors. They extend these further to

avoid dependence on execution style: velocity profile, duration, and scale of motion, by introducing a

scalar progress parameter, referred to as the ’degree of advancement’. Dynamical system equations are

formulated to allow both reconstructing demonstrations and generating motion for novel contexts using

these dimensionless, geometric invariants, with the latter made possible by using the equations in a

constrained optimization problem, involving constraints relating to the contextual information. In the

interests of brevity, mathematical specifics are omitted here. While other representations incorporate

some invariance measure, such as time-invariance in DMPs, the resultant coordinate-free trajectory

representation is thought to maximize contextual independence, eliminating all but essential motion

information. Learning and generalization capabilities are evaluated in a simulated pouring task, in which

different target positions, various initial object orientations, and even mid-execution change in target

positions are all reliably adapted to. The authors present empirical evidence suggesting the superiority of

this approach to DMPs, since it seems to better preserve trajectory shapes, as contexts vary. Another

major merit is the ability to reasonably generalize given a single demonstration, since the invariants

theoretically provide the basic, intrinsic features of a trajectory. It is worth noting, however, that the

focus of this representation on rigid body motion problems means representations of context may be

limited to those conceptually adjacent to, if not synonymous with, object and target positions.

Shared control, or assisted teleoperation, frameworks have been augmented with LfD in [5] by

Abi-Farraj et. al., with the objective of leveraging demonstration data to learn optimal on-line adjustment

of the degree of robot autonomy, in contrast to following human preference. Given multiple demonstrations

of a task, a distribution of trajectories is learned, with low variances signifying particular preference on

the motion, and higher variance implying more relaxed requirements. This is used to drive the balance

between autonomy and tolerance for human intervention (or teleoperation), with areas of low variance

leading to stronger resistance to deviation from what is considered the nominal trajectory, according to

the distribution, and the others allowing more freedom in manually guiding the robot. Resultant behaviors

improve through continuous interactive executions, since the data from each is aggregated such that the

trajectory distribution is constantly refined. A linear-Gaussian model is used to model the distribution of

trajectory positions at each time-step, conditioned on a context variable that later enables generalizing

to new situations. In essence, the confidence of the robot in performing some task, given the context,

is embodied by the distribution, which intuitively depends on how varied or, conversely, how exact and

meticulous the demonstrations by the person(s) are. The approach was validated in experiments involving

a robot manipulator master-and-slave setup, with which an object grasping task was taught and partially

performed by a human. The robot was compliant to the person’s intervening inputs, as it reproduced the

demonstrated movements, but provided informative force feedback cues to signify their deviation from the

learned behaviour, facilitating an effective shared control architecture.

27

2.1. Robot Motor Skill Learning and Generalization

Lundell et. al. introduced global parametric dynamic movement primitives (GPDMP) to enhance

the generalization capabilities of traditional DMPs, by utilizing reinforcement learning [71]. Although

movement primitives and trajectory representations discussed up to this point enable generalizing over

task parameters without the need for learning separate primitives for each context, they interpolate across

demonstrations much better than they can extrapolate; a limitation specifically targeted by the authors.

As in previous approaches, The kinematics of a demonstration are encoded using DMPs. However, the

authors then use the PoWER algorithm (see section 2.1.4) to optimize the shape parameters of the DMP

such that they adapt well to some different local task parameters. The GPDMP model is constructed

from these optimized primitives, employing ”a linear basis function model with global non-linear basis

functions”, effectively creating a global model for mapping a task parameter to policy (DMP) parameters,

with better extrapolation to unseen task parameters. The use of reinforcement learning here ensures

that the training examples used to create the global model are reliable, as opposed to directly encoded

demonstrations, for the given task, and obviates the need for multiple demonstrations to capture the

same primitive. The ball-in-a-cup task, a popular motor skill and RL benchmark, demonstrates the

generalization performance of GPDMPs to different string lengths: the context variable used by the

authors. A KUKA LBR arm is taught using kinesthetic teach-in, and its extrapolation to unseen contexts

is shown to be superior to similar approaches. GPDMPs can be improved to handle more than a single

task parameter, as the authors state, but demonstrate an application of RL to LfD: a promising approach

that will be reviewed in the next section.

As we transition into realizing the potential RL has to improve demonstrated skills, particularly

when contextual adaptivity is of concern, we must also consider a reciprocal view: LfD can be an

effective tool to overcome characteristic issues of RL algorithms. Such an issue is that of exploring task

environments with sparse rewards, in which the difficulty in receiving any reward is exacerbated by long

task horizons and prohibitive action frequency and dimensionality, leading to stunted learning. In [79],

demonstrations are used by Nair et. al. to guide the exploration process when learning in the context of

robotics, such that random exploration is replaced by educated guesses of the promising areas to pursue

rewards, facilitating acquisition of good policies early on. By providing an algorithm with this form of

’pre-structured policy’, as it was referred to earlier, complex, multi-step tasks that would otherwise be

beyond current capabilities can be realized, in addition to vastly accelerating convergence. The authors

extend Deep Deterministic Policy Gradients (DDPG): an off-policy model-free RL algorithm that usually

uses neural network policies, with demonstrations, and employ Hindsight Experience Replay (HER): a RL

method that efficiently utilizes failed roll-outs to guide learning, producing an effective skill acquisition

and improvement framework. Experimental analyses are conducted for several robot tasks simulated in

MuJoCo, using a 7-DOF Fetch Robotics arm, such as pushing, sliding, and pick-and-place, demonstrating

the superiority of initializing actions with expert demonstrations, collected using a HTC Vive interface.

The framework’s performance is also tested on a more complex, multi-step task involving stacking blocks.

The presented combination of RL and LfD addresses the exploration challenge with a satisfying solution,

but may suffer from sample efficiency due to the large amount of experience that must be gathered, and is

yet to be applied to a physical robot.

28

Chapter 2. State of the Art

To summarize, the LfD framework, including the various trajectory representation and motion

primitive formulations, offers an intuitive and well-grounded solution to transferring motor skills to

robots. Using GMMs, DMPs, GPs, or the invariant trajectory representation, as examples, has been

shown to enable capturing the relevant features of a demonstration adequately, followed by reproduction

and reasonable generalization. Strictly speaking, however, imitation learning is primarily concerned

with matching demonstrator performance, which theoretically places limits on contextual adaptivity and

bounds on performance imposed by demonstration quality. Consequently, the use of reinforcement learning

emerges as a natural extension to this methodology. As discussed, LfD helps in overcoming problems in

RL, even provably transforming intractable problems to feasible ones, by virtue of the aforementioned

restrictions on search spaces ([59]). This, along with improving over demonstrated skills, gives rise to

various approaches that attempt to harmonize the two techniques, which are included in the next section.

2.1.4 Improvement Through Reinforcement Learning (RL)

The principal reason for augmenting robot skill acquisition with RL lies in an intuitive sentiment:

natural imitation should entail more than passive repetition of tasks, ideally incorporating some active

exploration in an adaptive learning paradigm [40]. Movement primitives, captured from demonstrations or

otherwise, can be refined over time using efficient RL algorithms, which are also applicable for generalization

to different contexts, in lieu of previously encountered methods like GMR and GPR. Drawing parallels with

skill acquisition processes in humans, the union of LfD and RL has been termed apprenticeship learning,

underscoring the virtues of learning both from a teacher and independent practice, and of independent

rehearsal [59]. In this manner, learned movements and actions better qualify as ’skills’, considering the

integration of guidance and experience, the latter potentially leading to outperforming the demonstrator’s

policy, yielding even better results.

Crucially, apprenticeship learning, thanks to RL algorithms that accommodate contextual knowledge

in policy learning, can also be well-suited for learning contextually-adaptive behaviour, as will be shown

by the publications reviewed in this section. The majority of these incorporate themes relevant to the

present study, including robotics, human-oriented tasks, leveraging LfD, and so on. The two subsequent

sub-sections target a particularly relevant sub-set of algorithms involving hierarchical reinforcement

learning (HRL), and contextual policy search (CPS), respectively.

Robot behavioral adaptation in HRI has long been realized through reinforcement learning for the

adjustment of skills or general behavior. For instance, Mitsunaga et. al. present a behaviorally adaptive

system that enables interactive robots to leverage social human cues in order to adjust their behavior

to match preferences of a person with whom they interact [77]. The authors propose perceiving such

signals, particularly discomfort cues, and using them as inputs to a RL reward function, which helps in

optimizing behavior to minimize these signals. These include gaze aversion, or irregular repositioning of

the body relative to the other party, whose minimization would ensure more acceptable and adequate

reciprocal behavior. An experimental setup involved subjects interacting with a robot that produced

various behaviors, subject to parameters that can be easily altered and strongly characterized an ongoing

interaction (distance, extent to which human gaze is met, waiting time between utterance and an action,

29

2.1. Robot Motor Skill Learning and Generalization

etc.), and adjusted them according to implicit inputs from the user. Using policy gradient reinforcement

learning (PGRL), and utilizing its perception, a humanoid robot, RobovieII, was shown to adjust behavior

by fitting the parameters to a person’s liking, during interaction. This RL-based, human-oriented

adaptation, although it marginally addresses contextual adaptivity, provides useful insights. As human

subjects attested to, the resultant behavior is perceived as more natural and human-like, despite its

simplicity, owing to the use of social guidance embodied in perceptual cues, to acquire and improve

on interactive capabilities from experience. This is significant since human intentions and preferences

are determined by latent factors that are manifested in these cues [20]. On the other hand, the study

exposes complications of PGRL, such as withholding or degradation of the desired feedback, the inaccurate

bases on which the reward function is crafted [97][62], or the use of random policy perturbations whose

magnitudes, if inadequately chosen, can hinder gradient estimation and destabilize learning: particularly

undesirable outcomes in robotics applications [86][85].

In [40], Guenter et. al. use RL to improve upon constrained reaching movements for goal-directed

tasks learned from demonstrations, with particular emphasis on adapting executions to unforeseen

situations. The authors use GMMs to encode a ’model’ trajectory from multiple demonstrations, trained

using standard EM, with timesteps as the input variable and joint velocities as the outputs. This facilitates

generalizing trajectories to different goals using GMR, and driving a dynamic system, which is inspired by

the human reaching movement model, VITE. While this system can handle reasonable perturbations that

necessitate adjustments, these may be limited by what was observed in a set of demonstrations, leading to

failures that require either demonstrating what to do in this new situation, or enabling the robot to learn

what to do autonomously. The inclusion of RL addresses this problem, introducing some exploration

process that would enable learning new solutions to the given task. The algorithm used to facilitate this

adaptivity is the gradient-based, value-based Natural Actor-Critic (NAC) algorithm, which continuously

monitors the trajectory executed by the dynamical system, stepping in and adjusting parameters through

exploratory trials whenever a goal cannot be reached, thus ensuring a novel solution can be attained. For

evaluation, the Fujistu HOAP3 robot was taught two tasks: placing an object in a box, and grasping a

chess piece, through kinesthetic demonstrations, and its subsequent performance in different task contexts

was tested. The first task was impeded by obstacles at different positions along the model trajectory,

which could only be avoided when the RL algorithm modified it, while maintaining its shape, to guide the

robot through the task successfully. In the second, a chess piece originally could not be grasped from

different initial positions of the robot, due to limitations of its morphology, but active exploration of

the solution space helped the robot learn new reaching movements. This presents a strong case for the

integration of RL in a LfD approach, which may otherwise be lacking in, if not devoid of, exploration

pursuits.

The utility of connecting imitation and self-improvement strategies in robot skill learning and

generalization is similarly highlighted in [63] by Kormushev et. al.. In essence, the authors present a

skill representation based on a mixture of dynamical systems, initialized from human demonstrations of

a task, which are used to learn couplings across multiple motor control variables. This is essentially a

variant of DMPs which incorporates correlation information in its equations. Policy learning by Weighting

30

Chapter 2. State of the Art

Exploration with the Returns (PoWER) [60] (discussed in section 3.1.2), a gradient-free EM-based policy

search algorithm, is used to refine and modulate these representations of the demonstrated skill. Among

the reasons for this algorithm’s use, and its evident popularity, are its independence of gradient estimates

and, thus, learning rates, and suitability for learning in high-dimensional spaces. In addition, ’importance

sampling’ is employed to make the best use of most successful experiences of the robot, reducing the

number of roll-outs required to converge, enabling on-line learning. The authors present results of their

approach in two experiments: one involving a simulated reaching task that requires obstacle avoidance,

and another in which a robotic manipulator is tasked with flipping a pancake on a pan. The reproduction

of both is validated, and the high variability of the dynamics in the second task is adequately handled

by providing a single demonstration to initialize the RL algorithm, as opposed to relying on multiple

demonstrations, for which the variability in trajectories could be a concern. Contextually adaptivity with

this approach, however, remains relatively unexplored.

The tuning of motor primitive parameters, using RL, to adapt to new situations is dealt with by

Kober et. al. in [61], for which Cost-regularised Kernel Regression (CrKR) is introduced. Aiming to avoid

re-learning tasks, the authors use RL to adjust meta-parameters of DMPs, mainly the spatial and temporal

scaling parameters, such that behaviors can be generalized in scenarios that require only that level of

adaptation. CrKR, which is similar to GPR, enables learning a mapping from situation/task parameters

to the meta-parameters, while encoding a predictive variance that implicitly facilitates exploration in

an on-policy, non-parametric, policy search algorithm. A group of complex tasks were used to evaluate

performance both in simulations and on real robots, including a dart throwing game, table tennis, and ball

throwing. A notable limitation here however, particularly from the perspective of the present work, is that

more complicated characteristics of trajectories, such as the shape, have not been learned using CrKR,

which may limit its potential when generalizing tasks that call for altering the dynamics of the robot’s

motions in that manner. Moreover, it may share the computational burdens exhibited by the very similar

GPR, which occasionally complicates on-line learning, except when certain mitigating steps are taken.

Another use of the PoWER algorithm with DMPs, but in a more unorthodox approach, is presented

by Da Silva et. al. in [28], where the familiar problem of learning the mapping between task and policy

parameters is posed as the estimation of a topology of a lower-dimensional manifold, from which the

appropriate skill parameters can be extracted. The authors assume that different realizations (or contexts)

of a task are sampled from some distribution, and acquire task samples and their corresponding solution

policies, i.e. demonstrations, to train a family of non-linear regression models that can learn that mapping,

enabling the construction of a parameterized skill. ISOMAP, a method used to find global geometries of

high-dimensional spaces and the number of non-linear DOFs associated with them, is used to extract the

topology of the policy space on which the skill parameters lie, which facilitates training the classifier that

chooses the particular manifold of the space, and using non-linear regression models (SVMs here) to finally

map the context’s task parameters to those of the optimal policy. In a simulated dart throwing task,

different instances of the task were generated by choosing different dartboard positions, after presenting

full arm movements as training examples, then the extracted skill manifolds are analyzed. Interestingly, it

is found that the algorithm embeds the 37-dimensional space of policies in a 2-dimensional skill manifold,

31

2.1. Robot Motor Skill Learning and Generalization

signifying the confinement of the policies to a subspace of same dimensionality as the task parameters

(having 2 DOFs). Following the manifold selection step, the progressive improvement of the PoWER

algorithm of the DMP parameters with experience demonstrates the framework’s ability to obtain different

’strategies’ required to solve a sampled task. This raises a question regarding the applicability of this skill

manifold topology; whether it exists for other scenarios and how much experience is required to reliably

extract it. It is also natural to wonder about which task instances to sample for most efficient learning

progress, given a task distribution; this is an instance of a curriculum learning problem.

In [57], Kim et. al. focus on improving LfD for cases in which demonstrations are either sub-optimal

or scarce, contributing a value-based RL algorithm, Approximate Policy Iteration with Demonstration

(APID), that accomplishes that end. Combining expert and interaction data, which is synonymous to

the aforementioned apprenticeship learning, is the core concept of the algorithm, which is expected to

perform better for real-world policy learning problems, by offsetting the individual drawbacks of each.

The intuitive idea, here, is to construct a unified dataset of state-action pairs, containing those collected

by executing roll-outs (RL data) and observing demonstrations (expert data), the latter taken as actions

sampled by an ’expert policy’, and using this to learn the optimal Q-value function, from which the

optimal policy is inferred (refer to section 3.1.1 for the foundations of value-based RL). As described

in the paper, the process is akin to shaping the value function in the subspace spanned by the expert

samples, while improving the policy using RL everywhere else. In a simulated car brake control and a real

robot path-finding tasks, the authors learn the policy required to choose the correct action from a finite

set of primitives, such as move left, move forward, brake, do nothing, etc. The simulated task was tested

for varying cases of demonstration sub-optimality and scarcity, against benchmark algorithms. APID was

shown to outperform the others for the robot navigation task, even when provided with a single trajectory

demonstration, requiring about 10 iterations of RL to converge to some specified goal.

In [70], Levine et. al. achieve autonomous learning, execution and generalization of complex,

bi-manual robot manipulation tasks through extracting skills using linear-Gaussian controllers to represent

trajectories, and Guided Policy Search (GPS). Sharing some similarity to DMPs, the linear-Gaussian

controllers used here could explicitly encode a distribution of actions, like joint torques, in terms of

join states at each timestep, and represent any Gaussian trajectory distribution. With a few system

interactions, a form of trajectory-centric controller optimization is performed to train multiple controllers

in a linear-quadratic-Gaussian (LQG) problem to successively optimize the trajectories required to solve a

particular task. It is worth noting that controller optimization updates are subject to constraints bounding

the deviation from the current controller in order to limit information loss: a technique very similar to

one applied by the REPS algorithm (refer to section 3.1.2 for more details on information-theoretic PS).

Although the resulting controllers are capable of executing the task under reasonable perturbations, they

may not handle larger variations in task context. Therefore, GPS is used to combine the results of one or

more controllers to learn a more general, nonlinear neural network policy, with arbitrary parameterization.

Here, GPS involves sampling from the optimized trajectories, provided by the learned controllers, to train

a policy in a supervised fashion, instead of training directly using RL (the more conventional approach),

resulting in policies that can handle wider ranges of operating conditions than the individual controllers.

32

Chapter 2. State of the Art

Preceding experimental evaluations, the authors emphasize the importance of defining good cost (or

reward) functions that both minimize system interaction time, and obviate manual engineering or tweaking

for similar behaviors, particularly for manipulation tasks. A set of contact-rich tasks: lego-stacking,

toy assembly, inserting rings onto pegs, and screwing bottle caps, were used to demonstrate efficient

autonomous learning of the controllers, with robustness to minor perturbations, and generalization to

different target positions after training neural policies with GPS. Perhaps, the most impressive observation

here is the non-requirement of demonstrations, since the robot is able to learn these tasks from independent

experience. Despite our focus not being on contact-rich manipulation, this work presents interesting

implications on policy formulations, and the fact that appropriate ones may expedite fully autonomous

RL, obviating the need for expert demonstrations.

While demonstrations are not guaranteed to be abundant, reliable, or even feasible, it is difficult to

overlook their role in policy initialization and accelerating learning in difficult problems, which is why LfD

has also been applied in conjunction with deep reinforcement learning. Hester et. al. ([44]) tackle the

difficulty of complicated benchmark RL algorithms by leveraging available demonstration data, collected

during previous executions by a person/machine that performs as desired, to pre-train an agent before

it commences self-improvement using data generated by a deep RL algorithm. This boosts learning by

starting with a better initialized policy, especially for cases in which agents must learn in real-world

environments, and in which no simulators are available to facilitate acquisition of experience from a huge

number of trials, away from the safety concerns of initial, sub-optimal behavior. DQN, the quintessential

deep RL algorithm that approximates the Q-value function using a deep neural network, is extended in

this paper to the Deep Q-Learning from Demonstrations (DQfD). A pre-training phase in DQfD learns a

value function that imitates the demonstrator, using supervised losses and a TD (temporal difference; refer

to an overview on concepts of value-based RL in section 3.1.1) loss which ensures it satisfies the Bellman

equations so that learning can continue using RL updates from that point on-wards. In experimental

comparisons of the algorithm alongside Double DQN (no demonstrations) and plain supervised imitation

(no self-improvement), on benchmark Atari games, the virtues of this manifestation of apprenticeship

learning in a deep RL scenario are evident. As expected, DfQD outperforms both approaches, doing

so even when provided with intentionally poor demonstrations, and managing to learn policies that are

more optimal than those of the best available demonstrations. It is important to note however, that

the conclusions apply to environments with some similarity to the tested Atari games, with relatively

less bearing on complex, dynamic robot manipulation tasks, for example, and those in which contextual

adaptivity is of appreciable consequence. Another factor is the use of neural network policies, which may

not be the choice solution for other apprenticeship learning frameworks, and thus renders the assumption

that demonstration data and reward signals can be straightforwardly combined inadmissible.

In [42], Hazara et. al. utilize and improve upon the aforementioned GPDMP LfD model ([71]) in

an RL-based incremental learning procedure, taking a principled approach to incrementally constructing

a database of motion primitives, with the objective of better generalization to new situations in robotic

tasks. Learning a skill in environments exhibiting regular perturbations is framed as an incremental

learning process, in which an ideal trajectory, which must be followed using RL, must first be estimated for

33

2.1. Robot Motor Skill Learning and Generalization

each new situation. The authors postulate that the uncertainty when predicting the mapping between a

task parameter and corresponding motion primitive parameters should be utilized to enhance the learning

process. GPDMP, which generalizes imitated tasks to unseen situations by learning this mapping, is

a non-linear global parametric LfD model that was previously shown to outperform local and global

linear models, particularly in extrapolation capability and computational savings. In this paper, it is

extended to provide estimates of prediction uncertainty, similar to what is provided by the more expensive

GPR, with which a policy search-based RL exploration process is guided. Having a database of DMPs,

GPDMP extracts the underlying distribution that is used to generate DMP predictions for task instances.

If unsuccessful, these predictions are optimized iteratively using the model-free PoWER algorithm, and

are otherwise added to the database, updating the underlying GPDMP model. The exploration, and

thus successful convergence, of the RL algorithm is driven by the covariance of the DMPs stored in

the database, which is learned using an empirical Bayes approach, similar to that used in covariance

matrix adaptation (CMA). The result is an incremental, online procedure that iteratively builds a general

motion primitive generative model, whose performance is demonstrated with the ball-in-a-cup task on

a real robot, the KUKA LBR 4+. The intricate framework, while fairly complex, possesses qualities

conducive to sustainable. autonomous skill acquisition, including requiring a single expert demonstration,

using experience data efficiently, and exploiting predictive uncertainty to systematically guide exploration.

Similar to adjacent methods, however, the nature of context variations that can be encoded and generalized

across by the acquired skill remains to be thoroughly investigated.

A more lucid implementation of contextualized action, or skill, adaptation by Colome et. al.

can be found in [27], where the best actions for different contexts in some robot manipulation tasks is

learned in an approach that employs probabilistic movement primitives (ProMPs) and GMR. A notable

resemblance to the present work is in the representation of changing environmental conditions in the form

of dedicated context variables, with the objective of generalizing learned MPs to various task contexts.

Mentioning the lack of scalability in frameworks that would aim to describe what action to perform

in every context, due to the curse of dimensionality, the authors attempt to build a generative model

that learns common contextual features of similar actions that can perform a task in a situation, and

thus generate appropriate ones, given the context. Since ProMPs traditionally require a large number

of parameters to encode several actions that have common context features, the authors opt for first

applying a successful EM-based dimensionality reduction technique. The more compact representation is

used to learn a GMM that also includes a context variable, where the authors use Persistent Homology to

determine the optimal number of Gaussian components. Subsequently, given an observed context variable,

a conditioned mixture model is used to sample the appropriate robot commands, for example, that best

accomplish the task; GMR is thus used to generate the most likely MP/action parameters, given the

context. The relation of this approach to RL lies in a clever model learning method: the GMM model is

updated using reward-weighted, performance-specific component responsibilities, with these rewards being

converted to relative weights with a policy search algorithm such as REPS. The resulting EM updates of

the model then closely resemble a direct RL algorithm. In a mannequin-feeding and peg insertion robot

manipulation tasks, the authors experimented with the generalization capability of their model. Different

34

Chapter 2. State of the Art

object positions and types requiring adjusted reproductions for the feeding task were successfully adapted

to, following initialization with 40 demonstrations. It is conceivable that the probabilistic nature of this

model, especially owing to the use of ProMPs, introduces a dependence of the generalization performance

on the distribution of demonstrated trajectories, evident from the authors’ own care to include as much

contextual variation in them for their experiments. Nevertheless, the dimensionality reduction of the

MP parameter space is a noteworthy contribution of the work, among others, which may prove to be a

necessity for problems with high-dimensional, continuous action spaces.

We now turn our attention to two particularly relevant classes of RL algorithms: hierarchical policy

search and contextual policy search (refer to section 3.1.2 for policy search formalisms).

Hierarchical Policy Search

The term hierarchical reinforcement learning (HRL), due to some obscurity, may refer to one of several

concepts, including applying RL at the highest level of a control system hierarchy, generating skill

hierarchies in a developmental approach through RL, or learning policy parameters of sequences and

multiple layers of policies, simultaneously [101]. Strictly speaking, the first does not qualify as HRL, while

the last presents the most recognizable form of the term: the introduction of temporal abstraction to RL

problems, enabling the construction of a hierarchy of policies, usually called options, which determine the

selection of lower-level options, or ’leaf’ action primitives. This can serve to exploit the hierarchical nature

of tasks (such as cooking), or avoid learning a single ’monolithic’ policy in favor of effectively introducing

decision points along a policy that may help with learning both the optimal choice of behaviors or actions

in a given situation, and the optimal parameterizations of each choice. This is highly suitable for the

contextually adaptive skill acquisition we seek, as expressed in the reviewed literature.

Stulp et. al. in [101] present an interesting framework for integrating DMPs into a hierarchical

RL approach for learning sequential robot skills, using the policy-based Policy Improvement through

Path Integrals algorithm, PI2 ([106]). The concepts of task decomposition and temporal abstraction are

highlighted as fundamental for reducing search spaces and making complex tasks, particularly those with

underlying action hierarchies, more manageable to learn. Here, HRL is applied for optimizing sequences

of DMPs, such as for segmented pick-and-place tasks, by following a method very similar to our own:

learning the trajectory shapes and goals to solve the task optimally. The hierarchy here refers to the

simultaneous learning of both parameters, at different levels of temporal abstraction, using a unified cost

function and update rule. Similar to the present work, they initialize their policies (the DMPs) with

demonstrations, then use PI2 to learn the parameter exploration parameters, which are directly encoded

in the DMP equations, and which allow sampling roll-outs for learning. The author’s observations of

human executions in a pick-and-place task yield interesting insights: subjects’ theoretical motion primitive

’parameters’ were influenced by those required for subsequent primitives, and intermediate goals were

optimized with respect to ’cumulative cost’ of the entire sequence. These notions principally informed

their policy update strategy: within a sequence of DMPs, the shape parameters are updated according

to the ”cost-to-go within a primitive”, while goal parameters are updated according to total cost of the

current and all subsequent primitives. In an experimental setup, results from a robot manipulator tasked

35

2.1. Robot Motor Skill Learning and Generalization

with a similar problem demonstrated the superiority of this HRL method over learning only shape or goal

parameters, or using naive cost updates that do not consider the whole sequence of primitives. This work

shows the merit of learning DMP trajectory shapes and goals hierarchically, as we do in the present work,

even if the task itself is not necessarily hierarchical in structure.

Another hierarchical approach to a policy search algorithm by Daniel et. al. extends the basic

version of the one we employ in this project, REPS (refer to section 3.1.2 for a brief explanation, and 5.1

for a detailed analysis), to a hierarchical variant named HiREPS, which applies the prevalent mixed-option

policy formulation [29]. In it, a gating (’supervisory’) policy picks options which are separate policies

analogous to movement primitives or templates, given the state, and each option (sub-)policy describes

the behavior under that option, specifying the eventual low-level actions to be executed. As previously

mentioned, this avoids a single, ’concentrated’ policy, and the authors utilize it to learn multiple solutions

for a single task, if they exist, such as reaching for an occluded object using any of multiple redundant

paths. REPS, an information-theoretic policy search algorithm, is formulated to incorporate this structure:

the optimal hierarchy is initially unknown and the option variable, o, unobservable, for which an EM

algorithm is used to estimate these latent variables, creating a ’proposal distribution’ from samples of the

current policy at each time-step, and subsequently updating both classes of policies using reward-weighted

MLE. The exact details of the algorithm are omitted here, for brevity. It is worth noting, however, that

the authors add a novel constraint to REPS’s constrained optimization problem that ensures options are

clearly segregated in the solution space, avoiding undesirable overlaps. Presumably for simplicity, the

paper concentrates on episodic cases, in which a parameterized option policy, once selected by the gating

policy, is executed until the end of an episode, much like what is done in the present work. Using some

simulated trajectory-centric robot tasks, which call for deciding between equally satisfying solutions to the

same problem, the authors show the HiREPS extracts the underlying decision hierarchy, outperforming

REPS, in the designated tasks. An intriguing property of HiREPS is its handling of problems with

multi-modal solution spaces, which deceive most PS algorithms into averaging over the optima of each

mode, thus converging too slowly, or to a decidedly sub-optimal solution (imagine driving straight into a

tree as a result of the indecision between to equally suitable options: swerving left or right). Exploiting

the hierarchical policy structure, HiREPS could successfully identify both solutions and segregate them,

strictly choosing either. The algorithm has since been evaluated on a real Barrett WAM arm, particularly

demonstrating generalization of a motor skill by learning concurrent solutions to a task [30], and more

extensively developed and analysed in a long version of the paper, [31].

More recently, Pinsler et. al. ([91]) proposed a HRL framework that incorporates human feedback in

context of robotic grasp skill learning. Since designing robust reward functions for intricate grasping tasks

is known to be far from trivial, they opt for learning a bi-perspective reward that combines models from

both human feedback and the robot’s predictions, in a way that maximizes feedback and sample efficiency,

respectively. In essence, preference feedback on task outcomes are collected from a human to learn an

outcome reward model (ORM), on the low-dimensional ’outcome space’, and the resulting information is

consolidated with the robot’s learned context-parameter reward model (CRM), which predicts a chosen

parameter set’s performance prior to a roll-out, by back-propagating it to this higher-dimensional policy

36

Chapter 2. State of the Art

parameter space. Both models are learned using GPs. This is used in an HRL scheme that relies on

contextualized policies, so that complex grasping tasks are realized through more generalizable motor

skills. Here, an upper-level policy π(k|s) determines the context-parameter pair best describing a given

problem (where k represents an option, c: a context), basically choosing a low-level option policy π(ω|c),

which in turn generates the appropriate motion parameters, given the context. The upper-level policy

relies on the contextual GP-UCB acquisition function to greedily choose the best option, based on the

GP reward model, and the lower-level policies are simply Gaussian distribution that are individually

updated using the REPS algorithm. The presented HRL with Bi-Perspective Reward Learning from

Preferences algorithm observes the current context c, drawn from some distribution µ(c), selects the most

promising option policy using the upper-level policy, based on the learned CRM, performs a roll-out by

sampling motion parameters ω from the lower-level policy, initialized from demonstrations, and decides

whether to ask for human feedback based on the expected change in the distribution of the ORM. Finally,

the reward models and lower-level policies are updated. Since this bears a striking resemblance to the

C-REPS algorithm we apply in our work, it is important to point out a few differences. In C-REPS, the

upper-level policy π(ω|c) chooses lower-policy parameters given the context, while the lower-level policy

π(u|x, ω), generates low-level actions. The former is implemented as a linear-Gaussian model, as opposed

to their GP model; the latter, as a DMP, instead of simple Gaussian models. Crucially, the learning is

performed using REPS in either case, but is done at the upper level in our case, and at the lower level in

theirs. These differences make our selected approach more adequate for the addressed problem. On the

other hand, the integration of a second form of feedback from the human, which is absent in our case,

may help accelerate learning, as is demonstrated in the authors’ grasping tasks, subject to different object

types. Finally, a model-based extension of the algorithm has not been introduced, which could have been

of greater significance to the present work.

In conclusion, the relevance of a hierarchical view of RL to our problem lies in making policies

amenable to contextualization, and thus better suited for generalization of robot skills. Since a reasonably

compact, monolithic policy, however expressive, would struggle to capture optimal behavior in multi-modal

and context-dependent solution spaces, this seems to be an intuitive extension. Apart from ensuring

feasible learning in some problems, it has also been shown to increase sample efficiency [91], which directly

follows from these facts. As discussed, the inclusion of dedicated context variables has already been

applied in HRL frameworks, and approaches that characteristically do so are discussed in the next section.

Contextual Policy Search

CPS extends PS algorithms to allow contextual learning, i.e. learning in cases where solution spaces are

not necessarily uni-modal, owing to the different situations that characterize the nature of a task, and

where policies must cope with variable operating conditions, on which optimal behavior may significantly

depend. In these cases, an agent chooses policy parameters based on the current observed context variable,

presumably drawn from some stationary distribution, and learns from a context-dependent reward signal.

A context variable sufficiently specifies the particular setting of the task, to which the policy must adhere.

CPS algorithms, although not necessarily hierarchical, are usually formulated in hierarchies due to the

37

2.1. Robot Motor Skill Learning and Generalization

aforementioned motivations. This section contains a brief review of some CPS approaches, the first of

which we have determined to be particularly suitable for our problem.

In [67], a contextual variant of the model-free Relative Entropy Policy Search (REPS) algorithm,

C-REPS, is introduced by Kupcsik et. al. to deal with the learning and generalization of robot skills.

By augmenting the algorithm with GP forward models that capture the dynamics of the robot and its

environment, at least pertaining to the task at hand, they create Gaussian Process Relative Entropy Policy

Search (GPREPS): a model-based CPS algorithm that is able to learn higher-quality policies in a more

sample-efficient manner thanks to these models, whose predictions substitute real robot trials. GPREPS

is further developed and evaluated in [66]. The idea, which has been briefly mentioned, is to have a

hierarchy consisting of an upper-level policy, π(ω|c): a linear-Gaussian model that chooses parameters ω

to maximize return given context c, and which is learned using REPS, and a lower-level policy, π(u|x, ω):

predominantly DMPs, or generally any policy that specifies control actions u (elsewhere also denoted by a)

given the current state and the policy parameters dictated by the former. The sample-efficiency previously

alluded to is realized by incorporating forward models: initial roll-outs are performed on a real robot to

capture the dynamics of the task in GP models, which are then used to sample ’artificial’ trajectories and

their expected returns that constitute the dataset with which upper-level policy updates are performed,

through weighted MLE. These GP models are also refined at each iteration, mitigating effects of model

error. The advantages are several: relying less on real robot interactions implies less safety concerns,

tedious procedures, wear and tear, and learning time. Additionally, a characteristic problem of model-free

RL: high variance in reward, is avoided, and GPs inherently reduce model errors, since they naturally

express learned model uncertainty. The hypothesized gain in performance, especially in reducing required

interaction experience, is evaluated in comparison to the REPS and PILCO [34] algorithms, in simulated

pendulum balancing, ball throwing, and hockey tasks, the latter also tested on a real manipulator, in

which different target positions represented task ’contexts’. All experiments proved the superior efficiency

of GPREPS, which makes it theoretically more applicable to learning contextual policies in real-robot

tasks. This model-based improvement does not come without a price, however, which is evident in the fact

that task dynamics being adequately representable using GPs and the infamous computational burden of

GPR become notable concerns.

In [2] and [1], Abdolmaleki et. al. improve upon the contextual approach to policy search, there

termed contextual stochastic search, following the identification of some drawbacks of REPS. With the

same aim of enabling an agent to choose parameters that fit task context, without having to re-learn a skill,

the authors find that search distributions (policies) learned using REPS tend to converge prematurely.

This is an effect of the weighted MLE used to estimate the covariance matrix, which leads to over-fitting

and diminishing variance/exploration too fast. Therefore, they implement a novel covariance regularization

method to obtain better estimates, in which a weighted average of covariance estimates over all iterations is

used, and the influence of the initial distribution is decreased at each iteration (entropy reduction), giving

rise to the Covariance Estimation with Controlled Entropy Reduction (CECER) algorithm. A contextual

variation of CECER is identical to C-REPS in every other regard. Results show both contextual CECER

outperforming C-REPS in benchmark problems, the latter suffering from premature convergence.

38

Chapter 2. State of the Art

The same authors further extend CECER to introduce two other improvements over REPS. The

first addresses a limitation due to the parametric nature of the upper-level policy, a linear-Gaussian model,

whose linearity with respect to the defined context variable, c, restricts it to mere linear generalization

over tasks. Moreover, while mean is context-dependent, the covariance matrix is fixed (common) for all

contexts, not qualifying the search distribution as fully context-dependent. The non-parametric local

CECER algorithm, presented in [3], utilizes local Gaussian distributions for the policy, and modifies policy

updates such that the covariance matrix is as context-dependent as the mean function, by adjusting the

original equations used in REPS. Preliminary results gathered from simulated robot toy task experiments

demonstrate the algorithm learning policies that are non-linear functions of context variables, unlike

REPS, and assigning different variances to different context values, unlike an older non-linear extension,

RBF-CECER.

Naturally, higher-level and more expressive variables have been exploited to represent contexts,

instead of simple integers or real-valued vectors, including high-dimensional ones such as camera images.

