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Abstract

In this master thesis, we define a new bivariate polynomial which we call the de-
fensive alliance polynomial and denote it by da(G;x, y). It is a generalization of
the alliance polynomial and the strong alliance polynomial. We show the relation
between da(G;x, y) and the alliance, the strong alliance, the induced connected
subgraph polynomials as well as the cut vertex sets polynomial. We investigate
information encoded about G in da(G;x, y). We discuss the defensive alliance poly-
nomial for the path graphs, the cycle graphs, the star graphs, the double star graphs,
the complete graphs, the complete bipartite graphs, the regular graphs, the wheel
graphs, the open wheel graphs, the friendship graphs, the triangular book graphs
and the quadrilateral book graphs. Also, we prove that the above classes of graphs
are characterized by its defensive alliance polynomial. We present the defensive
alliance polynomial of the graph formed of attaching a vertex to a complete graph.
We show two pairs of graphs which are not characterized by the alliance polynomial
but characterized by the defensive alliance polynomial.

Also, we present three notes on results in the literature. The first one is improving
a bound and the other two are counterexamples.
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1. Introduction

In this master thesis, we define a new bivariate polynomial which we call the defen-
sive alliance polynomial and denote it by da(G;x, y).

The defensive alliance polynomial is related to the concept of alliance. And for
that, we introduce the concept of alliance in Chapter 2. In Section 2.2, we present
the alliance concept and related ideas then we show some bounds and results for
some special classes of graphs. In Section 2.3, we present two graph polynomials
related to the concept of alliance, the alliance polynomial and the strong alliance
polynomial. In Section 2.4, we present three notes on results in the literature. The
first one is improving a bound and the other two are counterexamples.

In Chapter 3, we define da(G;x, y) and show its relation with the alliance poly-
nomial, the strong alliance polynomial, the induced connected subgraph polynomial
and the cut vertex sets polynomial. In Section 3.3, we extract properties encoded
about G in da(G;x, y), for example, the order, the size, the degree sequence, the
connectivity, the number of components with maximum order, the maximum order of
components and the number of cut vertices. In Section 3.4, we give the defensive
alliance polynomial of some special classes of graphs and the characterization of
these graphs by the defensive alliance polynomial. The special classes of the graphs
are: the path graphs, the cycle graphs, the star graphs, the double star graphs,
the complete graphs, the complete bipartite graphs, the regular graphs, the wheel
graphs, the open wheel graphs, the friendship graphs, the triangular book graphs
and the quadrilateral book graphs. To show the characterization of the complete bi-
partite graph by the defensive alliance polynomial, a relation is proved between the
number of subsets of cardinality three which induce a connected subgraph and the
number of P2 and C3 as subgraphs in G. In Section 3.5, we present the defensive
alliance polynomial of the graph formed by attaching a vertex to a complete graph.
In Section 3.6, we discuss two pairs of graphs which are characterized by the de-
fensive alliance polynomial but cannot be characterized by the alliance polynomial.
In Section 3.7, we list some questions about the defensive alliance polynomials for
further research.

One of the ideas that we considered on this research is how to construct the
graph from its defensive alliance polynomial especially for the class of trees. And
for that, we studied the problem of the reconstruction conjecture. Unfortunately, no
significant results were achieved by the time of writing this thesis. So, the knowledge
obtained about the reconstruction conjecture was stated in the appendix A.

The examples for different concepts introduced in this thesis are presented sep-
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arately in appendix B for the reconstruction conjecture and appendix C for the al-
liance.

In Appendix D, we present a Python program by which we can obtain the defen-
sive alliance polynomial of graphs of small order.

1.1 Notion

We present the graph polynomials using the form:∑
S⊆V (G)

[ p1(S) ][ p2(S) ] · · · xfx(S)yfy(S)zfz(S) · · · , where

[ pi(S) ] =

{
1 if G[S] has the property pi,
0 otherwise.

We say that a graph G is characterized by a graph polynomial f if for every graph
G such that f(G) = f(H) we have that G is isomorphic to H. The class of graphs K
is characterized by a graph polynomial f if every graph G ∈ K is characterized by f .

Also, when we say a set S contributes a term t, we mean the set S induces a
connected subgraph G[S] which yields the term t in da(G;x, y).

For any other notation or special graph class construction please consult Ap-
pendix E.
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2. Alliances

2.1 Introduction

In Section 2.2, we present the alliance concept and related ideas. Then, we show
some bounds and results for some special classes of graphs.

In Section 2.3, we present two graph polynomials related to the concept of al-
liance, the alliance polynomial and the strong alliance polynomial.

In Section 2.4, we present three notes on results in the literature. The first one is
improving a bound and the other two are counterexamples.

2.2 Alliance concept

Definition 2.1. Let G be a simple graph and S be a subset of V (G). The degree of
a vertex u in S denoted by δS(u) is |{{u, v} ∈ E(G) : v ∈ S}|.

Let G be a simple graph. An alliance is a non-empty subset of V (G). Let S be
an alliance. S is defensive alliance [KHH02] provided that

δS(v)− δS̄(v) ≥ −1 , ∀ v ∈ S.

In other words, for every vertex from S, the number of neighbours in G[S] is
at least the number of its neighbours outside G[S] minus one. For examples see
Section C.0.1.

Further, S is called strong defensive alliance provided that:

δS(v)− δS̄(v) ≥ 0 , ∀ v ∈ S.

In other words, for every vertex from S, the number of neighbours in G[S] is at
least the number of its neighbours outside G[S].

The idea of the defensive alliance arises from assuming that the vertices inside
S support each other as an alliance against attacks from outside the alliance.

In the case of the defensive alliance, every vertex could be supported by adjacent
vertices inside the alliance plus itself against attacks from neighbors outside the
alliance. This means that the number of attackers is less than or equal the number of
defenders inside the alliance including the point itself. In the case of strong defensive
alliance, the number of defenders including the attacked vertex is more than the
number of attackers by at least one. For examples see Section C.0.2.
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The concept can be generalized to the defensive k-alliance [RYS08]

δS(v)− δS̄ ≥ k , ∀ v ∈ S , k is an integer in the range −∆ ≤ k ≤ ∆.

Note that for k = −1 we get the defensive alliance and for k = 0 we get the strong
defensive alliance. For examples see Section C.0.3.

The idea of defending could be replaced by other ideas, for example attacking.
Let S be a non-empty subset of V (G) such that G[S] is connected. S is offensive
alliance [KHH02] provided that

δS(v)− δS̄(v) ≥ −1, ∀ v ∈ ∂(S).

In other words, for every vertex from ∂(S), the number of neighbours in G[S] is at
least the number of its neighbours outside G[S] plus one. For examples see Section
C.0.4.

Further, S is called strong offensive alliance provided that:

δS(v)− δS̄(v) ≥ 0, ∀ v ∈ ∂(S).

In other words, for every vertex from ∂(S), the number of neighbours in G[S] is at
least the number of its neighbours outside G[S]. For examples see Section C.0.5.

An alliance can be both defensive and offensive, in which case we call it a dual
alliance or a powerful alliance, for examples see Section C.0.6. Also an alliance
can be described as a global alliance [KHH02] if every vertex outside the alliance
is adjacent to a vertex in the alliance, for examples see Section C.0.7. Lastly, an
alliance (defensive or offensive) is called a critical alliance or a minimal alliance
[KHH02] if it has no proper subset as an alliance of the same kind, for examples see
Section C.0.8.

