
Analyzing power consumption of TLS ciphers on

an ESP32

Tilo Fischer1, Hendrik Linka2, Michael Rademacher2, Karl Jonas2,
and Daniel Loebenberger1

1Fraunhofer AISEC, Weiden i. d. OPf.
2University of Applied Sciences Bonn-Rhein-Sieg, Sankt Augustin

April 2, 2019

More and more devices will be connected to the internet [3]. Many devices
are part of the so-called Internet of Things (IoT) which contains many low-power
devices often powered by a battery. These devices mainly communicate with the
manufacturers back-end and deliver personal data and secrets like passwords.

With regard to security the developer of these devices are faced with the
trade-off between power consumption vs. cryptography: Heavy cryptography
costs computational resources which in turn decreases the time the device runs
on a single battery charge. Since the latter is a feature any consumer can
observe, most of the time cryptography loses.

The problem is that the power consumption of different cipher suites of a
given security protocol in most real word scenarios is unknown. Miranda et al.
[5] analyzed the power consumption of various Secure Sockets Layer (SSL) 3.0
and Transport Layer Security (TLS) 1.0 implementations on mobile devices. In
contrast to our measurements their work focused on different implementations
and not on different cipher suites of a single implementation. Furthermore
the results are outdated because SSL 3.0 and TLS 1.0 are considered insecure
nowadays. Gerez et al. [4] analyze the power consumption of TLS on a IoT
device for a small subset of cryptographic functions. This paper introduced
the analyses for a much lager set of cryptographic functions and additionally
compared different versions of TLS with respect to power consumption. There
are a few other papers [6, 1] that analyze the power consumption of TLS on
low-power devices. Those only use a small subset of the supported cryptography
and non of them used the new TLS version 1.3.

We employ the widespread low-cost, low-power System on a Chip (SoC)
ESP32 [2] as our target device. To establish a communication channel, we
used the common TLS protocol, because it is available for many platforms and
analyzed by many security experts. We focused on the TLS versions 1.2 [8] and
1.3 [7]. Both versions support a plethora of cryptographic algorithms. We choose
a subset of these algorithms with comparable security levels and performed a
thorough power-consumption analysis.

The measurement setup consisted of a two core 240 MHz ESP32 Pico Dev
Kit without voltage regulator and UART converter. WolfSSL [9] was used as
the TLS client library and a laptop with an OpenSSL server served as remote

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by pub H-BRS - Publikationsserver der Hochschule Bonn-Rhein-Sieg

https://core.ac.uk/display/287801945?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


station. To measure the overall time of a 1000 Byte data transmission including
the TLS protocol overhead, we used the internal time function of the micro-
controller. The average deviation of this time function was found as small as
2µs. For each cipher suite, we performed 200 independent measurements.

A Saleae Logic 16 Pro with a uCurrent was selected to measure the energy
consumption. The micro-controller signaled the start and end of a measurement
with a digital output. The measured current consumption and the voltage were
recorded with 50 MSa/s. The resulting integral is multiplied by the median of
the independent time measurements to estimate the power consumption of the
respective cipher suite.

Despite the fact that these values have been obtained on a single IoT plat-
form using a dedicated TLS implementation we obtained viable tendencies:

• Using TLS on the ESP32 requires a significant amount of energy. Com-
pared to an unencrypted transmission, approximately 14 times more en-
ergy is required to establish a full TLS session.

• TLS 1.2 session resumption significantly reduces the required energy for
IoT devices. At the moment of writing, TLS 1.3 session resumption has
not been implemented.

• Using ECDSA instead of RSA for TLS signatures is beneficial in terms of
energy consumption.

• TLS 1.3 further reduces the energy consumption for a full session com-
pared to TLS 1.2.

Currently, we are aiming to extend the presented measurements with an
enhanced methodology to analyze further details and include different IoT plat-
forms and TLS implementations.

The presented knowledge in this work can be used to secure the commu-
nication of low-power devices with the lowest possible impact on the power
consumption. In the best case this enables us to replace unencrypted commu-
nication with an encrypted one, which in turn improves the overall security of
the IoT.

References

[1] U. Banerjee et al. “An energy-efficient reconfigurable DTLS cryptographic
engine for End-to-End security in iot applications”. In: (Feb. 2018), pp. 42–
44. issn: 2376-8606.

[2] ESP32 Series. Datasheet. Version 2.9. Espressif Systems. Feb. 2019.

[3] D Evans. “The Internet of Things: How the Next Evolution of the Inter-
net is Changing Everything”. In: Cisco Internet Business Solutions Group
(IBSG) 1 (Jan. 2011), pp. 1–11.

[4] A. H. Gerez et al. “Energy and Processing Demand Analysis of TLS Proto-
col in Internet of Things Applications”. In: 2018 IEEE International Work-
shop on Signal Processing Systems (SiPS). Oct. 2018, pp. 312–317. doi:
10.1109/SiPS.2018.8598334.

2



[5] P. Miranda, M. Siekkinen, and H. Waris. “TLS and energy consumption
on a mobile device: A measurement study”. In: 2011 IEEE Symposium
on Computers and Communications (ISCC). June 2011, pp. 983–989. doi:
10.1109/ISCC.2011.5983970.

[6] N. R. Potlapally et al. “A study of the energy consumption characteristics
of cryptographic algorithms and security protocols”. In: IEEE Transactions
on Mobile Computing 5.2 (Feb. 2006), pp. 128–143. issn: 1536-1233. doi:
10.1109/TMC.2006.16.

[7] Eric Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3.
RFC 8446. Aug. 2018. doi: 10.17487/RFC8446. url: https://rfc-

editor.org/rfc/rfc8446.txt.

[8] Eric Rescorla and Tim Dierks. The Transport Layer Security (TLS) Pro-
tocol Version 1.2. RFC 5246. Aug. 2008. doi: 10.17487/RFC5246. url:
https://rfc-editor.org/rfc/rfc5246.txt.

[9] wolfSSL Embedded SSL/TLS Library — Now Supporting TLS 1.3. url:
https://www.wolfssl.com/ (visited on 03/26/2019).

3