These are traditionally projected into lower-dimensional subspaces using methods like PCA, both to enable

applying the aforementioned CPS algorithms and making learning more feasible. The work presented

in [105] by Tangkaratt et. al. is motivated by the relative inefficiency of this, however, and contributes

a CPS algorithm that incorporates this otherwise pre-processing step. Linear dimensionality reduction

techniques, when used for this purpose, may suffer from ’distractor’ dimensions: components of the latent

representation of the context space which, while they may vary significantly, may have little to no bearing

on the achieved reward. Contextual Model-based Relative Entropy Stochastic Search (C-MORE) implicitly

performs dimensionality reduction by learning a low-rank representation of the reward function/model,

shown to produce an equivalent result. This is learned using a nuclear norm minimization approach that

can enforce this low-rank representation. The C-MORE algorithm is very similar to C-REPS, relying on

the same linear-Gaussian policy and information-theoretic policy updates. Similar to GPREPS, C-MORE

is model-based, but with an interesting distinction: instead of the implied model being used to approximate

system dynamics and generate artificial roll-outs, it is used to approximate a reward function. While

C-MORE outperforms C-REPS with PCA for tasks whose contexts are identified from raw images, it is

only proven to do so in such high-dimensional scenarios, keeping in mind that the nuclear norm approach

is computationally expensive and whose use must thus be justified. An unfortunate consequence of relying

on locally fitted Gaussians to achieve a globally non-linear model is the fact that all training data must

be stored in memory. Nevertheless, the approach offers interesting avenues for more complex context

representations, possibly learned from visual perception, and more adventurous reward model formulations,

such as deep neural networks.

The use of such non-parametric models for contextualized policies has recently become a recurrent

theme in CPS research due to the restricting assumptions of parametric models. While some search

distributions, i.e. contextual policies, have means that are linear in context features, or are mixtures

of linear models, other problems have more complex mappings from contexts to policy parameters,

necessitating more flexible models. In [12], Barbaros et. al. categorize promising non-parametric methods

applicable to contextual stochastic search into memory-based (lazy) and eager learning methods, and

39

2.1. Robot Motor Skill Learning and Generalization

investigate their defining features, contributing an algorithm that aims to consolidate their strong-points.

Local CECER ([3]) is an example of a locally-weighted, memory-based algorithm, where locally linear

models are fit to nearby points to make a prediction, producing highly non-linear global models, but

requiring storage of all training data. On the other hand, eager methods include GPs and GPR which

escape linear boundaries by computing inner products of the provided features (context variables, in our

case), in some kernel space. In their comparisons, the authors conclude that memory-based approaches

are hindered by expensive calculations at each prediction, while eager approaches struggle to find global

parameters that adequately fit the data in all parts of the search space; drawbacks that are offset by the

opposite approach. They thus propose a novel hybrid algorithm that combines the advantages of either

(namely, the NP-REPS and local CECER algorithms) which is shown to learn faster and converge on

better policies in context-dependent simulated tasks. These included a planar robot hole-reaching task

with varied hole positions, widths, and depths, and a cart-pole balancing task with uniformly sampled

cart masses and pole lengths.

While we can demonstrate motor skills to robots and equip them with the tools for self-improvement

through acquired experience using apprenticeship learning, and even extract skill hierarchies to some

extent using HRL, contextualized policies enable behaviour that is flexible to changing contexts. As a

result, honed motor skills can become even more general and robust to dynamic tasks and environments.

CPS is therefore a promising solution, and the various algorithms studied here, along with their recently

proposed extensions, merit further study and evaluation on real robot platforms performing everyday

tasks that require contextual adaptivity.

Figure 2.1: Mind-map of the surveyed literature concerning approaches to robot contextual motor skill
learning.

40

Chapter 2. State of the Art

2.2 Human-Robot Object Hand-overs

This section reviews some of the research concerning our representative use case for a generalizable

robot motor skill: human-robot object hand-overs (HOs). The aim is to gather insights on the nature

of the task from the perspectives of both human and robot executions, viable formulations of the skill,

principle contextual factors, and how they were adapted to in the past. A collection of enlightening studies

is thus briefly surveyed below, summarizing the salient findings and contributions of each. Despite a

significant body of research on the topic, it is recognized that human HOs are not understood well enough

to allow transferring the latent mechanisms of the skill to robots, suggesting room for further research on

the topic.

Kajikawa et. al. and Shibata et. al. present one of the earlier studies on human-robot object HOs

in [55] and [98], particularly concerning motion planning, citing the task as an exemplary embodiment

of a collaborative everyday action to be performed by a service robot: a sentiment we share and which

motivates our choice of it as use-case for our work. In their work, they attempt to study and analyze

human HOs, particularly focusing on the characteristics of human motions, such that robot hand-overs

are designed to be more smooth, predictable, natural, and human-like. This is done in a qualitative

approach: extracting these characteristics and attempting to reproduce similar trajectories, avoiding

explicit knowledge of the complex inner systems that produce this behavior in humans. Simple human

HO experiments, where objects are transferred in a 2D plane (a table), were used to record and analyze

executed trajectories and velocity profiles. The result is a division of the task into phases, and some

observed patterns, such as the receiving person tending to commence motion just after the deliverer

reaches their maximum approach velocity. The findings are then implemented in a potential field-based

path planner, in which velocity and acceleration equations are written to reproduce similar behavior.

A simulated robot arm, completely driven by the potential fields, is then shown to follow objectively

human-like trajectory profiles, at least within the similarity measures considered in the study.

Human-robot HOs, however, should not solely depend on goal configurations and motion feasibility,

with no regard for how the task is perceived by a human. In [58], Koay et. al. express the importance of

adaptive, socially acceptable service robot behavior, manifested in task executions, and which motivates

their design of a holistic human-aware planner. The paper presents results from a robot hand-over study that

analyzed human preferences for factors including robot approach distance, approach direction, and hand-

over position/distance, as a robot handed seated subjects an object, with the aim of extracting actionable

insights. Experiments were preceded by establishing participant preferences for the aforementioned

parameters to be incorporated by the robot, aiming to interactively guide its chosen HO ’gesture’. Four

variants of arm-base coordination approach styles were executed by the robot for each participant, tailoring

the execution to their said preferences. In addition, questionnaires were used to determine the subjects’

personality traits. The authors arrived at some notable conclusions, such as people mostly preferring being

approached from the front or right-front, although directions generally correlated with preferred hand-over

positions. Interestingly, results on approach distance, once matched with personality scores, implied

that ’more agreeable and open’ people preferred closer HO interactions, and vice-versa. Comparisons to

earlier studies conducted by the group also revealed noticeable effects of cohabituation between individuals

41

2.2. Human-Robot Object Hand-overs

and the robot on their preferences, making experience with robots an appreciable factor. An interesting

conclusion, particularly pertaining to the present work, is the fact that participants preferred hand-over

positions lower, towards their chests, while they were seated, which proves human posture is a consequential

factor, and a valid context variable for robot-to-human HOs. Overall, the results are a strong indicator

of the contextual nature of the task, since different executions may be optimal in different situations,

and the importance of adapting to human preferences. The findings were eventually incorporated in the

human-aware motion planner ([99]), referred to in section 2.1.2, contributing to the legibility, safety, and

predictability of robot motions as it executed HOs, which were more thoroughly validated in [32].

In [48], Huber et. al. highlighted a more fundamental aspect of HOs and a focal theme in the

concerned literature: minimum-jerk profiles. While the previous paper focused on higher-level attributes

such as hand-over position and approach distance, the brief study presented in this work evaluated the

trajectory characteristics of a robot’s HO, particularly pertaining to its similarity to biological motion.

The authors similarly believe that more efficient joint and collaborative actions can be achieved by

transferring knowledge gained from human-human interactions to robots, prompting the need for such

intricate studies of human HOs. Comparisons were thus made from human-human HOs and human-robot

HOs executions in an identical task, to draw conclusions on two velocity profiles: trapezoidal, calculated

in joint coordinates, and minimum-jerk, which is based on a model with an objective function that ensures

smoothness of the end-effector’s trajectory. Variables like HO duration and reaction, manipulation, and

post-hand-over times were recorded along with trajectories during human-human trials, and compared to

those of human-robot trials. Although trapezoidal profiles are the norm in conventional arm control, the

authors concluded that the more natural minimum-jerk profiles were perceived as safer, and seemed to

decrease task reaction times, possibly due to their predictability. The results show how contemporary

robot technology can be moderately adjusted to produce surprisingly more human-friendly and efficient

motions, taking inspiration from human task executions.

Dehais et. al. attempted [32] to define more objective metrics with which to evaluate trajectories

produced by planners for human-robot HOs, following studies that deemed subjective questionnaires more

informative than oft-used quantitative criteria, such as human reaction times or accuracy. They thus

opt to employ both qualitative data from participant accounts and ratings describing their perception

of the robot executing the task, and physiological data comprised of skin conductance, deltoid muscle

activity (EMG), and ocular activity. The HOs were planned using the human-aware manipulation planner

([99]), which computes HO trajectories based on criteria of legibility, safety, and the person’s physical

comfort, with the actual aim of this study being the evaluation of these metrics as tools to be used for

optimizing these criteria. In a thorough experiment, the authors design three motion types leading to

different trajectory characteristics of the Jido robot’s HO, one using the planner and grasp detection with

a medium velocity setting, a second using neither and with a high velocity setting, and a third using the

planner, no grasp detection, and low velocities. Subjects graded the first motion the highest for legibility,

safety, and comfort, proving general preference for trajectories resulting from the planner’s empirically

defined criteria. Additionally, it was found to elicit the lowest muscular activity, while the second caused

highest skin conductance measurements, implying surprise or stress due to the sudden movements, and

42

Chapter 2. State of the Art

also caused higher ocular activity, along with the third. This work illustrates the effects of different motion

trajectories on humans’ perceptions and physiological responses, and how factors that govern these should

be taken into account, further lending credence to the idea that robot motor skills should be adaptive to

the humans involved in the task.

In [20], Cakmak et. al. similarly pursue the objective of more ’natural’ and ’appropriate’ HOs in

a framework that more directly captures humans’ preferences, by ’learning’ from examples, in a sense.

The incorporation of these preferences is sought to enable more seamless human-robot HOs, particularly

regarding HO configurations. Here, configurations are specified by grasp pose relative to the object, arm

configuration, and robot position relative to a person, as they execute a HO task. The authors gather data

from human-robot experiments to learn preferred configurations, then evaluate how they compare to those

obtained using a planner that chooses configurations based on a kinematic model of a person, such as

that of [102] (discussed in section 2.1.2). The latter approach takes human kinematics into consideration,

solving a hierarchical optimization problem to constrain and solve for the different HO configuration

variables, producing what the cost/value functions think is the configuration that best reflects kinematic

attributes of the human. OpenRAVE was used for simulation and grasp planning. In order to learn

configurations from users, for the other approach, preferences were encoded in the robot’s decision process

by letting users choose parameter values for good and bad examples of HOs, through a GUI, which are

later used to discriminate between enumerated configurations and to choose the one most likely to be

preferred. A systematic experiment in which HERB, a service robot equipped with two 7-DOF WAM

arms and 4-DOF Barrett hands, was performed to compare the purely ’planned’ configurations with

’learned’ ones. The results show that kinematic planner chose configurations that may be considered

’practical’, but the learned solutions proved more usable, natural and appropriate, and generally preferred,

according to user evaluations, since they implicitly encoded these attributes. Intuitively, and as this study

shows, leveraging learning directly from human preferences tends to improve human-oriented skills, such

as HOs, and is an important reason for our use of LfD. We should note, however, in the words of the

authors: ”... that the hand-over configuration is one of the many factors that influence hand-overs. A

complete hand-over behavior will need to consider other factors such as the robot’s trajectory or the

person’s posture and gaze direction”.

In the interest of objectively comfortable robot-to-human HOs, Aleotti et. al. more extensively

plan object-dependent HOs in [7] by adjusting object orientation to suit human preferences. To that end,

a planning-based approach is employed in which HO configurations are chosen to be most comfortable

for a user, by delivering an object in an orientation that best suits its reception by the person. In

this perception-driven and more holistic approach to the task, a laser scanner and Kinect are used to

construct a 3D model (point cloud) of an object and detect a user, synthesizing a motion planning

simulation environment. A planner implemented using the OpenRAVE engine then determines a grasp

and end-configuration for the object that aims to induce the least effort on the user, when they receive the

object. Experiments conducted with the Comau SMART SiX manipulator utilizing this planner concluded

that resulting HOs were subjectively deemed comfortable. Although no objective means were used to

validate these conclusions, the study provides some insight on planning HOs of unseen objects at a larger

43

2.2. Human-Robot Object Hand-overs

scale, for which perception elements may be key when it comes to adapting for object characteristics.

In the same vein of research exploring human-human HOs and considering wider perspectives of the

task to better ground human-robot HOs, Strabala et. al. investigate and attempt to emulate the physical

and social-cognitive aspects of the task, on robots. In [100], they conduct a study that consolidates past

knowledge on HOs to design a basic structure, guided by insights from human evaluations and observations

from implementations, to formalize and codify a common procedure whose results can come closer to

mimicking the way humans achieve seamless coordination when performing the task. The implied spatial

and temporal coordination includes the major phases of approaching, reaching out, and transferring an

object. An initial handover structure was extracted from human executions, providing insights on human

intent establishment and signaling. Participants handed different objects in varying contexts over to each

other, and video data was subsequently used to meticulously analyze each phase of the task, leading

to various interesting insights indicating the complex social-cognitive channel involved when implicitly

signaling transitions of the task to the other person, apart from physical channels. A separate experiment

involving HOs in a collaborative context confirmed that humans communicate hand-over intent and

coordinate reaching action initiation through prior implicit signaling. Crucially, the authors highlight

context: the state of the world before commencing the HO, as a vital influencing factor. This work later

lead the authors to some user-centered designs for robot HO behavior, which were evaluated on a series of

studies that explored how robots can establish the ’what, when, and where’ details, and consequently

achieve more seamless executions, but the results presented in this paper remain seminal in HO research,

informing various other studies. Evidently, the authors were the first to conduct studies wholly focusing on

human-to-robot hand-overs, as opposed to the opposite, and contribute human-adaptive design rules that

can be readily integrated in conventional motion planners employed for HOs: a noteworthy contribution

to collaborative robot design.

An adjacent procedure is followed by Chan et. al. in [23], where they introduce the idea of the

object-specific affordance axis: an axis that givers orient an object with respect to, given its properties

and the manner in which a receiver would prefer it to be handed over. These are extracted from mean

orientations of different objects handed over in different contexts by human subjects, with the aim of

teaching robots to execute the HO task with particular objects’ affordances in mind, promoting better

collaborative behavior. The study similarly offers rich insights on human performance of HOs, and

underlying, largely unexplored dynamics.

In [39], similar ’joint action’ signals identifying human engagement in a HO task are utilized by

Grigore et. al. with the aim of increasing adaptivity of the HO skill, which overlaps with our objective of

generalization over different contexts. The robot-to-human HOs studied here were in settings involving a

person whose attention and readiness to receive a requested object varies, due to some cognitive load,

requiring a robot to robustly estimate the states of the task, and recognize the intentions of a person

through non-verbal cues, avoiding blind, failure-prone executions. Hidden Markov Models (HMMs) are

used to model and estimate the sequential states of a HO, after learning them from task observations,

capturing basic hand-over dynamics in this first, coarse layer. The principle of joint action understanding,

derived from human executions, motivates a second ’cognitive’ layer that monitors a human’s focus

44

Chapter 2. State of the Art

through eye-head gaze orientations, subsequently informing the robot’s final decision of when to release

an object, in the final HO state. Analyses of experiments where a BERT2 robot and a VICON motion

capture system were used to performs HOs using this framework showed that more successful and ’safe’

HOs were realized by integrating non-verbal human co-worker cues, as opposed to rigid executions that

only rely on physical aspects of the task. Undoubtedly, sole use of human gaze direction may lead to intent

predictions that are inaccurate, considering their deceptive nature and possible variance across people.

However, utilizing human social cues like these is a step towards more adaptive, less rigid executions of

context-dependent HOs, whose overall flow will be dictated by the given situation and state of a person.

Other interesting adaptive task coordination strategies for human-robot HOs were investigated

by Huang et. al. in [46], who observe human temporal coordination and co-adaptation in HO tasks,

particularly pertaining to partner workload, and implement similar behaviors on a robot manipulator.

In tasks involving multiple hand-overs, such as the presented dyadic dish unloading task, said behaviors

involve an awareness of the task status of the collaborating person, and consist of an adjustment in

movement speed and inter-action waiting times. These were derived from human demonstrations of the

task, from which the authors noticed that an object giver monitored a receiver’s progress as they stowed

away a received object, and possibly attempted to achieve an unrelated objective, appropriately slowing

down or pausing their activity to adapt to their partner’s workload. Processed time-series data of human

joint readings, extracted from raw video, allowed the identification of patterns leading to the discovery

of these two strategies, which were used interchangeably: pausing an action or slowing down, while the

other person is not ready. Transferring this to an autonomous robot, the authors set up a Kinect sensor

to extract joint data from a person collaborating with a robot in the same task, in order to estimate

their state from body configuration,. Additionally, certain waiting and slowing behaviors in the robot’s

actions were encoded in an algorithm that receives the predicted user state and adapts to them using

these behaviors. In experiments, this ’adaptive’ strategy was compared to a proactive strategy and a

reactive one. When acting proactively, the robot would fetch a second object in a sequence as soon as

it delivered the first, presumably minimizing idle time to maximize team performance. In the reactive

strategy, it would wait for the person to be available again before it reached for the second object. The

main conclusion of the study was that adaptive strategies seem to balance an inherent trade-off between

team performance and user experience best, offsetting drawbacks of the extreme alternatives. This implies

that sole maximization of task performance in human-robot collaborations may not necessarily result in

most the desirable joint action, due to novel constraints imposed by the inclusion of humans, for whom

contextually adaptive behavior is naturally ideal.

In the work of Quispe et. al. in [92], user preferences for hand-overs given their location and

current activity are learned in a probabilistic model, such that a range of conceived contexts are adapted

for. An initial survey was used to justify the need for multiple HO ’policies’, by asking users about various

situations and how they would grade example HOs performed by a robot, from among simple execution

’styles’ (robot approaching the user, vice-versa, and robot placing the object on a nearby table). The

results proved a distinctive dependence of preferences on activity and location, and were used to codify

four hand-over ’policies’, depending on both factors. A simple 3-node Bayesian Network (BN) is then

45

2.2. Human-Robot Object Hand-overs

used to learn the preferred policy for situations with five different activities (walking, eating, etc.) and

locations (corridor, office, etc.) each. At each execution, the robot would observe the ’context’, pick

the hand-over policy with the highest likelihood, and receive feedback with which the BN’s weights are

updated using an EM-like approach. The authors show that around 50 interactions are sufficient for a

HSR to learn the policy preferences fairly accurately. While these may dependent on various factors other

than just the two considered here, the authors point out that depending on how a robot is used, even this

simple behavior may be adequate. This idea has implications on how our concept of contexts ie embodied,

including representation and granularity. An updated version of this work is presented by Martinson

et. al. in [72], in which the user-specified considerations for hand-overs extracted from the survey, are

discussed in more detail. It is worth noting that human posture, specifically sitting versus standing, was

rated the third most important factor to consider for adequate hand-overs, valued almost as much as

location, and more than user feedback, object (type), and safety.

More recent studies on HOs confirm the continuing efforts to gain more knowledge about the human

aspects of this seemingly simple task. In one such study by Rasch et. al. in [94], the authors attempt to

move closer to human-like robot HOs, in the hopes of implementing controllers for humanoids and service

robots that can execute similar movements. An extensive user study was conducted to investigate human

subjects’ movements, including shoulder, elbow, arm, and wrist movements, driven by the hypothesis

that trajectories executed by people handing objects over follow some pattern, and not simply shortest

paths, for example. Interesting insights were gathered following the analysis of IMU sensor data and

videos collected from experiments, the primary being the discovery of an underlying general pattern of

four movements that are generally executed sequentially by an object giver to accomplish a HO, including

rotating the shoulder, flexing the elbow, and so on. With these data, a novel trajectory motion model

for human-robot HOs was developed to incorporate the shape of an exemplary HO trajectory, partly

based on the minimum-jerk model. However, since the human-like trajectory curved in space along all

axes, neither a linear nor the minimum-jerk model was adequate, with the authors opting instead for a

decoupled five-degree polynomial. Overall, the authors’ work contributes to the growing body of research

aiming to enhance user acceptance of and comfort with service robot executions of everyday tasks, by

pursuing movements that resemble the ones the users would execute themselves.

In conclusion, the latent intricacies of the human hand-over skill are apparent from the results of

studies conducted for the reviewed works, which reveal non-trivial challenges of transferring the skill to

robots, not least of which is the issue of natural and preferred behaviours. Whether to attempt to emulate

strategies and techniques observed in human executions or pursue novel formulations for hand-overs that

better adhere to a robot’s capabilities remains an open question, but the attempts documented in the

literature provide useful illustrations of the possibilities, and a good starting point.

46

3

Preliminaries

3.1 Reinforcement Learning

Reinforcement learning (RL), classified as the third machine learning paradigm, alongside supervised

and unsupervised learning, is a process by which an agent learns optimal behaviour from experience

through autonomous interactions in an environment in which it is situated. Given no directions on actions

it must take, the agent attempts to learn this mapping from observed states to actions by maximizing a

scalar reward signal, the only indication of its performance provided by the environment, which is used to

progressively discover the best action(s) to take in a given situation.

RL suits the problem of autonomous robot learning well: interaction-driven, iterative inference

of optimal behaviour in a dynamic, partially observable environment, drawing on inspiration from

biological processes. We, as humans, acquire experiences ranging from primal instincts to complex feats of

coordination such as walking, solely through trial-and-error in a life-long learning process. This ability

is perhaps even more vital than learning the ’ideal’ course of action from a teacher, or attempting to

independently extract a latent structure in the environment: two perspectives on machine learning that

have arguably received significantly more attention. The generality of RL is, however, certainly impressive:

it has been utilized in diverse applications including economics, advertising, optimal control, and robotics,

and seems to naturally suit a variety of formulated problems.

Conventionally, RL problems are formally defined in terms of finite Markov Decision Processes

(MDP), a classical formalism utilized for sequential decision-making which adequately captures the notions

of actions, state, and the consequences of immediate and future rewards. At each time-step t, an agent

interacts with its environment through an action, at, observes the current state, st, and receives a reward

signal, rt.

A successive sequence of alternating states and actions defines a trajectory, usually called a roll-out :

τ = (s0, a0, s1, a1, s2, a2, ...) (3.1)

47

3.1. Reinforcement Learning

An MDP is traditionally represented by a tuple:

MDP : 〈S,A,P,R, γ〉, (3.2)

where S and A are the sets of all states and all actions, respectively.

P : S × A× S → [0, 1] (occasionally substituted for T) is a state-transition probability function

that governs the transition from one state of an MDP to the next, given the current state st and action

at. Denoted by Pa
ss′ or Pa(s, s

′), this probability is generally given by:

P (st+1 ∈ St+1|st, at) =

∫

St+1

P(st, at, s
′)ds′ (3.3)

The definition in Equation (3.3) is general one that respects possibly continuous state spaces, in

which the probability of reaching an exact state is technically zero [103]. Instead, we define the probability

of reaching a certain encompassing ’region’ of the state space, St+1, hence the integral. In discrete spaces,

the value of Pa
ss′ clearly reduces to an entry in a probability matrix. Due to this dependence on search

space structure, P can be represented by a simple table, or more sophisticated probabilistic models.

Reward function R : S ×A×S → R provides the expected immediate reward, rt+1, of transitioning

from st to st+1 following at, sharing the Markovian property of P:

rt+1 = R(st, at, st+1) (3.4)

The literature reveals a minor divergence in notation that bears mention here: reward rt is usually denoted

as a function of all three parameters as above, Ra
ss′ , but the dependence on st+1 is occasionally removed:

Ra
s . Both views seem equally plausible and the choice depends on the perceived complexity of the reward

’landscape’ and, consequently, the problem at hand.

Unsurprisingly, the reward function has a large impact on learning performance, since it must

implicitly encode the goals to be achieved and behavior to be adopted. In fields such as robotics, designers

therefore face the task of formulating reward models that express the performance of an agent well enough

to promote learning. While binary rewards signifying success or failure are common, reward shaping

procedures aim to fine-tune reward signals such that closeness to a goal and secondary task considerations

are taken into account.

P together with R, also called the dynamics of a MDP, represent a model of the environment, and

thus play a central role in the distinction between model-free and model-based RL algorithms.

Episodic and Infinite-Horizon Tasks

At this point, it becomes necessary to define the pivotal concepts of episodic and infinite-horizon problems,

and discounted returns. Since an agent effectively learns from the aggregation of reward signals over time,

a distinction arises between tasks which are accomplished in independent episodes, such as an execution

of a hand-over, or persisting tasks, such as optimally managing processes driving a nuclear reactor.

48

Chapter 3. Preliminaries

A single roll-out, τ , of an episodic task which ends after T time-steps, having a finite trajectory

length, can be naturally evaluated based on the cumulative reward:

R(τ) = rT +
1

T

T−1∑

t=0

rt, (3.5)

This formulation is derived from [35], whose authors include a term particularly relevant to robot task

executions: final reward, rT , which may reward/punish an effect observable only at the conclusion of a

task. Note that the sum in the second term is not always averaged, and can often be encountered without

the fraction, depending on the problem.

In contrast, an infinite-horizon task does not necessarily terminate, leading to the notion of a factor

that discounts rewards farther away in time, γ ∈ [0, 1). Adjusting our definition of accumulated reward,

we arrive at:

Gt(τ) =

∞∑

t=0

γtrt, (3.6)

which we now define as the return of a roll-out: the sum of cumulative, discounted future reward from

time-step t onwards, where we opt to use Gt to elucidate this distinction (as in Sutton et. al.’s [103]).

Intuitively, smaller values of discount factor γ favour myopic evaluations of the return, while values

approaching 1 are more ’far-sighted’, considering the consequences of actions taken farther in the future.

Primarily, this is mathematically convenient, since it allows working with an otherwise infinite sum, thus

avoiding unbounded accumulation of reward signals, some of which may lose their significance over time,

in the absence of a definite termination condition. Moreover, it captures the instinctive preference of

shorter-term rewards over delayed ones, while not forgoing the relevance of the latter. It also represents

uncertainty in received rewards, which obviously rises further along the horizon.

Policies

In the most general sense, a policy sufficiently encapsulates the behavior of the learning agent, and is the

central element of RL. A policy, π, maps observed states to probabilities of selecting the possible actions

(or, simply, to actions), and thus defines a probability distribution over actions a ∈ A, given states s ∈ S:

π(at|st) = P (at|st), (3.7)

in which case actions are sampled from a stochastic policy: at ∼ π(·|st). This is the case, in general, as

opposed to a deterministic policy: at = π(st). Occasionally, stochastic policies are represented instead as

a joint distribution, π(at, st), instead of the usual conditional, signifying the probability of being in state

st and taking action at.

A policy can take various forms, depending on the nature and complexity of the problem, and the

sophistication of the desired behavior, including simple functions, lookup tables, controllers, probabilistic

models, stochastic processes, neural networks, and motor primitives.

The ultimate goal in RL is experiential learning of the optimal policy, π∗(a|s), which maximizes

49

3.1. Reinforcement Learning

the average expected return, roughly formalized as

Jπ(τ) =

∫

s

∫

a

µπ(s)π(a|s)R(s, a)dsda, (3.8)

where Jπ signifies a performance measure of policy π, µπ(s) denotes a stationary state distribution

resulting from following π, subject to some transition dynamics, P . Here, we remove explicit dependence

of the reward function on the next state st+1, for notational convenience.

Note on Notation in Robotics In the field of robotics, low-level robot actions are usually in the form

of joint commands, while the states usually encapsulate robot joint coordinates, and occasionally, aspects

of the environment or objects relevant to the task. Consequently, the literature on RL in robotics often

utilizes a different notation for policies:

π(ut|xt) = P (ut|xt), (3.9)

In this report, we place no emphasis on either, but adopt this convention in our own work. In cases of

potential ambiguity within the text, the constituents of the used notation and what they stand for are

plainly clarified.

Value Functions

Since Jπ must be estimated from each visited state, as the ’cost-to-go’, following a given policy, it is

convenient to introduce two value functions. State-value function V π(s) (alternatively: vπ(s)) represents

the expected return when an agent starts at st, and follows π thereafter, and is analogous to the ’value’ of

being in that state:

V π(s) = Eπ[Gt|st = s] (3.10)

This value provides a far-sighted measure of a state’s desirability, considering the states that will most

likely follow, and the rewards we expect to consequently receive. In essence, this facilitates targeting

actions that increase the likelihood of observing states with bigger value, and thus indirectly ensures our

future rewards are maximized.

Action-value function Qπ(s, a), or qπ(s, a), simply extends the state-value function by explicitly

depending on a particular action as well as a state, to estimate expected return:

Qπ(s, a) = Eπ[Gt|st = s, at = a] (3.11)

In traditional, value-based RL, π∗(a|s) is derived by first determining the optimal value functions,

V ∗(s) = max
π

V π(s) and Q∗(s, a) = max
π

Qπ(s, a), particularly the latter, which basically show the

maximum expected return that can be possibly achieved by any policy, for a state or a state-action pair,

respectively. Given the theoretically proven optimality of a policy whose value functions are optimal [103],

it follows that a greedy policy: one that samples actions that maximize these values, must be an optimal

50

Chapter 3. Preliminaries

one. This gives rise to a systematic method for finding optimal policies and thus ’solving’ a MDP, which

will be discussed further in the next sub-section.

Exploration and Exploitation

The sequential decision-making aspect of RL, in contrast to other machine learning paradigms, introduces

the challenge of constantly choosing between either making the best decision, given the current information,

or gathering more information, through sub-optimal decisions: an exploration-exploitation trade-off.

Paradoxically, we would like an agent to exploit acquired experience to maximise reward, but as a

consequence of the interactive learning process, we realize it must also explore to access uncharted and

potentially more promising regions of its search space. Intriguingly, solely pursuing either of the extremes

guarantees an agent’s failure in a task framed as an RL problem.

In this dilemma, striking a balance hinges on a realization that the best long-term strategy, and

thus policy, may require occasional sacrifices, and that information-gathering pursuits are as vital to

achieve that as capitalising on current knowledge. This matter is taken into consideration in policy

representations, such as inherently stochastic probabilistic models, or by applying various strategies such

as naive exploration strategies, probability matching (such as is used in Thompson sampling), and the

so-called information state search, which targets areas of high uncertainty (in information-theoretic terms,

it attempts to maximise entropy). Another oft-used technique is learning off-policy.

On-policy and Off-policy Learning

An important dichotomy in RL is that of an agent learning on-policy or off-policy. The simpler and more

rudimentary of the two, on-policy learning, involves a process of improving or optimizing the same policy

from which actions are sampled, thus trying to learn optimal behavior while acquiring experience through

the behavior learned up until that point. Off-policy learning, on the other hand, has the same objective,

but samples actions from a different policy and uses the acquired information to update the policy to be

learned. The one from which data is generated is termed a behavior policy, while the one being learned is

the target policy.

The game of Chess, a popular test-bed in RL, provides a useful analogy. An inexperienced player

starts playing with little insight on the value of each board configuration or of their moves, and thus

follows an inferior policy. Over time, they suffer consequences of bad moves and benefit from good ones,

incorporating this information in future decisions from which they acquire even more experience, and

re-iterate: they learn on-policy. Conversely, a (particularly patient) player can decide to play many games

while choosing moves completely randomly, while observing and assimilating the results of their decisions

in a similar way, opting to encounter myriad, often futile, scenarios before putting the shaped strategies

to practice. They thus acquire data to learn a good policy ’off’ that policy; in this case, from some other

random policy.

Although marginally non-intuitive, off-policy learning addresses a dilemma on-policy strategies

face: trying to simultaneously follow and learn the optimal behavior, sampling actions from this policy,

while it is known that exploring, i.e. behaving sub-optimally, is a requisite for eventually finding the

51

3.1. Reinforcement Learning

optimal actions. Lack of exploration is usually mitigated by learning behavior under a sub-optimal policy

that explores to some extent, instead of pursuing the optimal. An adjacent solution, sometimes called

naive exploration, is ǫ-greedy policies, which either choose the highest-valued action, or pick a random

action with a probability, ǫ, at each time-step.

Tackling the exploration-exploitation trade-off by splitting the two sides of the coin into separate

policies is therefore often a practical alternative, since one can conveniently engineer the desired rate

and form of exploration, while not degrading the target policy. The concept of importance sampling is

central to off-policy learning, and involves estimating expected values of a distribution, using samples

from another. Despite the added complexity, off-policy learning is considered more general and effective.

As would be expected, however, it suffers from slower convergence, mainly due to greater variances in the

data which is generated from a different, stationary distribution.

Model-free and Model-based RL

So far, we have made no mention of the presence or absence of a model, a key element in RL systems which

defines whether we can infer how the environment behaves in response to our agent’s action. In the MDP

formulation, this is synonymous with the state-transition and reward functions which, when available, can

be exploited to obtain the optimal value functions and thus policy, since we would then know exactly

how probable it is to transition from a state to another following an action, and what reward the agent

would receive. This allows us to look ahead when planning, an essential element of dynamic programming

and temporal difference algorithms, for example. Needless to say, we seldom have this information and,

therefore, any MDP at all, particularly in difficult problems like those in robotics, but the groundwork we

have laid using MDP formulations still equips us with the tools to tackle the model-free case.

Model-free RL involves a strictly trial-and-error approach, devoid of any ’planning’, that attempts to

learn an optimal policy purely from active experience, given no information about environment dynamics.

In other words, the value functions and/or policy are optimized by simply trying actions and observing

immediate rewards, avoiding any modelling. With no indication on values of actions or expected return, it

is apparent that a large number of trials would be required to arrive at acceptable results. This is even

more troublesome on systems such as robots, for which safety and cost become significant concerns.

As the name implies, model-based algorithms make use of a model, if available, but more interesting

variants attempt to jointly learn a model in addition to the value functions and/or policy. Whether learned

or provided, a model of transition dynamics enables predicting rewards and optimal actions, providing a

structure to an agent’s search and thus better indication on directions to pursue. As a result, learning

can be performed ’off-line’, which is much more sample-efficient : the most prominent advantage of using

models. However, these algorithms have a notorious tendency to exploit model inaccuracies, artificially

minimising costs to produce policies that may not translate well to the real system. Moreover, models

may be too difficult and costly to construct, if at all feasible. Independence on prior knowledge and easier

implementability are thus marks in favour of model-free algorithms, despite the clear advantages provided

by the alternative, in terms of performance.

52

Chapter 3. Preliminaries

Inverse Reinforcement Learning (IRL)

As previously mentioned, reward functions/models substantially influence RL and performance thereof,

prompting intricate designs through reward shaping. An alternative to hand-crafting models, which may

be sub-optimal due to the inherent biases they introduce, is IRL, which involves extracting a reward

model from expert demonstrations. LfD (discussed in section 2.1.3) is usually done in a supervised fashion,

where supposedly optimal behavior is learned directly. Alternatively, an agent can ’indirectly’ learn

the implied policy by extracting reward signals when observing a demonstrator, then utilizing these to

reinforce its own learning [103]. This is equivalent to learning a task description that implicitly captures

the demonstrator’s goal(s).

IRL essentially formalises the learning of a MDP’s reward function, usually assuming state-transition

dynamics are available and given observed demonstration trajectories in the form of state-action pairs [75]:

τ = {(s0, a0), (s1, a1), (s2, a2), ...} (3.12)

Algorithms then produce a reward model that maximizes the likelihood that the observations came

from the reward-augmented MDP. To that end, trajectory data is used to infer a structure for the reward

which the expert had attempted to maximise in achieving their (possibly unknown) goals. Matching the

demonstrator in this form of LfD thus emphasizes inference of some transferable description of the task to

be performed.

A fairly common approach to IRL is a non-parametric Bayesian segmentation of demonstrated

trajectories, by extracting and segmenting their underlying reward functions, which is primarily used to

discover multiple ’skills’ from unstructured demonstrations [93].

One of biggest difficulties with IRL is the fact that it is an ill-posed problem: given state-actions

pairs of τ , constructing a function that assigns a unique constant to each makes them all trivially ’optimal’,

which complicates the task of extracting a meaningful policy. Certain restrictions on model structure,

such as linearity, and other constraining assumptions have enabled inferring proper reward models. This,

of course, leads to a host of other difficulties, and is among the reasons IRL remains a difficult problem.

3.1.1 Value-based Reinforcement Learning

As previously hinted at, under the assumption that we know a problem’s finite MDP, we can find

the optimal value functions which are used to reconstruct a policy that optimally solves the problem. In

RL, searching for this policy can be framed as an optimization problem which can be solved in its primal

formulation, by searching in the space of possible policies, or by solving this dual formulation, which gives

rise to value-based RL algorithms, occasionally called action-value methods. This indirect solution to the

problem is motivated by the ability to leverage the Bellman Principle of Optimality, which facilitates an

efficient, recursive learning procedure, subject to some assumptions.

53

3.1. Reinforcement Learning

Bellman Optimality Equations

Bellman’s principle states that: ”An optimal policy has the property that whatever the initial state

and initial decision are, the remaining decisions must constitute an optimal policy with regard to the

state resulting from the first decision” [13]. The implied strategy is simplifying a complex or intractable

problem by breaking it into sub-problems and solving these constituent parts recursively. It addresses the

complexity of traversing the whole search space of states and actions in order to determine the expected

reward and, subsequently, the optimal state-value or action-value, for each visited state.

First, the Bellman expectation equations decompose the value of a state/state-action pair into the

immediate reward and the discounted value of the succeeding state:

V π(s) = Eπ[rt+1 + γV π(st+1)|st = s], (3.13)

Qπ(s, a) = Eπ[rt+1 + γQπ(st+1, at+1)|st = s, at = a], (3.14)

which are simply derived from equations (3.10) and (3.11), and the fact that (from equation (3.6))

Gt = r1 +
∑∞

t=2 γ
trt, since the reward observed at the current state is not discounted. The rationale, here,

is that the value of a state is the immediate reward received when entering that state plus an estimate of

the total reward that would be received by acting optimally from there onwards (until episode termination,

or hitting the horizon limit). This concept of bootstrapping is the focus of Bellman’s methods.