Definition 2.2. [KHH02] Let A(G) be the set of all the critical defensive alliance in
G. The alliance number denoted by a(G) is defined by

a(G) = min{|S| : S ∈ A(G)}.

The upper alliance number denoted by A(G) is defined by

A(G) = max{|S| : S ∈ A(G)}.

Definition 2.3. [KHH02] Let Â(G) be the set of all the strong critical defensive al-
liance in G. The strong alliance number denoted by â(G) is defined by

â(G) = min{|S| : S ∈ Â(G)}.

The upper strong alliance number denoted by A(G) is defined by

Â(G) = max{|S| : S ∈ Â(G)}.
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Results [KHH02]

Graph class a(G) A(G) â(G) Â(G)

Pn 1 2 2 2

Cn 2 2 2 2

Sn 1 1 dn/2e+ 1 dn/2e+ 1

Kn dn/2e dn/2e bn/2c+ 1 bn/2c+ 1

Wn 2 bn/2c dn/2e+ 1 dn/2e+ 1

Kn,m bn/2c+ bm/2c dn/2e+ dm/2e

Sometimes, the strength of individual vertices differ from each other. For exam-
ple, if a vertex is so powerful, then even if more than one vertex attack it, it can
defend itself alone.

Definition 2.4. [KHH02] Let G be a graph with a mapping w : V 7→ Z. An alliance S
in G is called a weighted alliance provided that:∑

u∈N [v]∩S

w(u) ≥
∑

x∈N(v)∩(S−v)

w(x), ∀v ∈ S.

For examples see Section C.0.9.

2.3 Alliance polynomials

The alliance polynomial [CGATu14] and the strong alliance polynomial [CHGRTu16]
are examples of graph polynomials related to the concept of alliance. The alliance
polynomial shows a strong power with respect to the ability of distinguishing between
non-isomorphic graphs.

2.3.1 Alliance polynomial

Definition 2.5. [CGATu14] Let G be a graph with a mapping k : P(V ) 7→ Z with
k(S) = minv∈S{δS(v)−δS(v)}. The alliance polynomial denoted by A(G;x) is defined
as

A(G;x) =
∑

S⊆V (G)

[ S is not empty ][ G[S] is connected ]xk(S)+n.

5



Alliance polynomial of some common classes of graphs [CGATu14]

A(Pn;x) =(n− 2)xn−2 + 2xn−1 +
(n− 1)(n− 2)

2
x0 + x1.

A(Cn;x) =nxn−2 + (n)(n− 2)xn + xn+2.

A(Sn;x) =(n− 2)xn−2 + 2xn−1 +
(n− 1)(n− 2)

2
x0 + x1.

A(Kn;x) =
(1 + x2)n − 1

x
.

A(Kn,m;x) =nxn +mxm +
n∑

i=1

m∑
j=1

(
n

i

)(
m

j

)
xmin{2i−n,2j−m}+n+m.

2.3.2 Strong alliance polynomial

Definition 2.6. [CHGRTu16] The strong alliance polynomial denoted by a(G;x) is
defined by: a(G;x) =

∑n
i=a(G) aix

i, where ai is the number of strong defensive al-
liances in G with cardinality i.

Strong alliance polynomial of some common classes of graphs [CHGRTu16]

a(Pn;x) =
n∑

i=2

(n+ 1− i)xi, for n ≥ 2.

a(Cn;x) =n
n−1∑
i=2

xi + xn, for n ≥ 3.

a(Kn;x) =
n∑

i=dn+1
2
e

(
n

i

)
xi, for n ≥ 1.

a(Kn,m;x) =

(
a(Kn;x) +

(
n
n
2

)
x

n
2

)(
a(Km;x) +

(
m
m
2

)
x

m
2

)
.

a(Sn;x) =x

(
a (Kn;x) +

(
n
n
2

)
x

n
2

)
, for n ≥ 1.

2.4 Notes

In this Section, we present three notes on the results in the literature. The first one
is improving a bound and the other two are counterexamples.

2.4.1 Note 1

The authors of [KHH02], in Theorem 6, stated that for the m × n grid graph Gm,n,
1 ≤ a(Gm,n) ≤ 4. But the upper bound can be improved.
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Theorem 2.7. For the m× n grid graph Gm,n , 1 ≤ a(Gm,n) ≤ 2.

Proof. If n = 1 or m = 1, then a(Gn,m) = 1, since we can always choose one of the
endpoints. See Figure 2.1.

. . .

Figure 2.1: G1,m or Gn,1

Otherwise, we can form a minimal defensive alliance by choosing a vertex from
the four corners and any vertex adjacent to it. See Figure 2.2.

. . .

. . .

. . .

. . .
. . .

Figure 2.2: Gn,m

2.4.2 Note 2

The authors of [CGATu14], in the proof of Theorem 2.4 stated that X is a cut vertex
set if and only if V (G) \X induces a disconnected graph. A counterexample graph
G shown in Figure 2.3, can be constructed.

ab

Figure 2.3: A disconnected graph G with two components

Put X = {a, b}, the set V (G) \X induces a disconnected subgraph but X is not
a cut vertex set.

2.4.3 Note 3

The authors of [CGATu14], in Proposition 2.7 stated that if H is a proper subgraph of
G, then all connected induced subgraphs of H are a connected induced subgraphs
of G and at least one edge e of G is not contained in H. A counterexample graph G
shown in Figure 2.4, can be constructed.

Put H = G[ {a, b, c, d} ], then H as a connected induced subgraph of H is a
connected induced subgraph of G with zero edges e of G is not contained in H.

7



ab

cd

Figure 2.4: A disconnected graph G with isolated vertices

8



3. The defensive alliance polynomial

3.1 Introduction

We introduce the defensive alliance polynomial, da(G;x, y) which is a generalization
of the alliance polynomial and the strong alliance polynomial.

In Section 3.2, we define da(G;x, y) and show its relation with the alliance poly-
nomial, the strong alliance polynomial, the induced connected subgraph polynomial
[TAM11] and the cut vertex sets polynomial.

In Section 3.3, we extract properties encoded about G in da(G;x, y), for example,
the order, the size, the degree sequence, the connectivity, the number of compo-
nents with maximum order and the maximum order of components.

In Section 3.4, we give the defensive alliance polynomial of some special classes
of graphs and characterization of these graphs by the defensive alliance polynomial.
The special classes of the graphs are: the path graphs, the cycle graphs, the star
graphs, the double star graphs, the complete graphs, the complete bipartite graphs,
the regular graphs, the wheel graphs, the open wheel graphs, the friendship graphs,
the triangular book graphs and the quadrilateral book graphs.

In Section 3.5, we present the defensive alliance polynomial of the graph formed
by attaching a vertex to a complete graph.

In Section 3.6, we show two pairs of graphs which can be characterized by the
defensive alliance polynomial but cannot be characterized by the alliance polyno-
mial.

In Section 3.7, we present some questions which could be further researched.

3.2 Definition and relations with other graph polyno-
mials

Definition 3.1. The mappings fx and fy are defined as follows:

fx : P(V (G)) 7→ N with fx(S) = |S| and

fy : P(V (G)) 7→ Z with fy(S) = min
u∈S
{δS(u)− δS̄(u) + n}.