Subsequently, the Bellman optimality equations constitute consistency conditions that are satisfied

only by the optimal value functions, which are then given by:

V ∗(s) = max
a

∫

s′∈S

Pa
ss′ [R

a
s + γV ∗(s′)] (3.15)

Q∗(s, a) =

∫

s′∈S

Pa
ss′ [R

a
s + γmax

a
Q∗(s′, a′)] (3.16)

Note that the integral can be substituted with a summation for discrete state spaces, and that the

expectation has been made explicit by including the probabilities Pa
ss′ , and the integration over all states.

rt+1 has also been replaced by Ra
s to expose the dependence on action and state, keeping in mind that

the t+ 1 subscript of the former is due to the fact that rewards are, by convention, received at the next

time-step.

An optimal policy would always choose actions that maximise Q values, according to Q∗(s, a),

at each time-step: π∗(a|s) : ∀t, at = argmax
a∈A

Q∗(s, a). The implications of this are that any MDP has

a deterministic optimal policy (in that we can predict what action it would sample), and that simply

knowing Q∗(s, a) leads us to the optimal policy, one that is greedy with respect to V ∗(s). This last

assertion directly follows from:

V ∗(s) = max
a

Q∗(s, a) (3.17)

The Bellman equations essentially provide an easier analytical solution to the problem of optimizing

Jπ, which warrants using the value-based dual of the policy search problem. It is interesting to note that

54

Chapter 3. Preliminaries

this powerful tool is enabled by a simple question answered by the value functions at each time-step: if I

am in this state and take this action, assuming I take the optimal action at every subsequent time-step,

what return can I expect, i.e. what is this state’s value?

Dynamic Programming (DP)

The recursive procedures contained in equations (3.13), (3.14), (3.15) and (3.16) form the basis of the

well-known and general approach of dynamic programming (DP), in which this property of the Bellman

equations in conjunction with the cache-and-reuse property of value functions enables iteratively evaluating

and improving a policy, our central objective in RL.

The two stages of DP are:

1. Policy evaluation: using equations (3.13) and (3.14), a policy is evaluated by gradually converging

on a stable estimate of the values, V π(s), of all states s ∈ S. The equations are applied iteratively,

synchronously updating all state-value estimates by finding the old values of all successor states,

s′, and expected immediate rewards, for all possible one-step transitions. The update rule is then

(similar to eq. 3.13):

V (st)← Eπ[rt+1 + γV (st+1)], (3.18)

This is sometimes referred to as the prediction problem.

2. Policy improvement : using equations (3.15) and (3.16), the optimal value function, V ∗(s), for all

s ∈ S, is calculated and a new policy is synthesized by acting greedily with respect to its values.

Due to the monotonicity, the result is a policy that is guaranteed to be an improvement, except if it

is π∗.

Combining the two leads to the general policy iteration algorithm, which iteratively evaluates and improves

the policy, converging to the optimal (as depicted in [103]):

π0 E
−→ V π0 I

−→ π1 E
−→ V π1 I

−→ π2 E
−→ ...

I
−→ π∗ E

−→ V ∗ (3.19)

The bootstrapping performed when updating state-value estimates enables the algorithm to

(relatively) tractably refine values of all parallel states and store them for the complete state space.

A slightly different variant, called value iteration, follows the same procedure, except that the policy

evaluation step is truncated: instead of waiting until it converges to an estimate of V π(s), it is stopped

after a single sweep (or ’backup’) in the expectation equations, and the policy is improved immediately.

This removes the iteration loop of the evaluation step, which is part of the main loop, thus theoretically

speeding up convergence to π∗. Generalised policy iteration encapsulates a class of methods in which any

applicable algorithm can be used for the evaluation and improvement steps, respectively.

The main drawbacks of DP are an assumption of a perfect model, since it wholly relies on a

complete MDP being provided, and the computational expenses due to the exhaustive recursive procedure.

55

3.1. Reinforcement Learning

Monte Carlo (MC) Methods

Monte Carlo (MC) methods are an alternative, model-free class of value-based RL algorithms that learns

value functions and the optimal policy strictly from experience, by sampling episodes. Particularly

effective when MDPs are unknown, they substitute the bootstrapping technique used in DP to estimate

the expected return from a state (i.e. value) by observing trajectory samples: instead of the expected

value, MC methods use a much simpler estimate based on the empirical mean of returns for each state, as

observed from experience:

V (st)← V (st) + α(Gt − γV (st)), (3.20)

wherein value V (st) is updated toward actual, observed return Gt every time it is visited, α = 1
N(st)

, and

N(st) keeps a count of these occurrences.

Since MC algorithms do not bootstrap, returns cannot be estimated except by reaching terminal

states, at which point the exact return of all visited states is known, for that episode. The value of each s

is then the incremental mean of the returns observed across episodes, an unbiased approximation that

tends to the actual value of s. Otherwise, the same policy iteration procedure used in DP algorithms

applies to MC algorithms as well.

The greatest appeal of MC RL lies in learning purely from experience, despite no knowledge of the

environment, which can still lead to finding optimal policies. It also enables sampling from simulations,

which only have to provide sample transitions, as opposed to complete models. Another added advantage

is removal of the dependence on the Markov assumption: since MC algorithms do not bootstrap, they are

equally effective in non-Markov environments. Crucially, however, these algorithms must observe complete

trajectories before evaluating and improving a policy, since returns are unknown until an episode ends.

Consequently, MC is only applicable to episodic scenarios, since termination is a vital component here.

Temporal Difference (TD) Learning

The third and most widely used class of value-based methods are temporal difference (TD) algorithms,

which are similarly model-free and learn from actual experience. Their novelty lies in the combination of

bootstrapping (from DP) and sampling (from MC), such that this experience is gained from incomplete

episodes. The policy evaluation procedure then involves updating state-value estimates towards a one-step

estimate of the return, instead of the actual values, as in MC:

V (st)← V (st) + α(rt+1 + γV (st+1)− V (st)), (3.21)

where, instead of Gt in MC, values are updated towards the estimated return (rt+1 + γV (st)), called the

TD target. In addition, δt = (rt+1 + γV (st+1)− V (st)) is called the TD error, with the subtraction of the

latter two terms giving rise to the method’s name, since it signifies the temporal difference in predictions,

which is used to compute this ’error’.

In essence, the sampling of TD algorithms avoids the assumptions of DP while relaxing the

restrictions of MC, consolidating the two in what is usually the optimal approach. In particular, TD

56

Chapter 3. Preliminaries

methods can be more readily applied for on-line learning, since they wait until the next time-step to

obtain an estimate of the return, instead of waiting until an episode ends. The ability to learn from

incomplete sequences also extends their applicability to non-terminating environments.

It is worth noting that TD algorithms are known to be sensitive to initial state-values. In addition,

the subsequent estimates, while they suffer from less variance than those of MC algorithms, are now

biased since the TD target does not rely on actual returns, but estimations of the current values of states:

a known effect of bootstrapping.

Nevertheless, TD algorithms are the most frequently applied class of critic-only algorithms, and

form the basis of the important Q-learning and SARSA algorithms, among others. Most of these apply

the n-step variant of TD learning, called TD(λ), in which the steps of look-ahead are varied according

to requirements by setting a value for λ other than the default 0. This forms a spectrum of possible

algorithms that exist in a continuum between DP and MC methods.

Value Function Approximation

The reliance of value-based RL algorithms on caching and re-using state-value estimates is occasionally

an obvious liability, particularly for complex problems, such as in robotics applications, with vast state

spaces. Under an assumption that we work with discretized state spaces, this leads to problems with very

large MDPs, containing a number of states and actions that makes storing V (s) and/or Q(s, a) for all

s ∈ S and a ∈ A in lookup tables largely infeasible. An alternative that is borrowed from supervised

machine learning approaches is to approximate the two value functions, which are then represented in a

parameterized functional form:

V̂ (s,w) ≈ V π(s) (3.22)

Using function approximation, the value function under policy π is approximated by a function

that depends on a weight vector. In this manner, it is easy to incorporate value information from

observed states through a regression procedure, for example, and subsequently generalise to unvisited

states, systematically estimating their values. Conveniently, the established classes of algorithms, MC

and TD, can be employed to learn the parameters w that best approximate the value function landscape.

The result is a much more memory-efficient RL procedure, when computation of the value functions is a

necessary requisite to finding the optimal policy.

As one can imagine, a range of functions and models can be used to approximate the value function,

the simplest one being a combination of features that characterize a state (usually denoted by x, in

agreement with classical machine learning notation), which is linear in the weight vector w. Other likely

candidates include neural networks, decision trees, and Gaussian Processes, among others. The concept of

deep reinforcement learning actually originates from the use of deep neural networks as approximators for

value functions.

Naturally, it is conceivable that the requirement of accommodating complex and memory-intensive

value functions can be eliminated by not using value functions to derive the optimal policy at all, which is

what the algorithms in section 3.1.2 apply.

57

3.1. Reinforcement Learning

Notable Algorithms

The following is a list of notable and pioneering value-based reinforcement learning algorithms, most of

which have been formalized by Sutton et. al. in [103].

• Q-learning:

A basic off-policy, model-free, value-based algorithm that essentially maintains a table of Q values

corresponding to all state-action pairs, and performs an exhaustive DP policy iteration procedure

(as previously described). In essence, the Bellman optimality equations are leveraged to determine

the optimal values, Q∗, from which a greedy policy that maximizes these is derived, π∗.

• SARSA:

An on-policy algorithm that resembles Q-learning but computes Q values based on the current

’learned’ policy, instead of a greedy, Q-maximizing policy (SARSA is an acronym for State-Action-

Reward-State-Action).

• TD(λ):

The most prominent temporal difference learning algorithm, TD(λ) estimates value functions by

sampling episodes and bootstrapping from current estimates till the end of the horizon, essentially

constituting a hybrid of MC and DP algorithms. The λ parameter controls the degree of look-ahead

in the algorithm’s bootstrapping procedure.

• Deep Q-Networks (DQN) [78]:

A variant of Q-learning that utilizes neural networks to approximate the Q-value function, as opposed

to look-up tables, in order to scale the algorithm up to higher-dimensional and more expansive

search spaces. The algorithm was among the first ’deep reinforcement learning’ algorithms, and

achieved various breakthroughs in benchmark problems.

Despite the satisfying solutions provided by the Bellman equations, and the capabilities of TD algorithms,

value-based RL approaches suffer from significant drawbacks. Firstly, the value functions must be computed

to derive the policies that they imply, an extra step in the process which may also implicitly limit the

structure of the reconstructed policy. Additionally, this policy may degrade due to biases introduced

through bootstrapping, as well as discontinuities in the value function, which introduce errors that can

propagate through recursions. It is also inefficient and difficult to apply in high-dimensional state and

action spaces, and virtually inapplicable to continuous ones. The aggregation of these issues makes policy

search a more favourable strategy, particularly for problems in robotics.

3.1.2 Policy-based Reinforcement Learning (Policy Search)

We now consider the primal formulation of the constrained optimization problem, instead of the

aforementioned dual, for which Jπ in Equation (3.8) is maximized: searching for the optimal policy directly

58

Chapter 3. Preliminaries

in the space of policies, instead of computing value functions and subsequently deriving them. This is

done by learning a parametrized policy, π(a|s, θ) (or πθ) that maximises the performance measure, or

objective function, Jθ. (Note the conscious change from Jπ to Jθ symbolizing the more explicit reliance

on the policy parameters, which are the target of optimization in PS.) The primary motivation, here, is to

better scale RL to high-dimensional, continuous spaces, which is achieved by avoiding value functions and

using parameterized policies that restrict the space of policies for more tractability.

The most prevalent form of policy search (PS) algorithms are policy gradient methods, which learn

optimal parameters θ by performing stochastic gradient ascent (SGA) on Jθ, such that a likely parameter

update rule is:

θt+1 = θt + α∇θJθt (3.23)

This is known to achieve learning that exceeds action-value methods in speed, and works with a plethora

of policy formulations. Obviously, an important requirement is that π(a|s, θ) be continuously differentiable

with respect to θ, since the underlying policy gradient theorem implies updating the parameters in the

direction of an estimated gradient of the objective function, with respect to these parameters, at each

time-step.

PS algorithms that do not necessarily use hill climbing strategies employ Expectation-Maximization-

based and information-theoretic-based policy updates, each of which are discussed in further sub-sections,

as well as less common evolutionary and Bayesian optimization strategies.

Using PS, we can learn well-formulated stochastic policies with various advantages, such as implicitly

encoding exploration, and allowing to specify its desired properties. A simple example is a Gaussian

policy:

πθ(a|s) = N (a|µa(s),Σa) (3.24)

where parameters θ = {µ,Σ}, and covariance matrix Σ would be chosen to achieve the required exploration

rate.

A clear advantage lies in the smaller set of parameters required to learn a policy directly, than

learning an optimal value function. It also follows that PS is naturally less prone to the adverse effects of

the curse of dimensionality, better handling high-dimensional search spaces. The parameterization also

significantly mitigates the difficulties normally faced with continuous spaces, whose discretizations may be

similarly unmanageable.

By virtue of the variety of policy representations one may choose, ranging from linear controllers

and radial basis function networks, to time-dependent dynamic movement primitives (πθ(a|s, t)), the

potential to integrate expert knowledge into the policy, both to bootstrap learning and dictate the learning

process, is now realized. A typical example is our use of demonstrations to initalize a policy for a hand-over

task from a demonstrator using LfD (refer to section 2.1.3). This capability, which does not translate to

value-based formulations, makes PS much more suitable for complex real-world problems, particularly in

robotics.

After having introduced PS algorithms, we briefly look into the distinction having a model or not

has on their nature and properties, each of the three common policy update strategies (and thus, classes

59

3.1. Reinforcement Learning

of PS algorithms), and the contextual extension to PS.

Model-free and Model-based Policy Search

The distinction between model-based and model-free algorithms in RL, introduced at the beginning of

this section, bears re-iterating for the case of PS, since it has vital implications, not generally shared

by action-value methods, that are particularly significant for robotics applications. In general, the basic

definitions of each remains as described before.

Model-free PS algorithms, when applied in robotics, tend to involve sampling real robot trajectories

when trying to execute some task, then using the returns obtained from these to directly alter and optimize

the current policy. This is termed stochastic trajectory generation, such that the state transitions (dictated

by the underlying and unknown P) are sampled from the real robot, leaving only the reward signal as a

requirement for policy search. In this context, it is useful to represent the distribution over (observed)

trajectories (τ) [35]:

Pθ(τ) = P (s0)

T−1∏

t=0

P (st+1|st, at)πθ(at|st, t), (3.25)

leading to the slight reformulation of Equation (3.8) to fit the PS case:

Jθ(τ) =

∫

τ

Pθ(τ)R(τ)dτ, (3.26)

Note the use of a time-dependent stochastic policy, which is usually the case in a robot task policy.

Maximising Equation (3.26) is the objective, as before, and can be interpreted as choosing θ such that

the expected reward that can be obtained over the distribution of possible trajectories is maximised. As

before, running this directly on a real robot would require a vast number of interactions, which may be

both costly and dangerous.

The model-based version of PS seeks to avoid this inefficiency by constructing forward models of

the robot’s and environment’s dynamics, from the observed trajectories, and using these to internally

simulate roll-outs, whose results are then used to update the policy, before transferring it back to the

physical system. In order to improve the learned models over time, the policy is executed on the robot to

gather more data with which the refine the model, and the loop continues. These models provide a means

to obtain a large number of sample trajectories without the drawbacks of physical trials, and the long

system interaction times.

A significant challenge with model-based PS is mitigating the effects of model errors, which may

strongly bias the learning process, and lead to sub-optimal policies that do not transfer well to the

system. This is usually tackled by learning non-parametric probabilistic forward models, such as Gaussian

Processes (like in PILCO and GPREPS) and Locally-weighted Bayesian Regression (LWBR), which both

model uncertainties in predictions and increase robustness to model inaccuracies. Capturing faithful

models is, however, also difficult without large amounts of input data, especially for complex robot tasks,

for example, which may then nullify the very purpose of these models.

The verdict on the matter is that model-free approaches are easier to implement since they need no

60

Chapter 3. Preliminaries

forward models to learn and thus avoid the inherent biases, but model-based approaches are progressively

taking over as the prime choice for faster and more data-efficient learning, particularly in robotics.

Nevertheless, the issue of determining and optimizing good forward models remains a challenge.

Policy Gradient-based Policy Search

Policy gradient (PG) methods for PS, as described before, optimize policy parameters by performing

stochastic gradient ascent (SGA) on the objective function Jθ, with the update rule shown in Equation

(3.23) guided by the gradient estimate given by (from Equation (3.26)):

∇θJθ(τ) =

∫

τ

∇θPθ(τ)R(τ)dτ, (3.27)

Estimating this gradient, which amounts to estimating ∇θPθ(τ), can be done in one of several ways.

Finite difference methods rely on random perturbations to θ for which the change in return is computed,

and which then lead to a gradient that can be computed using a Taylor-expansion of Jθ [35]. A class of

algorithms use likelihood-ratio policy gradients, which are obtained by applying the log-likelihood trick to

∇θPθ(τ) such that a resulting expectation on Pθ(τ) can be approximated using a sum over trajectories,

leading to an unbiased estimate of the gradient. This is applied in the famous REINFORCE algorithm.

Finally, natural gradients were introduced to provide an estimate that addresses the drawbacks of the SGA

approach, mainly the likely presence of local minima, which harm PG algorithms’ performance. The aim

is to incorporate knowledge about the landscape’s curvature into the gradient, and an important aspect is

limiting the step-width between two subsequent trajectory distributions, Pθ(τ). Natural gradients are the

main component of Natural Actor-Critic algorithms.

PG algorithms are notable for their favourable convergence properties, thanks to the application of

gradient ascent, but they remain dependent on the calculation of the gradient in some way, and policy

gradients are known to be problematic due to high variance, especially in robot platforms. They are also

inevitably governed by the values of a learning rate.

EM-based Policy Search

Gradient-free methods are generally less demanding than their opposite, since no computation of a gradient

is required, placing no differentiability constraints on the policy model. One such class of methods relies

on probabilistic inference for inferring the policy, instead of estimating its distribution from the given

data. It is based on Expectation-Maximization (EM), which enables finding maximum likelihood solutions

for probabilistic models involving a hidden/latent variable. In a case such as PS, this has been applied to

infer what trajectories in the space of trajectories obtain high rewards, leading to what would be inferred

as the optimal policy (or policies).

EM-based PS algorithms model the problem of RL as a maximum likelihood problem, taking

trajectories τ as the latent variables in a model that expresses reward conditioned on these variables,

P (R|τ), and aiming to find parameter vector θ such that the probability of high reward is maximised or

61

3.1. Reinforcement Learning

equivalently, the MLE solution for the log-marginal likelihood:

logPθ(R) =

∫

τ

PR(τ)Pθ(τ)dτ, (3.28)

The elaborate details of the actual implementation of the EM algorithm are omitted here, but the interested

reader is directed to a succinct overview provided in [35].

The EM-based formulation of PS has lead to various influential algorithms, including Policy learning

by Weighting Exploration with Returns (PoWER), Cost-Regularized Kernel Regression (CrKR): one of

the first multi-contextual PS algorithms, and Reward-Weighted Regression (RWR).

Information-theoretic Policy Search

Information-theoretic PS algorithms similarly do not rely on policy gradients, instead guiding policy

updates by bounding information loss between subsequent updates, while maximizing expected reward,

in a constrained optimization problem. These algorithms focus on optimizing the policy while staying

close to the observed data, by minimizing the KL-divergence, also called the relative entropy, between the

previous trajectory distribution, q, and the distribution generated by the new policy, p. This effectively

bounds steps between subsequent policy updates, reducing loss of previously gathered data, and providing

an implicit measure for controlling the exploration-exploitation trade-off.

A simple form of the constrained optimization problem employed by information-theoretic algorithms

is:

max
π

∫
πθRθdθ (3.29)

s.t.

∫
πθlog

πθ
qθ
dθ ≤ ǫ (3.30)

∫
πθdθ = 1 (3.31)

The objective of this problem is to maximize expected reward while bounding relative entropy,

which addresses premature convergence and stability issues associated with EM-based algorithms, while

avoiding learning rates of PG methods ([35]). This is employed by algorithms such as REPS and its

variants, which optimize policies by searching in the distribution of trajectories, prioritizing minimal

relative entropy in policy updates. Among the advantages of this method is avoiding unstructured

exploration, which may be undesirable in safety-critical systems, and maintaining the main characteristics

of an initial policy, which is a favourable property for RL with pre-structured policies obtained from

expert demonstrations.

Contextual Policy Search

This part briefly explains the concepts underlying a class of context-dependent policy search algorithms.

Contextual policy search (CPS) algorithms enable learning behavioural policies whose output

62

Chapter 3. Preliminaries

is conditioned on context variable(s), c, such that an agent’s actions generalize to different situations,

operating conditions, and/or task variations, without having to learn separate policies. This makes them

particularly suitable for the problem of constructing generalizable motor skills, which usually involve

episodic task executions.

CPS maintains a search distribution, denoted by π(ω|c), over some policy’s parameters ω conditioned

on context c, and aims to find the distribution that maximizes objective performance measure Rcω: the

expected return of a task episode in context c, while using parameters ω:

Rcω = Eτ [r(τ, c)|c, ω] =

∫

τ

p(τ |c, ω)R(τ, c)dτ, (3.32)

p(τ |c, ω) here refers to a distribution over all possible trajectories, τ , while R(τ, c) is an underlying reward

function.

Introducing a distribution of over contexts, µ(c), the objective of CPS is then to maximize:

Jπ =

∫

c

∫

ω

µ(c)π(ω|c)Rcωdsdω (3.33)

by adequately choosing the parameters ω of the execution policy.

These algorithms execute roll-outs by observing context c, sampling parameters ω, and following the

execution policy, subsequently receiving reward Rcω. As a result, data samples D = {c[i], ω[i], R
[i]
cω}i=1,...,N

from the old search distribution, usually denoted by q(ω|c), are used to compute a new search distribution,

π(ω|c), that maximizes Jπ. As π(ω|c) is often a linear-Gaussian model, this is achieved by computing a

weight for each sample i (according to R
[i]
cω), and performing a weighted maximum likelihood estimation

(WMLE) update of the Gaussian distribution.

Traditionally, the search distribution is termed the upper-level policy while the policy which is

parameterized by the former and controls actual task execution is the lower-level policy. This creates

a hierarchical policy structure that effectively generalizes the lower-level policy to multiple contexts, or

solution modes, and facilitates the intended contextual adaptivity.

Examples of algorithms that employ CPS include Contextual Relative Entropy Policy Search

(C-REPS), which we employ to address the problem presented in this project, and Contextual Model-based

Relative Entropy Stochastic Search (C-MORE). Both algorithms rely on information-theoretic policy

update strategies.

Notable Algorithms

The following is a list of notable policy search algorithms. An extensive and recommendable survey on

policy search algorithms is provided by Deisenroth et. al. in [35].

• REINFORCE [117]:

One of the first PG algorithms, REINFORCE relies on Monte-Carlo roll-outs to estimate episode

returns and calculates policy gradients using a likelihood-ratio trick. It is also among the first

approaches that explore in the action space by adding normally-distributed noise directly to actions.

63

3.2. Dynamic Movement Primitives

• Natural Actor-Critic (NAC) [87][88]:

A PG algorithm that applies a temporal difference learning approach and is distinguished by the

use of natural gradients, which incorporate knowledge about search space curvature, and thus

lead to faster convergence in more challenging landscapes. Since this gradient is independent of

policy parametrizations, NAC is better able to handle arbitrary policy formulations. Exploration is

performed by searching directly in the parameter space.

• Cost-Regularized Kernel Regression (CrKR) [61]:

A kernelized version of the EM-based Reward-Weighted Regression (RWR) algorithm, and among

the first designed to solve contextual problems, by learning a generalizing, upper-level policy.

Employing a GP policy formulation, the algorithm’s update strategy corresponds to GPR. It applies

an uncorrelated exploration strategy, which is generally undesirable.

• Policy learning by Weighting Exploration with Returns (PoWER) [60]:

The most prominent EM-based PS algorithm, PoWER searches in the parameter space locally,

applying a structured exploration strategy, and reuses roll-outs through importance sampling. The

update strategy closely resembles, but greatly improves upon, that of RWR. It is particularly suitable

for motor primitive learning in robotics, outperforming most applicable algorithms ([59]).

• Relative Entropy Policy Search (REPS) [89]:

An information-theoretic PS algorithm that searches for the optimal policy in a constrained opti-

mization problem, which prioritizes bounding information loss (relative entropy) between subsequent

policy updates, such that unstructured and aggressive exploration are avoided. The algorithm utilizes

the generally recommended policy update strategy ([35]), and spawned various useful extensions

such as C-REPS [67], HiREPS [29], GPREPS [66], and NP-REPS [111].

• Policy Improvement by Path Integrals (PI2) [107]:

Derived from principles of stochastic optimal control and the quantum mechanics concept of path

integrals, PI2 was designed for directly optimizing dynamical system policies, such as DMPs, by

incorporating exploration noise directly into their equations. Its shares some similarities to PoWER

and REPS, such as the computation of sample weights for policy updates.

3.2 Dynamic Movement Primitives

Dynamic Movement Primitives (DMPs) are a convenient motion representation, in the form of

non-linear dynamical systems, that is often used in robotics to encode trajectories for rhythmic or discrete,

goal-directed motions. They were introduced by Ijspeert et. al. to facilitate capturing elementary motions,

or motor primitives, in a compact form that allows efficient reproduction, learning and generalization

([50]), and have since been extended and modified to integrate capabilities such as obstacle avoidance

([45]) and improvement through RL. DMPs can also be defined as control policies governed by a set of

non-linear differential equations with stable attractor dynamics, that possess particularly useful properties

for robot trajectory manipulations. We provide here a brief discussion on trajectory representation using

64

Chapter 3. Preliminaries

DMPs, with a focus on goal-directed motions. For a more comprehensive overview, refer to Ijspeert et.

al.’s seminal work in [52].

Using the DMP formulation, the evolution of a variable y, representing a terminating motion that

starts at y0 and ends at goal state g, is represented as a set of differential equations resembling a linear

spring-damper system:

τ ÿ = αy(βy(g − y)− ẏ) + f(x) (3.34)

τ ẋ = αxx (3.35)

With appropriate values for the coefficients, the transformation system of Equation (3.34) ensures y

converges stably to the point attractor g. This is akin to a potential field that enforces motion at any

initial point towards this target position.

The forcing term f in Equation (3.34) is a non-linear function that encodes the shape of the

trajectory, and enables generating complex motions. It is a sum of Nbfs weighted basis functions:

f(x) =

∑Nbfs

i=1 ψi(x)wi∑Nbfs

i=1 ψi(x)

where ψi is often chosen to be a Gaussian kernel function, and the weights wi define the attractor landscape.

These weights can be learned to theoretically produce any arbitrary smooth trajectory shape.

Equation (3.35) is termed the canonical system, and controls the evolution of the trajectory in the

first system through phase variable x, which decreases from x = 1 to x = 0, at which y = g. This makes

the trajectory representation time-invariant and, since f depends on x, it is possible to scale the motion

with respect to time by tuning time constant, τ .

Note that, in keeping with the original notation ([52]), the evolving variable and the phase variable

in the canonical system are denoted by y and x, respectively (using a distinct sans-serif font).

Among the advantages of DMPs as trajectory representations is their compatibility with learning

from demonstrations. By capturing a demonstrated movement’s profile in the form of position, velocity,

and acceleration values using techniques such as kinesthetic teach-in or visual motion capture, a DMP can

effectively be ’learned’. This process involves extracting parameters y0, g, and τ and using a supervised

learning approach to approximate the forcing term required to reproduce the demonstrated trajectory. For

this, locally weighed regression (LWR) is used to determine the basis function weights wi that minimize

the locally weighted quadratic error between the target forcing term and that of the DMP.

DMPs enable complex movement representations that do not require explicit planning by exploiting

coupling effects of the non-linear system equations. A notable consequence of this not having to rely on

trajectories generated by conventional planners, which are less predictable than demonstrated and subse-

quently learned motions. The flexible and compact formulation of DMPs also facilitates generalizability of

motions and opportunities for learning derivative solutions to constrained reaching problems, for example,

by tuning their meta-parameters.

Other trajectory representations, that could be employed for motion reproduction and learning,

65

3.3. Gaussian Processes

include Gaussian Mixture Models (GMMs) ([21]), Hidden Markov Models (HMMs) ([64]), Probabilistic

Movement Primitives (ProMPs) ([81]), Interaction Primitives ([8]), and invariant trajectory representations

([113]).

3.3 Gaussian Processes

This section contains a brief description of Gaussian Processes and Gaussian Process Regression,

due to their significance in model-based RL algorithms and other similar approaches dealt with in this

report. For a more complete treatment of this topic, the reader is directed to the dedicated book by

Rasmussen and Williams [116].

A Gaussian Process (GP) is a non-parametric model that defines a probabilistic distribution over

functions, and is often used as a universal function approximation method. As a type of stochastic

process, a GP effectively generalizes a multivariate Gaussian distribution to infinite dimensionality, and is

formally defined as a collection of normally distributed random variables, any finite number of which have

a joint Gaussian distribution. This formulation allows defining a GP over a time index, for example, and

modelling uncertainty over a function f(x) of some observable variable x as a distribution over all possible

functions. A Bayesian approach can then be applied to make inferences on the form of the underlying

function by updating the posterior GP with observations of x.

Similar to a multivariate Gaussian distribution, a GP is fully represented with a mean function

and a covariance function, noting the generalization to the space of functions:

m(x) = E[f(x)] (3.36)

k(x, x′) = E[(f(x)−m(x))(f(x′)−m(x′))] (3.37)

where the conventional symbol m avoids confusion with mean vector µ, and k is used to indicate the use

of kernel functions for the covariance.

Intuitively, m defines the average shape of the underlying functions, while k(x, x′) defines the

covariance between any two values of the function.

The covariance kernel function is a central element in GPs, since it effectively encodes assumptions

on the characteristics and form of the underlying function, such as smoothness properties, and thus defines

the nature of the search space. It enables representing the bounds of uncertainty in any region of the

distribution of functions, which can be interpreted as the assumptions we can make on the shape of the

function according to the amount of data observed around that region. This property is what facilitates

an efficient Bayesian inference procedure, where the GP prior is iteratively updated with information

contained in successive observations.

The prior of a GP is most often represented by a zero mean function, m(x) = 0 enforcing no initial

assumptions on the general function landscape. The covariance function is usually defined in terms of a

squared-exponential kernel function:

k(x, x′) = exp(−
1

2
|x− x′|2) (3.38)

66

Chapter 3. Preliminaries

For the purposes of model identification and modelling dynamic systems, GPs are used to approx-

imate some function f , while Gaussian Process Regression (GPR) is used for inferring the underlying

function. In a Bayesian formulation, the posterior GP is continuously estimated, given new training data

x∗, by making predictions on the function distribution. By conditioning on these observations, GPR

computes the mean and covariance functions, for a test point x∗ and target value y, with the equations:

m∗(x) = k∗
TK−1y (3.39)

k∗(x, x
′) = k(x∗, x∗)− k∗

TK−1k∗ (3.40)

Here, k∗ refers to the vector of covariances between x∗ and the rest of the (stored) training points, while

K is a matrix of the covariances between all pairs of training points (refer to [116])

GPs can be useful in robotics, particularly in the field of model-based reinforcement learning,

for approximating robot and/or task dynamics. This then provides a predictive forward model that

enables learning off-line and transferring learned policies to the robot, with the aim of reducing system

interaction time and more data-efficient learning in demanding problems. The GPR procedure, however,

can be computationally heavy, since the prediction step necessitates an expensive matrix inversion

step. Nevertheless, recent approaches have enabled alleviating the computational burden using sparse

approximations, local GPR, and utilizing GPUs, for example ([14]).

67

3.3. Gaussian Processes

68

4

Methodology

The primary objective of this project is to evaluate an apprenticeship learning procedure that

enables a robot to acquire a context-aware, human-oriented skill. This necessitates two essential analyses:

i) validating the feasibility of a chosen algorithm for attaining the desired behaviour and its quantitative

performance details, and ii) a human user study from which empirical conclusions on the success of the

emergent behaviour can be drawn.

This chapter deals with the methodology followed for evaluating the implementation in both

respects. Section 4.1 provides a rudimentary description of the procedure underlying this study. It also

lays the foundations for subsequent result analyses, and the criteria used to evaluate both the implemented

learning procedure as well as the resultant behaviour observed on the robot through experiments. Section

4.2 describes the actual user study with which a learned context-aware skill is evaluated qualitatively,

including the experimental design and procedure.

4.1 Set-up

As previously mentioned, the human-robot object hand-over skill was chosen as a use-case to

investigate the implications of reinforcement learning-based contextualization of a demonstrated task.

In this project, the hand-over task is performed by the Toyota Human Support Robot (HSR), shown

on Figure 4.11. The dyadic task is performed unilaterally, with the hand-overs strictly being from the

robot to the human, such that we focus on the robot’s behaviour as it proactively transfers the object.

In anticipation of contextual variations, we attempt to equip the robot to be contextually aware so that

hand-overs are adjusted to the posture of the person (standing vs. seated) or the presence of an obstacle,

for example. This is eventually tested in a lab mimicking a domestic setting, where subjects are offered

an object by the robot in varying scenarios, in order to evaluate the impact of the contextual awareness.

We now briefly describe the methodology of the project.

Acquiring A Demonstration Chosen both as a prototypical human-robot collaborative task and for

its simplicity and atomic nature, the robot hand-over skill is formalized as the movement of a grasped

object to a chosen hand-over position in 3D space, following a chosen end-effector trajectory, with the

aim of transferring the object to a person. These characteristics of the execution are preferably obtained

1https://mas-group.inf.h-brs.de/

69

4.1. Set-up

from demonstrations, which makes dynamic movement primitives (DMPs) a natural choice for encoding

the underlying movement. Not only do DMPs enable reproducing human demonstrations, they are

also conducive to alteration by learning through their tunable parameters: trajectory shape weights w,

goal position g, and time constant τ . Therefore, a DMP representation is used to capture a hand-over

demonstration movement, as an initial step.

Figure 4.1: The HSR. Courtesy
of H-BRS, MAS Group.

Defining Contexts The contexts which the robot can identify and

subsequently adjust its behaviour to are defined in terms of factors that

appreciably influence the optimal way with which an object can be

handed over. For the purposes of our study, we consider the hand-over

contexts relating to the posture of the receiver, the presence or absence of

an intermediate obstacle, and the fragility or an inherent safety-critical

property of the object.

Consequently, we symbolically define the context of a situation,

C = {c1, c2, ..., cn}, as a set consisting of observed values of context

parameters, c. In our setting, these parameters and their values can be

defined as follows:

• Posture: c1 ∈ {standing, seated, lying down}

• Obstacle-free: c2 ∈ {True, False}

• Object-fragility: c3 ∈ {True, False}

As an example, an observed hand-over context C = {seated, True, True} can be described as handing a

fragile object over to a seated person, with an obtrusive obstacle in the way. With this information, the

robot could make use of learned contextual policies to ensure its execution is tailored to these details.

Establishing Learnable Parameters Having formulated a representation of a hand-over movement in

terms of parameterized DMPs, and defined our context parameters, we establish the relationship binding

the two in our subsequent learning procedure. In particular, we conceptually determine the parameters of

a DMP which predominantly influence an aspect of the hand-over execution, and thus affect a particular

dimension of context. These DMP parameters are chosen to match the respective context parameters, such

that choosing their values appropriately can facilitate an execution that is most adequate for the current

context (value). To that end, we draw some parallels between our sets of parameters in the following.

The optimal hand-over position, dictated by the DMP goal position (or state) parameter g, depends

on the current posture of the receiving person, indicated by context parameter c1. This assertion stems

from the intuitive fact that a person standing upright, sitting down, or lying down would have substantially

different preferences for the optimal point at which they are expected to receive an object. The final

hand-over position becomes a significant factor in the comfort of the person and the amount of effort

they must expend, as well as how natural the action is perceived to be. For instance, a hand-over study

conducted by Koay et. al. in [34] revealed that seated subjects significantly preferred a hand-over position

70

Chapter 4. Methodology

adequately adjusted to reflect their posture, over an arbitrary one, as one of the study’s more prominent

findings.

The shape of the hand-over trajectory, which is governed by the DMP basis function weights wi,

assembled in matrix W , may have less importance from the perspective of receiver posture, but can be a

factor in distinguishing favoured behaviour for a variety of context factors. Among these is the presence or

absence of an obstacle between the robot and the receiver (c2), which could include table-tops, counters,

or significantly large obstacles. Since the presence of such an obstacle is usually best avoided by following

a different trajectory and may not require changing the final hand-over position, a contextual policy that

generates appropriate DMP weight values to enable context-dependent trajectory shapes is a suitable

solution. Note that the focus here is not on conventional obstacle avoidance, which could be accomplished

through reactive planning, but rather on the possibility of learning various trajectory shapes and encoding

them in a contextual policy.

The execution speed of a trajectory generated using DMPs can be tuned by changing time constant

parameter τ . An application which relates to our third context parameter c3 lies in changing the speed of

the end-effector during a hand-over to account for certain properties of the object. These include fragility

or possible spillage of a drink, for which the speed of the original demonstration may be hazardous or

inconvenient.

To summarize, each context parameter is associated with a contextual policy which is to be learned

for a particular DMP parameter, such that for:

• receiver postures, c1: optimal hand-over/goal positions are learned, while trajectory shape and

execution speed are constant;

• obstacle presence/absence, c2: optimal trajectory shapes are learned, while hand-over/goal position

and execution speed are constant;

• object fragility, c3: optimal execution speeds are learned, while hand-over/goal position and trajectory

shape are constant.

Learning Policies Our apprenticeship learning approach aims to extend a demonstrated, static hand-

over policy to a contextually adaptive one, using a suitable reinforcement learning algorithm. The choice of

said algorithm must invariably be preceded by formulating a policy representation, which would allow the

robot’s action to be contextually adaptive along different ’dimensions’ of context. The consulted literature

(refer to chapter 2) suggests that encapsulating a behaviour that adheres to multiple contexts of a single

type is a challenge in its own right, although it is possible through probabilistic policy models such as

GMMs, for example. Multiple context types/parameters can potentially be tackled through multivariate

variants of such models, for example, but the multi-modality associated with each parameter is expected

to complicate capturing the desired complex behaviour in a single model. Hierarchical policy formulations

have been identified as a promising approach, and are thus pursued in this work.

We use probabilistic models and a hierarchical structure of multiple such policies: the former

for their desirable properties including amenability to sequential improvements and direct encoding of

71

4.1. Set-up

exploration, the latter for their suitability for multi-contextual learning. Namely, we employ three separate

policies, one for each learnable DMP parameter (g,w, and τ), then simply aggregate their outcomes. The

result is a coherent hand-over trajectory which takes multiple context parameters into consideration,

thanks to the compact and compliant DMP representation.

The choice of algorithm is then determined based on its fulfilment of the requirements imposed by

the policy formulation, such that the robot learns hand-over executions that are sensitive to each of c1, c2,

and c3. Appendix A contains a brief comparison of candidate algorithms, while Chapter 5 presents the

choice algorithm in more detail.

Evaluating Algorithm Performance and Learned Policies The subsequent learning phase, similar

to any machine learning procedure, requires careful analysis of an algorithm’s performance with respect to

a variety of tunable learning parameters. These include the number of iterations in which the policy (or,

more generally, the ’model’) is updated, the expended time and memory resources, and the dimensionality

of inputs. In addition, factors like generalization performance, convergence properties, and sensitivity to

the focal features in the data are similarly pertinent. For a policy search (PS) method, and reinforcement

learning (RL) in general, it becomes necessary to also consider criteria such as reactions to different reward

functions, the number of roll-outs per iteration, exploration parameter characteristics and values, policy

complexity, and so on.

Apart from analysing the algorithm’s performance across multiple parameters, we evaluate the

quality of the learned policies, in terms of the behaviour manifested on the robot as it follows them.

Criteria which are particularly significant for our case include how well a policy’s produced actions resemble

the desired, such as how close its sampled hand-over position or trajectory are to the preferred ones, and

its ability to handle multiple context values: how it copes with encoding more than one desired action,

and reliably choosing the right one for the current context. These preliminary evaluations are performed

prior to actually observing behaviour on the robot, through simulations of policy outputs.

A description of these evaluations is provided in sub-section 4.1.1.

Applying Learned Policies on a Robot Since our learning procedure is performed in a form of

simulation, along with the aforementioned preliminary evaluations, the next step involves transferring

the learned policies to the robot, the HSR, which would be utilizing them. Sub-section 5.3.1 includes a

description of the hand-over action implemented on the robot, on which different policies could be tested.

The implementation would utilize a DMP formulation to execute hand-over trajectories, thus allowing us

to apply policies parameterized by each of the context parameters, and learned for each of g, w, and τ .

In essence, the set of parameters picked by each respective policy is sent in a collective command to the

robot, and the resultant execution is expected to incorporate the contextual knowledge associated with

each, in a manner similar to what was observed in simulations.

Experimentally Validating Merits of Learned Policies The final phase of the procedure followed

in this study aims to conclusively validate the benefits of a context-aware approach to a hand-over action,

as enabled by the learned policies. Our basic hypothesis stating that these considerations do improve upon

72

Chapter 4. Methodology

a robot-centric approach, which disregards the scenario the user is currently in, is verified in a human

user study. The experiments involve the two ’behavioural modes’ being used to execute hand-overs in

varying scenarios, and their respective impacts on users being estimated through questionnaires. The

conclusion arrived at as a result of this study would then provide confirmation of how promising an avenue

apprenticeship learning is for the problem of contextual adaptation, and its merits.

Sub-section 4.1.2 describes the bases on which the learned behaviour will be evaluated in experiments,

while section 4.2 explains the proposed experimental procedure.

4.1.1 Evaluating Learning Performance

The performance of the selected PS algorithm as it learns appropriate policies is systematically

evaluated using quantitative and qualitative analyses. Naturally, this process is performed both iteratively

and as a final assessment of performance on simulations. The learning procedure is driven by the insights

gathered through observing the effects of parameter changes on quantitative performance measures, as

well as perceived policy quality. Subsequently, the results achieved by what is considered the best set of

parameters are then analysed to make conclusions about the characteristics of the algorithm. Particularly

important criteria to examine include:

• Quality of resultant behaviour (policy outputs)

• Time needed to achieve said behaviour

• Number of policy update iterations, N

• Number of roll-outs per iteration, M

• Exploration parameter values

• Type and dimensionality of context vectors

• Number of DMP basis functions

• Reward functions

• Scalability

• Learning limitations

• Computational resources

The quality of the policy produced by the algorithm can be measured by how closely it resembles

the desired behaviour. Since RL methods encode this into reward functions, our final achieved reward

provides an intuitive and primary measure of the quality of the policy. Nevertheless, there are two

important considerations to take into account. Firstly, while exploration parameters enable learning,

their inclusion in final assessments produces unnecessary fluctuations in final reward values, especially if

their values are significant. Therefore, they are set to zero when evaluating final policies. Secondly, our

multi-contextual policies are expected to satisfy multiple modes of behaviour, depending on the observed

context, which makes it necessary to evaluate policies based on rewards obtained for each possible value

of a context parameter.

Determining the actual time required for the algorithm to converge on desirable behaviour is

tantamount to estimating the required number of policy iterations. However, it is worth noting in its

73

4.1. Set-up

own right when considering that learning may eventually be online, i.e. performed on the system directly,

which is conceivable for robotic systems.

As with most machine learning procedures, the number of iterations required to attain a desired

result is a key factor and a principal measure of efficiency.

When learning through reinforcement, it is often the case that policies are updated at each iteration

after observing the result of multiple roll-outs: atomic episodes or independent executions of some task.

This allows an algorithm to observe various possible outcomes of its exploration, and thus make a more

informed update of the policy. Consequently, among the sought parameters is the number of roll-outs per

iteration that achieves a good compromise between computational efficiency and resultant behaviour: an

additional degree of freedom to our problem.

Exploration drives learning by reinforcement, and PS algorithms may employ substantially different

exploration strategies, ranging from simple added Gaussian noise to information-theoretic policy updates.

In all cases, the values of the parameters driving this exploration play a major role in deciding how well

an algorithm performs, and thus warrant careful consideration.

Owing to the fact that we learn contextual policies, parameterized by context variables/vectors,

the type and dimensionality of these parameters may significantly influence our ability to capture desired

behaviour. Although lighter and less restrictive representations (e.g. using scalars and real numbers,

respectively) are preferable, it is expected that certain algorithms and policy formulations may require

more elaborate structures. An algorithm is thus also evaluated based on its suitability for different context

representations.

The use of DMPs for capturing and reproducing trajectories also introduces additional design

parameters, chief among which is the number of basis functions in the forcing term, which controls the

precision of trajectory shape representations.

The critical role of reward functions and reward shaping in RL cannot be overstated: reward

signals are the robot’s only indication of its performance and latent objectives, and their characteristics

ultimately decide the feasibility of learning some policy. Factors such as reward sparsity and degree of

differentiation between outcome desirability are to be taken into account when designing reward functions.

When coupled with policy update strategies employed by the chosen algorithm, we are then faced with

the task of experimenting with various reward formulations to identify one that achieves the best results.

(Chapter 6 includes the results of various reward functions used for respective policies in our work)

Scalability tests can provide insights into how well an algorithm scales with increasing parameter

dimensionalities. For example, experimenting with different context parameter dimensions, or varying

sizes of policy outputs are expected to reveal how well the algorithm may cope with different, possibly

more complicated, problems.

The drastic differences in conventional RL algorithms and varieties of policy formulations necessitates

evaluating and estimating the limitations of the proposed approach in capturing desired policies. These

include difficulties in learning that can be traced back to restrictions imposed by chosen formalisms,

such as the inability to escape local performance optima, or to represent some complex behaviour.

Identifying limiting factors allows us to establish the suitability of the proposed procedure to other

74

Chapter 4. Methodology

problems exhibiting certain recognizable traits. An exemplary case is that of a neural network policy

employing linear activations struggling to achieve non-linearities in desired behaviour.

Lastly, computational expenses imposed by the algorithm of choice is a fundamental evaluation

criterion. Therefore, the time and memory resources required to achieve the final result must also be

taken into consideration.

4.1.2 Evaluating Learned Behaviour

Following our evaluations of learned policies in the simulations in which they were learned, we

proceed to evaluate the behaviour on the robot, and subsequently verify the hypothetical improvements

behaviour learned through apprenticeship learning makes over a more naive approach. In particular,

the context-aware behaviour enabled by the learned policies is implemented in addition to its opposite:

contextually non-adaptive executions of an action that disregard current context. The latter, which is the

more common approach, usually consists of situation-independent, pre-set executions whose parameters

do not adapt to contextual differences.

These evaluations are not performed by the person designing the learning procedure, in order to

avoid undesirable biases; instead, we conduct a human user study to obtain subjective evaluations from

multiple participants. In this study, we perform experiments with the objective of estimating typical users’

perceptions of context-aware and context-unaware behaviours, such that we obtain conclusive evidence

supporting or opposing our hypothesis. These experiments involve the robot performing hand-overs for

participants in either case, before they fill out questionnaires that are later analysed in detail. In the first

case, the robot is set to execute the same (predefined) motion in all scenarios; in the second, it samples

executions from its learned policies, parameterized by observed context variables.

The questionnaire is designed to estimate a user’s perception of the robot’s performance, in terms

of how appropriate its motions are and how comfortable it is to receive an object from it, since these are

the ultimate factors governing a good hand-over. The criteria incorporated in the questionnaire include:

• Perception of observed behaviour

• Suitability for chosen contexts

• Naturalness of executions

• Predictability of executions

• Comfort and expended effort

Each kind of behaviour (context aware vs. unaware) is tested on these criteria in separate sections

on the questionnaire, with a final assessment of which is generally preferred. Additionally, the questionnaire

includes a section allowing users to provide descriptions and general comments. This is expected to help

in identifying factors initially not taken into account and certain trends that may be informative for

subsequent analyses. The questionnaire used in the experiments can be found in Appendix B.

In order to ensure maximal soundness of the conducted experiments, some additional measures

are taken into account. Since the experiments are performed with a robot in a lab setting, volunteers

with varying degrees of experience with the robot are recruited for the experiment. This ensures breaking

75

4.2. Experimental Design

(a) Standing up (b) Sitting down (c) Lying down

Figure 4.2: Different postures assumed by participants in the HSR hand-over study

any habituation effects, which may affect the expectations and opinions of individuals that regularly

interact with the robot. The order in which behaviour modes, as they are referred to in the questionnaire,

are presented to a participant and the order of the sequence of predefined context scenarios are both

randomized, to avoid any latent bias. Biases in opinion, in general, are also avoided by providing

participants with identical experiment instructions and input, and conducting user trials in isolation from

other participants.

The next section provides an explanation of the experiment procedure that was eventually designed

for this study.

4.2 Experimental Design

This section contains descriptions of the experiment(s) designed to evaluate the performance of the

learned hand-over skill in different contexts, and to verify whether it improves over a context-unaware

variant of the same action.

4.2.1 Experiment Setting

Our experiments are performed using the Toyota Human Support Robot (HSR), in a quasi-domestic

setting in our laboratory at Hochschule Bonn-Rhein-Sieg. The experiments were particularly designed to

test a policy that chooses different hand-over positions, which was learned beforehand in simulations, such

that the robot adapts hand-overs according to user posture (c1). This is compared to the aforementioned

contextually non-adaptive policy. The setting included three pre-determined positions at which a person

could be situated, either standing up, sitting down, or lying down (on a couch). Figure 4.2 shows the

respective positions and postures that are assumed by a participant during the experiment.

4.2.2 Experiment Procedure

A single experiment in the study was structured as follows. A sequence of three hand-overs, each

in one of the contexts, is performed twice: once under the context-aware behaviour mode and once under

76

Chapter 4. Methodology

the context-unaware behaviour, for a total of six trials. Initially, the order in which the two behaviour

modes are chosen and the sequence of contexts for a particular behaviour mode are both randomized.

The first phase, consisting of the three hand-overs executed under the first behaviour mode, is followed by

nine questions that can be answered on a 5-point Likert scale ranging from strong agreement to strong

disagreement, and which test the initial perception of the user. Following the second phase, the same

set of questions must be answered, this time for the second behaviour mode. Finally, the participant

provides an overall preference over the behaviour modes on a 5-point Likert scale, and answers a set of

open questions.

Each participant is briefed on the nature of the experiment and the main procedural details before

their run, and then allowed to read the questionnaire in full. The experiment then starts, with each trial

executed in the pre-determined sequence. If the participant is unsure of their opinion of a trial, or would

like to reinforce it, they are allowed to ask for a repeat.

At each trial, a person detection software module is first used to detect a person in front of the

robot, which is already holding an object in its gripper. When successful, the robot utilizes a posture

identification module to estimate the person’s current posture. Accordingly, it chooses a hand-over

position, according to its policy, at which it presents the object to the person and awaits their reception.

A reception detection component then utilizes the wrist force sensors on the robot to determine whether

the person is trying to pull the object from its grasp, at which point it releases it and returns its arm to

a neutral position. During these experiments, the robot executes a trajectory of the same shape for all

trials.

We provide a video demonstrating the hand-overs performed during the experiments2.

At the end of the experiment, the participant is allowed to fill out the final section of the

questionnaire.

4.2.3 Result Analysis

Following collection of data from the participants of the HSR hand-over experiments, we then

analyse the results to extract useful insights. As previously mentioned, each question can be answered in

a scale from 1 to 5, which can be interpreted as a score range of (−2, 2). Since each question in the set of

nine which were posed in the questionnaire about each behaviour mode determines some aspect of the

user’s perception of the hand-overs executed by the robot (naturalness, suitability, etc.), it is possible to

aggregate the scores provided by all users per question. A comparison between the total scores on each

aspect for each behaviour mode can then reveal the extent to which one is perceived to be better than the

other. (Refer to Appendix B for the full questionnaire, and chapter 7 for the list of posed questions)

In the same manner, the overall preference for the context-aware behaviour or its antithesis can be

determined from the scores on the general conclusive question.

Finally, we analyse the general comments provided by the participants, in order to extract meaningful

and possibly overlooked aspects of the hand-over and overall performance of the robot.

2 www.youtube.com/watch?v=GguFJ2a7O6E

77

4.2. Experimental Design

78

5

Solution

This chapter introduces the solution proposed for the problem of learning generalizable, context-

dependent hand-over executions. In this project, as described in our methodology, we pursue an ap-

prenticeship learning approach, in which we combine learning from demonstration and a model-based

reinforcement learning algorithm. The choice of model-based policy search is motivated by the desire for

a more data-efficient approach to learning a robot skill, such that we can minimize interaction time and,

consequently, safety hazards, system wear, and operating costs.

Appendix A contains a brief overview and comparison of four candidate algorithms. Following a

basic analysis of the properties of each, the proposed algorithm is presented in section 5.1 and elaborated

on in finer detail. This includes an extensive explanation of the algorithm, its properties, notable merits,

and foreseeable challenges. Finally, section 5.2 exposes details of the actual workflow and implementation

details, including a formalization of the hand-over skill, the complete apprenticeship learning process, and

a brief note on some of our notable improvements on existing implementations.

5.1 Proposed Algorithm

For this work, we have proposed the C-REPS algorithm as a suitable solution for the problem of

learning a generalizable hand-over skill on a real robot. The brief comparison of four candidate algorithms

presented in Appendix A suggests that the GPREPS algorithm is most promising for model-based

contextual policy learning, and possesses various relevant properties. Although the algorithm traditionally

uses GP predictive models, we have opted to avoid the computational and general complexity of Gaussian

processes in favour of a significantly simpler notion of a forward model which is enabled by the DMP

implementation (pydmps) and pre-determined reward functions. The result is a variant of C-REPS that

learns policies in simulations, as opposed to the conventional model-free version. This section describes

the algorithm in detail.

Contextual Relative Entropy Policy Search is a PS algorithm that can learn contextual policies

in a hierarchical structure and performs information-theoretic policy updates. The algorithm employs

a learnable stochastic upper-level policy and a deterministic lower-level policy; the former learning

parameters that make the latter applicable to different contexts of a task. It was introduced by Kupcsik

et. al. in [67] and [66], which contains a thorough explanation of its underlying principles, as a contextual

79

5.1. Proposed Algorithm

extension to the original REPS ([89]), such that restarting learning or capturing separate policies for every

new task situation is avoided by following a more holistic approach to learning robot skills, for example.

The procedure of the C-REPS algorithm, methodically described in the following is almost identical

to that of GPREPS, presented in section A.3 (of Appendix A) and summarized in Algorithm 3, apart

from forward model learning which, for now, is abstracted away, by leaving the source of roll-outs (system

or model) unspecified.

The general problem of contextual PS involves adapting the parameters of a parameterized policy

ω to an observed context c, and C-REPS solves this in the most efficient way: using a hierarchical policy

decomposition, which avoids the tedium of the alternative, in which a separate policy for each context

must be learned.

Hence, we define the two constituents:

• Upper-level policy π(ω|c), implemented as a linear-Gaussian model

• Lower-level policy π(u|x, ω), implemented as dynamic movement primitives (DMPs) , in our case

The upper-level policy chooses parameters ω that influence a lower-level policy, given some context

parameter c, and is implemented as a linear-Gaussian model:

π(ω|c) ≈ N (ω|a+Ac,Σ) (5.1)

Its implementation as a parametric model makes sampling ω for artificial roll-outs particularly

simple. The parameters of the policy θ = {a,A,Σ} represent the mean and covariance of the parameter

distribution, the latter directly encoding the exploration required for learning. Context variable c is

assumed to be sampled from a distribution defined by µ(c) = a+Ac.

The lower-level policy executes the actual system trajectories, conditioned on parameters ω

throughout the current episode. Since this is often on a robot, its parameters consist of low-level control

signals u and current state variable x (following notation adopted for RL in robotics), which depend on

the current timestep during execution. We use DMPs as lower-level policies. Technically, they do not

represent the lowest level of execution, since they define an end-effector trajectory and are thus succeeded

by an inverse kinematics controller that determines the joint commands required to move along that

trajectory. Nevertheless, this controller is abstracted away as it bears no direct impact on the learning

algorithm’s procedure.

The expected return of an execution (or episode), Rcω is determined by the expectation over all

trajectories, τ , of the output of reward function R(τ, c) conditioned on the current context and sampled

lower-level policy parameters ([67]):

Rcω = Eτ [r(τ, c)|c, ω] =

∫

τ

p(τ |c, ω)R(τ, c)dτ, (5.2)

where p(τ |c, ω) denotes a distribution over trajectories.

The problem of finding optimal upper-level policy parameters θ then amounts to maximizing the

80

Chapter 5. Solution

expected return over the distributions of context and lower-level parameters (the upper-level policy):

Jπ =

∫

c

∫

ω

µ(c)π(ω|c)Rcωdcdω (5.3)

which is identical to Eq. (3.8), except that actions a are substituted for the output of the upper-level

policy: ω.

The C-REPS approach defines and optimizes over a trajectory distribution that constitutes a joint

probability of the context and parameter variables: p(c, ω) = µ(c)π(ω|c), which relaxes an assumption of

the availability of many ω samples for every context vector c ([35]). As a consequence, an added constraint

to the subsequent optimization procedure is: ∀c :
∫
ω
p(c, ω) = µ(c), while the main objective is reduced to

maximizing:

Jπ =

∫

c

∫

ω

p(c, ω)Rcωdcdω (5.4)

The above constraint on the context distribution results in infinitely many constraints for continuous

context variables, which the authors of C-REPS address by matching feature expectations (averages)

instead of single probabilities, expressed with:

∫

c

∫

ω

p(c, ω)φ(c)dcdω = φ̂ (5.5)

introducing a context feature vector φ(c) and its mean φ̂, which is taken to be the average over observed

contexts.

An integral part of REPS algorithms are information-theoretic policy updates, which come in the

form of an additional constraint that requires relative entropy bound parameter ǫ. Policy updates are

restricted so that the relative entropy (i.e., Kullback-Leibler divergence) between consecutive trajectory

distributions is bounded by ǫ in order to minimize excessively greedy policy updates and information

losses:

DKL(p(c, ω)||q(c, ω)) =

∫

c

∫

ω

p(c, ω)log
p(c, ω)

q(c, ω)
dcdω ≤ ǫ, (5.6)

where q(c, ω) refers to the trajectory distribution of the previous policy iteration, i.e. the old policy. It is

also possible to use multiple previous policies and aggregate their results in q(c, ω).

In addition to the fact that the trajectory distribution must be a valid probability distribution, the

above factors together define the central constrained optimization problem ([66]):

81

5.1. Proposed Algorithm

max
p

∫

c

∫

ω

p(c, ω)Rcωdcdω (5.7)

s.t.:

∫

c

∫

ω

p(c, ω)log
p(c, ω)

q(c, ω)
dcdω ≤ ǫ

∫

c

∫

ω

p(c, ω)φ(c)dcdω = φ̂

∫

c

∫

ω

p(c, ω)dcdω = 1

where the trajectory distribution chosen so as to maximize Jπ implies an underlying optimal

upper-level policy.

Keeping in mind that p(c, ω) = µ(c)π(ω|c), the optimal upper-level policy can be solved for using

the Lagrangian formulation:

π(ω|c) ∝ q(c, ω) exp

(
Rcω − V (c)

η

)
(5.8)

This equation introduces context-dependent baseline in the form of derived ’value function’ V (c) = θ̃Tφ(c)

and Lagrangian parameters η and θ̃ which account for the second and third constraints in Eq. (5.7),

respectively. These parameters are determined by optimizing the convex dual function:

g(η, θ̃) = ηlog

(∫

c

∫

ω

q(c, ω) exp

(
Rcω − V (c)

η

)
dcdω

)
+ ηǫ+ θ̃T φ̂ (5.9)

This optimization problem requires a data-set of N simulated or real trajectories containing respec-

tive observed contexts, sampled parameters, and received or estimated rewards: D = {c[i], ω[i], R
[i]
cω}i=1,...,N

(as outlined in Algorithm 3). Using these samples of the old trajectory distribution (and thus, policy)

q(c, ω), the integral in Eq. (5.9) is approximated by a summation. Each sample in D is then given an

importance weighting, given by the probability of each:

p[i] = exp

(
R

[i]
cω − V (c[i])

η

)
(5.10)

The final step of the algorithm involves using these sample weights to re-estimate the parameters,

θ∗, of π(ω|c): a, A, and Σ. The choice of a parametric policy model enables using a simple weighted

maximum likelihood estimation (WMLE) policy update rule. As shown in [66], this can be computed

with the following equations, where S is a N ×Dc context matrix with rows of the form [1, c[i]] (where Dc

is the dimensionality of context vector c), Ω is a N × b parameter matrix whose rows contain sampled

parameters ω (Dω denotes the dimensionality of parameter vector ω), and P is a N ×N diagonal matrix

containing sample weightings p[i]:

82

Chapter 5. Solution

[
aT

AT

]
= (STPS)−1STPΩ (5.11)

Σ =

∑N
i=1 p

[i](ω[i] − µ[i])(ω[i] − µ[i])T
∑N

i=1 p
[i]

(5.12)

µ[i] = a+Ac[i] (5.13)

Parameters {a,A,Σ} are then used to update π(ω|c), in Eq. (5.1), and the algorithm normally

iterates for the specified number of policy updates. An alternative approach (not explored here) can equip

the algorithm to run until some performance measure is satisfied, as in the PILCO and Black-DROPS

algorithms.

Exploration Characteristics As previously mentioned, the information-theoretic policy updates of

C-REPS enforce staying close to the observed data, bringing stability to the learning process and a useful

robustness measure to our apprenticeship learning approach. Bounding the relative entropy helps in

striking a balance between forgetting (as a means for broader exploration) and experience retention. As a

consequence, ǫ can be regarded as a factor in the exploration-exploitation trade-off, alongside the implicit

exploration provided by the covariance of our stochastic upper-level policy, Σ. With reference to the

performance criteria in sub-section 4.1.1, the two variables constitute our exploration parameters.

It bears mentioning that the incorporation of all trajectory samples, with their respective weightings

p[i], in the final policy update can be significantly beneficial. Instead of taking one or a subset of samples

that perform best into account, C-REPS attempts to extract the most information from all trials, including

possibly unsuccessful but close executions, by simply weighting them according to levels of performance.

Although this may conceivably slow down learning in some cases, it can help in systematically converging

to the optimal parameters when navigating a tricky reward landscape. ǫ plays a major part in this step,

controlling how discriminative the sample weightings are according to performance (higher values strongly

favour ’successful’ trajectories and drive the weights of less effective ones to zero; lower values offer a more

relaxed criterion).

REPS algorithms encode a built-in correlated exploration strategy, similar to stochastic optimizers

like CMA-ES, which is used in the Black-DROPS algorithm (refer to section A.2, of Appendix A). This

implies that all elements of the policy model’s covariance matrix are updated per iteration, unlike methods

that over-simplify by only using and re-computing a diagonal covariance matrix, such as PILCO ([35]).

The more realistic exploration, which takes parameter correlations into account, is expected to increase

learning speed.

Finally, it is important to note that C-REPS, and REPS algorithms is general, may suffer from a

problem shared by most stochastic search procedures: premature convergence on sub-optimal parameters.

Updating the search, or exploration, distribution using the information-theoretic approach is expected to

mitigate this, but it remains a problem: the policy search may still collapse into an undesirable point-

estimate ([2]). In the next section (particularly sub-section 5.2.6), we describe a simple regularization

83

5.2. Implementation

Figure 5.1: The main stages of our apprenticeship learning procedure for constructing a context-aware
hand-over skill.

step we added to the algorithm that performs random restarts of Σ to avoid this problem, which we

encountered in some cases.

5.2 Implementation

This section contains the details of how the hand-over skill was represented on the HSR, and how

the apprenticeship learning process was implemented in order to achieve context-aware executions of

object hand-overs. In the respective sub-sections, we describe the constituents of the hand-over skill, the

process of acquiring demonstrations, capturing demonstrated trajectories, learning to generalize them

to different contexts, executing context-aware hand-overs, and some notable contributions. Figure 5.1

portrays the general workflow of our implementation.

5.2.1 The Hand-Over Skill

Figure 5.2: The HSR
grasping a bottle in a neu-
tral position.

The hand-over skill was implemented on the HSR, using ROS, as a

finite state machine consisting of three states which constitute the phases of

the action:

1. Detect people

2. Identify person posture

3. Hand object over

The robot is assumed to be holding an object in its gripper in a neutral

position (with the gripper oriented forward away from the robot), as shown

on Figure 5.2. Once commanded to perform the hand-over, the robot follows

the phases enumerated above, such that it first attempts to detect a person,

identify their posture, then execute an appropriate trajectory. The robot then

awaits the person’s reception of the object, which it detects using its wrist

force sensor. For that purpose, we implement the CUSUM change detection

algorithm.

84

Chapter 5. Solution

In the following, we describe each phase of the hand-over skill implementation1 in some detail.

Detecting People

The first phase of the skill involves detecting the person to whom the object would be handed over. For

this, images captured by the HSR’s RGB-D camera are used as inputs to a Single Shot MultiBox Detector

(SSD) model, trained on the COCO image dataset to detect people. The detector is implemented using

the Keras library and is embedded in a ROS action server2.

The associated detection action then returns a list of people that were detected in the images,

along with a detection confidence score and their respective bounding boxes on the image, which are

necessary for the next phase. At the moment, we consider the first detected person, often the one directly

in front of the robot, the potential receiver of the object and thus the subsequent target.

Identifying A Person’s Posture

The second phase, preceding the hand-over, involves identifying the posture of the person detected as

the receiver of the object. This step enables the robot to autonomously determine the value of context

parameter c1 (referred to in section 4), which can assume one of the values: {standing, seated, lying down}.

The posture context parameter is particularly chosen in the implementation due to its importance for

subsequent experiments in the conducted human study.

Person posture identification is achieved using a simple heuristic that compares the height and

width dimensions of the bounding box associated with the person. In particular, we determine the

height-width ratio, κ , as the ratio between the number of pixels in the vertical and horizontal dimensions

of the bounding box. Using experimentally determined threshold values, we define the posture identification

decision function:

c1 =

lying down, if κ ≤ 0.6

seated, if 0.6 < κ ≤ 1.65

standing, if κ ≥ 1.65

(5.14)

Handing the Object Over

The main part of the skill, the hand-over action3, requires the values of the context parameters (currently:

c1, as determined in the posture identification step, and c2), and executes the motion of the end-effector

that brings the object to the person in a suitable manner. The context parameters are used to sample

lower-level policy parameters ω1 and ω2 from learned upper-level policies π(ω1|c1) and π(ω2|c2), which

determine the hand-over (goal) position and the trajectory shape, respectively (sub-section 5.2.4 contains

1 https://github.com/b-it-bots/mas domestic robotics/tree/feature/hand-over-action/mdr planning/mdr scenarios/
mdr demos/mdr demo context aware hand over

2 https://github.com/b-it-bots/ssd keras ros
3 https://github.com/b-it-bots/mas domestic robotics/tree/feature/hand-over-action/mdr planning/mdr actions/

mdr manipulation actions/mdr hand over action

85

5.2. Implementation

more details about these policies). Subsequently, these parameters are combined in a lower-level policy,

implemented as DMPs of the form:

τ ÿ = αy(βy(g − y)− ẏ) + f(x)

τ ẋ = −αxx

We recall that the forcing term in the first equation is:

f(x) =

∑Nbfs

i=1 ψiwi∑Nbfs

i=1 ψi

,

and we use Nbfs Gaussian kernel basis functions of the form:

ψi = exp

(
−
x− µi

2σ2
i

)

For a more involved discussion of DMPs, refer to section 3.2, where the DMP equations have been

introduced, and are repeated here for convenience. In our work, the DMP lower-level policy governs the

evolution of end-effector position in three-dimensional Cartesian space, meaning we effectively use three

dynamical system equations. The equations are written in compact form above, in which the target is

vector y = {x, y, z}, encapsulating all three coordinate variables.

For our hand-over skill, the DMPs are supplied with the parameters ω1 = g and ω2 =W (where

W encapsulates the weights of all basis functions), and are then used to execute context-aware roll-outs of

the action. In addition, the skill can be used with predetermined values (forgoing policy sampling) for

both sets of parameters, which we use to simulate context-unaware hand-overs that execute the same

motion in any scenario, regardless of identified person posture, for example.

The final part of the action involves detecting when to release the object to give it to the person,

after stopping at the designated hand-over position. For this, we make use of wrist force sensors on the

HSR to detect when the person is pulling the object with the intention of receiving it. According to an

empirically determined threshold, the change in steady-state force readings is continuously evaluated using

a change detection algorithm, CUSUM, which decides when the sensed forces imply that the person is

actively pulling the object from the robot’s grasp. This is discussed further in sub-section 5.2.6.

5.2.2 Obtaining a Demonstration of the Task

As explained in the discussion of our methodology in section 4.1, we initialize our learning from a

human demonstration of the hand-over task, and capture it in a flexible motion primitive formulation.

This constitutes the first part of apprenticeship learning, which we advocate as a promising approach

to robot skill learning in general. Extracting these initial, pre-structured policies serves to speed up

the learning process and allows exploiting human expert knowledge, with the aim of attaining learned

contextual policies, and possibly even surpassing performance of demonstrations.

86

Chapter 5. Solution

Figure 5.3: Demonstrating a trajectory to
the HSR using a motion-capture imitation
learning approach. Courtesy of Mitrevski et.
al. ([76])

.

In order to teach the HSR a particular end-effector

trajectory from demonstration, we use a motion capture

approach. According to the LfD method categorization

presented by Argall et. al. in [9], we rely on imitation

through external observation, where the robot observes an

external movement and uses its sensors (a camera) to record

an executed motion for subsequent reproduction. Although

this approach may potentially result in correspondence

problems, it is relatively easy and less invasive compared

to kinesthetic teach-in, which is also infeasible on some

platforms.

During the procedure, the robot is set to capture the

motion of a marker that is moved in front of its camera (see

Figure 5.3), recording the position, velocity, and acceleration values of the trajectory: ydemo(t), ẏdemo(t),

and ÿdemo(t), for the duration of the motion. Subsequently, the DMP with which the trajectory can be

executed by the robot is ’learned’, which amounts to extracting its parameters g, y0, τ , and W . The

former three are straightforward to determine, while the last involves approximating the forcing term

function using locally weighted regression (LWR). The supervised learning process is used to determine a

weight value wi for each basis function ψi, such that the error between the demonstrated trajectory and a

roll-out, executed using the resultant DMP, is minimized.

For a more detailed explanation of the process of learning DMP parameters from a demonstration,

the reader is directed to the comprehensive treatment of DMPs by Ijspeert et. al. in [52].

The adopted motion capture imitation learning procedure was presented by Mitrevski et. al. in

[76], where a more detailed description of the procedure can be found.

5.2.3 Capturing Trajectories in Dynamic Movement Primitives

We use the pydmps4 Python package to implement the trajectory DMPs. The package contains the

functionalities required to represent trajectories in terms of DMPs, learn DMP parameters from a provided

demonstration trajectory, and execute subsequent DMP roll-outs. The latter capability is especially

instrumental in our learning-by-simulation approach, since it allows simulating a three-dimensional

trajectory that can be achieved with a particular parameterization of the DMPs. Figure 5.4 shows three

DMPs (in x, y, and z) producing four trajectories for different parameterizations of goal position g, shape

weights W , and time constant τ , respectively.

For our purposes, this provides a convenient way to estimate the results (return) of a particular

hand-over trajectory, and thus constitutes a ’predictive’ model, such that we can predict the motion that

would be executed by the robot. Using this to learn the skill in simulations, sometimes called mental

rehearsal in the RL literature, makes our C-REPS implementation model-based rather than model-free,

with the distinction from GPREPS being that we do not employ GP models.

4 https://github.com/studywolf/pydmps

87

5.2. Implementation

(a) Varying goal position g (b) Varying shape weights W (c) Varying time constant τ

Figure 5.4: 3D trajectories simulated using DMPs for different parameterizations

As a result of this process, we now have a deterministic lower-level policy, which generates the

appropriate end-effector position at each time-step in the duration of a hand-over execution. (Again,

this is in turn processed by a low-level inverse kinematics controller, to determine the necessary robot

joint commands). In order to make this policy generalizable to different contexts, we learn the upper-

level policies required to sample the parameters of the DMPs, ω, which result in the most appropriate

trajectories. We discuss the underlying procedure next.

5.2.4 Learning to Generalize to Different Contexts

Following acquisition of initial upper-level policies from a demonstration and formulation of the

lower-level policy to be used in our C-REPS algorithm, we discuss how the upper-level policies can be

progressively improved to optimize altered executions of the task, conditioned on the current contexts.

We base our implementation of C-REPS on that of Ricardo Dominguez: PyCREPS 5, which is directly

based on the work of Kupcsik et. al. in [67] and [66]. Although PyCREPS employs the basic learning

procedure of C-REPS, as described in the original publications, its policy formulations are geared towards

RL benchmark problems found in the OpenAI gym6 environment, such as the Cart-Pole and Acrobot

problems. Due to this fact, in addition to some implementation inaccuracies, significant changes to the

source code were necessary to effectively learn context-aware hand-overs.

In order to learn the contextual upper-level policy π(ω|c) responsible for sampling each DMP

parameter ω, we first initialize the policy parameters to start from the value of the respective parameter

obtained from the demonstration. Additionally, we initialize exploration parameters Σ to pre-determined

values, in addition to ǫ, number of iterations N , number of roll-outs M , context vectors c, etc. For the

lower-level policy, we clamp all parameters except ω to fixed values, and thus execute roll-outs that only

depend on the upper-policy’s ω, for policy evaluations. Clearly, each π(ω|c) is guided by a reward function

that is shaped to facilitate learning values of ω that suit the values of c.

5 https://github.com/RicardoDominguez/PyCREPS
6 https://github.com/openai/gym

88

Chapter 5. Solution

In the following we discuss two learned upper-level policies: one for learning adequate hand-over

positions and another for trajectories, meant to handle posture and obstacle-presence contexts (c1 and c2,

as defined in section 4.1) , respectively. Additionally, we briefly discuss the limitation that complicates

learning meaningful context-dependent execution speeds for c3.

Position-dependent Context Generalization

When trying to learn context-dependent hand-over positions using our algorithm, given a single demonstra-

tion, we attempt to learn an upper-level policy that samples ω = g, given c1 ∈ {standing, seated, lying down},

for example. The policy to be learned must therefore sample hand-over positions that fit the current,

position-dependent context, and is given by:

π(g|c1) = N (g|a+Ac1,Σ) (5.15)

In order to initialize π(g|c1) from the demonstration, we ensure that the initial mean of the Gaussian

distribution is equal to the hand-over position observed in the demonstration: µ(c1) = gdemo. If the

demonstration runs for some duration T , gdemo is simply equivalent to the last recorded 3D position,

ydemo(T). We then simply choose a to be equivalent to this vector: a = gdemo, and A to be a zero

matrix of appropriate dimensions (which depend on the dimensionality of context vector c1, and vector a).