The defensive alliance polynomial denoted by da is:

da(G;x, y) =
∑

S⊆V (G)

[S is not empty ][ G[S] is connected ]xfx(S)yfy(S).

9



3.2.1 Alliance polynomial

The alliance polynomial defined in [CGATu14] denoted by A is:

A(G; y) =
∑

S⊆V (G)

[S is not empty ][ G[S] is connected ]yfy(S).

Proposition 3.2.
A(G; y) = da(G; 1, y).

Proof. The proof follows from comparing the definitions.

3.2.2 Strong alliance polynomial

Proposition 3.3. Let S be a non-empty subset of V (G) which induces a connected
subgraph in G. S is strong defensive alliance if fy(S) ≥ n.

Definition 3.4. The strong alliance polynomial defined in [CHGRTu16] denoted by
a is:

a(G;x) =
∑

S⊆V (G)

[S is not empty ][ G[S] is connected ]

[S is strong defensive alliance ]xfx(S)

Proposition 3.5.

a(G;x) =
n−1∑
k=0

[yn+k]da(G;x, y).

Proof. The proof follows from comparing the definitions.

3.2.3 Induced connected subgraph polynomial

Definition 3.6. The induced connected subgraph polynomial defined in [TAM11]
denoted by q is:

q(G;x) =
∑

S⊆V (G)

[S is not empty ][ G[S] is connected ]xfx(S).

Proposition 3.7.
q(G;x) = da(G;x, 1).

Proof. The proof follows from comparing the definitions.

10



3.2.4 Cut vertex sets polynomial

Definition 3.8. Let G be a simple connected graph. The cut vertex sets polynomial
denoted by v is:

v(G;x) =
∑

S⊆V (G)

[S is not empty ][ S is cut vertex set ]xfx(S).

Proposition 3.9.

v(G;x) = xn
{(

1 +
1

x

)n

− 1− da
(
G;

1

x
, 1

)}
.

Proof. Let ci be the number of the subsets of V (G) with cardinality i which induce
a connected subgraph in G. Let c′i be the number of the subsets of V (G) with
cardinality i which induce a disconnected subgraph in G. We have(

n

i

)
=

{
1 if i = 0,
ci + c

′
i if i ≥ 1.

Note that a set of size i induces a disconnected subgraph in G if and only if V \S
is a cut vertex set. That is every set of cardinality i counted by c′i corresponds to a
cut vertex set of cardinality n − i. Let dj be the number of cut vertex sets in G of
cardinality j, we have (

n

i

)
=

{
1 if i = 0,
ci + dn−i if i ≥ 1.

Multiplying both sides of the above equation by zi yields

dn−iz
i =

(
n

i

)
zi − cizi.

By summing over i:
n∑

i=1

dn−iz
i = (1 + z)n − 1− da(G; z, 1).

Now substitution of z by 1
x

and multiplication with xn provide the statement.

3.3 Properties

3.3.1 The number of connected induced subgraphs

Proposition 3.10. The number of connected induced subgraphs of order k is
[xk]da(G;x, 1).

Proof. A set S where S ⊆ V (G), contributes a term with fx(S) = k if and only if S
induces a connected subgraph in G and |S| = k. By substituting y = 1 in da(G;x, 1),
we sum the terms with the similar exponent of x. Hence, the coefficient of xk in
da(G;x, 1) is the number of connected induced subgraphs of order k in G.

11



3.3.2 The order

Proposition 3.11. The order of G is [x1]da(G;x, 1).

Proof. By putting k = 1 in Proposition 3.10 we get [x1]da(G;x, 1) as the number of
connected subgraphs of order one, hence the order of G.

3.3.3 The size

Proposition 3.12. The size of G is [x2]da(G;x, 1).

Proof. By putting k = 2 in Proposition 3.10 we get [x2]da(G;x, 1) as the number of
connected subgraphs of order two, hence the size of G.

3.3.4 The connectivity

Proposition 3.13. G is connected if and only if degx(da(G;x, y)) = n.

Proof. If G is connected, then V (G) contributes the term xnyfy(V (G)). Since G has
only one subset of vertcies with cardinality n this implies degx(da(G;x, y)) = n.

Now we prove the converse. If there exists a term in da(G;x, y) where the ex-
ponent of x equals n, then there exists a connected induced subgraph with order n.
Since V (G) is the only such subgraph, therefore G is connected.

3.3.5 The degree sequence

Proposition 3.14. Let k be an integer in the range 0 ≤ k ≤ n − 1. The number of
vertices in G with a degree k is [xyn−k]da(G;x, y). Hence the degree sequence of G
can be obtained.

Proof. Let v be a vertex in G. The set {v} induces a connected subgraph in G which
contributes the term xyn−deg(v) in da(G;x, y). Hence [xyn−deg(v)]da(G;x, y) yields the
number of all vertices with degree equal to deg(v).

3.3.6 The maximum order of a component

Proposition 3.15. Let G be a simple graph. The maximum order of a component of
G is deg(da(G;x, 1)). Further, the number of components with maximum order c is
[xc]da(G;x, 1).

12



Proof. From the definition of the defensive alliance polynomial, we can see that
deg(da(G;x, 1)) is the order of the maximum component ofG. Let c = deg(da(G;x, 1))

and A = {S : |S| = c and S induces a component in G}. Every set S in A con-
tributes a term xcyfy(S) in da(G;x, y). The number of these terms is |A| which can be
obtained from [xc]da(G;x, 1).

3.3.7 The number of cut vertices

Proposition 3.16. Let G be a simple connected graph. The number of cut vertices
in G is n− [xn−1]da(G;x, 1).

Proof. Let v be a vertex in V (G), every subset of V (G)\{v} contributes a connected
subgraph in G if and only if v is not a cut vertex. Every such set V (G) \ {v}, con-
tributes a term in da(G;x, 1) where the exponent of x is n − 1. The number of cut
vertices is the order minus the sum of the above terms = n− [xn−1]da(G;x, 1).

3.3.8 The defensive alliance polynomial of pairwise disjoint graphs

Proposition 3.17. Let G1, G2, · · · , Gk be pairwise disjoint graphs. Then

da(∪ki=1Gi;x, y) =

(
k∑

i=1

da(Gi;x, y)

y|Gi|

)
y
∑k

i=1 |Gi|.

Proof. Let i and j be integers in the range 1, 2, · · · , k. Every connected subgraph in
Gi is disjoint from subgraphs inGj where i 6= j. But the exponent of y in da(Gi;x, y) is
added to |Gi|, hence the sum of the orders of all the other graphs must be added.

3.4 Defensive alliance polynomial of special classes
of graphs and their characterization by it

3.4.1 The path graph

Proposition 3.18. A simple graph G is isomorphic to the path Pn if and only if

da(G;x, y) = 2xyn−1 + (n− 2)xyn−2 + yn
n−1∑
i=2

(n− i+ 1)xi + xnyn+1, where n ≥ 2.

Proof. First, we show that a graph G which is isomorphic to a path Pn, has the given
defensive alliance polynomial. Let G be of the form in Figure 3.1.

The non-empty subsets of V (G) which induce connected subgraphs in G, can
be partitioned into the following parts: The part {{v1}, {vn}} in which each set

13



v1 v2 v3 vn−1 vn. . .