Covariance matrix Σ is initialized for equal, uncorrelated exploration: Σ = I, but may alternatively be set

to arbitrary values (as will be proven in section 6.2.1, this initialization strategy is not ideal).

The learning process amounts to iteratively evaluating and updating parameters θ = {a,A,Σ} for

N iterations.

At each iteration, a random value of c1 is drawn, and used to sample a candidate hand-over position

g ∼ π(g|c1), which is provided to the lower-level policy. This policy, a system of three DMP equations,

has trajectory shape, initial position, and time constant parameters fixed at the values extracted from the

demonstration: W =Wdemo (such that: ∀i ∈ {1, ..., Nbfs}, wi = wi,demo), y0 = ydemo(0), and τ = τdemo.

Therefore, the only variable parameter, g, wholly governs the difference in performance between each

consecutive roll-out, as determined by the reward function. We can thus assign credit or blame solely to

the parameter values chosen by the stochastic upper-level policy.

The context-dependent reward function used to evaluate the choices of g is a Euclidean distance-

based performance measure, which rewards an execution based on closeness to a set of empirically

determined ’ideal’ hand-over positions. Namely, we identified a set of position vectors ĝ1, ĝ2, and ĝ3 that

were determined to suit each respective value of c1 best. The result is the following conditional reward

function, which penalizes distance from the respective ideal position:

Rg(g, c1) =

1
||g−ĝ1||2

, if c1 = standing

1
||g−ĝ2||2

, if c1 = seated

1
||g−ĝ3||2

, if c1 = lying down

(5.16)

89

5.2. Implementation

It is worth noting that the crafted reward function, along with the experimentally determined ideal

hand-over positions, constitutes some of the contextual knowledge incorporated into the robot’s process

of learning a human-oriented task : ’expert’ knowledge of the approximate positions at which an object

should be handed over, with regards to the receiver’s posture. More details of the reward function, and

other candidate distance-based measures, can be found in sub-section 6.1.2.

After executing M simulated roll-outs with current parameters θ, and recording the estimated

rewards Rcω of each, the algorithm computes each sample’s weighting, p[i] by minimizing the function in

Eq. (5.9), and using Eq. (5.10). The Lagrangian parameters are obtained by applying the L-BFGS-B

minimizer on the dual function. With the sampled parameters g, their associated context variable c1, and

their calculated weightings, the WMLE equations (5.11-5.13) are then applied to update the upper-level

policy’s parameters at that iteration.

As the algorithm iterates, parameters θ = {a,A,Σ} are expected to shift appropriately such that

reward Rcω is simultaneously maximized for all the values of c1. This can be observed in the simulated

trajectories, with the final trajectory positions sampled for each context value progressively converging to

ĝ1, ĝ2, and ĝ3. Ideally, a and A would stabilize and the values of Σ would diminish as it becomes more

certain of the values of sampled parameters that would yield maximum reward.

Trajectory-dependent Context Generalization

The second constituent of our hand-over generalization strategy involves learning context-dependent

trajectories, governed by basis function weights in the forcing term of the DMPs used as a lower-level

policy. Denoting the vector of these so-called trajectory shape weights by W = [w1, w2, ..., wNbfs
]T , the

second case requires a separate upper-level policy that learns the optimal ω = W for each situation

dictated by context parameter c2.

As discussed in section 4.1, we have chosen c2 to signify the presence or absence of an obstacle

between the robot and the receiver that impedes normal execution of the hand-over, for simplicity, although

one may conceive of various other contexts that may necessitate adaptive trajectory generation.

Similar to the previous case, we seek to learn a policy:

π(W |c2) = N (W |a+Ac2,Σ) (5.17)

which generalizes parameters W for the same lower-level policy: a set of three DMPs which dictates

the trajectory of the end-effector in 3D space. However, when learning π(W |c2), the lower-level policy

parameters are initialized differently in comparison to the case of π(g|c1). While y0 = ydemo(0) and

τ = τdemo remain, the hand-over position is now also fixed to match the demonstration’s: g = ydemo(T),

and W is now the variable chosen by the upper-level policy. In much the same way, this allows us to

evaluate the latter only based on the quality of the trajectory shape achieved by the sampled collection of

weights, wi. As a consequence, a = W (ensuring W is a vector), A is a zero matrix, and Σ = I, as an

initial choice.

The reward function used in this case is similar in concept to the first: finding a hypothetical

90

Chapter 5. Solution

trajectory shape that best fits each context, and designing a reward signal that guides the algorithm into

learning to approach these shapes in order to adapt to the requirements of each situation. Therefore, we

provide context-specific ’ideal’ trajectories in terms of position coordinates: ŷ1 and ŷ2, and then evaluate

the simulated roll-outs by assigning the reward:

RW(y, c2) =

1
d(ŷ,ŷ1) , if c2 = False

1
d(ŷ,ŷ2) , if c2 = True

, (5.18)

where d(·, ·) is some distance measure that allows us to assess how close the executed trajectory is to the

desired. This is now left unspecified, but sub-section 6.2.2 describes the point-wise trajectory differences

measure we eventually use, along with various candidates for d(·, ·). Note that this performance measure

may also be in terms of weight vector W .

The process of learning π(W |c2) is identical to that of π(g|c1): we repeatedly sample c2 and

simulate M roll-outs, storing the values of c2, sampled W ’s and the roll-out rewards Rcω. Then, the

constrained optimization problem is solved using the L-BFGS-B minimizer to obtain the sample weightings

p[i], which are then used in the WMLE policy update equations to find the optimal π(W |c2). This is

repeated for the specified number of iterations, N .

With each update of upper-level policy parameters θ = {a,A,Σ}, we expect to observe trajectories

that approach the desired shapes, for each respective context (keeping in mind that the hand-over position

is fixed during learning).

Comparative Complexity It is important to note, however, that learning π(W |c2) is significantly

more difficult than learning π(g|c1) due to the dimensionality of the respective ω. In the case of π(g|c1),

the policy output is a three-dimensional vector, which imposes the following respective sizes on a, A, and

Σ: 1× 3, c× 3, and 3× 3. Comparatively, the size of W is much larger, since it directly depends on the

number of basis functions, Nbfs. For the same number of DMPs (3) and basis functions (Nbfs = 150) we

use for π(g|c1), W is a vector of length 450. Therefore, the sizes of a, A, and Σ become 1× 450, c× 450,

and 450× 450, respectively, which clearly leads to a more complex problem.

As will be discussed in more detail in section 6.2, this problem becomes apparent when attempting

to learn a policy whose parameters are expected to generalize over more than one context. Although

the algorithm is capable of learning any single trajectory well, albeit with a significant number of policy

iterations, it is currently unable to learn two simultaneously, using the same set of parameter θ. At the

moment, we learn separate policies π(W |c2), one for each value of c2, and sample from the appropriate

one. Nevertheless, we hope to solve this problem in future pursuits.

Speed-dependent Context Generalization

As explained in our methodology in section 4.1, the hand-over skill can be made generalizable to different

contexts along a third aspect of the motion: speed of execution. Namely, a third upper-level policy, π(τ |c3),

would learn optimal time constant values of the DMP lower-level policy, τ , to match the requirements

91

5.2. Implementation

introduced by context parameter c3. Since τ alters only the speed with which a motion is executed, it

could theoretically be used to alter hand-over speeds to account for how fragile/hazardous the object

being handed over is (c3).

However, due to an implicit limitation in the DMP implementation provided by the pydmps package,

it was not possible to produce trajectories that are meaningfully adjusted in speed of execution. As a

result, no relevant results were produced for this generalization case, which is the reason the other two

cases are the focus of this work. Appropriate speed-dependent context generalization of the hand-over

skill is thus left for future work. More details on the results leading up to this conclusion are presented in

section 6.3.

5.2.5 Executing Context-aware Hand-Overs

In our hierarchical approach to context-aware hand-over policies, the robot observes the values of

context parameters c1, c2, and c3 then samples:

• a hand-over position, g∗, from π(g|c1)

• a hand-over trajectory shape, W ∗, from π(W |c2)

• a hand-over execution speed, τ∗, from π(τ |c3)

The result is then received by the common lower-level policy, represented by π(ut|xt;ω), which

takes the form of the DMP equations:

τ∗ÿ = αy(βy(g
∗ − y)− ẏ) +

ΨTW ∗

||Ψ||1

τ∗ẋ = −αxx

where the forcing term has been written to make the dependence on W ∗ explicit.

Figure 5.5 depicts the hierarchical policy structure in the form of a probabilistic graphical model.

As a result, the trajectories chosen by the robot would now adhere to all three contextual dimensions,

a product of the hierarchical structuring of the learned, contextual policies and the flexible trajectory

representation afforded by the DMP lower-level policy. As an example, Figure 5.6 shows four simulated

trajectories, each combining certain ’sampled’ DMP parameter values (the same ones used to generate

Figure 5.4, but in combination).

5.2.6 Contributions

The primary focus of this project was to utilize an existing framework (or multiple frameworks) to

achieve context-aware hand-overs, then methodically verify the hypothesized enhancement in a robot’s

performance of the task. Nevertheless, we extended and improved upon the existing implementation

(of C-REPS), as well as developed certain software components that were essential for the HSR to

execute reasonably fluent hand-overs. This sub-section outlines some of these notable improvements and

contributions.

92

Chapter 5. Solution

Figure 5.5: Graphical model of the hierarchical policy structure used in our C-REPS implementation

Figure 5.6: 3D trajectories sampled using the results of π(g|c1), π(W |c2), and π(τ |c3)

93

5.2. Implementation

Incorporating DMPs in C-REPS Implementation The C-REPS Python package developed by

Ricardo Dominguez: PyCREPS, on which our model-based C-REPS is based, offers an adequate im-

plementation of the algorithm which retains all essential features described in the original publication

([67]). However, it had originally been written with a particular focus on OpenAI gym environments,

and was demonstrated on the benchmark Cart-Pole and Acrobot problems. As this was reflected in the

implementation, it was necessary to modify the algorithm to suite our framework.

The upper-level policy was implemented with generality in mind, such that it is independent of

the representation of the lower-level policy, which controls the actual action sampling behaviour of the

algorithm. For the aforementioned problems, this required simple vector computations and decision rules,

for example. Since our work depends on generating trajectories using DMPs, we implement the lower-level

policy as a set of DMPs. To that end, we utilize the functionalities of the pydmps package, and integrate

DMP formalization and subsequent roll-out generation into the C-REPS algorithm.

More importantly, this integration of pydmps DMPs is also the basis for our trajectory ’model’,

which simulates trajectory roll-outs when learning off the robot, and allows us to plot and evaluate

executions during the learning process.

In general, PyCREPS was modified and extended to allow systematic plotting and recording of

results, among other additions. Note: A lesser modification involved a correction in the upper-level policy

covariance matrix update equation, which did not exactly match Eq. (5.12).

Exploration Random Restarts As alluded to in section 5.1, in the discussion concerning the ex-

ploration characteristics of REPS algorithms, the problem of premature convergence to sub-optimal

parameters was expected. Since this was observed in the results of our learning-by-simulation phase, the

algorithm had to be augmented with a measure of regularization, as referred to in the machine learning

literature, such that we ensure the learning process is not hindered by instances of convergence on local

optima.

The covariance matrix Σ of the upper-level policy, π(ω|c), primarily determines the rate of

exploration at each iteration. Occasionally, over-confidence in high reward regions of the search space

cause the algorithm to prematurely diminish the values of Σ, bounding the exploration of subsequent

updates to within some, possibly sub-optimal region. This was mainly identified as a cause for a deeper

problem associated with the upper-level policy π(g|c1): parameter updates were eventually constrained

to lie on a line in 3D space, due to the properties of the linear-Gaussian model and the WMLE update

equations. This issue is discussed more thoroughly in chapter 6, and section 6.4 in particular.

In order to avoid these problems, we perform random restarts of exploration parameters matrix Σ:

every preset number of iterations, elements of Σ are set to random values. This resembles a technique

used in random-start hill climbing, a local search algorithm, for the same purpose, and effectively forces

exploration parameter values out of potential local optima, restarting the exploration process. Crucially,

the values of a and A are retained, such that the algorithm resumes exploration in the same vicinity, but

in a less restricted manner. This modification has been found to greatly improve performance, as will be

shown in chapter 6.

94

Chapter 5. Solution

Person Posture Identification The hand-over skill, implemented using the ROS framework and on

the HSR, is enabled by the interaction of multiple software modules, one of which is a person identification

component we developed for the project. As described in sub-section 5.2.1, the robot is made capable

of autonomously identifying a detected person’s posture through a simple heuristic that makes use of

bounding boxes provided by an SSD image people detector. The decision of whether a person is standing,

seated, or lying down is determined by calculating the ratio between the numbers of pixels that make up

the bounding box’s height and width:

κ =
height

width
(5.19)

Subsequently, the decision rule in Eq. (5.14) is used to determine the ’posture’ context, with which

the robot chooses the most appropriate hand-over position.

Force-based Object Reception Detection Another vital component of the hand-over skill is a

module used to detect the forces on the robot’s wrist sensor that signify the receiver’s reception (or

readiness thereof) of the object from its grasp. For this, we treat force sensor readings as a stochastic

signal and implement the established CUSUM algorithm for force change detection. Refer to [18] for a

gentle introduction on change detection algorithms.

CUSUM is a change detection algorithm, customarily used for fault detection, which detects

deviations of a stochastic signal from its nominal mean. This is often regarded as a signal that a fault has

occurred in a monitored system; in our work, we utilize this for sensing significant changes in readings of

a noisy force sensor.

We assume that force sensor readings z, can be sampled from either of two Gaussian distributions:

pµ0
(z), when the object is held out in the robot’s grip with no significant external forces, and pµ1

(z),

when a force resembling a gentle pull of the grasped object is present. At each time-step, the procedure of

CUSUM involves computing a cumulative sum of the log-likelihood ratio between the two distributions:

S(t) =
t∑

i=1

sll(z(i)) =
t∑

i=1

ln
pµ1

(z(i))

pµ0
(z(i))

(5.20)

where sll denotes the computed log-likelihood.

The decision of whether force sensor readings most likely indicate either distribution is determined

by a decision function:

g(t) = max(0, g(t− 1) + sll(z(t))) (5.21)

If the value of g(t) exceeds some predefined threshold h at any point in time after the robot stops executing

a trajectory, the change of distribution from pµ0
(z) to pµ1

(z) is sensed, indicating that the receiver is trying

to pull the object from the robot’s grasp. Parameters µ1, µ2, the identical variance of both distributions

σ, and h are determined experimentally.

As observed in experiments, and stated by participants of the study, this force change detection

scheme results in fluid object reception from the robot, such that the hand-over seems reasonably natural

in that specific aspect.

95

5.2. Implementation

96

6

Evaluation

Having formalized our problem, developed a hand-over skill representation, and established the

procedure we follow using the model-based C-REPS algorithm, we now present initial evaluations of

results achieved by the algorithm, including analyses of learning performance and learned policies.

Figure 6.1 shows the trajectory captured in demonstration being simulated by executing a roll-out

with the same observed DMP parameters. In our subsequent learning procedure, this shape is altered

(in terms of final position and trajectory shape, in particular) as policies that fit multiple contexts are

learned through simulations.

Sub-section 5.3.4 contains an explanation of the formalism we use for each aspect of context-

dependence relating to our hand-over skill. In this chapter, we describe the practical details of their

respective implementations, systematically analyse their performance, discuss various candidate reward

functions, and finally elaborate on observed limitations of the algorithm. Sections 6.1 and 6.2 contain

these details for the case of learning context-dependent hand-over positions and trajectories, section 6.3

explains why the same formalism is currently inapplicable for the case of execution speeds, and section 6.4

summarizes the observed limitations of the present implementation.

6.1 Learning Context-dependent Hand-Over Positions

In this section, we formalize the process of learning context-dependent hand-over goal positions

encapsulated in policy π(g|c1), compare candidate reward functions, and summarize final results achieved

in simulations.

6.1.1 Formalization

In order to learn upper-level policy π(g|c1), which determines the best hand-over position given

the perceived posture of the receiver, we must initialize policy parameters θ from a demonstration, then

define what constitutes a good position for each context, an appropriate reward function, and adequate

values for context parameter c1.

97

6.1. Learning Context-dependent Hand-Over Positions

Figure 6.1: Reproduction of a demonstrated trajectory using three DMPs

Considering the nature of the problem, which involves sampling positions in 3D Cartesian space, an

intuitive reward signal can be formulated in terms of the distance between a hand-over position sampled

from the policy and some ’ideal’ position. In addition, we must consider the multi-modality associated

with our contextual problem: satisfying every value of c1 implies having to determine respective ideal

positions that define the maximum possible reward for each context.

Reward function Rg(g, c1), introduced in sub-section 5.3.4, encodes this logic in a conditional

distance-based measure of performance, and is repeated here for convenience:

Rg(g, c1) =

1
||g−ĝ1||2

, if c1 = standing

1
||g−ĝ2||2

, if c1 = seated

1
||g−ĝ3||2

, if c1 = lying down

While we eventually use the Euclidean distance between sampled position g and the respective desired

position, as implicated in the equations, we explored similar distance measures, which we discuss in

sub-section 6.1.2.

We determine the values of ĝ1, ĝ2, and ĝ3 experimentally. In our lab setting, we assumed the

positions shown on Figure 4.2 and moved the HSR’s end-effector to different positions while it grasped an

object. The coordinates of the positions that felt most adequate for each scenario were then recorded. As

a result, the values returned by Rg(g, c1) would give the robot an indication of an approximate hand-over

region that best suited the receiver’s posture. The respective ’ideal’ hand-over positions, with respect to

the robot’s base coordinate frame, were found to be (in meters):

• ĝ1 = [0.4, 0.078, 1.0]

• ĝ2 = [0.5, 0.078, 0.7]

• ĝ3 = [0.7, 0.078, 0.7]

98

Chapter 6. Evaluation

Figure 6.2: Empirically-determined ’ideal’ hand-over positions

Note that, while we determined these positions ourselves, a better approach may have been to

conduct a brief survey with a number of external subjects whose collective opinions on the best values for

each parameter would be used instead.

Figure 6.2 shows the determined ’ideal’ positions in relation to the hand-over position extracted

from the demonstration, gdemo, for the same trajectory shown on Figure 6.1.

Since C-REPS requires a numerical interpretation of our context variables, which we have been

referring to symbolically (C1 ∈ {standing, seated, lying down}), we ground appropriate values for each.

This is a crucial factor in subsequent performance of the algorithm, whose parametric policy representation

is heavily influenced by the actual values taken by c1, as they are a part of the WMLE equations used to

update the policy.

Initially, c1 was chosen to be a simple scalar value, with each element of set C1 being bound to some

arbitrary number that uniquely identified the respective context. Unfortunately, preliminary evaluations

of the algorithm’s performance showed that, while single-context (learning a single hand-over position)

problems were easy, it struggled with the tri-contextual case. In particular, the policy seemed to only

be able to learn one position well, and yield poor rewards for others. In addition, the algorithm was

observed to converge prematurely on these sub-optimal solutions (the prominent issue of REPS referred

to in section 5.2).

This was, in fact, a limitation caused by the linear-Gaussian model of the policy and its update

strategy, which placed undesirable constraints that forced strictly linear and diminishing policy updates.

In particular, it was observed that sampled positions were quickly constrained to lie on a single line in

Cartesian space (as is illustrated in sub-section 6.1.3), which usually passed through the common initial

position and close to only one ĝ.

The plot on Figure 6.3 shows a trajectory simulated to evaluate an initial policy trained for N = 100

iterations and M = 40 roll-outs per iteration for a problem of learning three chosen hand-over positions

99

6.1. Learning Context-dependent Hand-Over Positions

Figure 6.3: Initial policy evaluation, using scalar context variables

(magenta). It demonstrates the problem of π(g|c1) samples collapsing on a single line, which only comes

close to one of the points. Here, arbitrary context scalars were used, and the result is convergence on

clearly sub-optimal rewards. In this figure (and subsequent ones), the yellow point is the initial position,

the blue point is the sampled hand-over position, orange points are positions sampled in earlier iterations,

the blue line is the executed trajectory, the thick grey line is the (original) demonstrated trajectory, and

thin grey lines represent per-iteration trajectories.

In the following, we describe two measures that were taken to mitigate this problem: one involves a

different context variable representation, while the other is an addition we make to the C-REPS algorithm.

Context Vectors and Exploration Random Restarts

The issue of sampled positions being constrained as shown on Figure 6.3 was tackled by using a vectorized

representation of c1 and applying random restarts of the values of exploration parameters Σ. We describe

here the method and motivations behind each.

The context variable representation was changed from that of a scalar to vectors that collectively

resemble a 1-of-K coding scheme, as illustrated:

c1 =

[x1]→ [x1, 0, 0]

[x2]→ [0, x2, 0]

[x3]→ [0, 0, x3]

(6.1)

where x1, x2, and x3 represent the arbitrary values originally selected for c1. In our final procedure,

although random values accomplish the same, we set these values to one of the coordinates of each

respective ĝ.

This has been found to remove the restriction of sampled goal positions lying on a single line, which

100

Chapter 6. Evaluation

now explore along different lines, dictated by the drawn value of c1. This is illustrated in Figure 6.4a,

showing a policy trained with the same conditions as that of Figure 6.3, but utilizing the new context

representation. As a result, the policy has a much better chance at approaching the respective desired

positions, and exploring within their vicinities. Setting the dimensionality of the context parameter(s),

Dc, to 3 transforms A to a 3 matrix, instead of a 1 vector, increasing the number of learnable parameters,

which may be the reason for the noticeable improvements, though this must be verified in future work.

Although the policy exploration is thus evidently not constrained to a single line, the samples still

exhibit a clear linear correlation, albeit in different regions of the Cartesian search space. This collapse

into linear explorations is attributed to premature convergence of some values of Σ, which is addressed by

applying random restarts of exploration.

A property of maximum likelihood estimations, particularly when used to optimize the parameters

of some parametric model, is an underestimation of variances in the underlying distribution. Since they

estimate parameters θ directly from the observed data, this strategy is known to suffer from restrictive

perspectives of the distribution it attempts to estimate, and over-fitting to the data (in machine learning

terms). Our policy update equations are a variant of the same strategy, and thus appear to impose the

same restrictions on Σ. Another reason may be the choice of a linear-Gaussian model, whose solutions

present a form of linear regression, possibly leading to the observed linear constraints.

As described in sub-section 5.3.6, covariance matrix Σ of π(g|c1) controls the rate of exploration,

and rapidly vanishing elements of the matrix cause the policy to explore only along certain regions or

within some sub-space. The WMLE update equations seemingly cause this as a side-effect, leading to

occasions where values of the other two parameters a and A are not explored sufficiently. This suggests a

simple approach resembling a technique used in random-restart hill climbing, where the values of Σ are

regularly re-set randomly by sampling from a uniform distribution:

Σ ∼ U(0, k) (6.2)

where k is a tunable parameter whose value depends on the problem.

This added step helps the algorithm perform a more balanced exploration, since it resets the values

of Σ before the policy converges to some local optimum. Figure 6.4b shows the result of applying random

Σ restarts, while still using context scalars. It is evident that updates are now not constrained to one line;

instead, the policy escapes the linear constraints and samples goals from around the region. This provides

more width to the search, and increases the chances of observing higher rewards and approaching the

desired regions, if they are situated laterally to the sub-space initially explored by the policy.

Finally, Figure 6.4c shows the exploration of the algorithm in the same problem after combining

the two strategies. It can be observed that the policy samples points that neither lie on a single line nor

adhere strictly to a linear form of exploration. We have achieved the best results with these techniques,

which allow the algorithm to learn all of ĝ in a small number of iterations (less than 200), as well as

arbitrary hand-over positions, in policy π(g|c1). Nevertheless, the relative distance between the points

directly influences the the number of iterations required to converge to an acceptable solution.

101

6.1. Learning Context-dependent Hand-Over Positions

(a) Using context parameter vectors (b) Using random exploration restarts

(c) Using context parameter vectors and random exploration restarts

Figure 6.4: Policy samples when learning three hand-over positions. The figure shows the exploration
characteristics of the policy with a) context vectors instead of scalars, b) random restarts of Σ, and c) a
combination of both strategies.

102

Chapter 6. Evaluation

6.1.2 Reward Functions

We have chosen a Euclidean distance-based similarity measure to reward sampled hand-over

positions based on closeness to the desired goal positions, for each context. Instant rewards are calculated

as the L2 norm of the difference between g and ĝ. The resultant reward function, Rg, is relatively simple

and has produced the best results. Nevertheless, we explored other similar distance measures as candidate

reward functions, and provide a brief description of each in the following.

Manhattan Distance

The Manhattan distance measure simply constitutes the L1 norm of the differences between two vectors:

dman(g, ĝ) = ||g − ĝ||1 =

n∑

i=1

|gi − ĝi| (6.3)

A much simpler distance measure than the L2 norm, the Manhattan distance provides less sensitivity

to vector differences, which translates to its application in a reward function. As expected, the resultant

rewards provide much less differentiation between promising and undesirable states in the policy’s search

than those of the Euclidean distance measure, a generally unpleasant property in a reward function. This

has been observed in the differences in learning speed: the Manhattan distance-based reward function

eventually learns similar policies, but at a much slower rate.

Chebyshev Distance

The Chebyshev distance relies on the L∞ norm, or the supremum norm, to calculate the distance between

two vectors as the maximum distance between two respective coordinates:

dcheb(g, ĝ) = ||g − ĝ||∞ = max
i

(|gi − ĝi|) (6.4)

This distance measure is more ’pessimistic’ than others, since it assigns the highest possible distance

across all dimensions between two vectors as the global difference between them. Therefore, when used

in a reward function, it is expected to more strictly penalize undesirable sampled positions. While this

could help avoid sub-optimal solutions, it may cause the algorithm to overlook promising directions in the

search space as it attempts to repel parameter updates from regions that are perceived to be bad along a

particular direction. This leads to cases in which the algorithm stifles exploration and thus potentially

slows down or impedes learning.

Note The Minkowski distance is a generalization of the Manhattan and Chebyshev distances, alongside

Euclidean distance, since it is defined as the Lp norm. As a result, various distance measures can be

formulated with different values of p, but the ones considered here are the most common.

103

6.1. Learning Context-dependent Hand-Over Positions

Cosine Similarity

Cosine similarity, although not a conventional distance measure, measures the similarity in orientation

between two vectors as the cosine of the angle between them:

simcos(g, ĝ) =
g · ĝ

||g||||ĝ||
(6.5)

The cosine similarity presents a less straightforward (and less intuitive) measure of the agreement

between our sampled positions and the desired ones in 3D Cartesian space, in comparison to the other

measures. Nevertheless, it was put into consideration to study its effects as a reward signal in the policy

search. In contrast to the other measures, its values lie in the range (−1, 1), with two vectors yielding

a value of 1 if they have the same orientation, 0 if they are orthogonal, and -1 if their orientations are

diametrical.

Canberra Distance

The Canberra distance is a version of the Manhattan distance which similarly computes the sum of

absolute coordinate differences between vectors, but weights each with the inverse of the sum of the

absolute coordinate values:

dcan(g, ĝ) =

n∑

i=1

|gi − ĝi|

|gi|+ |ĝi|
(6.6)

It essentially performs a weighted version of the L1 norm on the vector differences, and is thus expected

to yield similar, if not identical, results.

Bray-Curtis Dissimilarity

The Bray-Curtis measure of vector dissimilarity is usually used outside the fields of machine learning and

robotics, and can be calculated as:

dbc(g, ĝ) =

∑n
i=1 |gi − ĝi|∑n

i=1(|gi|+ |ĝi|)
(6.7)

which, again, bears some similarity to the Manhattan distance.

Analysis

In Figure 6.5, we display a comparison between the evolution of reward signals obtained from reward

functions based on each of the described distance measures. We attempted to learn a tri-contextual

policy for the same problem as that of figures 6.4 and 6.3, for a total number of 500 iterations, then

plotted the different average reward signals at each iteration. Note that the actual learning was performed

using signals from the Euclidean distance-based Rg, while respective signals from other reward functions

candidates were also evaluated per iteration. At each iteration, we average over the rewards the current

policy parameters receive for each possible context, yielding the mean rewards.

104

Chapter 6. Evaluation

Figure 6.5: Filtered mean iteration rewards vs. number of iterations. A comparison of distance-based
reward functions for learning π(g|c1)

As expected, the trends exhibited by all of the distance measures are fairly similar, except for

the cosine similarity. In addition, the Manhattan and Canberra distances yield nearly identical results,

although the latter shows more variation, possibly due to its weighted heuristic. The Euclidean and

Chebyshev reward signals are nearly identical, and in fact produce similar results. During learning, the

Euclidean and Bray-Curtis distance reward functions were found to perform best on average, learning

more stably and having the best results when evaluating the final policy. Nevertheless, the Bray-Curtis

measure, when evaluated qualitatively, seemed to produce more ’risk-seeking’ policies that were more

strongly influenced by sudden high rewards. This occasionally lead to learning one position very well, at

the cost of the rest, or achieving sub-optimal rewards for all.

In conclusion, the Euclidean distance-based reward function was determined to be most

appropriate. Apart from being intuitive and simple, no improvements in performance were observed

from the other, less conventional distance measures.

Filtering Reward Signals The iteration rewards plotted on Figure 6.5, and subsequent figures, are

filtered using a Savitzky-Golay filter in order to obtain a smoother plot. Since the raw reward signals

are relatively erratic, this step ensures reward signal characteristics are more easily distinguishable. The

Savitzky-Golay filter computes a moving average of a signal through a convolution-like procedure, fitting

every pair (or more) of adjacent points to some polynomial approximation (in our case, a linear one).

6.1.3 Result

The model-based implementation of C-REPS successfully learns an upper-level policy π(g|c1) that

starts from he demonstrated behaviour and gradually learns to choose hand-over positions that resemble

105

6.1. Learning Context-dependent Hand-Over Positions

the ones implicated in the reward function, depending on current context c1.

Figure 6.6 displays a solution found by the algorithm for the three ’ideal’ hand-over positions

defined in sub-section 6.1.1, using the following set of parameters:

– Number of iterations, N = 1000

– Number of roll-outs per iteration, M = 40

– Relative entropy bound, ǫ = 1

– Number of DMP basis functions, Nbfs = 150

– Frequency of random restarts: every 200 iterations

Parameters θ = {a,A,Σ} were initialized from the demonstration, as previously described. The

context vectors were initialized as in Equation (6.1), and their values were:

c1 =

[0.4, 0.0, 0.0], if standing

[0.0, 0.4, 0.0], if seated

[0.0, 0.0, 0.7], if lying down

The algorithm ran for 4.33 minutes on a quad-core XMG laptop with an Intel Core i5-4210M

processor and 8GB RAM. The trajectory roll-outs sum up to a total of 40,000 (N × M) simulated

hand-overs, which would have clearly required significantly more time to run on the robot directly, in

addition to the extreme tedium of the task.

Crucially, the displayed solutions are obtained by sampling the policy with no exploration, by

setting Σ = 0. The exploration parameters only serve the purpose of facilitating the learning procedure,

while executing learned behaviour and evaluating its results are done by exclusively sampling positions

determined by learned parameters a and A:

g ∼ π(g|c1) = N (a+Ac1, 0)

The performance of the algorithm is clearly dictated to an extent by the initializations of Σ, its

values at random restarts and the frequency of random restarts. While the algorithm has been able to

learn the same goals in far fewer iterations (the positions eventually used on the robot for the study were

learned in 160 iterations), longer training times reduce the uncertainty in rewards, as parameters a and A

of π(g|c1) stabilize, and lead to less fluctuating samples and thus definitively better final results. Hence,

we demonstrate the outcome of training on 1000 iterations here.

Rewards Figure 6.7 displays a plot of the mean (smoothed) iteration rewards vs. the number of

policy iterations on the top, and rewards for each context value in the bottom plot. The plot shows

that the actual learning process of the algorithm is not entirely predictable, and that a higher number

of iterations may not always improve results. This may be attributed to the relatively close distances

between the points, such that the algorithm approaches a satisfactory solution early on. Unfortunately,

the exploration parameter values do not converge as expected, leading to a subsequent continuation

106

Chapter 6. Evaluation

(a) Standing (b) Seated (c) Lying down

Figure 6.6: Simulated roll-outs with a learned policy, for each respective context. In each figure, the green
point signifies the ’ideal’ position for that context.

107

6.1. Learning Context-dependent Hand-Over Positions

Figure 6.7: Mean iteration rewards (top) and context-specific iteration rewards (bottom)

of exploration, regardless of the present solution. The difficulty faced by the algorithm in achieving a

compromise between the rewards received for all contexts can be illustrated in the bottom plot, which

shows the variance in reward signals decreasing as they approach similar values. It is worth noting that

high rewards for one context causes a decline for the others, revealing a balance that must be struck by

the algorithm.

In order to demonstrate the algorithm’s ability to handle arbitrarily defined ’ideal’ hand-over positions

(and their respective reward functions), we display on Figures 6.8, 6.9, and 6.10 the results of learning

three sets of different ĝ:

1. Triangular pattern:

ĝ1 = [0.5,−0.4, 1.8], ĝ2 = [0.5, 0.6, 1.8], ĝ3 = [0.5, 0.1, 0.3]

2. Horizontally collinear points:

ĝ1 = [0.5,−0.9, 1.8], ĝ2 = [0.5, 1.1, 1.8], ĝ3 = [0.5, 0.1, 1.8]

3. Distant, arbitrary points:

ĝ1 = [5.0, 0.5, 7.0], ĝ2 = [1.0, 10.0, 2.7], ĝ3 = [10.0, 5.0, 0.0]

The results show adequate learning and sampling of the approximate desired positions, in spite of

a few inaccuracies. These problems were solved using the same parameter settings as before. However,

training for the positions on Figure 6.10 required significantly more iterations (3000, against 1000 for the

other cases) to achieve acceptable results. While these positions were intentionally placed at artificial and

exaggerated distances, it suggests that the relative distance between the points has a direct impact on the

amount of training required to capture the desired behaviour in π(g|c1).

108

Chapter 6. Evaluation

(a) Position 1
(b) Position 2

(c) Position 3

Figure 6.8: Simulated roll-outs with a learned policy, for three positions arranged in a triangular pattern.
The magenta points signify the target positions.

109

6.1. Learning Context-dependent Hand-Over Positions

(a) Position 1 (b) Position 2 (c) Position 3

Figure 6.9: Simulated roll-outs with a learned policy, for three positions arranged in a horizontal line.
The magenta points signify the target positions.

We conclude this section with a few relevant remarks:

• In the original PyCREPS implementation, the policy update equation was implemented inaccurately,

such that Eq. (5.12) contained the factor ω[i] − a, instead of ω[i] − µ[i]. Before correcting this, the

algorithm performed poorly, as values of Σ were found to explode during learning.

• We attempted an approach that, instead of drawing a random context value for each roll-out,

attempts to fully train the policy on each context in sequence. In other words, policy parameters θ

were fully learned while drawing the same context for a given number of iterations, then the learning

process was continued with the same θ for the next c1, and so on. Unfortunately, the algorithm was

found to fully converge only on the desired goal of the current target c1, losing the multi-modality

of its solution. This presents a case for regular observations of each value of c1 being an important

factor in learning the contextual policy.

• Initialization of the policy (from the demonstration) can be done using two methods that yield

similar final results: setting a to ωdemo and A to zeros, or setting a to zeros and formulating matrix

A to ensure that the initial µ(c) = ωdemo. However, initializing through a is preferred since it avoids

an initially skewed version of the demonstrated trajectory, which is a side effect of initialization

through A. This is because the former does not depend on the initial value of c1, as the latter does.

110

Chapter 6. Evaluation

(a) Position 1 (b) Position 2 (c) Position 3

Figure 6.10: Simulated roll-outs with a learned policy, for three positions arranged arbitrarily at relatively
far distances. The magenta points signify the target positions.

Conclusions The algorithm has been shown to perform well in learning position-dependent contextual

policies for arbitrary hand-over positions in simulations, under the guidance of reward function Rg. This

has been achieved with a relatively small number of iterations in some cases but, as the results show, the

final outcome of the algorithm is marginally unpredictable. This is attributed to occasional undesirable

updates in Σ parameters, which may disallow completely landing maximal rewards (by settling on the

desired positions). Nevertheless, augmenting the algorithm with random restarts of Σ to escape collapses

into linear updates, and context vectors to allow exploration on multiple regions of the search space have

yielded favourable results.

6.2 Learning Context-dependent Hand-Over Trajectories

In this section, we formalize a process of learning context-dependent hand-over trajectories under

policy π(W |c2), compare candidate reward functions, and summarize final results achieved in simulations.

We also explain the limitations of our C-REPS algorithm as observed in this case.

6.2.1 Formalization

We take the same steps, as described in chapter 5, for tackling the problem of learning policy

π(W |c2) as we do for π(g|c1). This policy must determine the best hand-over trajectory, given by DMP

basis function weights W , for the particular scenario; in this case, the presence or absence of an obstacle.

111

6.2. Learning Context-dependent Hand-Over Trajectories

Once again, this requires initializing the parameters of π(W |c2) from the provided demonstration, crafting

reward functions incorporating knowledge about ’ideal’ trajectory shapes, and assigning numerical values

to the binary context parameter c2.

We follow a similar approach when shaping the algorithm’s reward functions. Whereas we simply

defined 3D hand-over positions ĝ to guide the policy into learning the desired position for each context,

doing so with trajectories is more complex. Since parameter W contains the Nbfs weight values of

the DMPs, certain trajectory shapes were simulated to extract their weight vectors. As a result, we

could theoretically employ comparable vector dissimilarity measures in our reward functions, to guide

the algorithm into learning multiple such trajectories with π(W |c2), starting from the demonstration

trajectory. As an alternative, we could also rely on the raw trajectory coordinate vectors y, as will be

seen in the next sub-section.

A Limitation of the Algorithm Through preliminary tests, it was determined that the algorithm is

unable to simultaneously learn two (or more) trajectory modes in the same contextual policy π(W |c2).

In spite of various parameter settings and reward function formulations (refer to sub-section 6.2.2), all

resultant policies were either able to capture one of the trajectories well, or average over the desired

trajectory shapes of each context. This may be a result of the sheer number of parameters to be learned in

comparison to the former case (as mentioned in the discussion of the comparative complexity in sub-section

5.3.4). This limitation hinders our objective of learning c2-dependent trajectories. Since the algorithm

succeeds in learning single trajectories, albeit at large numbers of iterations, we display the results for

these uni-contextual policies here.

Figure 6.11 shows two example trajectories we artificially shaped as candidates for trajectories to

be learned. The first depicts an over-arching motion, while the second resembles the motion of handing

an item under some surface. The two trajectories are characterized by weight vectors and trajectory

coordinate vectors Ŵ 1 and ŷ1, and Ŵ 2 and ŷ2, respectively.

The parameters θ of π(W |c2) are initialized here in the same manner. Initially a Ndmps ×Nbfs

matrix,W is instead represented as a 1×(NdmpsxNbfs) vector composed of the matrix’s stacked columns, to

adhere to the algorithm’s vectorized update policy equations. Subsequently, a is set equal to demonstration

weights Wdemo, while A is initialized as a square (NdmpsxNbfs)-dimensional zero matrix where Σ = I.

We train upper-level policies with a reward function that incorporates some notion of similarity

between the desired trajectories and the ones executed as a result of W ∼ π(W |c2). The reward function

used to generate the final results of the algorithm consists of an inverse of the sum of point-wise trajectory

differences (PWTD), in addition to a term enforcing trajectory smoothness:

RW (y, c2) =

1

dPWTD(y,ŷ1)
+ ηSAL(y), if c2 = True

1

dPWTD(y,ŷ2)
+ ηSAL(y), if c2 = False

(6.8)

This function will be described further in sub-section 6.2.2, which elaborates on the PWTD distance

measure, the added Spectral Arc Length (SAL) smoothness measure, and other candidates for reward

112

Chapter 6. Evaluation

(a) Over-arching motion trajectory (b) Low motion trajectory

Figure 6.11: Simulated artificial trajectories, reproduced using DMPs.

function RW (y, c2).

We also employ random restarts of exploration, which have been found to result in better

performance, on average. Figure 6.12 shows reward plots for an initial evaluation of the algorithm, which

was run once with random Σ restarts every 100 iterations (dash-dotted line), and once without (solid line).

Here, the algorithm was used to train a policy for reproducing trajectory ŷ2 (c2 = False) in a low number

of iterations (500), to demonstrate the difference (note that the reward characteristics in the trajectory

case make observing this effect in reward plots easier than in the position case).

Clearly, the restarts of the exploration parameters force the policy out of performance plateaus,

while running the algorithm without the heuristic causes it to prematurely converge to a sub-optimal

solution. Note that, while the algorithm initially performs better for the no Σ restarts case: an effect of

the stochasticity of the policy, Σ restarts lead the other policy to quickly outperform the former.

This is even more apparent in Figure 6.13 which shows the final trajectory sampled by the trajectory

in each respective case. These plots are purely meant to demonstrate the progress of the algorithm for

either case, not a final solution. As before, the yellow and blue points refer to the initial and goal positions,

respectively, the blue line is the sampled trajectory, the thick grey line is the original, demonstrated

trajectory, while the thin grey lines show trajectories sampled in previous iterations to demonstrate the

algorithm’s progress (note that, due to the slow progression of the policy, samples are close to each other

and may collectively appear like thick lines).

Correlated Exploration Strategy An interesting observation was drawn from the comparison of the

inclusion and omission of Σ restarts on Figure 6.12. Σ was originally initialized as a diagonal matrix, I,

regardless of subsequent restarts, in which the values were sampled from a uniform distribution. The plots

revealed that performance was significantly better after the first restart (at 100): the run in which restarts

were used (dash-dotted line) initially performed even worse than the run without, but the acquisition of

113

6.2. Learning Context-dependent Hand-Over Trajectories

Figure 6.12: Mean iteration rewards vs. number of iterations for the problem of learning ŷ in 500 iterations
without Σ restarts (solid) and with Σ restarts: with initial Σ = I (dash-dotted) and Σ = U(0, 2) (dotted).
The red dotted lines show the iterations at which Σ was restarted for the latter case. The solid and
dash-dotted lines correspond to the results in figures 6.13a and 6.13b, respectively.

(a) Policy iteration with no Σ restarts (b) Policy iteration with Σ restarts every 100 iterations

Figure 6.13: A comparison of the first 500 iterations in the problem of learning ŷ. The plots show the
progress of the algorithm when a) Σ is unchanged, and b) when Σ values are regularly reset.

114

Chapter 6. Evaluation

higher rewards was vastly increased after the first restart. This suggested that initialization of a full Σ

matrix, instead of a diagonal one, would yield better results overall, since the algorithm would start its

exploration in a more efficient manner.

This was confirmed in a third run of the algorithm, in which we initialized the full covariance

matrix with random values, and also applied random restarts with the same frequency (dotted line on

Figure 6.12). A full Σ matrix corresponds to a correlated exploration strategy, which has been shown to

vastly increase learning speed. This proves the fact that algorithms like PILCO, which enforces strictly

uncorrelated exploration, would perform worse than others like Black-DROPS and REPS algorithms (as

conjectured in the comparison of Appendix A). The fully correlated exploration strategy is thus adopted

hereafter.

6.2.2 Reward Functions

Similar to the position-learning case, we utilize measures of vector distances to evaluate closeness

of sampled trajectories to the desired ones. Although the concept remains the same, the nature of the

problem suggests the use of different measures that incorporate either DMP weights or raw trajectory

coordinate vectors, or known trajectory smoothness measures. In the following we describe each considered

measure, analyse their characteristics from observed results, and present our chosen composite reward

function.

Point-wise Trajectory Differences (PWTD)

The PWTD distance measure evaluates the similarity between two trajectories with coordinate vectors y

and ŷ by calculating the sum of the squares of their normed point-wise differences. The inverse of this

quantity thus provides a reward function that provides higher reward signals the more the trajectory

shapes align. Since this places an undesirable dependence on vector sizes, we do not compare all pairs of

points lying on the trajectories; instead we define some equally-spaced sub-set of point coordinates, Ps,

whose size specifies the number of pairs compared in the function:

dPWTD =
∑

i∈Ps

||yi − ŷi||
2
2 (6.9)

The resultant reward function is very similar to the Euclidean distance-based function used to

learn context-dependent positions, except that we square the normed differences here.

Euclidean Distance Between Weight Vectors

Since the algorithm effectively searches for the ideal values of W , the distance between the current weight

vector and some pre-determined vector corresponding to the desired trajectory can alternatively be used

to construct a reward function:

dWD = ||W − Ŵ||2 (6.10)

115

6.2. Learning Context-dependent Hand-Over Trajectories

This measure is justified by the invariance properties of DMPs, for which similar trajectory shapes

and deformations are theoretically expected to be generated using (at least globally) similar sets of weights

wi.

Note that we could apply the same strategy of the dPWTD of choosing particular points along the

vector to reduce the computational burden, but this is consciously avoided here due to the delicate nature

of the weight vector. In particular, the evolution of the basis function weights wi produced by the policy

during learning has been observed to be highly unpredictable, as compared to trajectory vectors y. This

is due to the DMP equations still possibly producing similar trajectories with significantly different values

of W , especially as the size of W grows. It is thus expected that selectively sampling points along the

weight vector to be used in the comparative reward function would lead to unreliable performance.

Euclidean Distance Between FFT Weight Vectors

This measure is identical to the weight vector distance measure, but compares the Fourier transforms of

the vectors instead. We compute the discrete Fourier transforms (DFT) of the weight vectors, using the

Fast Fourier Transform (FFT) method, then apply the same formula to calculate the normed difference

between them:

dFWD = ||F{W} − F{Ŵ}||2 (6.11)

Here, F{x} denotes the Fourier Transform of x.

Weight Vector Correlation

The weight correlation measure of similarity calculates a correlation coefficient for two same-size vectors

as their dot product divided by the product of their magnitudes:

dWcor =
WT Ŵ

|W||Ŵ|
(6.12)

This measure is inspired by the work of Ijspeert et. al. in [51], in which they employ the same technique

to compare profiles of trajectories generated using DMPs.

Spectral Arc Length Smoothness Measure

Measures of movement profile smoothness have previously been presented by Balasubramanian et. al. in

[10] and [11], and more recently by Gulde et. al. in [41]. The use cases were primarily related to neurology

and the study of gait patterns in aging or unhealthy patients, where motion smoothness was used as an

indication of either anomalous or normal movements. While targeted towards a different class of problems,

these measures could be useful in achieving reward functions that are well-suited to the adjacent robot

trajectory learning problem.

One such measure is Spectral Arc Length (SAL), which quantifies trajectory smoothness based on

changes in profile curvature, on the basis of the Fourier spectrum of the underlying movements. In [10],

116

Chapter 6. Evaluation

the authors provide a time-invariant version of this quantity measure, whose formula is given by:

ηSAL = −

∫ ωc

0

(

1

ωc

)2

+

(
d ˜̇Y (ω)

dωc

)2

1
2

dω (6.13)

It is important to note that ω here refers to frequency (in Hz), not to policy parameters ω: the

convention we have adopted here. ωc denotes some predefined frequency band, while ˜̇Y (ω) is a normalized

Fourier magnitude spectrum of velocity profile ẏ: Ẏ (ω)

Ẏ (0)
.

From this, we can derive a simple similarity measure by comparing the SAL values of our sampled

and desired trajectories:

dSAL = |ηSAL(ẏ)− ηSAL(ˆ̇y)| (6.14)

This measure deals with the velocity profile of the movement, which can be provided by the pydmps

implementation of DMP roll-outs, instead of position coordinates in the case of dPWTD.

As expected, and verified in preliminary evaluations, this measure of similarity does not distinguish

between scaled versions of the same trajectory, since it only takes curvature similarities into account.

In theory, this may hinder a policy trained on a reward function incorporating this measure in learning

trajectories with little curvature variations.

Dimensionless Jerk Smoothness Measure

Another popular measure of movement smoothness is dimensionless jerk, particularly when classifying

healthy or anomalous human limb movements, since the latter are expected to exhibit jerks in the velocity

profile. According to [11], dimensionless jerk of profile ẏ can be computed using:

DLJ = −
(t2 − t1)

5

ẏ2peak

∫ t2

t1

∣∣∣∣
d2ẏ(t)

dt2

∣∣∣∣ dt (6.15)

where t1 and t2 represent the initial and final time-steps (0 and T), respectively, while ẏpeak refers to the

peak velocity throughout the movement.

Being very similar to the SAL measure, the DLJ can be utilized to provide a measure of how

similar two trajectories are:

dDLJ = |DLJ(ẏ)−DLJ(ˆ̇y)| (6.16)

In addition, another variant calculates the log dimensionless jerk instead, but is not considered

here.

When used as a reward function, this distance measure was found to not distinguish between scaled

versions of the same trajectory shape, like dSAL didn’t, suggesting it may not be the ideal option.

117

6.2. Learning Context-dependent Hand-Over Trajectories

Reward Function: Combining Distance and Smoothness Measures

The reward function that we use to obtain our final results makes use of the PWTD trajectory difference

and the SAL smoothness measures:

RW (y, c2) =
1

dPWTD(y, ŷ, |Ps|)
+ CηSAL(y)

The first term is the inverse of the PWTD between y and ŷ: the sum of square normed differences

between |Ps| equally spaced points along both trajectories. Clearly, this rewards closeness to the desired

trajectory shape ŷ. The second term is the SAL smoothness of the trajectory, which gets more negative

the more jagged trajectory y is. Apart from ensuring a smooth trajectory in general, this measure also

accounts for the fact that the PWTD measure asymptotically results in equivalence of the points dictated

by Ps only: the smaller |Ps| is the more jerky the trajectory is. ηSAL thus acts as a trade-off factor,

similar to a regularization parameter, bringing stability to the policy trajectory samples.

The ηSAL measure is based on an open-source implementation by the author (Balasubramanian)1.

Note that it requires specifying a sampling frequency, which we choose to be equal to |Ps|.

Analysis

Figure 6.14 depicts a plot of the normalized reward signals obtained from each of the reward functions

based on the aforementioned respective distance or smoothness measures. These were collected on the

same problem of figures 6.12 and 6.13, after running the algorithm for 500 iterations.

Due to the high variations in reward magnitudes, the reward signals from each reward function

have been normalized by subtracting their means, in order to better be able to compare their reward

’landscapes’.

The figure shows that the reward function combining point-wise trajectory differences

(PWTD) and the Spectral Arc Length (SAL) smoothness measure is more promising than

other reward functions, due to its stability and intuitive scaling with the current performance of the

algorithm. While a reward function employing only PWTD exhibits a similar reward signal evolution, the

addition of the SAL smoothness measure has been found to noticeably reduce trajectory irregularities in

curvature, particularly during early stages of the policy search.

Interestingly, the Euclidean distance between the current and desired weight vectors (WD) varies

much less than the trajectory coordinate differences measure. The resultant reward function thus assigns

very similar reward values throughout, although the trajectory clearly approaches the desired shape, and

would thus slow down or even suspend learning. As previously mentioned, the unpredictable nature of the

basis function weight vectors and their updates according to π(W |c2) makes their use in a similarity-based

reward function somewhat precarious.

The similar weight vector differences measure for which the vectors were transformed using FFT

(FWD) yield the same exact results (its line in the plot is made thick to distinguish it from that of the

similar reward function).

1 https://github.com/siva82kb/smoothness

118

Chapter 6. Evaluation

Figure 6.14: Normalized iteration rewards vs. the number of policy iterations. A comparison of the
evolution of reward signals from different reward functions for learning π(W |c2))

The pair of smoothness measures, SAL and DLJ, do not produce reliable results on their own, and

thus do not qualify as independent reward functions. Due to the focus of the measures on the global

curvature characteristics of trajectories, their resultant reward functions are not particularly suited to the

problem at hand, as can be seen from Figure 6.14.

6.2.3 Result

In the trajectory learning case, the model-based C-REPS implementation successfully learns

separate upper-level policies π(W |c2) that are able to learn and reproduce trajectories similar to the ones

implicated through reward function RW (y, c2). The algorithm was used to learn two policies π(W |u) and

π(W |l), which were trained to reproduce trajectories of Figure 6.11a and Figure 6.11b, respectively.

Figures 6.15 and 6.16 display the progress of the algorithm while learning each policy, under the

following set of parameters:

– Number of iterations, N = 2000

– Number of roll-outs per iteration, M = 40

– Relative entropy bound, ǫ = 0.1

– Number of DMP basis functions, Nbfs = 150

– Frequency of random restarts: every 100 iterations

Using the same machine, training either policy required about 267 minutes (accounting for

the fact that we used twice as many iterations as for π(g|c1), the algorithm requires about 31 times

as much time to train the policy as for the former case). Understandably, the algorithm requires far

more computations and, hence, time than the previous case, most likely due to the comparatively large

dimensionality of the parameter space.

119

6.2. Learning Context-dependent Hand-Over Trajectories

Note that the parameterizations here are very similar to the position case except for minor

adjustments. As expected, the algorithm requires far more iterations than the position policy π(g|c1)

to approach desired trajectories. While the position-learning policy could generally achieve acceptable

results in less than 300 iterations, learning π(W |c2) seems to require a far larger number of iterations to

fully converge to the desired solution. Nevertheless, the algorithm progresses fairly well in 2000 iterations,

and particularly in the first 1000, when the current trajectory is farther from the desired.

The algorithm performed better when the relative entropy, ǫ, was set to a lower value of 0.1 (instead

of 1). This meant that consecutive policy updates were less bounded and given more freedom to stray

away from current behaviour, allowing the algorithm to explore more aggressively in the space of policy

parameters. It appears that this is need here more than in the position case, possibly due to the higher

number of parameters and thus relative difficulty of the problem.

Figure 6.15 shows evaluations of the policy trajectory samples for the first 1000 iterations in

learning the over-arching motion introduced in Figure 6.11a. The policy clearly learns to approach the

approximate shape that would yield higher rewards, as its samples progressively tend to increasingly

resemble the desired trajectory. It can be observed that the greatest progress happens in the early stages

of learning. This makes sense since the magnitude of rewards are significantly lower when the sample

trajectory shapes are farther away from the desired shape, increasing the overall value of dPWTD. The

more the trajectory approaches that shape the generally higher the rewards per roll-out are, and the

more difficult it is for the algorithm to identify the regions of the search space that would yield maximum

rewards.

On Figure 6.16, the results are shown in the same form for the case of learning the lower motion

trajectory of Figure 6.11b. As with the first case, the algorithm can be seen progressing as it runs for more

iterations, sampling trajectories that approach the desired shape. However, the algorithm requires more

iterations to progress at a similar rate to the over-arching motion case; in other words, it approaches the

desired trajectory at a fairly slower rate. This may be attributed to the same reason that caused the policy

updates to grow less impactful late into the learning process for the first case. Since the desired lower

motion trajectory is relatively close to the demonstrated (and initial) trajectory, from the perspective of

the PWTD similarity measure, the variation in roll-out rewards is essentially less than in the over-arching

motion case, leading to a slower learning curve. For this reason, the bottom three plots are shown points

that are 500 iterations apart, since differences in the trajectory samples become less apparent, even though

the algorithm still continues to make progress.

It is important to note that context parameter c2 was set to a scalar for this case, since it was less

consequential than in the position learning case.

We conclude this section with a few relevant remarks:

• The problem of the algorithm not learning multiple trajectories using the same policy could not be

alleviated using the same techniques applied in section 6.1. Particularly, the use of context vectors

instead of scalars, did not seem to improve performance as would have been expected: the algorithm

still mostly learns a degraded version of either trajectory, or a compromise between the two.

120

Chapter 6. Evaluation

Figure 6.15: The progress of the C-REPS algorithm when learning a policy that starts from the demon-
strated trajectory and learns to reproduce the over-arching motion trajectory shown on Figure 6.11a

121

6.2. Learning Context-dependent Hand-Over Trajectories

Figure 6.16: The progress of the C-REPS algorithm when learning a policy that starts from the demon-
strated trajectory and learns to reproduce the lower motion trajectory shown on Figure 6.11b

122

Chapter 6. Evaluation

• A possible solution for easing the problem, particularly for the multi-contextual case, would be to

start at initial W value corresponding to simpler trajectory shapes (such as a straight line). As of

now, this approach has not mitigated the aforementioned problem.

• An undesirable product of the rapid changes in DMP basis function weights W has been found

to distort the resultant trajectory, such that the achieved final position is not identical to the one

designated in the DMP equation. This is not ideal, since learning trajectory shapes would work best

for a stable final position. A possible cause for this could be the rapidly growing values of W , which

may need to be bounded somehow.

• While reward function RW (y, c2) works relatively well, it still suffers from an undesirable quality.

Namely, the two terms scale differently, since the reciprocal of distance measure dPWTD quickly

outgrows the SAL smoothness quantity as the policy converges on the desired trajectory. In

the future, an adaptable scaling term would ideally be used to balance the importance of both

constituents of the function.

Conclusions From the perspective of learning single complex trajectory shapes solely from a shaped

reward function’s signals, the C-REPS implementation performs well. Although learning takes significantly

longer than in the hand-over position case, the results show that the algorithm steadily improves and

approaches the desired trajectory characteristics, particularly with the added random restarts of exploration

strategy. The multi-contextual case has proven to be too challenging for the algorithm and/or the current

policy representation so far: attempting to learn separate trajectory shapes indicated by respective context

parameter values (scalars or vectors) yields unsatisfactory results. At best, the algorithm can currently be

used to train multiple π(W |c2) policies, one for each context, and a decision rule could determine which

to apply for the observed context. In the future, this issue may be resolved through an improvement of

the algorithm, or a change in the policy formulation.

6.3 Learning Context-dependent Hand-Over Speeds

As previously explained in sub-section 5.3.4, the third dimension to the problem of learning context-

dependent hand-overs, execution speeds, has not been pursued further in this work. We provide here a

brief explanation and some empirical results that demonstrate the inadequacy of the implementation we

currently rely on for the aspect of execution trajectory speed.

The third learnable parameter in the DMP equations, τ , allows the time-invariant trajectories

represented by the equations to be effectively scaled, such that the speed of their execution is tuned. It is

assumed that a trajectory captured through a demonstration, for example, is reproduced at exactly the

same speed when executing a roll-out with the corresponding DMPs while setting τ = τdemo. Theoretically,

decreasing or increasing this value leads to roll-outs in which the same motion is executed at slower or

faster speeds, respectively.

With this added degree of freedom, as explained in section 4.1, a third dimension of context, for

which optimality of task executions are governed by trajectory speeds, can be learned using a third

upper-level policy in our hierarchy: π(τ |c3). As a simple example, we assume c3 to be a binary variable

123

6.3. Learning Context-dependent Hand-Over Speeds

Figure 6.17: A comparison of DMP reproductions of the demonstrated trajectory for different values of
time constant τ

denoting whether an object is fragile, and thus necessitates a more cautious movement while handing it

over, or not.

Unfortunately, the pydmps package, which we utilize for our DMP computations and therefore

is instrumental in the implementation of the lower-level policy, has been found to produce undesirable

results when tuning parameter τ . This can already be observed on Figure 5.4c. Figure 6.17 shows a

comparison of the same (demonstration) trajectory being reproduced for a range of values of τ .

It is evident that the reproduced trajectories grow more jagged and rough as we increase values of

τ . While this, from the perspective of the implementation, can be interpreted as a decrease in the time

taken to follow the trajectory from start to finish (which qualifies as the ’speed’ of the movement), it does

not exactly correspond with our understanding of motion execution speed. We expect a slower hand-over

to follow the same path, intersecting the same set of points in 3D space, but at a slower pace. These

reproduced trajectory roll-outs cause an unnatural discretized movement, as verified on the HSR, which

makes the resultant hand-overs inadequate. A more important consequence is that the results of π(τ |c3)

would no longer satisfy the intended conceptual outcomes, which makes learning the contextual policy

unjustified.

In conclusion, the context-dependent hand-over speed learning problem was deemed not satisfactorily

solvable with the current implementation of model-based C-REPS, and is left for future work.

124

Chapter 6. Evaluation

6.4 Limitations of the Implementation

In this section we briefly summarize the deficiencies and limitations of the proposed approach to

learning contextual hand-over policies, as observed from the final results obtained for each aspect of the

generalizable hand-over executions. As previously demonstrated, the model-based C-REPS algorithm

achieves mixed success overall, learning position-based contextual policies relatively well and attaining

acceptable performance on trajectory-based policies. Nevertheless, it is pertinent to enumerate and discuss

observed limitations, such that they can be systematically resolved in future work.

Firstly, the algorithm’s performance when learning ideal hand-over positions, while ultimately

satisfactory, suffers from some unpredictability. In particular, policies often converge to points that do not

exactly correspond to the ideal ones dictated by the reward function, and variations in final solutions

across different runs is noticeable. While this is expected in an algorithm which is driven by a stochastic

policy representation, this behaviour can also be attributed to the inability of the exploration parameters

to converge to very low values, signifying certainty in the location of the ’optimal’ position. A possible

cause may be the form of the reward function, which may need to be altered to inhibit unwarranted

exploration. This behaviour was observed both with and without regular Σ restarts.

A significant limitation of the current version of the algorithm is its inability to learn contextual

policies for trajectory shapes for problems that require capturing multiple trajectory behaviours in a

single policy. Probably due to the sheer number of learnable parameters, as a result of a high number of

basis DMP functions being required to reproduce a motion with acceptable accuracy, it is challenging

for the algorithm to learn values for the large policy parameter matrices that satisfy multiple solution

modes. Future pursuits may include improving the algorithm’s policy update strategy, or even changing

the policy representation.

As explained in the previous section, our current implementation does not produce the desired

results for learning context-dependent hand-over speeds. In particular, the trajectories produced by the

pydmps implementation of DMPs are inadequate for the intended learning procedure, since they do not

produce the expected change in trajectory execution speed. This may be solved by applying a different

approach to this aspect of the hand-over motion, but currently prevents learning a meaningful π(τ |c).

While not a literal limitation of the implementation, the context variable definition phase is an

apparent concern in the performance of the algorithm. Namely, it is important to define numerical values

for these variables that are both conducive to learning the desired mode of behaviour, and have some

connection to the underlying concept of context. This is especially difficult when applying the C-REPS

algorithm in a scenario where contexts refer to human concepts that govern human interaction subtleties,

such as our human-robot collaborative task. Simpler notions of contexts in robotic tasks, such as the

location of a thrown ball, are less problematic. Therefore, the task of defining context values that enable

achieving desired results adds a dimension to the difficulty of the proposed approach.

Some of the described limitations, and possible unobserved ones, may be ascribed to the policy

representation: a linear-Gaussian model. Among the more apparent concerns is the linearity of the model’s

distribution in the context parameter values c, which allows for far simpler computations, but may place

constraints on the ability of the algorithm. One such example is the initial problem of policy updates

125

6.4. Limitations of the Implementation

being constrained to a line, as described in sub-section 6.1.1 (before enhancing the algorithm with context

vectors and random Σ restarts). Even if the adverse effects of this assumption do not clearly manifest in

the problem addressed here, they may appear in larger problems, in which the relation between sampled

parameters and the conditioned variable is ideally non-linear.

Finally, our model-based approach achieves acceptable results in reasonable time-frames, but

does not seem directly applicable on the actual robot system yet. An ideal scenario would involve the

robot employing the algorithm model-free: executing hand-overs in real-time and using collected data to

continuously update its policies in a life-long learning procedure. Additionally, a inverse reinforcement

learning (IRL) method could be employed to fully automate the process of reward function shaping and

reward acquisition (refer to section 3.1 for a short overview of IRL). However, the number of roll-outs

needed to obtain the current results is prohibitively large, and would ideally need to be optimized before

the algorithm is ported to the robot. This, however, constitutes one of the long-term goals of autonomous

robot skill learning and thus motivates future work.

126

7

Results

This chapter presents the results of the HSR hand-over user study conducted as a part of this

project, and a subsequent analysis to draw relevant conclusions.

The study involved 10 participants taking part in the experimental procedure described in our

methodology (refer to section 4.2). The aim of the study was to evaluate the behaviour of a learned

contextual policy π(g|c1) which selects appropriate hand-over positions, according to the current context,

in comparison to a context-unaware policy: choosing the same hand-over position regardless of person

posture, c1. Subsequently, we would draw conclusions on the merits of applying apprenticeship learning

to learn context-aware human-robot hand-overs, and thus the incorporation of contextual knowledge in a

collaborative task of this sort.

As previously described, participants receive an object (a water bottle) from the HSR is three

different contexts: c1 ∈ {standing, seated, lying down} (see Figure 4.2), under two ’behaviour modes’:

a context-unaware (B1) and a context-aware one (B2). The sequence of the experiment along either

dimension is randomized between participants, who are initially oblivious to the difference between the

two modes.

At each run, the robot detects and perceives the person’s posture, identifying the current value of

c1. It then executes a hand-over of the object in its gripper using a parameterized DMP policy with a

pre-set initial end-effector position, motion trajectory, and time constant. The variable parameter, final

hand-over position g, is set to the value observed in an original demonstration (gdemo) in mode B1, and

sampled from policy π(g|c1), trained using model-based C-REPS, in mode B2. This policy is the one

whose results are presented in section 6.1 and displayed on Figure 6.6.

Following the three hand-overs under either behaviour mode, the participants are instructed to

grade their agreement, on a 5-point Likert scale, with statements that are designed to estimate their

perception of the robot’s behaviour. These statements are listed here:

1. The robot performs the action in a way similar to how I would

2. The robot performs the action in a way that best fits the current situation

3. The robot’s action feels natural

4. I feel understood by the robot

5. I feel comfortable interacting with the robot

6. I feel safe interacting with the robot

127

7.1. Quantitative Analysis

7. It does not take much effort to take the object from the robot

8. I had to strain my arm to receive the object

9. I could predict the intention of the robot

At the end of the experiment, the participants indicate their preference over the two modes on a

5-point Likert scale, and answer a set of general questions. These open-ended questions are intended to

gather insights that cannot be obtained from the initial bounded responses, in addition to notable aspects

that may have been overlooked in the course of this work. The posed questions are:

• Among the two modes, which behaviour did you find more appropriate/preferable? And why?

• If the robot could learn your preferences, is there anything you would want it to consider when

deciding how to hand you an object?

• Do you have any comments or suggestions for improving the robot’s behavior? If so, please describe

them.

The full questionnaire used in the study can be found in Appendix B.

7.1 Quantitative Analysis

In this section, we present a quantitative analysis of the part of the study in which different aspects

of the robot’s behaviour were graded by the participants, and their final evaluations of the context-aware

behaviour against context-unaware behaviour.

As explained in sub-section 4.2.3, we analyse the results of the Likert-style statements by interpreting

the answers as scores in a range of (−2, 2), ranging from strong disagreement to strong agreement (where

0 signifies indifference). Subsequently, we aggregate the scores across participants for each statement,

which governs some factor of the robot’s behaviour, by computing the sums of the participants’ scores. As

a result, we obtain an aggregate score in the range (−20, 20), which signifies how positively (or vice-versa)

the respective statement is agreed upon, on average. This is done for each behaviour mode.

In tables 7.1 and 7.2, we display the scores and their aggregates over all participants. We summarize

relevant conclusions that can be drawn from this data in the following.

The robot’s hand-over executions are found to be significantly more similar to human executions,

suitable to the current situation, and natural in the case of context-aware behaviour, B2, as opposed

to B1. Although the aggregate scores on these aspects for B1 were neutral on average, they were far

more positive in the former case. This is in agreement with our main hypotheses, in which we assumed

that context-dependent task executions would be perceived by people as more human-like, and generally

perceived to be more adaptive to the current situation.

The robot is additionally perceived to be more understanding by the participants when it seems

to change its action across the different postures of the person. This similarly aligns with our human

intuitions: individuals who seem to actively take into consideration the present conditions of a person,

even for a task as simple as handing an object over, are perceived to be more understanding and even

considerate. The participants’ input suggests the same applies when the giver is a robot.

Although receiving the object from the robot was moderately comfortable for the receivers in either

behaviour mode, it was more so in B2. This may be partly due to aforementioned implicit perceptions of

128

Chapter 7. Results

naturalness in motion, and perceived understanding, which induce a psychological feeling of comfort, but

could also imply actual physical comfort afforded by the hand-over positions chosen by the robot’s policy.

With regards to perceived safety, the results show no difference between the participants’ feeling of

safety as the robot handed the object over under either behaviour. This is expected since the robot’s

movements are generally non-intrusive, including the trajectory it executes, and slow. Nevertheless, this

also indicates that contextually appropriate behaviour may not change how safe people feel interacting

with a robot. This aspect is usually tied more to the physical appearance and other external characteristics

of the robot, and less on perceived intelligence.

The participants generally agreed with the statement that suggests they did not need to expend

much effort or exert themselves when the robot was under the context-aware behaviour than otherwise.

This is closely connected to the amount of strain the participants felt they had to place on their arm to

receive the object. In the latter case, a more lucid preference was observed for B2, with the participants

implying that they had to strain their arms significantly less on average, even though the general opinion

was neutral for the case of B1. Again, this is an intuitive, if not obvious result, since the single position

chosen by the robot in B1 is not ideal for at least two contexts, while the context-dependent positions

learned and applied by the robot under B2 are close to ones empirically determined to be most appropriate

for each context (ĝ).

Finally, the perceived predictability of the robot’s behaviour during a hand-over was not found to

improve with context-aware behaviour, similar to perceptions of safety. This measure is a particularly

difficult one, since the participants observe brief episodes of the robot’s behaviour, which themselves do

not portray much of its general behaviour to enable drawing a general conclusion. It is expected that a

more involved experimental procedure and a larger number of overall trials, in which participants interact

more deeply with the robot, may offer more insightful results on this behavioural factor.

Figure 7.1 provides a useful visualization of the results of this part of the questionnaire in the form

of a diverging stacked bar chart. Note that the scores for the eighth statement: ”I had to strain my arm to

receive the object” have been inverted for the purpose of these plots, such that the scores are a measure of

lack of strain on the person’s arms, instead of presence thereof. This was to mirror the positive notions of

the other statements, and thus clearly demonstrate that the number of positive responses on the bottom

plot exceed those of the first: a visual illustration of the participant’s general inclination towards the

context aware behaviour.

The final evaluations of the robot’s behaviour by the participants of the study are presented on

Table 7.3. Using the same scheme, the scores from the question of how much B2 is preferred over B1,

which is answered on a Likert scale from 1-5 (not at all, to definitely, respectively), are reformulated so

that they lie in the range (−2, 2). Therefore, the aggregate score lies in the range (−20, 20), ranging from

strong preference for the robot’s behaviour under B2 to strong preference for B1 (once again, note that

the participants are unaware of what each behaviour mode actually constitutes, at the time of the study).

Out of the ten participants of the study, the scores imply that six strongly preferred the robot’s

hand-over behaviour under the context-aware mode, B2, two preferred it at a lesser degree, and two

preferred behaviour under context-unaware mode, B1. The eventual aggregate score was 12, signifying

129

7.1. Quantitative Analysis

Participant No.
Factor

01 02 03 04 05 06 07 08 09 10
Aggregate

Similarity to Human Execution 1 -1 -1 1 1 1 0 0 -2 0 0
Suitability to Current Situation 1 -2 0 1 1 2 0 0 -2 0 1
Naturalness 1 0 0 0 2 1 1 -1 -2 1 3
Perceived Understanding -1 -1 1 1 1 2 1 1 -2 1 4
Comfort 2 0 1 1 1 2 2 -1 -2 1 7
Perceived Safety 2 0 2 2 2 2 2 2 1 1 16
No General Exertion 1 -1 2 1 2 -1 0 1 -1 1 5
Strain on Arm -1 0 1 -1 0 1 1 -1 2 -2 0
Predictability 1 -1 1 -1 2 1 1 1 1 1 7

Table 7.1: Results of scores of the statements on page 1 of the questionnaire for B1: context un-aware
behaviour, over three hand-over scenarios, for participants 01-10. Each statement is scored in the range
(−2, 2): from strong disagreement to strong agreement.

Participant No.
Factor

01 02 03 04 05 06 07 08 09 10
Aggregate

Similarity to Human Execution 1 1 1 -1 2 2 2 2 -1 1 10
Suitability to Current Situation 1 0 1 0 2 2 2 1 1 1 11
Naturalness 1 0 1 -1 2 2 2 1 0 0 8
Perceived Understanding -1 1 1 1 1 2 2 0 1 1 9
Comfort 2 1 2 1 2 2 2 1 0 1 14
Perceived Safety 2 0 2 2 2 2 2 1 2 1 16
No General Exertion 1 2 1 1 2 2 1 1 -1 -1 9
Strain on Arm -1 -1 -1 0 -1 -1 -2 -1 1 -2 -9
Predictability 1 -1 1 -1 2 2 1 1 -1 1 6

Table 7.2: Results of scores of the statements on page 1 of the questionnaire for B2: context aware
behaviour, over three hand-over scenarios, for participants 01-10. Each statement is scored in the range
(−2, 2): from strong disagreement to strong agreement.

Participant No.
01 02 03 04 05 06 07 08 09 10

Aggregate

Overall Preference (B2/B1) -1 2 1 -1 2 2 2 1 2 2 12

Table 7.3: Result of scores indicating overall preference of context aware behaviour (B2) over context
un-aware behaviour (B1) on a range of (−2, 2) over all trials for participants 01-10.

130

Chapter 7. Results

Figure 7.1: A diverging stacked bar chart used to visualize the results shown on tables 7.1 (top plot) and
7.2 (bottom) for the results of the questionnaire for the context un-aware and context aware behaviours,
respectively.

131

7.2. Qualitative Analysis

that the context-aware behaviour was generally preferred over the other, as is expected.

7.2 Qualitative Analysis

In this section, we briefly analyse the qualitative results of the robot’s perceived behaviour in our

study, drawing notable conclusions from participants’ vocal inputs and answers to the general questions

posed in the questionnaire. Due to the similarity in opinions and notions expressed by the participants,

we provide here a general summary of the extracted insights.

The most notable comments provided by the users are summarized in the following:

• The majority of users expressed a strong (vocal and/or written) preference for the results of the

context-aware hand-overs, even though they did not know the underlying difference between the two

behaviour modes.

• Many participants explicitly mentioned the robot’s action literally feeling more natural and more

human-like in the context-aware mode, due to them more strongly feeling that it perceived their

current posture, during that set of trials. This comment was purely a result of them noticing the

robot’s adjustment of hand-over positions across contexts, as opposed to the other case.

• Many participants echoed the importance of perceiving as many aspects of their posture as possible,

including how far they leaned back on a seat, for example.

• A relatively common remark suggested that straighter, simpler trajectories are preferable, especially

since some curvature in the robot’s hand-over motion was noticeable, especially in the standing

scenario. While this is a product of the reproduced demonstration trajectory, not the output of

learned policy π(g|c1), it is an interesting and previously unappreciated view.