Figure 3.1: A path graph

contributes the term xyn−1 and by summing, we get the term 2xyn−1. The part
{{v2}, {v3}, · · · , {vn−1}} in which each set contributes the term xyn−2 and by sum-
ming, we get the term (n − 2)xyn−2. The part containing the sets of cardinality i in
the range of 2 ≤ i ≤ n − 1 in which each set contributes the term xiyn. By adding
the terms we get

(n− 1)x2yn + (n− 2)x3yn + · · ·+ (n− (n− 2))xn−1yn

= yn
n−1∑
i=2

(n− i+ 1)xi.

Finally, the part containing V (G) in which V (G) contributes the term xnyn+1.
Now we prove the converse. Let n be an integer where n ≥ 2, and H is a graph

with the defensive alliance polynomial,

da(H;x, y) = 2xyn−1 + (n− 2)xyn−2 + yn
n−1∑
i=2

(n− i+ 1)xi + xnyn+1.

By Proposition 3.11, the order of H equals n. By Proposition 3.12, the size of H
equals n− 1. By Proposition 3.13, H is connected. Hence, H is a tree. By Proposi-
tion 3.14, the degree sequence of H is (2, 2, · · · , 2, 1, 1). Consequently, H is isomor-
phic to the path graph Pn.

3.4.2 The cycle graph

Proposition 3.19. A simple graph G is isomorphic to the cycle Cn if and only if

da(G;x, y) = nxyn−2 + nyn
n−1∑
i=2

xi + xnyn+2, where n ≥ 3.

Proof. First, we show that a graph G which is isomorphic to a cycle Cn, has the
given defensive alliance polynomial.

The non-empty subsets of V (G) which induce connected subgraphs in G, can be
partitioned into the following parts: The part containing the sets of cardinality one in
which each set contributes the term xyn−2 and by summing, we get the term nxyn−2.
The part containing the sets of cardinality i in the range of 2 ≤ i ≤ n − 1 in which
each set contributes the term xiyn. By adding the terms we get

nx2yn + nx3yn + · · ·+ nxn−1yn

= nyn
n−1∑
i=2

xi,

14



Finally, the part containing V (G) in which V (G) contributes the term xnyn+2.
Now we prove the converse. Let n be an integer where n ≥ 3, and H is a graph

with the defensive alliance polynomial

da(H;x, y) = nxyn−2 + nyn
n−1∑
i=2

xi + xnyn+2.

By Proposition 3.11, the order of H equals n. By Proposition 3.13, H is connected.
By Proposition 3.14, the degree sequence of H is (2, 2, · · · , 2).

Consequently, H is isomorphic to the cycle graph Cn.

3.4.3 The star graph

Definition 3.20. Let n be a positive integer. The star graph denoted by Sn is defined
by the graph join nK1 + K1. Further the vertex with the maximum degree is called
the center.

Proposition 3.21. A simple graph G is isomorphic to the star Sn if and only if

da(G;x, y) = xy + nxyn−1 +

bn
2
c∑

i=1

(
n

i

)
xi+1y2i +

n∑
i=dn+1

2
e

(
n

i

)
xi+1yn+1, where n ≥ 1.

Proof. First, we show that a graph G which is isomorphic to a star Sn, has the given
defensive alliance polynomial. Let G be of the form in Figure 3.2.

v0

v1

v2

v3 v4

vn

Figure 3.2: A star graph

The non-empty subsets of V (G) which induce connected subgraphs in G, can
be partitioned into the following parts: The part {{v0}} in which {v0} contributes the
term xy. The part {{v1}, {v2}, · · · , {vn}} in which each set contributes the term xyn−1

and by summing, we get the term nxyn−1. The part containing the sets of cardinality
i in the range of 2 ≤ i ≤ bn

2
c in which each set contributes the term xi+1y2i+1 and by

summing, we get
∑bn

2
c

i=1

(
n
i

)
xi+1y2i+1. The part containing the sets of cardinality i in

the range of dn+1
2
e ≤ i ≤ n in which each set contributes the term xi+1yn+1 and by

summing, we get
∑i=n
dn+1

2
e
(
n
i

)
xi+1yn+1.
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Now we prove the converse. Let n be an integer where n ≥ 1, and H is a graph
with the defensive alliance polynomial

da(H;x, y) = xy + nxyn−1 +

bn
2
c∑

i=1

(
n

i

)
xi+1y2i +

n∑
i=dn+1

2
e

(
n

i

)
xi+1yn+1.

By Proposition 3.11, the order of H equals n+ 1. By Proposition 3.12, the size of H
equals n. By Proposition 3.13, H is connected. Hence, H is a tree. By Proposition
3.14, the degree sequence of H is (n, 1, 1 · · · , 1). Consequently, H is isomorphic to
the star graph Sn.

3.4.4 The double star graph

Definition 3.22. Let r and t be positive integers. The star graph denoted by Sr,t is
defined by the graph union Sr ∪ St and connecting the two centers of the two stars.

Proposition 3.23. A simple graph G is isomorphic to the double star Sr,t if and only
if

[x]da(G;x, y) =(r + t)yr+t+1 + yr+1 + yt+1 and

[xr+t+2]da(G;x, y) =yr+t+3, where r and t are positive integers.

Proof. First, we show that a graph G which is isomorphic to a double star Sr,t, has
the above properties in the proposition. Let G be of the form in Figure 3.3.

r0

r1

r2

r3

rr

t0

t1
t2

t3

tt

Figure 3.3: A double star graph

The subsets of V (G) with cardinality one which induce connected subgraphs in
G, can be partitioned into the following parts: The part {{r0}} in which {r0} con-
tributes the term xyt+1. The part {{t0}} in which {t0} contributes the term xyr+1.
The part {{r1}, {r2}, · · · , {rr}, {t1}, {t2}, · · · , {tt}} in which each set contributes the
term xyr+t+1 and by summing, we get the term (r + t)xyr+t+1.

The set V (G) contributes the term xr+t+2yr+t+3.
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Now we prove the converse. Let r and t be integers and H is a graph with

[x]da(G;x, y) =(r + t)yr+t+1 + yr+1 + yt+1 and

[xr+t+2]da(G;x, y) =yr+t+3.

By Proposition 3.11, the order of H equals r + t + 2. By Proposition 3.13, H is
connected. By Proposition 3.14, the degree sequence ofH is (r+1, s+1, 1, 1, · · · , 1).
Let the vertex with degree r+1 be r0 and the vertex with degree t+1 be t0. Connect
r0 with r + 1 vertices. If all those vertices connected to r0 are with degree one, then
the graph will be disconnected which is contradiction. Then r0 is connected to t0.
By connecting the rest of the vertcies to t0, H is reconstructed. Consequently, H is
isomorphic to the double star graph Sr,t.

3.4.5 The complete graph

Proposition 3.24. A simple graph G is isomorphic to the complete graph Kn if and
only if

da(G;x, y) =
(1 + xy2)n − 1

y
, where n ≥ 1 and y 6= 0.

Proof. First, we show that a graph G which is isomorphic to a complete graph Kn,
has the given defensive alliance polynomial.