• Some users noted that the robot’s motion seemed more natural when it moved its full body (arm

and base) as it approached them. This was observed only in one case: lying down and under

context-aware behaviour, for which the robot was forced to move its whole body to approach the

learned farther position. This could imply that the hand-over skill may improve by incorporating

whole body movements more often.

With regards to the open-ended questions concerning the how the perceived robot behaviour could

be improved, some recurrent suggestions included the following:

• Some users felt the readiness and attention of the receiver should be taken more actively into account

by the robot as it prepares to execute a hand-over. Namely, the robot could detect whether a

person’s attention permits the object transfer, as well as provide more active signalling of when it

starts executing the action.

• A few users mentioned more advanced posture detection capabilities as a welcome improvement,

such as detection of orientation at which a person is standing and how far they are leaning while

seated.

• A similar comment made by one user included suggestions of utilizing an added detection modality,

such as hand position detection, such that the most comfortable position can be actively estimated,

or even tracked.

132

Chapter 7. Results

It is worth noting that various users were noticeably placing undesirable focus on the force detection

component when evaluating the robot’s behaviour, even though they were explicitly told that objection

reception detection is not the main focus of the study. This may have occasionally distracted users

away from observing the hand-over execution itself, leading to less discriminative opinions on the robot’s

context-dependent hand-over behaviour, as opposed to its counterpart.

Lastly, some variation in the participants’ preferences for some postures reveal the difficulty in

grounding what could be considered ’good’ behaviour in the hand-over task, even for humans. As an

example, the seated position had fairly varying viewpoints, with some participants ultimately unsure

where they would prefer the hand-over then, and one participant suggesting offering the object at shoulder

height: a preference that significantly conflicts with our personal intuitions. It could be the case, however,

that having a larger group of participants may ease drawing some stable conclusions on what constitutes

the generally preferred behaviour, such that we maximize the soundness of the contextual knowledge we

guide the robot’s learning with.

133

7.2. Qualitative Analysis

134

8

Conclusions

Future autonomous service robots must satisfy user expectations that extend beyond quantitative

task performance criteria, to qualify as more than mere robotic tools. One such expectation is context-

awareness, a measure of autonomy that can potentially elevate perceptions of robot intelligence, and equip

robots with capabilities to meaningfully assist and collaborate with humans. Contextual adaptivity is

a vital human characteristic that has tangible effects on behaviour, particularly in joint activities, and

thus the development of similar adaptation strategies in robots designed to interact and collaborate with

humans is a beneficial pursuit.

In this project, we explore an approach to acquiring and generalizing a robot motor skill to

different situational contexts, then conduct a human user study to evaluate its results; with the aims

of demonstrating a concrete application of context-awareness, and validating its merits to justify its

implementation. We equip an HSR with a context-aware hand-over skill which is enabled by dynamic

movement primitives (DMPs), a flexible trajectory representation, and context-dependent behavioural

policies, learned by reinforcement. In particular, we employ an apprenticeship learning procedure: the

robot is shown a single demonstration of the task, motion characteristics are captured in DMPs, and a

model-based policy search algorithm is used to learn a hierarchical structure of contextual policies which

facilitate hand-over executions that adhere to the current context, by selecting appropriate meta-parameters

of the movement representation.

The algorithm of choice is a model-based version of Contextual Relative Entropy Policy Search (C-

REPS), whose information-theoretic policy update strategy and policy hierarchy present useful properties

for addressing the problem of context-dependent hand-overs. Policies that choose optimal hand-over

positions and trajectories for factors such as the receiver’s current posture are learned through ’mental

rehearsal’: running hand-over trajectory simulations off the robot and guiding learning through shaped

reward functions. The results of the algorithm are evaluated both in simulations and in a dedicated

human user study. Participants receive an object from the HSR in different postures (standing, seated,

and lying down) under the demonstrated and the learned policies, and then provide their inputs on either

behaviour through a questionnaire.

Our model-based variant of C-REPS successfully learns a policy π(g|c1) that chooses the most

appropriate hand-over position, given the current context. It is also capable of progressively learning

a desired trajectory shape in π(W |c2), but currently fails to capture multiple shapes corresponding to

135

8.1. Contributions

different contexts simultaneously, in the same policy. We determined that learning context-dependent

execution speeds is currently infeasible, due to limitations of the DMP implementation. Through our

user study, we confirmed that hand-over positions chosen by learned policy π(g|c1) are generally preferred

over a context-independent behaviour along various dimensions. This leads us to accept our hypothesis

concerning the improvements brought about by context-aware executions of a human-oriented task,

achieved through reinforcement learning (RL).

To conclude this report, we briefly summarize our contributions, learned lessons, and avenues for

future work.

8.1 Contributions

The primary achievements of this project are a systematic procedure for acquiring a generalizable

robot motor skill through apprenticeship learning, using it to implement context-aware robot-to-human

hand-overs, and experimentally proving the superiority of resultant behaviour over a conventional approach,

through a user study.

This section summarizes the main contributions of the project.

Review of Approaches to Robot Motor Skill Generalization

In order to identify and differentiate between plausible approaches to the addressed problem, we conduct

a review of the state-of-the-art robot motor skill learning and generalization methods, which is presented

in chapter 2. We thus present an extensive overview that encompasses:

• the use of contextual knowledge in robotics and adjacent fields, as well as various formalisms for

context awareness and contextual adaptivity

• skill representations ranging from adaptive controllers to probabilistic models and dynamical systems,

the latter particularly utilized to capture human demonstrations, and how contextual adaptivity

can be encoded into these representations

• reinforcement learning approaches that facilitate both developing and generalizing robot motor skills,

and are conducive to incorporating contextual knowledge to achieve that generalization

We place a particular emphasis on apprenticeship learning, which evolved from the combination

of learning from demonstrations (LfD) and RL, and which we identify as the most promising approach

to the process of autonomous skill acquisition, improvement, and generalization to different operating

conditions. As a result, we explore hierarchical and contextual policy search methods, presenting past

applications and reviewing most prominent works in more detail.

In addition, we review research on human-robot object hand-overs, our representative use case,

presenting insights from studies on the nature and characteristics of the task as studied on humans,

formulations and considerations from a robotics perspective, and applications of learned and adapted

robot hand-overs.

136

Chapter 8. Conclusions

Comparative Analysis of Candidate Algorithms

We present a concise comparative analysis of four candidate model-based policy search algorithms that

have been identified as the most suitable and promising solutions to the problem addressed in this project.

The state-of-the-art algorithms are studied in detail and their policy formulations, policy update strategies,

strengths, and drawbacks are discussed to draw conclusions on their respective properties. The results are

presented in Appendix A.

This analysis resulted in selecting C-REPS, a variant of GPREPS and REPS algorithms in general,

as the most suitable candidate algorithm.

Implementation of Hand-Over Generalization

The achievement of context-aware hand-overs by the HSR is a product of implementing an adequate

reinforcement learning procedure and a holistic object hand-over action.

We present a model-based version of C-REPS, applicable to the problem of learning context-

dependent positions and trajectory shapes of DMPs. It is based on a implementation present in the

PyCREPS package, which was designed for simpler RL benchmark problems. Therefore, the implemen-

tation was integrated with the functionalities of the pydmps package, such that the algorithm now utilizes

DMPs as lower-level policies. This change also allows us to simulate trajectory roll-outs and their outcomes

off the robot, resulting in a form of predictive forward model. Other improvements include incorporating

demonstrated DMPs as initial policies, generating reward signals from crafted reward functions, and

rectifying certain inaccuracies in the code to enable productive learning.

A context-aware hand-over action was also implemented using ROS on the HSR, which encompasses

receiver detection, posture identification, hand-over execution, and object reception detection. The

perception capabilities of the robot are utilized to detect a person, using an SSD detector, whose posture

is then determined through a simple heuristic. The hand-over is executed in a ROS action server, which

chooses DMP meta-parameters according to the learned policies, conditioned on context parameter values.

In order to maximize the natural flow of the hand-over, we also equip the robot with the ability to sense

the receiver’s reception of the object by implementing the CUSUM change detection algorithm, which

makes the decision of whether to release the object, given the forces exerted on the robot’s wrist.

Evaluation of Model-based C-REPS

Preceding evaluations on the HSR, we present analyses of the quantitative and qualitative characteristics of

the algorithm, whose performance is initially tested in simulations. We evaluate the quality and resultant

behaviour of policies trained on desired hand-over positions and trajectories, discussing adequate parameter

settings and observed limitations of the algorithm. Additionally, we provide preliminary definitions and a

comparison of candidate reward functions for each case, constructed from appropriate numerical measures

(distance, similarity, smoothness, etc.).

We verify that the algorithm is suited to learning policies that choose hand-over positions based on

context, by demonstrating policies trained to prefer empirically determined ’ideal’ hand-over positions for

137

8.2. Lessons Learned

three given posture contexts, and arbitrarily selected positions in other examples, with sole guidance from

reward signals.

Human User Study

As a means for confirming our hypothesis on the merits of contextually adaptive robot motor skills, we

present a study providing justification for learning context-aware behaviour, and interesting insights

into users’ expected and desired behaviours. The results clearly indicate a significant preference for the

context-aware behaviour especially through user perceptions of similarity to human executions, suitability

to current situation, and naturalness. Participants’ expressed preference for the robot’s hand-overs as

it followed learned policies lends credence to the fact that contextually adaptive behaviour comes off as

instinctively more preferable, particularly since users were not informed of the underlying differences

between the two behaviour modes of the study. Among the most intriguing results of this study is that the

robot can learn a behaviour that is substantially preferable to users over a conventional one while only

guided by an initial demonstration and a scalar reward signal.

Analysis of the feedback, comments, and suggestions for desired robot behaviour by participants

suggests that the choice of what contextual knowledge to impart to the robot in its learning process may

be relatively subjective at this stage. The significant variance in people’s preferences indicates that it is

best to obtain results from more extensive studies in order to more reliably craft reward functions and

guide learning in the future.

8.2 Lessons Learned

In this section, we summarize some of the more novel insights gathered throughout this project.

As evidenced by the reviewed literature, the motor skill learning process can potentially be

accomplished through a broad variety of trajectory and policy representations, policy search algorithms,

and generally skill acquisition strategies that have not been extensively explored. Successful applications

of imitation learning demonstrate the use of alternatives to DMPs, such as Hidden Markov Models,

probabilistic movement primitives, ’interaction primitives’ ([8]), and invariant trajectory representations,

all of which possess interesting properties. The skill acquisition and learning process itself, whether based

on a learning by reinforcement strategy or otherwise, can vary significantly according to the aforementioned

representations and the problem at hand. This variation thus suggests that future problems must be

studied closely to determine the particular approach most likely to succeed in attaining a solution.

The process of implementing our solution and subsequent evaluations of its results have revealed

that the performance of our model-based variant of C-REPS is dependent on a few key factors. The most

conspicuous of these are the policy representation, reward function, and context parameter definition.

Most of these seem to apply to policy search algorithms in general, and are thus important to note.

The nature of the policy and its accompanying update (or ’learning’) strategy is an evident

prime determinant of the algorithm’s performance, its capacities, and its limitations. For example, the

probabilistic linear-Gaussian model used for the upper-level policies has been found to be a conveniently

compact model with the ability to capture various forms of behaviour, enable efficient sampling of ’actions’,

138

Chapter 8. Conclusions

and directly encode exploration. In addition to intuitive conditioning on context parameters, modelled

as random variables, and a straightforward maximum likelihood estimation (MLE) approach to policy

updates, this policy representation is well-suited to our problem. On the other hand, certain difficulties

in learning have revealed some undesirable properties, such as the fact that policy updates were bound

by linear constraints, a problem that was solved with vectorized context parameter representations and

random exploration restarts. It is thus important to take the policy model and its update strategy carefully

into account.

The formulation of the reward function, which is currently shaped by the designer in our approach,

similarly has a substantial influence on the success of the procedure. As with any reinforcement learning

algorithm, the scalar reward signal is the robot’s single indication of its current performance and guide to

optimal behaviour. Although we provide some initial notion of expected behaviour through demonstration,

the robot’s subsequent progress relies on the crafted reward function and how well it communicates the

intended behaviour. The difficulty in shaping an appropriate reward landscape was apparent when various

formulations either failed to achieve any results or did so inefficiently.

A third deciding factor, which is mostly applicable to contextual policy search algorithms like

C-REPS, is the definition of context parameters. As observed through initial difficulties in the position

learning case, the particular form of the parameters can be crucial to any progress at all. Grounding

the concepts behind a context parameter and defining numerical values that are compatible with the

algorithm and enable meaningful learning can be a relatively complex process.

The conducted user study provided various interesting insights, chief among which is a verification

of our hypothesis concerning context-aware behaviours. Among these insights is an important observation

relating to the considerable variations in participants preferences for a hand-over. These variations, and

the occasional ambivalence, highlight the difficulty in predicting what behaviour is ’good’, which is a

requisite to imparting contextual knowledge to the robot. This complication has often been reiterated in

the literature concerning human-robot interaction and collaboration, and thus remains a notable research

problem. From our perspective, it may suggest gathering contextual knowledge more extensively, possibly

from larger groups and more elaborate studies, before applying them to robot skill learning.

8.3 Future work

We conclude this report by enumerating and elaborating on possible avenues for future work,

including improvements to the current approach, significant changes in implementation specifics, or novel

additions to the adopted procedure.

Gaussian processes (GP) and Gaussian process regression (GPR) can be utilized in our reinforcement

learning procedure in multiple ways, owing to their generality as function approximators. Conceivable

applications include mapping directly from context parameters to DMP parameters, as is done in [110],

GP policy representations, and use as forward dynamics models, such as is done in [66] with GPREPS

and in [34] for PILCO. Despite their regression procedure reportedly being computationally prohibitive in

high-dimensional representation, they may prove useful for less demanding problems. GPs could therefore

be integrated into C-REPS, either as policies or forward models.

139

8.3. Future work

The full potential of dynamic movement primitives has not been explored in this work, and utilizing

their various extensions could be the target of future work. An intuitive enhancement would be to use

DMPs as dynamic policies, as opposed to the deterministic, static implementation, such that motor

commands are executed in real-time, taking the full evolution of the trajectory into consideration. This

could increase the adaptivity of the hand-over action by adding a reactive element to trajectories, which

incorporates measures like hand-tracking (as suggested by participants of the study) and obstacle avoidance.

This, however, would be expected to substantially increase the complexity of the problem.

As previously mentioned, a multitude of trajectory representations could be used in the future as

substitutes for DMPs. Probabilistic Movement Primitives (ProMPs), for example, offer an interesting

paradigm in which trajectories in the form of probability distributions are used to mix or alternate between

primitives to produce arbitrarily complex motions. This also opens the door for an approach that relies on

multiple demonstrations of the task, which is somewhat of a requisite for ProMPs to approximate desired

behaviour. Gaussian Mixture Models also capture primitives from multiple demonstrations, and have

frequently been used for trajectory representation and generalization. The invariant rigid body trajectory

representation presented in [112] particularly suits skill generalization due to its favourable invariance

properties.

In working towards an autonomous apprenticeship learning procedure, we could apply inverse

reinforcement learning (IRL) techniques to infer reward functions from demonstrations. This would

enable the robot to learn possibly complex behaviour optimality criteria from these demonstrations, or

from autonomous executions, albeit in a black-box manner and possibly requiring large repetitions of

either. As explained in section 6.4, the current prohibitive number of roll-outs required to learn desired

behaviour makes it difficult to apply this approach, even if an appropriate function approximation is

achieved. Nevertheless, IRL is expected to play an important role in robot life-long learning, and moving

forward from manual reward shaping and/or reward signal assignment.

Another possible direction to explore in the future, which relates to the previous discussion

concerning policy representations and updates strategies, would be to explore non-parametric alternatives

to C-REPS. The basic REPS algorithms rely on parametric models, such as the linear-Gaussian model

we use in our work, and their probability density estimation strategies (such as MLE). In recent work

presented in [3] by Abdolmaleki et. al. and [111] by Van Hoof et. al., the local CECER and NP-REPS

algorithms have been introduced, both of which employ non-parametric models and techniques, which are

thought to alleviate the limitations of the former. Additionally, the RBF-REPS algorithm was presented in

[4] for non-linear generalization in contextual policy search, which may reduce issues with linear constraints

encountered in the present implementation.

Lastly, curriculum learning can be explored in the future to ease the problem of learning particularly

difficult behaviours, or increase learning efficiency in general. These approaches seek to construct or follow

a learning schedule, whether that constitutes problem scenarios, drawn task contexts, or problem-specific

parameterizations, that maximizes learning speed. The general method is akin to how humans formulate

curricula, with easier or more manageable tasks learned first, followed by progressively more difficult

ones. This fits naturally in a reinforcement learning problem such as our own, where it may be easier

140

Chapter 8. Conclusions

to learn policies that start from states of higher rewards (that are closer to the goal, for example) in

earlier episodes, and to increase the complexity of the problem as the policy starts to grasp the intended

behaviour, which could reduce the amount of exploration needed to start acquiring reasonable rewards

and kick-start learning. A similar approach used in reinforcement learning, called Hindsight Experience

Replay (HER) could also be employed to incorporate objectively ’failed’ runs in the learning loop.

141

8.3. Future work

142

A

Candidate Algorithms

This appendix contains a brief review of a group of relevant algorithms that were identified as

candidates for application to our problem, their individual properties, and a verdict on each. These

model-based policy search problems were chosen since they enable learning in simulation, thanks to their

predictive models. This would allows us to utilize a mental rehearsal approach to learning the hand-over

skill: simulating roll-outs and learning by reinforcement off the robot, then transferring the learned

behaviours over and executing the resultant action on the robot. As previously mentioned, this is more

data-efficient, safer, and less tedious, albeit at the price of possible model errors and potential bias issues.

The algorithms we review in the following are:

• Probabilistic Inference for Learning Control (PILCO)

• Black-box Data-efficient Robot Policy Search (Black-DROPS)

• Gaussian Process Relative Entropy Policy Search (GPREPS)

• Model-Based Guided Policy Search (M-GPS)

A.1 Probabilistic Inference for Learning Control (PILCO)

PILCO is a gradient-based, model-based policy search (PS) algorithm which was introduced by

Deisenroth et. al. in [33] for more data-efficient application of reinforcement learning to complex control

robot manipulation tasks. It learns control policies by first learning a dynamics model of the system in

question, then employing the model to infer state trajectories and thus analytically estimate expected

long-term rewards, which are subsequently used to drive policy improvements. The algorithm’s suitability

for robotic problems, and continuous action domains in general, is ascribable to its efficient probabilistic

modelling and inference strategies. As is the case with most policy search algorithms, as opposed to

value-based ones, the algorithm is restricted to episodic tasks. Algorithm 1 outlines the main steps of

PILCO. The pseudocode is obtained from [34], by the same authors, which contains an overview of PILCO

that is more comprehensive than the one provided here.

Note the use of J̄θ instead of Jθ as the policy performance measure, which is to signify PILCO’s

optimization of expected long-term cost, as opposed to expected long-term return. Although the two

notions are virtually equivalent, we explicitly distinguish cost J̄θ from return Jθ (our adopted notation),

for semantic clarity. As before, θ refers to the current parameters of policy π.

143

A.1. Probabilistic Inference for Learning Control (PILCO)

Algorithm 1 PILCO

1: init: Sample controller parameters θ ∼ N (0, I). Apply random control signals and record data.
2: repeat
3: Learn probabilistic (GP) dynamics model using all data
4: repeat
5: Approximate inference for policy evaluation; get J̄θ
6: Gradient-based policy improvement; get dJ̄θ/dθ
7: Update parameters (e.g., CG or L-BFGS)
8: until convergence; return θ∗

9: Set π∗ ← π(θ∗)
10: Apply π∗ to system (execute roll-out) and record data
11: until task learned

The stated data-efficiency of PILCO: the main reason it is a state-of-the-art RL algorithm in

robotics, is the result of learning forward models that capture system dynamics and enable ’off-line’

trajectory predictions. Since deterministic predictive models (such as simple maximum likelihood models)

introduce errors that hinder their application, due to unrealistic assumptions of their accuracy with respect

to the real system, PILCO utilizes non-parametric probabilistic models that express levels of uncertainty

in the model: Gaussian Processes (GPs). GPs constitute a (possibly infinite) group of random variables,

any subset of which is jointly-Gaussian, producing a distribution over functions that directly encodes

uncertainty about the form of the function to be approximated. The model is trained on state-action

pairs as inputs, and results in a posterior GP which approximates the observed transition dynamics,

and with which successive state predictions can be made, using Gaussian Process Regression (GPR). Its

non-parametric natures results in a manifestation of closed-form Bayesian model averaging, in which

infinitely many possible dynamics models are averaged for predictions, mitigating the adverse effects of

erroneous confidence in a single model ([34]).

As shown on the pseudocode of the algorithm, GP priors are first obtained by sampling random

control signals, recording all the resultant data, then training a GP model on those to initially estimate

the system’s transition dynamics.

In its main loop, the algorithm first performs a policy evaluation step by predicting system

trajectories using a deterministic inference procedure, called moment matching, then evaluating J̄θ.

Long-term trajectories predictions are obtained by cascading single, next-state predictions using the GP

model. Due to the unwieldy nature of the predictive distribution of the change in state (∆) for non-linear

transition dynamics functions, it is approximated by a Gaussian via moment matching: a unimodal

approximation method that avoids the intractability of exact approximations. Subsequently, expected

cost J̄θ is evaluated from the predicted/simulated trajectories.

PILCO improves the policy at each iteration by searching for the parameters θ that minimize J̄θ,

relying on analytically computed gradients of the cost function, through repeated applications of the chain

rule. Analytical policy gradients ([88]) are a common alternative to sampling-based gradients, due to less

sampling variances and better scalability with the dimensionality of θ. Using the gradients, a non-convex

optimization method, such as CG (conjugate gradients) or BFGS (Broyden-Fletcher-Goldfarb-Shanno),

144

Appendix A. Candidate Algorithms

can be used to efficiently determine optimal parameters θ∗ in an iterative procedure. Once the algorithm

converges, the policy is updated in order to gather more system data to update the learned forward

models. This process goes on until desired behaviour is learned.

Conclusions PILCO is a state-of-the-art model-based PS algorithm, whose properties better enable

application to the complex tasks of robotics: a significant challenge for contemporary RL algorithms.

Incorporating forward model uncertainty in policy iterations alleviates intolerable model biases, while

analytic gradients facilitate conventional unconstrained optimization. In theory, these characteristics make

PILCO suitable for learning complex, non-linear policies similar to those required by behaviours in the

present work. Notably, the algorithm has been shown to learn significantly faster than contemporary

algorithms for a real cart-pole problem and a low-cost manipulator, when learning from scratch (with no

prior demonstrations), proving its superior performance when no expert knowledge is provided.

On the other hand, the algorithm relies on an assumption that expected cost is differentiable

with respect to the policy parameters, and that the gradient can be computed analytically: which is not

guaranteed to be the case. In moment matching, the Gaussian approximation may possibly introduce

some bias in favour of computational tractability. For these two reasons, reward function and policy

representations may be restricted ([25], [67], [24]). When possible, gradient computation may also be

more mathematically demanding than sampling-based approaches, due to cascaded applications of the

chain-rule. The optimization procedure presents the danger of getting stuck in local optima in areas where

analytical gradients diminish, stunting learning. Moreover, GPs make as few assumptions as possible in

unexplored regions, meaning learned forward models may only be confident in areas at which training

data was observed, limiting their usefulness in unobserved areas. When it comes to our case, PILCO’s

capability for learning hierarchical or contextual policies is also yet to be proven.

A.2 Black-box Data-efficient Robot Policy Search (Black-DROPS)

The Black-DROPS algorithm performs gradient-free, model-based policy search, and was introduced

as an improvement over other model-based methods that require analytical gradients, such as PILCO.

Similarly aiming to minimize robot system interaction time for more data-efficiency, Black-DROPS learns

GP forward dynamical models, in addition to GP models of the reward function. Instead of using moment

matching for approximate inference of trajectories, it utilizes a Monte Carlo approximation approach to

estimate, Gθ: a ’noisy’ version of expected long-term reward, Jθ. It then employs a popular black-box

optimizer: CMA-ES, which uses an evolutionary strategy to maximize this quantity, and thus obtain

the optimal policy parameters. For a more thorough treatment of the Black-DROPS algorithm, refer to

Chatzilygeroudis et. al.’s [25]. Algorithm 2 briefly summarizes the underlying procedure.

Similar to PILCO, the procedure of the Black-DROPS algorithm begins with executing roll-outs

directly on the robot, so as to record real-system state-transitions and observed rewards. The number of

these roll-outs, which are complete episodes of the task, can be varied. Subsequently, GPs are used to

learn both a dynamics model (as in PILCO) and an immediate reward model: an addition that accounts

for unknown reward functions. The predictive models are then systematically used to predict trajectories

and their outcomes for policy evaluation.

145

A.2. Black-box Data-efficient Robot Policy Search (Black-DROPS)

Algorithm 2 Black-DROPS

1: init: Initialize policy parameters θ
2: repeat for random number of episodes NR;
3: Execute roll-out using π
4: Record state-transitions D and observed rewards R
5: repeat
6: Learn GP dynamics models using data in D
7: Learn GP reward model using data in R
8: Evaluate policy using Monte Carlo approximation; to get Gθ
9: Update parameters θ; by optimizing Gθ using BIPOP-CMA-ES; to get θ∗

10: Set π∗ ← π(θ∗)
11: Execute roll-out using π
12: Record state-transitions D and observed rewards R
13: until task learned

While the same cascaded one-step predictions of the next state (and, in this case, reward) are

used to finally obtain Jθ, Black-DROPS avoids the computation of analytical gradients and subsequent

gradient-based optimization in favour of an alternative approach. Trajectory predictions are performed

using Monte Carlo estimation, where the outcomes of different candidate policy parameterizations are

assumed to be sampled from a noisy function of Jθ: Gθ. Optimizing this quantity implicitly maximizes Jθ

without explicit computation or estimation thereof, and is accomplished by the noisy function black-box

optimizer CMA-ES (which stands for Covariance Matrix Adaptation Evolution Strategy). The rank-based

evolutionary algorithm simplifies the optimization process by only ranking sampled parameters by observed

performance, instead of pursuing an accurate approximation of Jθ and subsequently deriving them. A

significant advantage provided by this optimizer is its ability to exploit multiple cores for computations,

possibly leading to vast improvements in efficiency.

Instead of using the basic CMA-ES algorithm, the authors of Black-DROPS utilize an augmented

version, referred to as BIPOP-CMA-ES, which provides multiple enhancements, including exploration

restarts that mitigate local optima problems, and more intelligent parameter population variance settings.

The latter enable, for example, favouring regions of the search space for which there is more certainty.

The optimal parameters provided by the algorithm, θ∗ are then used to execute a single, data-

gathering roll-out, before the process is repeated. With the new state transitions and immediate rewards,

the learned GP dynamics and reward models are updated, and the training loop continues until some

desired performance measure is satisfied.

Conclusions Black-DROPS is a candidate model-based algorithm that differs from PILCO in its

sampling-based approach to trajectory predictions and possesses a few more desirable properties. It

does not share PILCO’s restrictions on the representable classes of policies and reward functions, due

to the latter’s computational constraints (as discussed in 5.1.1). This means that these functions need

not be differentiable, for example, allowing the application of various policy representations including

neural networks and general GPs. It is also worth noting that learning reward models in Black-DROPS

146

Appendix A. Candidate Algorithms

removes assumptions about knowledge of the reward function of a task. With regards to the approximate

trajectory inference step, Monte Carlo roll-outs are more computationally efficient and less error-prone

than moment matching. In addition, Black-DROPS’s evolutionary optimization strategy constitutes a

more global search than that of PILCO, suffering less from local optima difficulties. The combination

of these two enhancements also allows parallelization and computation using multiple cores, helping the

algorithm outperform similar model-based algorithms. In [24], Black-DROPS and its extensions have

been shown to obtain better results than PILCO and other algorithms, on a simulated and a real robot

problem.

Exploration in Black-DROPS has an advantage over that of the PILCO algorithm. The latter

employs a simplified uncorrelated exploration strategy, where diagonal covariance matrices are used in its

predictive model. On the other hand, Black-DROPS achieves correlated exploration through its stochastic

optimization method, CMA-ES, by updating the full covariance matrix ([35]), which increases learning

speed.

In general, the use of GP models to learn system dynamics and subsequently simulating trajectories

makes Black-DROPS susceptible to potential problems similar to those of PILCO. The implicit exploration

encoded by GPs thanks to flexible uncertainty bounds may adversely affect data-efficiency: since the GPs

are only confident in regions of the state space that have been previously visited, the states it predicts in

unseen areas may not agree with the actual system dynamics. Additionally, GPR, which is required for

inference, is known to add significant computational complexity to an algorithm, which may not scale

well to higher dimensional parameter vectors. Another fact that Black-DROPS shares with PILCO is

that it has not been combined with pre-structured policies learned from demonstrations, or used with

hierarchical or contextual policy representations, to the best of our knowledge.

A.3 Gaussian Process Relative Entropy Policy Search (GPREPS)

GPREPS is a model-based extension to the gradient-free, information-theoretic Relative Entropy

Policy Search (REPS) algorithm, which also aims for data-efficient robot task learning by reinforcement,

but with a particular focus on contextual policies. These are trained to enable generalization over multiple

known operating conditions of a task using a hierarchical policy decomposition strategy. Apart from this

extra dimension to the problem, GPREPS also learns GP forward dynamics models from roll-out data

collected on a robot, then simulates trajectories that are used to evaluate its traditionally parametric policy.

Policy updates are performed by solving a dual function of a constrained optimization problem, yielding

artificial roll-out sample weights which are in turn used to compute a weighted maximum likelihood

estimate of the optimal policy parameters. Kupcsik et. al. present GPREPS in [67] and provide a more

thorough mathematical formulation in [66]. Algorithm 3 provides pseudocode of GPREPS, in a condensed

form.

The contextual variant of the REPS algorithm, C-REPS, is the basis of GPREPS, which simply

adds an ability to simulate trajectories, by learning predictive GP forward models. REPS is a gradient-free

algorithm that relies on information-theoretic policy updates: it aims to maximize expected reward at

each iteration while bounding the maximal policy parameter step size so as to minimize relative entropy,

147

A.3. Gaussian Process Relative Entropy Policy Search (GPREPS)

i.e. information loss between updates. Although model-free, the algorithm can be used for on or off-policy

learning, works well with function approximators and kernelization, and is conducive to contextual learning.

Deisenroth et. al. recommend REPS as the choice model-free policy update algorithm in their survey of

PS methods, [35]. C-REPS achieves context-dependent behaviours by learning an upper-level policy π(ω|c)

that chooses lower-level policy parameters ω, given an observed context c, and executes actions using a

deterministic lower-level policy π(ut|ω, xt). In this original formalization ([67]), states are denoted by x

and actions by u, since they are essentially robot control signals. Therefore, by learning an upper-level

policy: a linear-Gaussian model, that maximizes expected reward over a distribution of contexts, the

algorithm learns parametrized lower-level policies that can generalize over contexts of a task thanks to a

hierarchical policy structure.

Note: Although Kupcsik at. al. denote context parameters by s, we instead adopt the notation c,

since the former is reserved for state variables in conventional RL literature (as presented in chapter 3).

Algorithm 3 GPREPS

1: init: Initialize contextual policy (π(ω|c)) parameters θ, relative entropy bound ǫ, number of policy
updates K

2: repeat for K policy updates;
3: repeat for number of episodes, N
4: Observe context c
5: Sample policy parameters ω ∼ π(ω|c), and execute roll-out using π
6: Record contexts S, parameters Ω, and observed rewards R
7: Learn GP dynamics models using all data
8: repeat for number of episodes (samples), M
9: Sample context c

10: Sample policy parameters ω ∼ π(ω|c), and predict L trajectories
11: Evaluate policy by averaging over L expected returns; get Jω
12: Record contexts S, parameters Ω, and expected returns J in dataset D
13: Update parameters θ:
14: Solve constrained optimization problem; get Lagrangian parameters η and θ̃
15: Compute sample weightings P = {p1, ..., pM}
16: Perform weighted MLE using D and P to update policy parameters θ

GPREPS is initialized with the upper-level policy’s parameters, which can be random or derived

from pre-structured policies, a finite number of policy updates K, and a relative entropy bound ǫ. In the

first data collection step, context-dependent roll-outs are executed on the robot to gather data for training

GP forward models, in addition to estimating a context distribution for later sampling. A predefined total

of N roll-outs are performed on the robot. The trained GP models in GPREPS are distinct in that they

also incorporate context parameters c.

Similar to other model-based algorithms, the learned models are used to simulate artificial system

trajectories for policy evaluations. In contrast to the PILCO algorithm, and with more similarity to Black-

DROPS, trajectory predictions are obtained by sampling from GPs, instead of approximate inferencing

methods. In GPREPS, M such trajectories are sampled, where M >> N , involving drawing a context

variable, sampling upper-level policy for parameters ω, executing trajectories using the lower-level policy,

148

Appendix A. Candidate Algorithms

then computing expected return. In this manner, an artificial data-set consisting of respective drawn

contexts, sampled parameters, and estimated returns is constructed as a substitute for data collected

directly on the system.

It is worth noting that GPREPS addresses a problem latent in the original model-free REPS, which

computed expected returns using single roll-outs introducing undesirable bias to the policy updates and

producing what is termed risk-seeking policies ([35], [66]). Having access to predictive forward models,

GPREPS uses multiple (L) trajectories to compute an average of expected rewards and mitigate this

effect.

The information-theoretic policy updates of REPS and GPREPS require a relatively involved

procedure. The problem of finding optimal parameters θ is framed as a constrained optimization problem,

where the aim is to maximize average expected reward, maintain a valid joint distribution over context

variables and policy parameters (ω), and bound the KL-divergence between subsequent policy updates.

This is achieved by minimizing a dual function of a Lagrangian in order to obtain Lagrangian parameters

η and θ̃ (the latter was changed from the original notation to distinguish it from policy parameters θ).

These are then used to assign importance weights, p, to samples according to their estimated returns.

Subsequently, a weighted maximum likelihood estimate, θ∗, is used to update the upper-level policy, and

the procedure is repeated K times.

Conclusions GPREPS is among the most promising state-of-the-art model-based algorithms, partic-

ularly for robotics motion tasks, because of its data-efficiency and contextual adaptivity. Its ability to

contextualize behaviour by learning hierarchical policies is an advantage not directly offered by PILCO nor

Black-DROPS, which makes it more promising for our use case. Although GPREPS does not seem to place

restrictions on reward and policy classes (as PILCO does), its performance was exclusively demonstrated

for linear-Gaussian upper-level policies, whose formulation conveniently facilitates initializing policies

from demonstrations. A vital characteristic of REPS and its variants is the bounding of entropy between

policy updates, which both mitigates unpredictable or ’aggressive’ policy changes during learning, and

helps in preserving demonstrated policy properties while improving it through a stable learning procedure.

Furthermore, DMPs work well as deterministic, lower-level policies for GPREPS, and C-REPS in general,

and have been used most often ([67], [66], [12]).

The GPREPS algorithm has provably performed well for simulated problems and a real robot

tennis application in [66], but only using linear-Gaussian upper-level policies. The chosen parametric

model works well in the algorithm’s learning procedure, but it is unclear how more complex policy classes

can be trained using the current weighted MLE approach. The applicability of formulations such a neural

network policies thus remains unproven.

Overall, the properties of the algorithm make it particularly adequate for our work, which is why it

heavily influences the solution we propose in this report.

A.4 Model-Based Guided Policy Search (M-GPS)

The M-GPS algorithm follows a more unorthodox approach to model-based PS; it relies on

concepts like information-theoretic policy updates that are similar to those of GPREPS, but employs

149

A.4. Model-Based Guided Policy Search (M-GPS)

significantly different policy formulations. As presented by Levine et. al. in [69] and [70], M-GPS combines

trajectory optimization and guided policy search (GPS) to learn parameterized policies for complex tasks

with unknown dynamics. To that end, they employ time-varying linear-Gaussian controllers to encode

distributions over trajectories, which simultaneously work as a substitute for DMPs and constitute system

dynamics models. Multiple such controllers are then used to learn a non-linear policy that matches each

and is able to generalize over their trajectory distributions, in a supervised fashion. This method allows

training neural network policies, a central feature of M-GPS, allowing more expressiveness, access to a

wider class of behaviours, and to better handle partially observable tasks with unknown dynamics.

We provide here a brief overview of M-GPS; the reader is directed to the two aforementioned

publications for more comprehensive details. Algorithm 4 (from [70]) shows the main steps in the

procedure.

Algorithm 4 M-GPS

1: init: Initialize policy parameters θ.
2: repeat for K policy updates
3: Execute roll-outs, τi, for each linear-Gaussian controller, pi
4: Update policy parameters:
5: Minimize sum of KL-divergences between policy and each pi; get θ
6: Optimize trajectories using LQG-like method, and update pi
7: Optimize/increment dual variables λi, to enforce constraints in problem

In a primary trajectory optimization step, roll-outs τi are executed on the robot/system to optimize

a set of time-varying linear-Gaussian controllers, also referred to more plainly as as trajectory distributions

pi, such that they capture the unknown dynamics of some task. Essentially, each of these locally optimal

controllers represents a Gaussian ’policy’ corresponding to some initial state distribution (such as task

conditions, initial starting point, etc., depending on τi). The optimization is achieved using a variant of

the Iterative Linear-Gaussian Regulator (iLQG) method, in which each controller is updated in a dynamic

programming procedure involving computation of a value function and subsequent parameter updates.

Similar to the constrained optimization solutions used in REPS, M-GPS bounds these updates through

KL-divergences between subsequent trajectory distributions.

M-GPS combines trajectory optimization with GPS to train arbitrary parameterized policies that

generalize over the optimized trajectory distributions, thus creating a complex policy that can handle

generalization better than the individual linear-Gaussian controllers. In the iterative procedure illustrated

in Algorithm 4, a neural network policy, parameterized by θ, is trained with supervision to match the

roll-out samples from each trajectory distribution, while the controller generating these are re-optimized

such that they match the current policy. In the original publication, this is presented as a constrained

optimization problem, in Lagrangian form, which is optimized to determine parameters θ and pi, and

dual variables λi (in steps 5, 6, and 7 of the algorithm). Additionally, the algorithm again makes use of

KL-divergences to bound the differences between the learned policy and the controller dynamics of each

pi, between updates.

The complex procedure results in efficient learning of a high-dimensional and complex policy that

150

Appendix A. Candidate Algorithms

incorporates all dynamics represented by the linear-Gaussian controllers, while generalizing to operating

conditions not encountered in their respective roll-outs. The success of the algorithm in partially observable

and contact-rich manipulation tasks has been demonstrated in [70], and earlier for simpler simulated

benchmark problems in [69] .

Conclusions Clearly, the M-GPS algorithm offers distinct properties not characteristic of other model-

based PS methods, chief among which is the ability to learn neural network policies. These policy

representations are significantly more general and expressive than simpler probabilistic models, but

dimensionality and non-linearity issues usually challenge PS methods. PILCO is, in general, unable to

learn neural network policies due to differentiability constraints and high computational overhead of

GP models. REPS algorithms, while in theory able to handle such policy representations, have only

been demonstrated for simpler ones requiring low-dimensional search spaces. An interesting point about

M-GPS is the use of linear-Gaussian controllers for trajectory representation, instead of the more common

DMPs. Consequently, the procedure avoids reliance on an additional lower-level controller that tracks

the target states dictated by the DMP (such as end-effector coordinates, in our case). Since stabilizing

neural network policies is difficult, system interaction only through these time-varying controllers makes

the algorithm more stable, and avoids having to execute actions from the parameterized policy directly on

the robot. Overall, since the algorithm had been shown to handle non-linear, and even discontinuous,

task dynamics well, it may seem promising for a case such as our hand-over skill.

Among the side effects of the complexity in the procedure of M-GPS is imposing assumptions about

the task and environment of the robot/system, primarily due to Gaussian approximations to trajectory

distributions as a result of the choice of controllers [25]. This bears mentioning, despite it being a more

general problem affecting a wide range of PS algorithms. In spite of the aforementioned advantages

of the algorithm’s trajectory representations, they are not able to encode as much information about

trajectories as DMPs can. This property specifically makes DMPs the choice approach in our work. As

with PILCO and Black-DROPS, M-GPS does not currently appear to be compatible with hierarchical

and/or contextual policy formulations, neither has its compatibility with LfD been demonstrated. Both of

these facts suggest that the otherwise impressive M-GPS algorithm may not be the best choice for the

problem addressed in the present work.

151

A.4. Model-Based Guided Policy Search (M-GPS)

152

B

Study Questionnaire

153

 P. No.: ________

Hochschule Bonn-Rhein-Sieg

HSR Object Hand-Over User Study Questionnaire

1. Experiment Description

• This experiment involves the HSR handing an object in its gripper over to you.

• The hand-over is performed once in three different scenarios: when you are standing up, seated, and lying

down on the couch.

• Each hand-over is performed by the robot in one of two ‘behaviour’ modes.

• The experiment thus involves six trials of the object hand-over action.

• The procedure is divided into two phases. In the first phase, the robot will randomly be set to one of two

behavioural modes, and a single hand-over trial in each of the three scenarios will be performed, in random

order. In the second phase, the robot will be set to the other mode, and a single hand-over trial in each of the

three scenarios will again be performed, in random order.

• All of the questions included in this questionnaire are designed to estimate your perception of the robot’s

performance, including how appropriate its motions are and how comfortable it is for you to receive the

object.

• In order to evaluate the robot’s behaviour in each case, you will have to answer an identical set of questions

with a 5-point scale ranging from strongly agree to strongly disagree, following each phase (page 2). In

addition, you will be required to indicate a preference over the robot’s two behavioural modes on a 5-point

scale, and answer three general questions to conclude the experiment (page 3).

2. Instructions

• Please follow the instructions provided by the person conducting the experiment carefully.

• Please do not touch the robot throughout the experiment.

• Once provided with this questionnaire, briefly go through the questions which you will be expected to answer.

• At the start of each trial, please assume the position instructed to you by the experimenter. Make sure to stay in

the designated position throughout the trial.

• The robot will attempt to detect you, then present the object to you.

• Please wait until the robot stops moving, then gently pull the object from its gripper. Once the robot senses

your signal, it will release the object, allowing you to take it, before moving its arm back to a neutral position.

This concludes the trial.

• Carefully observe the robot’s behavior during its execution of the action, paying particular attention to its

choice of hand-over position (the final position of its end-effector as it waits for you to take the object), and

how it relates to the current scenario.

• In the event that the robot’s person detection module fails, please be patient while the trial is repeated.

• At the end of the first phase (the first three trials), please fill out the questions in section 3.

• At the end of the second phase (the last three trials), please fill out the questions in section 4.

• Finally, fill out the final part of the questionnaire on page 3.

1

Please cross out (X) your choices for the statements in sections 3 and 4.

3. Phase I Questions B.M.:____

Question
Strongly

Agree
Agree Neutral Disagree

Strongly
Disagree

The robot performs the action in a way similar to how I

would

The robot performs the action in a way that best fits the

current situation

The robot's action feels natural

I feel understood by the robot

I feel comfortable interacting with the robot

I feel safe interacting with the robot

It does not take much effort to take the object from the

robot

I had to strain my arm to receive the object

I could predict the intention of the robot

4. Phase II Questions B.M.:____

Question
Strongly

Agree
Agree Neutral Disagree

Strongly
Disagree

The robot performs the action in a way similar to how I

would

The robot performs the action in a way that best fits the

current situation

The robot's action feels natural

I feel understood by the robot

I feel comfortable interacting with the robot

I feel safe interacting with the robot

It does not take much effort to take the object from the

robot

I had to strain my arm to receive the object

I could predict the intention of the robot

2

Verdict:

Overall, please indicate how much better you found the robot’s behavior to be during one phase of the experiment,

compared to the other, on the scale below. (Checking the left-most box means a strong preference for the first

behaviour, while the right-most box indicates strong preference for the second; the middle box indicates indifference)

5. General Questions

2.1 Among the two modes, which behavior did you find more appropriate/preferable? And why?

2.2 If the robot could learn your preferences, is there anything you would want it to consider when deciding how to

hand you an object?

2.3 Do you have any comments or suggestions for improving the robot's behavior? If so, please describe them.

Thank you!

3

I strongly preferred
the first behaviour

(P1)

I strongly preferred
the second behaviour

(P2)

I sensed no
difference

References

[1] Abbas Abdolmaleki, Nuno Lau, Luis Paulo Reis, and Gerhard Neumann. Regularized covariance

estimation for weighted maximum likelihood policy search methods. In 2015 IEEE-RAS 15th

International Conference on Humanoid Robots (Humanoids), pages 154–159. IEEE, 2015.

[2] Abbas Abdolmaleki, Nuno Lau, Luis Paulo Reis, and Gerhard Neumann. Contextual stochastic

search. In Proceedings of the 2016 on Genetic and Evolutionary Computation Conference Companion,

pages 29–30. ACM, 2016.

[3] Abbas Abdolmaleki, Nuno Lau, Luis Paulo Reis, and Gerhard Neumann. Non-parametric contextual

stochastic search. In 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), pages 2643–2648. IEEE, 2016.

[4] Abbas Abdolmaleki, Nuno Lau, Luis Paulo Reis, Jan Peters, and Gerhard Neumann. Contextual

policy search for linear and nonlinear generalization of a humanoid walking controller. Journal of

Intelligent & Robotic Systems, 83(3-4):393–408, 2016.

[5] Firas Abi-Farraj, Takayuki Osa, Nicoló Pedemonte Jan Peters, Gerhard Neumann, and Paolo Robuffo

Giordano. A learning-based shared control architecture for interactive task execution. In 2017 IEEE

International Conference on Robotics and Automation (ICRA), pages 329–335. IEEE, 2017.

[6] Muneeb Ahmad, Omar Mubin, and Joanne Orlando. A systematic review of adaptivity in human-

robot interaction. Multimodal Technologies and Interaction, 1(3):14, 2017.

[7] Jacopo Aleotti, Vincenzo Micelli, and Stefano Caselli. Comfortable robot to human object hand-over.

In 2012 IEEE RO-MAN: The 21st IEEE International Symposium on Robot and Human Interactive

Communication, pages 771–776. IEEE, 2012.

[8] Heni Ben Amor, Gerhard Neumann, Sanket Kamthe, Oliver Kroemer, and Jan Peters. Interaction

primitives for human-robot cooperation tasks. In 2014 IEEE international conference on robotics

and automation (ICRA), pages 2831–2837. IEEE, 2014.

[9] Brenna D Argall, Sonia Chernova, Manuela Veloso, and Brett Browning. A survey of robot learning

from demonstration. Robotics and autonomous systems, 57(5):469–483, 2009.

[10] Sivakumar Balasubramanian, Alejandro Melendez-Calderon, and Etienne Burdet. A robust and

sensitive metric for quantifying movement smoothness. IEEE transactions on biomedical engineering,

59(8):2126–2136, 2011.

[11] Sivakumar Balasubramanian, Alejandro Melendez-Calderon, Agnes Roby-Brami, and Etienne Burdet.

On the analysis of movement smoothness. Journal of neuroengineering and rehabilitation, 12(1):112,

2015.

157

References

[12] Victor Barbaros, Herke van Hoof, Abbas Abdolmaleki, and David Megerl. Eager and memory-

based non-parametric stochastic search methods for learning control. In 2018 IEEE International

Conference on Robotics and Automation (ICRA), pages 1–9. IEEE, 2018.

[13] Richard Bellman. Dynamic Programming. Courier Corporatio, 1956.

[14] Felix Berkenkamp, Angela P Schoellig, and Andreas Krause. Safe controller optimization for

quadrotors with gaussian processes. In 2016 IEEE International Conference on Robotics and

Automation (ICRA), pages 491–496. IEEE, 2016.

[15] Aaron Bestick, Ravi Pandya, Ruzena Bajcsy, and Anca D Dragan. Learning human ergonomic

preferences for handovers. In 2018 IEEE International Conference on Robotics and Automation

(ICRA), pages 1–9. IEEE, 2018.

[16] Aaron M Bestick, Samuel A Burden, Giorgia Willits, Nikhil Naikal, S Shankar Sastry, and Ruzena

Bajcsy. Personalized kinematics for human-robot collaborative manipulation. In 2015 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS), pages 1037–1044. IEEE, 2015.

[17] Aude Billard, Sylvain Calinon, Ruediger Dillmann, and Stefan Schaal. Robot programming by

demonstration. Springer handbook of robotics, pages 1371–1394, 2008.

[18] Mogens Blanke, Michel Kinnaert, Jan Lunze, Marcel Staroswiecki, and J Schröder. Diagnosis and

fault-tolerant control, volume 2. Springer, 2006.

[19] Domenico D Bloisi, Daniele Nardi, Francesco Riccio, and Francesco Trapani. Context in robotics

and information fusion. In Context-Enhanced Information Fusion, pages 675–699. Springer, 2016.

[20] Maya Cakmak, Siddhartha S Srinivasa, Min Kyung Lee, Jodi Forlizzi, and Sara Kiesler. Human

preferences for robot-human hand-over configurations. In 2011 IEEE/RSJ International Conference

on Intelligent Robots and Systems, pages 1986–1993. IEEE, 2011.

[21] Sylvain Calinon, Florent Guenter, and Aude Billard. On learning, representing, and generalizing

a task in a humanoid robot. IEEE Transactions on Systems, Man, and Cybernetics, Part B

(Cybernetics), 37(2):286–298, 2007.

[22] Daniele Calisi, Luca Iocchi, Daniele Nardi, Carlo Matteo Scalzo, and Vittorio Amos Ziparo. Context-

based design of robotic systems. Robotics and Autonomous Systems, 56(11):992–1003, 2008.

[23] Wesley P Chan, Matthew KXJ Pan, Elizabeth A Croft, and Masayuki Inaba. Characterization of

handover orientations used by humans for efficient robot to human handovers. In 2015 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS), pages 1–6. IEEE, 2015.

[24] Konstantinos Chatzilygeroudis and Jean-Baptiste Mourer. Using parameterized black-box priors to

scale up model-based policy search for robotics. In 2018 IEEE International Conference on Robotics

and Automation (ICRA), pages 1–9. IEEE, 2018.

158

References

[25] Konstantinos Chatzilygeroudis, Roberto Rama, Rituraj Kaushik, Dorian Goepp, Vassilis Vassiliades,

and Jean-Baptiste Mouret. Black-box data-efficient policy search for robotics. In 2017 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS), pages 51–58. IEEE, 2017.

[26] Sungjoon Choi, Kyungjae Lee, and Songhwai Oh. Robust learning from demonstration using

leveraged gaussian processes and sparse-constrained optimization. In 2016 IEEE International

Conference on Robotics and Automation (ICRA), pages 470–475. IEEE, 2016.

[27] Adrià Colomé and Carme Torras. Dimensionality reduction in learning gaussian mixture models

of movement primitives for contextualized action selection and adaptation. IEEE Robotics and

Automation Letters, 3(4):3922–3929, 2018.

[28] Bruno Da Silva, George Konidaris, and Andrew Barto. Learning parameterized skills. arXiv preprint

arXiv:1206.6398, 2012.

[29] Christian Daniel, Gerhard Neumann, and Jan Peters. Hierarchical relative entropy policy search. In

Artificial Intelligence and Statistics, pages 273–281, 2012.

[30] Christian Daniel, Gerhard Neumann, and Jan Peters. Learning concurrent motor skills in versatile

solution spaces. In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems,

pages 3591–3597. IEEE, 2012.

[31] Christian Daniel, Gerhard Neumann, Oliver Kroemer, and Jan Peters. Hierarchical relative entropy

policy search. The Journal of Machine Learning Research, 17(1):3190–3239, 2016.

[32] Frédéric Dehais, Emrah Akin Sisbot, Rachid Alami, and Mickaël Causse. Physiological and subjective

evaluation of a human–robot object hand-over task. Applied ergonomics, 42(6):785–791, 2011.

[33] Marc Deisenroth and Carl E Rasmussen. Pilco: A model-based and data-efficient approach to policy

search. In Proceedings of the 28th International Conference on machine learning (ICML-11), pages

465–472, 2011.

[34] Marc Peter Deisenroth, Dieter Fox, and Carl Edward Rasmussen. Gaussian processes for data-

efficient learning in robotics and control. IEEE transactions on pattern analysis and machine

intelligence, 37(2):408–423, 2013.

[35] Marc Peter Deisenroth, Gerhard Neumann, Jan Peters, et al. A survey on policy search for robotics.

Foundations and Trends R© in Robotics, 2(1–2):1–142, 2013.

[36] Denis Forte, Andrej Gams, Jun Morimoto, and Aleš Ude. On-line motion synthesis and adaptation

using a trajectory database. Robotics and Autonomous Systems, 60(10):1327–1339, 2012.

[37] Francisco Gomez-Donoso, Sergio Orts-Escolano, Alberto Garcia-Garcia, Jose Garcia-Rodriguez,

John Alejandro Castro-Vargas, Sergiu Ovidiu-Oprea, and Miguel Cazorla. A robotic platform for

customized and interactive rehabilitation of persons with disabilities. Pattern Recognition Letters,

99:105–113, 2017.

159

References

[38] Juan Gómez-Romero, Jesús Garćıa, Michael Kandefer, James Llinas, José M Molina, Miguel A

Patricio, Michael Prentice, and Stuart C Shapiro. Strategies and techniques for use and exploitation

of contextual information in high-level fusion architectures. In 2010 13th International Conference

on Information Fusion, pages 1–8. IEEE, 2010.

[39] Elena Corina Grigore, Kerstin Eder, Anthony G Pipe, Chris Melhuish, and Ute Leonards. Joint

action understanding improves robot-to-human object handover. In 2013 IEEE/RSJ International

Conference on Intelligent Robots and Systems, pages 4622–4629. IEEE, 2013.

[40] Florent Guenter, Micha Hersch, Sylvain Calinon, and Aude Billard. Reinforcement learning for

imitating constrained reaching movements. Advanced Robotics, 21(13):1521–1544, 2007.

[41] Philipp Gulde and Joachim Hermsdörfer. Smoothness metrics in complex movement tasks. Frontiers

in neurology, 9, 2018.

[42] Murtaza Hazara and Ville Kyrki. Speeding up incremental learning using data efficient guided

exploration. In 2018 IEEE International Conference on Robotics and Automation (ICRA), pages

1–8. IEEE, 2018.

[43] Jacaueline Hemminahaus and Stefan Kopp. Towards adaptive social behavior generation for

assistive robots using reinforcement learning. In 2017 12th ACM/IEEE International Conference on

Human-Robot Interaction (HRI, pages 332–340. IEEE, 2017.

[44] Todd Hester, Matej Vecerik, Olivier Pietquin, Marc Lanctot, Tom Schaul, Bilal Piot, Andrew

Sendonaris, Gabriel Dulac-Arnold, Ian Osband, John Agapiou, Joel Z. Leibo, and Audrunas Gruslys.

Learning from demonstrations for real world reinforcement learning. 04 2017.

[45] Heiko Hoffmann, Peter Pastor, Dae-Hyung Park, and Stefan Schaal. Biologically-inspired dynamical

systems for movement generation: automatic real-time goal adaptation and obstacle avoidance. In

2009 IEEE International Conference on Robotics and Automation, pages 2587–2592. IEEE, 2009.

[46] Chien-Ming Huang, Maya Cakmak, and Bilge Mutlu. Adaptive coordination strategies for human-

robot handovers. In Robotics: science and systems. Rome, Italy, 2015.

[47] Markus Huber, Claus Lenz, Markus Rickert, Alois Knoll, Thomas Brandt, and Stefan Glasauer.

Human preferences in industrial human-robot interactions. In Proceedings of the international

workshop on cognition for technical systems, 2008.

[48] Markus Huber, Markus Rickert, Alois Knoll, Thomas Brandt, and Stefan Glasauer. Human-robot

interaction in handing-over tasks. In RO-MAN 2008-The 17th IEEE International Symposium on

Robot and Human Interactive Communication, pages 107–112. IEEE, 2008.

[49] Markus Huber, Aleksandra Kupferberg, Claus Lenz, Alois Knoll, Thomas Brandt, and Stefan

Glasauer. Spatiotemporal movement planning and rapid adaptation for manual interaction. PloS

one, 8(5):e64982, 2013.

160

References

[50] Auke Jan Ijspeert, Jun Nakanishi, Tomohiro Shibata, and Stefan Schaal. Nonlinear dynamical

systems for imitation with humanoid robots. In Proceedings of the IEEE/RAS International

Conference on Humanoids Robots (Humanoids2001), number CONF, pages 219–226, 2001.

[51] Auke Jan Ijspeert, Jun Nakanishi, and Stefan Schaal. Movement imitation with nonlinear dynamical

systems in humanoid robots. In Proceedings 2002 IEEE International Conference on Robotics and

Automation (Cat. No. 02CH37292), volume 2, pages 1398–1403. IEEE, 2002.

[52] Auke Jan Ijspeert, Jun Nakanishi, Heiko Hoffmann, Peter Pastor, and Stefan Schaal. Dynamical

movement primitives: learning attractor models for motor behaviors. Neural computation, 25(2):

328–373, 2013.

[53] Ashesh Jain, Brian Wojcik, Thorsten Joachims, and Ashutosh Saxena. Learning trajectory prefer-

ences for manipulators via iterative improvement. In Advances in neural information processing

systems, pages 575–583, 2013.

[54] Ashesh Jain, Shikhar Sharma, and Ashutosh Saxena. Beyond geometric path planning: Learning

context-driven trajectory preferences via sub-optimal feedback. In Robotics Research, pages 319–338.

Springer, 2016.

[55] Shinya Kajikawa, Takaki Okino, Kohtaro Ohba, and Hikaru Inooka. Motion planning for hand-over

between human and robot. In Proceedings 1995 IEEE/RSJ International Conference on Intelligent

Robots and Systems. Human Robot Interaction and Cooperative Robots, pages 193–199. IEEE, 1995.

[56] Daniel Kappler, Franziska Meier, Jan Issac, Jim Mainprice, Cristina Garcia Cifuentes, Manuel

Wüthrich, Vincent Berenz, Stefan Schaal, Nathan Ratliff, and Jeannette Bohg. Real-time perception

meets reactive motion generation. IEEE Robotics and Automation Letters, 3(3):1864–1871, 2018.

[57] Beomjoon Kim, Amir-massoud Farahmand, Joelle Pineau, and Doina Precup. Learning from limited

demonstrations. In Advances in Neural Information Processing Systems, pages 2859–2867, 2013.

[58] Kheng Lee Koay, Emrah Akin Sisbot, Dag Sverre Syrdal, Mick L Walters, Kerstin Dautenhahn, and

Rachid Alami. Exploratory study of a robot approaching a person in the context of handing over an

object. In AAAI spring symposium: multidisciplinary collaboration for socially assistive robotics,

pages 18–24, 2007.

[59] Jens Kober and Jan Peters. Learning motor skills: from algorithms to robot experiments, volume 97.

Springer, 2013.

[60] Jens Kober and Jan R Peters. Policy search for motor primitives in robotics. In Advances in neural

information processing systems, pages 849–856, 2009.

[61] Jens Kober, Andreas Wilhelm, Erhan Oztop, and Jan Peters. Reinforcement learning to adjust

parametrized motor primitives to new situations. Autonomous Robots, 33(4):361–379, 2012.

161

References

[62] Jens Kober, J Andrew Bagnell, and Jan Peters. Reinforcement learning in robotics: A survey. The

International Journal of Robotics Research, 32(11):1238–1274, 2013.

[63] Petar Kormushev, Sylvain Calinon, and Darwin G Caldwell. Robot motor skill coordination with

em-based reinforcement learning. In 2010 IEEE/RSJ international conference on intelligent robots

and systems, pages 3232–3237. IEEE, 2010.

[64] Dana Kulić, Christian Ott, Dongheui Lee, Junichi Ishikawa, and Yoshihiko Nakamura. Incremental

learning of full body motion primitives and their sequencing through human motion observation.

The International Journal of Robotics Research, 31(3):330–345, 2012.

[65] Andras Kupcsik, David Hsu, and Wee Sun Lee. Learning dynamic robot-to-human object handover

from human feedback. arXiv preprint arXiv:1603.06390, 2016.

[66] Andras Kupcsik, Marc Peter Deisenroth, Jan Peters, Ai Poh Loh, Prahlad Vadakkepat, and Gerhard

Neumann. Model-based contextual policy search for data-efficient generalization of robot skills.

Artificial Intelligence, 247:415–439, 2017.

[67] Andras Gabor Kupcsik, Marc Peter Deisenroth, Jan Peters, and Gerhard Neumann. Data-efficient

generalization of robot skills with contextual policy search. In Twenty-Seventh AAAI Conference on

Artificial Intelligence, 2013.

[68] Przemyslaw A Lasota and Julie A Shah. Analyzing the effects of human-aware motion planning on

close-proximity human–robot collaboration. Human factors, 57(1):21–33, 2015.

[69] Sergey Levine and Pieter Abbeel. Learning neural network policies with guided policy search under

unknown dynamics. In Advances in Neural Information Processing Systems, pages 1071–1079, 2014.

[70] Sergey Levine, Nolan Wagener, and Pieter Abbeel. Learning contact-rich manipulation skills with

guided policy search. In 2015 IEEE international conference on robotics and automation (ICRA),

pages 156–163. IEEE, 2015.

[71] Jens Lundell, Murtaza Hazara, and Ville Kyrki. Generalizing movement primitives to new situations.

In Annual Conference Towards Autonomous Robotic Systems, pages 16–31. Springer, 2017.

[72] Eric Martinson, A Huamán Quispe, and Kentaro Oguchi. Towards understanding user preferences

in robot-human handovers: How do we decide? In 2017 26th IEEE International Symposium on

Robot and Human Interactive Communication (RO-MAN), pages 516–521. IEEE, 2017.

[73] Martin Mason and Manuel C Lopes. Robot self-initiative and personalization by learning through

repeated interactions. In Proceedings of the 6th international conference on Human-robot interaction,

pages 433–440. ACM, 2011.

[74] José R Medina, Felix Duvallet, Murali Karnam, and Aude Billard. A human-inspired controller

for fluid human-robot handovers. In 2016 IEEE-RAS 16th International Conference on Humanoid

Robots (Humanoids), pages 324–331. IEEE, 2016.

162

References

[75] Bernard Michini, Mark Cutler, and Jonathan P How. Scalable reward learning from demonstration.

In 2013 IEEE International Conference on Robotics and Automation, pages 303–308. IEEE, 2013.

[76] Alex Mitrevski, Abhishek Padalkar, Minh Nguyen, and Paul G. Plöger. ”Lucy, Take the Noodle

Box!”: Domestic Object Manipulation Using Movement Primitives and Whole Body Motion. In

Proceedings of the 23rd RoboCup International Symposium, Sidney, Australia, 2019.

[77] Noriaki Mitsunaga, Christian Smith, Takayuki Kanda, Hiroshi Ishiguro, and Norihiro Hagita. Robot

behavior adaptation for human-robot interaction based on policy gradient reinforcement learning.

Journal of the Robotics Society of Japan, 24(7):820–829, 2006.

[78] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,

Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control

through deep reinforcement learning. Nature, 518(7540):529, 2015.

[79] Ashvin Nair, Bob McGrew, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel. Over-

coming exploration in reinforcement learning with demonstrations. In 2018 IEEE International

Conference on Robotics and Automation (ICRA), pages 6292–6299. IEEE, 2018.

[80] Krishna Kumar Narayanan, Luis Felipe Posada, Frank Hoffmann, and Torsten Bertram. Scenario

and context specific visual robot behavior learning. In 2011 IEEE International Conference on

Robotics and Automation, pages 1180–1185. IEEE, 2011.

[81] Alexandros Paraschos, Christian Daniel, Jan R Peters, and Gerhard Neumann. Probabilistic

movement primitives. In Advances in neural information processing systems, pages 2616–2624, 2013.

[82] Jae Sung Park, Chonhyon Park, and Dinesh Manocha. Intention-aware motion planning using

learning based human motion prediction. In Robotics: Science and Systems, 2017.

[83] Peter Pastor, Heiko Hoffmann, Tamim Asfour, and Stefan Schaal. Learning and generalization of

motor skills by learning from demonstration. In 2009 IEEE International Conference on Robotics

and Automation, pages 763–768. IEEE, 2009.

[84] Ugo Pattacini, Francesco Nori, Lorenzo Natale, Giorgio Metta, and Giulio Sandini. An experimental

evaluation of a novel minimum-jerk cartesian controller for humanoid robots. In 2010 IEEE/RSJ

international conference on intelligent robots and systems, pages 1668–1674. IEEE, 2010.

[85] Jan Peters and Stefan Schaal. Policy gradient methods for robotics. In 2006 IEEE/RSJ International

Conference on Intelligent Robots and Systems, pages 2219–2225. IEEE, 2006.

[86] Jan Peters and Stefan Schaal. Reinforcement learning for parameterized motor primitives. In The

2006 IEEE International Joint Conference on Neural Network Proceedings, pages 73–80. IEEE, 2006.

[87] Jan Peters and Stefan Schaal. Natural actor-critic. Neurocomputing, 71(7-9):1180–1190, 2008.

163

References

[88] Jan Peters and Stefan Schaal. Reinforcement learning of motor skills with policy gradients. Neural

networks, 21(4):682–697, 2008.

[89] Jan Peters, Katharina Mulling, and Yasemin Altun. Relative entropy policy search. In Twenty-Fourth

AAAI Conference on Artificial Intelligence, 2010.

[90] Aurelio Piazzi and Antonio Visioli. Global minimum-jerk trajectory planning of robot manipulators.

IEEE transactions on industrial electronics, 47(1):140–149, 2000.

[91] Robert Pinsler, Riad Akrour, Takayuki Osa, Jan Peters, and Gerhard Neumann. Sample and feedback

efficient hierarchical reinforcement learning from human preferences. In 2018 IEEE International

Conference on Robotics and Automation (ICRA), pages 596–601. IEEE, 2018.

[92] Ana C Huamán Quispe, Eric Martinson, and Kentaro Oguchi. Learning user preferences for robot-

human handovers. In 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), pages 834–839. IEEE, 2017.

[93] Pravesh Ranchod, Benjamin Rosman, and George Konidaris. Nonparametric bayesian reward

segmentation for skill discovery using inverse reinforcement learning. In 2015 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), pages 471–477. IEEE, 2015.

[94] Robin Rasch, Sven Wachsmuth, and Matthias Kĉınig. Understanding movements of hand-over

between two persons to improve humanoid robot systems. In 2017 IEEE-RAS 17th International

Conference on Humanoid Robotics (Humanoids), pages 856–861. IEEE, 2017.

[95] Silvia Rossi, François Ferland, and Adriana Tapus. User profiling and behavioral adaptation for hri:

a survey. Pattern Recognition Letters, 99:3–12, 2017.

[96] Leonel Rozo, Sylvain Calinon, Darwin G Caldwell, Pablo Jimenez, and Carme Torras. Learning

physical collaborative robot behaviors from human demonstrations. IEEE Transactions on Robotics,

32(3):513–527, 2016.

[97] Sebastian Schneider and Franz Kummert. Exploring embodiment and dueling bandit learning for

preference adaptation in human-robot interaction. In 2017 26th IEEE International Symposium on

Robot and Human Interactive Communication (RO-MAN), pages 1325–1331. IEEE, 2017.

[98] Satoru Shibata, Kanya Tanaka, and Akira Shimizu. Experimental analysis of handing over. In

Proceedings 4th IEEE International Workshop on Robot and Human Communication, pages 53–58.

IEEE, 1995.

[99] Emrah Akin Sisbot and Rachid Alami. A human-aware manipulation planner. IEEE Transactions

on Robotics, 28(5):1045–1057, 2012.

[100] Kyle Strabala, Min Kyung Lee, Anca Dragan, Jodi Forlizzi, Siddhartha S Srinivasa, Maya Cakmak,

and Vincenzo Micelli. Toward seamless human-robot handovers. Journal of Human-Robot Interaction,

2(1):112–132, 2013.

164

References

[101] Freek Stulp and Stefan Schaal. Hierarchical reinforcement learning with movement primitives. In

2011 11th IEEE-RAS International Conference on Humanoid Robots, pages 231–238. IEEE, 2011.

[102] Halit Bener Suay and Emrah Akin Sisbot. A position generation algorithm utilizing a biomechanical

model for robot-human object handover. In 2015 IEEE International Conference on Robotics and

Automation (ICRA), pages 3776–3781. IEEE, 2015.

[103] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

[104] Richard S Sutton, Andrew G Barto, and Ronald J Williams. Reinforcement learning is direct

adaptive optimal control. IEEE Control Systems Magazine, 12(2):19–22, 1992.

[105] Voot Tangkaratt, Herke van Hoof, Simone Parisi, Gerhard Neumann, Jan Peters, and Masashi

Sugiyama. Policy search with high-dimensional context variables. In Thirty-First AAAI Conference

on Artificial Intelligence, 2017.

[106] Evangelos Theodorou, Jonas Buchli, and Stefan Schaal. Reinforcement learning of motor skills in

high dimensions: A path integral approach. In 2010 IEEE International Conference on Robotics

and Automation, pages 2397–2403. IEEE, 2010.

[107] Evangelos Theodorou, Jonas Buchli, and Stefan Schaal. Reinforcement learning of motor skills in

high dimensions: A path integral approach. In 2010 IEEE International Conference on Robotics

and Automation, pages 2397–2403. IEEE, 2010.

[108] Roy M Turner. Context-mediated behavior for intelligent agents. International Journal of Human-

Computer Studies, 48(3):307–330, 1998.

[109] Roy M Turner, Sonia Rode, and David Gagne. Toward distributed context-mediated behavior

for multiagent systems. In International and Interdisciplinary Conference on Modeling and Using

Context, pages 222–234. Springer, 2013.

[110] Aleš Ude, Andrej Gams, Tamim Asfour, and Jun Morimoto. Task-specific generalization of discrete

and periodic dynamic movement primitives. IEEE Transactions on Robotics, 26(5):800–815, 2010.

[111] Herke Van Hoof, Gerhard Neumann, and Jan Peters. Non-parametric policy search with limited

information loss. The Journal of Machine Learning Research, 18(1):2472–2517, 2017.

[112] Maxim Vochten, Tinne De Laet, and Joris De Schutter. Generalizing demonstrated motions and

adaptive motion generation using an invariant rigid body trajectory representation. In 2016 IEEE

International Conference on Robotics and Automation (ICRA), pages 234–241. IEEE, 2016.

[113] Maxim Vochten, Tinne De Laet, and Joris De Schutter. Generalizing demonstrated motions and

adaptive motion generation using an invariant rigid body trajectory representation. In 2016 IEEE

International Conference on Robotics and Automation (ICRA), pages 234–241. IEEE, 2016.

165

References

[114] Michael L Walters, Kerstin Dautenhahn, Sarah N Woods, and Kheng Lee Koay. Robotic etiquette:

results from user studies involving a fetch and carry task. In 2007 2nd ACM/IEEE International

Conference on Human-Robot Interaction (HRI), pages 317–324. IEEE, 2007.

[115] Weitian Wang, Rui Li, Zachary Max Diekel, Yi Chen, Zhujun Zhang, and Yunyi Jia. Controlling

object hand-over in human–robot collaboration via natural wearable sensing. IEEE Transactions on

Human-Machine Systems, 49(1):59–71, 2018.

[116] Christopher KI Williams and Carl Edward Rasmussen. Gaussian processes for machine learning,

volume 2. MIT press Cambridge, MA, 2006.

[117] Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement

learning. Machine learning, 8(3-4):229–256, 1992.

[118] Thomas Witzig, J Marius Zöllner, Dejan Pangercic, Sarah Osentoski, Rainer Jäkel, and Rüdiger

Dillmann. Context aware shared autonomy for robotic manipulation tasks. In 2013 IEEE/RSJ

International Conference on Intelligent Robots and Systems, pages 5686–5693. IEEE, 2013.

[119] Akihiko Yamaguchi and Christopher G Atkeson. Neural networks and differential dynamic program-

ming for reinforcement learning problems. In 2016 IEEE International Conference on Robotics and

Automation (ICRA), pages 5434–5441. IEEE, 2016.

[120] Wayne Zachary, Matthew Johnson, R Hoffman, Travis Thomas, Andrew Rosoff, and Thomas

Santarelli. A context-based approach to robot-human interaction. Procedia Manufacturing, 3:

1052–1059, 2015.

166

	List of Symbols
	List of Abbreviations
	Introduction
	A Representative Use Case: Robot-to-Human Object Hand-Over
	The Importance of Adaptivity
	The Learning/Modeling Problem
	Problem Statement
	Proposed Approach

	State of the Art
	Robot Motor Skill Learning and Generalization
	Context in Robotics
	Control-based Approaches
	Learning from Demonstration (LfD)
	Improvement Through Reinforcement Learning (RL)
	Hierarchical Policy Search
	Contextual Policy Search

	Human-Robot Object Hand-overs

	Preliminaries
	Reinforcement Learning
	Episodic and Infinite-Horizon Tasks
	Policies
	Value Functions
	Exploration and Exploitation
	On-policy and Off-policy Learning
	Model-free and Model-based RL
	Inverse Reinforcement Learning (IRL)

	Value-based Reinforcement Learning
	Bellman Optimality Equations
	Dynamic Programming (DP)
	Monte Carlo (MC) Methods
	Temporal Difference (TD) Learning
	Value Function Approximation
	Notable Algorithms

	Policy-based Reinforcement Learning (Policy Search)
	Model-free and Model-based Policy Search
	Policy Gradient-based Policy Search
	EM-based Policy Search
	Information-theoretic Policy Search
	Contextual Policy Search
	Notable Algorithms

	Dynamic Movement Primitives
	Gaussian Processes

	Methodology
	Set-up
	Evaluating Learning Performance
	Evaluating Learned Behaviour

	Experimental Design
	Experiment Setting
	Experiment Procedure
	Result Analysis

	Solution
	Proposed Algorithm
	Implementation
	The Hand-Over Skill
	Obtaining a Demonstration of the Task
	Capturing Trajectories in Dynamic Movement Primitives
	Learning to Generalize to Different Contexts
	Executing Context-aware Hand-Overs
	Contributions

	Evaluation
	Learning Context-dependent Hand-Over Positions
	Formalization
	Context Vectors and Exploration Random Restarts

	Reward Functions
	Result

	Learning Context-dependent Hand-Over Trajectories
	Formalization
	Reward Functions
	Result

	Learning Context-dependent Hand-Over Speeds
	Limitations of the Implementation

	Results
	Quantitative Analysis
	Qualitative Analysis

	Conclusions
	Contributions
	Lessons Learned
	Future work

	Appendix Candidate Algorithms
	Probabilistic Inference for Learning Control (PILCO)
	Black-box Data-efficient Robot Policy Search (Black-DROPS)
	Gaussian Process Relative Entropy Policy Search (GPREPS)
	Model-Based Guided Policy Search (M-GPS)

	Appendix Study Questionnaire
	References