The non-empty subsets of V (G) which induce connected subgraphs in G, can
be partitioned into one part: The part containing the sets of cardinality i in the range
of 1 ≤ i ≤ n in which each set contributes the term xiy2i−1 and by summing, we get:(

n

1

)
x1y1 +

(
n

2

)
x2y3 + · · ·+

(
n

n

)
xny2n−1

=
n∑

i=1

(
n

i

)
xiy2i−1

=
1

y
(

n∑
i=0

(
n

i

)
(xy2)i − 1)

=
(1 + xy2)n − 1

y
.

Now we prove the converse. Let n be an integer where n ≥ 1 and H is a graph
with the defensive alliance polynomial, da(H;x, y) = (1+xy2)n−1

y
. By Proposition 3.11,

the order of H equals n. By Proposition 3.14, the degree sequence of H is (n −
1, n− 1, · · · , n− 1). Consequently, H is isomorphic to the complete graph Kn.
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3.4.6 The complete bipartite graph

Lemma 3.25. Let G be a simple graph. Let k3 be the number of the subsets which
induce connected subgraphs in G with order three. Let the number of connected
subgraphs in G with order three and size two be S3,2 and with order three and size
three be S3,3, then

k3 = S3,2 − 2S3,3.

Proof. Any induced connected subgraph in G with order three will be isomorphic
either to a cycle or a path of order three. If the induced connected subgraph in G

with order three is a cycle then it will count three subgraphs which are isomorphic to
a path of order three.

Lemma 3.26. Let G be a ∆-regular simple graph. then

S3,2 = n

(
∆

2

)
.

Proof. The number of connected subgraphs in G with order three and size two con-
taining a specific vertex v as the common vertex between the two edges is formed
by choosing any two vertices from the neighbors is =

(
∆
2

)
. By multiplying with the

number of all vertices n, the result follows.

Lemma 3.27. Let G be a ∆-regular connected simple graph with order 2∆. G is
isomorphic to K∆,∆ if and only if k3 = n

(
∆
2

)
.

Proof. First, we show that if a graph G is isomorphic to K∆,∆ then k3 = n
(

∆
2

)
.

G is isomorphic to K∆,∆ then G has no cycles of order three. By Lemma 3.25
and Lemma 3.26, the result follows.

Now we prove the converse. By Lemma 3.25, k3 = S3,2 and S3,3 = 0. G is free
of cycles of order three. Any vertex v is adjacent to ∆ pairwise nonadjacent vertices
which have a degree ∆ and need to be adjacent to ∆−1 other vertices which are not
adjacent to v. By constructing the graph, we obtain that G is isomorphic to K∆,∆.

Proposition 3.28. A simple graph G is isomorphic to the complete bipartite graph
Kn,m if and only if

da(G;x, y) = nxyn +mxym + yn+m

n∑
i=1

m∑
j=1

(
n

i

)(
m

j

)
xi+jymin{2i−n,2j−m},

where n,m are positive integers.

Proof. First, we show that a simple graph G which is isomorphic to the complete
bipartite graph Kn,m, has the given defensive alliance polynomial. Let Kn,m be of the
form G(U ∪W,E) where |U | = n, |W | = m and U,W are the parts of Kn,m.

The non-empty subsets of V (G) which induce connected subgraphs in G, can
be partitioned into the following parts: The part containing the sets of cardinality
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one from U in which each set contributes the term xyn and by summing, we get
the term nxyn. The part containing the sets of cardinality one from W in which
each set contributes the term mxym and by summing, we get the term mxym. The
part containing the sets of cardinality more than one in which we choose subset of
cardinality i from U and another subset of cardinality j from W which contributes the
term yn+m

(
xi+jymin{2i−m,2j−n}) and by summing, we get the term

yn+m
∑n

i=1

∑m
j=1

(
n
i

)(
m
j

)
xi+jymin{2j−m,2i−n}.

Now we prove the converse. Let n,m be positive integers, and H is a graph with

da(H;x, y) = nxyn +mxym + yn+m

n∑
i=1

m∑
j=1

(
n

i

)(
m

j

)
xi+jymin{2i−n,2j−m}.

By Proposition 3.11, the order of H equals n+m. By Proposition 3.12, the size of H
equals nm. By Proposition 3.13, H is connected. By Proposition 3.14, the degree
sequence of H is (n, n, · · · , n,m,m, · · · ,m). Partition V (H) into two setsW,U where
W contains all vertices with degree n and U contain all vertices of degree m.

• Case 1: n 6= m, assume n > m. Note that [x2ym+2]da(G;x, y) = 0, since
this happens only if there is no edge between two vertices with degree n. By
counting the edges and joining the vertices from W to U , H is isomorphic to
Kn,m

• Case 2: n = m then H is regular. Note that:

k3 =[x3]da(G;x, 1)

=2n

(
n

2

)
.

Consequently, by Lemma 3.27, H is isomorphic to the complete bipartite graph
Kn,n.

3.4.7 The regular graph

Proposition 3.29. A simple graph G is isomorphic to a ∆-regular graph if and only
if [x]da(G;x, y) = nyn−∆.

Proof. First, we show that a graph G which is isomorphic to a ∆-regular graph has
[x]da(G;x, y) = nyn−∆. Every subset of V (G) which induces a connected subgraph
in G, contributes a term xyn−∆ and by summing, we get the term nxyn−∆.

Now we prove the converse. Let H be a graph with [x]da(G;x, y) = nyn−∆. By
Proposition 3.11, the order ofH equals n. By Proposition 3.14, the degree sequence
of H is (∆,∆, · · · ,∆). Consequently, H is isomorphic to a ∆-regular graph.

Lemma 3.30. Let G be a ∆-regular graph. A subset of V (G) of cardinality k induces
a component in G if and only if it contributes in da(G;x, y) a term xky∆+n.

19



Proof. Every component of order k in a ∆-regular graph, contributes a term with
xky∆+n.

To prove the converse, let S be a subset of V (G) of cardinality k which con-
tributes in da(G;x, y) a term xky∆+n. For sake of contradiction, assume that S is not
a component. Hence, there is a vertex in S which is connected to other vertices
outside S. Let the maximum number of vertices connected to a vertex in S from out-
side of S to be t. Hence S contributes in da(G;x, y) a term xkyn+(∆−t)−t = xkyn+∆−2t,
contradiction since t 6= 0. Consequently, t = 0 and S contributes a component in
G.

Lemma 3.31. For a ∆-regular graph G, the number of components with cardinality
k is = [xky∆+n]da(G;x, y).

Proof. From Lemma 3.30, every subset of V (G) with cardinality k, induces a com-
ponent in G if and only if this subset contributes in da(G;x, y) a term xky∆+n. By
summing the terms, the result follows.

Corollary 3.32. Let G be a connected ∆-regular graph. [xn]da(G;x, y) = y∆+n.

Proof. From Lemma 3.31, the result follows.

3.4.8 The wheel graph

Definition 3.33. Let n be a positive integer larger than three. The wheel graph
denoted by Wn is defined by the graph join Cn +K1.

Proposition 3.34. A simple graph G is isomorphic to the wheel Wn if and only if

[x]da(G;x, y) =nyn−2 + y and

[xn]da(G;x, y) =(n+ 1)yn+2 and

[xn+1]da(G;x, y) =yn+4, where n ≥ 3.

Proof. First, we show that a graph G which is isomorphic to a wheel Wn has the
above properties in the proposition. Let G be of the form in Figure 3.4.

The subsets of V (G) with cardinality one which induce connected subgraphs in
G, can be partitioned into the following parts: The part {{v0}} in which {v0} con-
tributes the term xy. The part {{v1}, {v2}, · · · , {vn}} in which every set contributes
the term xyn−2 and by summing, we get the term nxyn−2.

The set V (G) contributes the term xn+1yn+4. And if we delete any vertex from
V (G), we get a set which contributes the term xnyn+2 and by summing, we get
(n+ 1)xnyn+2.

Now we prove the converse. Let n be an integer, n ≥ 3, and H is a graph with

[x]da(H;x, y) =nyn−2 + y and

[xn]da(H;x, y) =(n+ 1)yn+2 and

[xn+1]da(H;x, y) =yn+4.
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v0

v1

v2

v3 vn−1

vn

Figure 3.4: A wheel graph

By Proposition 3.11, the order of H equals n + 1. By Proposition 3.13, H is
connected. By Proposition 3.14, the degree sequence of H is (n, 3, 3, · · · , 3). By
Proposition 3.16, the number of cut vertices is zero. Hence all the subgraphs G \
{v} where v ∈ V (G), are all connected. Let v0 be the vertex with degree n. The
specific graph G \ {v0} is connected and with degree sequence (2, 2, · · · , 2) which is
isomorphic to the cycle graph Cn. By connecting the vertex v0 to every vertex in Cn,
H is constructed which is isomorphic to the wheel graph Wn.

3.4.9 The open wheel graph

Definition 3.35. Let n be a positive integer larger than two. The open wheel graph
denoted by W ′

n is defined by the graph join Pn + K1. This graph is sometimes also
known as Fan.

Proposition 3.36. A simple graph G is isomorphic to the open wheel W ′
n if and only

if

[x]da(G;x, y) =2yn−1 + (n− 2)yn−2 + xy and

[xn]da(G;x, y) =3yn+1 + (n− 2)yn+2 and

[xn+1]da(G;x, y) =yn+3, where n ≥ 4.

Proof. First, we show that a graph G which is isomorphic to an open wheel W ′
n, has

the above properties in the proposition. Let G be of the form in Figure 3.5.
The subsets of V (G) with cardinality one which induce connected subgraphs in

G, can be partitioned into the following parts: The part {{v0}} in which {v0} con-
tributes the term xy. The part {{v2}, {v3}, · · · , {vn−1}} in which every set contributes
the term xyn−2 and by summing, we get the term (n−2)xyn−2. The part {{v1}}, {vn}}
in which each set contributes the term xyn−1 and by summing, we get 2xyn−1.

The set V (G) contributes the term xn+1yn+3.
Each of the subsets V (G) \ {v2}, V (G) \ {vn−1} and V (G) \ {v0} contributes the

term xnyn+1 and by summing, we get the term 3xnyn+1. Each subset of cardinality
n but not the previous, contributes the term xnyn+2 and by summing, we get (n −
2)xnyn+2.
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v0

v1

v2

v3 vn−1

vn

Figure 3.5: An open wheel graph

Now we prove the converse. Let n be an integer, n ≥ 4, and H is a graph with

[x]da(H;x, y) =2yn−1 + (n− 2)yn−2 + xy and

[xn]da(H;x, y) =3yn+1 + (n− 2)yn+2 and

[xn+1]da(H;x, y) =yn+3.

By Proposition 3.11, the order of H equals n + 1. By Proposition 3.13, H is con-
nected. By Proposition 3.14, the degree sequence of H is (n, 3, 3, · · · , 3, 2, 2). By
Proposition 3.16, the number of cut vertices is zero. Hence all the graphs G \ {v}
where v ∈ V (G), are all connected. Let the vertex with degree n be v0. The specific
subgraph G \ {v0} is connected and with degree sequence (2, 2, · · · , 2, 1, 1) which is
isomorphic to the path graph Pn. By connecting the vertex v0 to every vertex in Pn,
H is constructed which is isomorphic to the open wheel graph W ′

n.

3.4.10 The friendship graph

Definition 3.37. Let n be a positive integer. The friendship graph denoted by Fn is
defined by the graph join nK2 +K1. This graph is also known as Windmill graph.

Proposition 3.38. A simple graph G is isomorphic to the friendship Fn if and only if

[x]da(G;x, y) =2ny2n−1 + y, where n is a positive integer.

Proof. First, we show that a graph G which is isomorphic to a friendship graph Fn,
has the above properties in the proposition. Let G be of the form in Figure 3.6.

The subsets of V (G) with cardinality one which induce connected subgraphs in
G, can be partitioned into the following parts: The part {{v0}} in which {v0} con-
tributes the term xy. The part {{v1}, {v2}, · · · , {v2n}} in which every set contributes
the term xy2n−1 and by summing we get the term 2nxy2n−1.

Now we prove the converse. Let n be a positive integer, and H is a graph with

[x]da(H;x, y) =2ny2n−1 + y.
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v0

v1

v2

v3

v4

v2n−1

v2n

Figure 3.6: A friendship graph

By Proposition 3.11, the order of H equals 2n + 1. By Proposition 3.14, the degree
sequence of H is (2n, 2, 2, · · · , 2). We construct the graph by first connecting by
an edge the vertex with degree 2n to every other vertex. Second every other vertex
choose any arbitrary vertex not the one with degree 2n and connect it with an edge to
complete its degree. Hence the constructed graph H is isomorphic to the friendship
graph Fn.

3.4.11 The triangular book graph

Definition 3.39. Let n be a positive integer. The triangular book graph denoted by
Bn is defined by the graph join nK1 +K2.

Proposition 3.40. A simple graph G is isomorphic to the triangular book graph Bn

if and only if

[x]da(G;x, y) =2y + nyn, where n is a positive integer.

Proof. First, we show that a simple graph G which is isomorphic to a triangular book
graph Bn, has the above properties in the proposition. Let G be of the form in Figure
3.7.

va vb

v2v1 v3 vn

Figure 3.7: A triangular book graph

The subsets of V (G) with cardinality one which induce connected subgraphs
in G, can be partitioned into the following parts: The part {{v1}, {v2}, · · · , {vn}} in
which every set contributes the term xyn and by summing, we get the term nxyn.
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The part {{va}, {vb}} in which every set contributes the term xy and by summing,
we get 2xy.

Now we prove the converse. Let n be a positive integer, and H is a graph with

[x]da(H;x, y) =2y + nyn.

By Proposition 3.11, the order of H equals n+2. By Proposition 3.14, the degree
sequence ofH is (n+1, n+1, 2, 2, · · · , 2). By connecting the two vertices with degree
n + 1 to every other vertex, H is constructed which is isomorphic to the triangular
book graph Bn.

3.4.12 The quadrilateral book graph

Definition 3.41. Let n be a positive integer. The quadrilateral book graph denoted
by Bn,2 is defined by the graph join nK2 + k2.

Proposition 3.42. A simple graph G is isomorphic to the quadrilateral book graph
Bn,2 if and only if

[x]da(G;x, y) =2yn+1 + 2ny2n and

[x2]da(G;x, y) =ny2n+2 + (2n+ 1)yn+3 and

[x2n+1]da(G;x, y) =(2n+ 2)y2n+2 and

[x2n+2]da(G;x, y) =y2n+4, where n is a positive integer.

Proof. First, we show that a simple graph G which is isomorphic to a quadrilateral
book graph Bn,2, has the above properties in the proposition. Let G be of the form in
Figure 3.8.

va vb

v1a v1b v2a v2b vna vnb

Figure 3.8: A quadrilateral book graph

The subsets of V (G) with cardinality one which induce connected subgraphs in
G, can be partitioned into the following parts: The part {{v1a}, {v1b}, {v2a}, {v2b},
· · · , {vna}, {vnb}} in which every set contributes the term xy2n and by summing, we
get the term 2nxy2n. The part {{va}, {vb}} in which every set contributes the term
xyn+1 and by summing, we get 2xyn+1.

The subsets of V (G) with cardinality two which induce connected subgraphs in
G, can be partitioned into the following parts: The part {{v1a, v1b}, {v2a, v2b}, · · · ,
{vna, vnb}} in which every set contributes the term x2y2n+2 and by summing, we get
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the term nx2y2n+2. The part {{va, vb}, {va, v1a}, {va, v2a}, · · · , {va, vna}, {vb, v1b}, {vb, v2b},
· · · , {vb, vnb}} in which every set contributes the term x2yn+3 and by summing, we
get (2n+ 1)x2yn+3,

The set V (G) contributes the term x2n+2y2n+4. And if we delete any vertex from
V (G), we get a set which contributes the term x2n+1y2n+2 and by summing, we get
(2n+ 2)x2n+1y2n+2.

Now we prove the converse. Let n be a positive integer, and H is a graph with

[x]da(H;x, y) =2yn+1 + 2ny2n and

[x2]da(H;x, y) =ny2n+2 + (2n+ 1)yn+3 and

[x2n+1]da(H;x, y) =(2n+ 2)y2n+2 and

[x2n+2]da(H;x, y) =y2n+4 .

By Proposition 3.11, the order of H equals 2n + 2. By Proposition 3.12, the size
of H equals 3n + 1. By Proposition 3.13, H is connected. By Proposition 3.14, the
degree sequence of H is (n+1, n+1, 2, 2, · · · , 2). By Proposition 3.16, the number of
cut vertices is zero. Let the two vertices with degree n+ 1 be va and vb respectively.
A subset of cardinality two which induces a connected subgraph in G, and contains
two vertices of degree two is the only subset of cardinality two which contributes a
term [x2y2n+2]. Then, the number of edges connecting two vertices of degree two is
[x2y2n+2]da(G;x, y) and equals n. The number of the rest edges is 2n + 1. But the
number of edges which are incident to vertices of degree two are necessary only 2n.
Hence, the last edge is necessarily between the two vertices of degree n+ 1. At this
point we have a graph like the one in Figure 3.9 where the number in the vertices is

n+ 1 n+ 1

2 2 2 2 2 2

Figure 3.9: A quadrilateral book graph

its degree. The two vertices of degree n + 1 need to be connected to n vertices of
degree two. But a vertex with degree n + 1 will never be connected to two adjacent
vertices of degree two, since this will make this vertex of degree n + 1 a cut vertex
which contradicts the statement that H has no cut vertices. This means that every
vertex of degree n+1 will be connected to only non-adjacent vertices of degree two,
which yields the quadrilateral book graph H.

3.5 Attaching a vertex to a complete graph

Proposition 3.43. Let v0 be a vertex and n a positive integer. Let H be a simple
graph formed from Kn∪{v0} by joining some vertices to v0. Let V (H) \ {v0} = R∪S
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where R = {r1, r2, · · · , rr}, r = |R| where R is the set of vertices in H which are
adjacent to v0 and S = {s1, s2, · · · , ss}, s = |S| where S is the set of vertices in H

which are not adjacent to v0. Let G be a simple graph. G is isomorphic to H if and
only if

da(G;x, y) =(1 + xy2)da(Kr;x, y) + y da(Ks;x, y) + y da(Kr;x, y)da(Ks;x, y)

+ xyn+1−r + xy da(Kr;x, y)
s∑

j=1

(
s

j

)
xjymin{2j,s+1} .

Proof. The subsets of V (G) with cardinality one which induce connected subgraphs
in G, can be partitioned into the following parts: The part {{v0}} in which {v0} con-
tributes the term xyn+1−r.
The part containing the sets of cardinality i in the range of 1 ≤ i ≤ r formed only
from vertices in R in which each set contributes the term xiy2i−1 and by summing,
we get: (

r

1

)
x1y1 +

(
r

2

)
x2y3 + · · ·+

(
r

r

)
xry2r−1

=
r∑

i=1

(
r

i

)
xiy2i−1

=
1

y

(
r∑

i=0

(
r

i

)(
xy2
)i − 1

)

=
(1 + xy2)

r − 1

y

= da(Kr;x, y).

The part containing the sets of cardinality i in the range of 1 ≤ i ≤ s arises only
from the vertices in S in which each set contributes the term xiy2i and by summing,
we get: (

s

1

)
x1y2 +

(
s

2

)
x2y4 + · · ·+

(
s

s

)
xsy2s

=
s∑

i=1

(
s

i

)
xiy2i

= y
1

y

(
s∑

i=0

(
s

i

)(
xy2
)i − 1

)

= y
(1 + xy2)

s − 1

y

= y da(Ks;x, y).

The part containing the sets of cardinality i in the range of 2 ≤ i ≤ r + 1 results
from {v0} and the vertices in R in which each set contributes the term xi+1y2i+1 and
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by summing, we get:(
r

1

)
x2y3 +

(
r

2

)
x3y5 + · · ·+

(
r

r

)
xr+1y2r+1

=
r∑

i=1

(
r

i

)
xi+1y2i+1

= xy2 1

y

(
r∑

i=0

(
r

i

)(
xy2
)i − 1

)

= xy2 (1 + xy2)
r − 1

y

= xy2da(Kr;x, y).

The part containing the sets formed from subsets of R of cardinality i in the range
of 1 ≤ i ≤ r and subsets of S of cardinality j in the range of 1 ≤ j ≤ s in which each
set contributes the term xi+jy(r+s+1)+(i+j−1)−(r+s+1−i−j) and by summing, we get:

y

(
r

1

)
x1y1

(
s

1

)
x1y1 + y

(
r

1

)
x1y1

(
s

2

)
x2y3 + · · ·+ y

(
r

1

)
x1y1

(
s

3

)
x3y5

+ y

(
r

2

)
x2y3

(
s

1

)
x1y1 + y

(
r

2

)
x2y3

(
s

2

)
x2y3 + · · ·+ y

(
r

2

)
x2y3

(
s

3

)
x3y5

...

+ y

(
r

r

)
xry2r−1

(
s

1

)
x1y1 + y

(
r

r

)
xry2r−1

(
s

2

)
x2y3 + · · ·

+ y

(
r

r

)
xry2r−1

(
s

s

)
xsy2s−1

= y

r∑
i=1

(
r

i

)
xiy2i−1

s∑
j=1

(
s

j

)
xjy2j−1

= y
1

y

(
r∑

i=0

(
r

i

)(
xy2
)i − 1

)
1

y

(
s∑

j=0

(
s

j

)(
xy2
)j − 1

)

= y
(1 + xy2)

r − 1

y

(1 + xy2)
s − 1

y

= y da(Kr;x, y) da(Ks;x, y).

The part containing the sets formed from v0 and subsets of R of cardinality i in
the range of 1 ≤ i ≤ r and subsets of S of cardinality j in the range of 1 ≤ j ≤ s in
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which each set contributes the term xi+j+1y2i+min{2j,s+1} and by summing, we get:

xy

(
r

1

)
x1y1

(
s

1

)
x1ymin{2,s+1} + xy

(
r

1

)
x1y1

(
s

2

)
x2ymin{4,s+1} + · · ·

+ xy

(
r

1

)
x1y1

(
s

s

)
xsymin{2s,s+1}

+ xy

(
r

2

)
x2y3

(
s

1

)
x1ymin{2,s+1} + xy

(
r

2

)
x2y3

(
s

2

)
x2ymin{4,s+1} + · · ·

+ xy

(
r

2

)
x2y3

(
s

s

)
xsymin{2s,s+1}

...

+ xy

(
r

r

)
xry2r−1

(
s

1

)
x1ymin{2,s+1} + xy

(
r

r

)
xry2r−1

(
s

2

)
x2ymin{4,s+1} + · · ·

+ xy

(
r

r

)
xry2r−1

(
s

s

)
xsymin{2s,s+1}

= xy

r∑
i=1

(
r

i

)
xiy2i−1

s∑
j=1

(
s

j

)
xjymin{2j,s+1}

= xy
1

y

(
r∑

i=0

(
r

i

)(
xy2
)i − 1

)
s∑

j=1

(
s

j

)
xjymin{2j,s+1}

= xy
(1 + xy2)

r − 1

y

s∑
j=1

(
s

j

)
xjymin{2j,s+1}

= xy da(Kr;x, y)
s∑

j=1

(
s

j

)
xjymin{2j,s+1}.

Now we prove the converse. Let r and s be integers and H is a graph with the
defensive alliance polynomial,

da(H;x, y) = (1 + xy2)da(Kr;x, y) + y da(Ks;x, y) + y da(Kr;x, y)da(Ks;x, y)

+xyn+1−r + xy da(Kr;x, y)
s∑

j=1

(
s

j

)
xjymin{2j,s+1}.

By Proposition 3.11, the order of H equals r + s + 1. Let r + s = n. By Proposition
3.14, the degree sequence of H consist of n r times then (n− 1) s times then r one
time: (n, n, · · · , n, n− 1, n− 1 · · · , n− 1, r). By constructing first all the vertices with
degree n. Note that no term left of the form ax2y(r+s+1)+1−(r−1), hence no vertex with
degree n − 1 is connected to the vertex of degree r. Hence we choose arbitrary s
vertices and connect them to each other.
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3.6 the distinctive power of the defensive alliance poly-
nomial

The authors in [CGATu14], showed how the alliance polynomial can characterize
some classes of graphs which were not characterized by other well-known graph
polynomials like the tutte polynomial, the domination polynomial, the independence
polynomial, the matching polynomial, the bivariate polynomial, and the subgraph
component polynomial.

As a generalization for the alliance polynomial, the defensive alliance polynomial
has at least the same power. In this section, we present two pairs of graphs that
cannot be characterized by the alliance polynomial but can be characterized by the
defensive alliance polynomial.

G1 G2

Figure 3.10: First pair of graphs

The alliance polynomial of the two graphs in the Figure 3.10 is:

A(G1;x) = A(G2;x) = x10 + 7x9 + 37x8 + 63x7 + 4x6 + 4x5.

By applying the program in Section D.1 we obtain the defensive alliance polynomial
of G1:

da(G1;x, y) =x8y10 + 2x7y9 + 6x7y8 + x6y9 + 14x6y8 + 7x6y7

+ 2x5y9 + 10x5y8 + 16x5y7 + 2x4y9 + 4x4y8 + 17x4y7

+ 2x3y8 + 14x3y7 + x2y8 + 9x2y7 + 4xy6 + 4xy5.

By applying the program in Section D.1 we obtain the defensive alliance polynomial
of G2:

da(G2;x, y) =x8y10 + 3x7y9 + 5x7y8 + x6y9 + 15x6y8 + 7x6y7

+ x5y9 + 11x5y8 + 15x5y7 + 2x4y9 + 2x4y8 + 19x4y7

+ 3x3y8 + 13x3y7 + x2y8 + 9x2y7 + 4xy6 + 4xy5.

Another pair of graphs:
The alliance polynomial of the two graphs in the Figure 3.11 is:

A(G3;x) = A(G4;x) = 8x9 + 26x8 + 20x7 + 11x6 + 2x5 + x4.
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G3 G4

Figure 3.11: Second pair of graphs

By applying the program in Section D.1 we obtain the defensive alliance polynomial
of G3 is:

da(G3;x, y) =x8y9 + 3x7y9 + 2x7y8 + 9x6y8 + x6y7 + x5y9

+ 7x5y8 + 3x5y7 + x5y6 + 2x4y9 + 3x4y8 + 5x4y7

+ 2x4y6 + x3y9 + 4x3y8 + 5x3y7 + x3y6 + x2y8

+ 4x2y7 + 4x2y6 + 2xy7 + 3xy6 + 2xy5 + xy4.

By applying the program in Section D.1 we obtain the defensive alliance polynomial
of G4 is:

da(G4;x, y) =x8y9 + 3x7y9 + 2x7y8 + 2x6y9 + 7x6y8 + x6y7

+ x5y9 + 7x5y8 + 3x5y7 + x5y6 + 5x4y8 + 5x4y7

+ 2x4y6 + x3y9 + 4x3y8 + 5x3y7 + x3y6 + x2y8

+ 4x2y7 + 4x2y6 + 2xy7 + 3xy6 + 2xy5 + xy4.

3.7 Open questions

In this section we list some open questions which we think could be interesting to do
further research about defensive alliance polynomial.

• Can we find a pair of non isomorphic graphs which are da−equivalent (have
the same defensive alliance polynomial)?

• Can we implement an algorithm which construct a graph (at least one graph)
from its defensive alliance polynomial?

• For a graph G, can we find a relation between da(G;x, y) and da(G \ {v};x, y)

where v is a vertex in the graph G?

• For a graph G, can we find a relation between da(G;x, y) and da(G \ {e};x, y)

where e is an edge in the graph G?

• For a graph G, can we find a relation between da(G;x, y) and da(G+ {v};x, y)

where v is any vertex not in G?
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• For two graphs G and H, can we find a relation between da(G;x, y), da(H;x, y)

and da(G+H;x, y)?

• For a graph G, can we find a relation between da(G;x, y) and da(K|V (G)|;x, y)?

• For a graph G, can we find a relation between da(G;x, y) and da(E|V (G)|;x, y)?

• For a graph G, can we find a relation between da(G;x, y) and da(Ḡ;x, y)?

• Can we characterize uniquely more special classes of graphs by their defen-
sive alliance polynomial?

• Can we find relations with other graph polynomials?

• Can we compare the distinctive power of the defensive alliance polynomial with
other graph polynomials?
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A. The reconstruction conjecture

A.1 Introduction

In Section A.1.1, we present the reconstruction of a graph from a special multi-
set of its subgraphs. We define the notion of a deck and what information we can
obtain about a graph from its deck. Then, we explain Kelly’s lemma and state the
reconstruction conjecture.

In Section A.3, we present the reconstruction of some special classes of graphs:
the regular graphs, the tree graphs, the path graphs, the cycle graphs, the star
graphs, the double star graphs, the complete graphs, the complete bipartite graphs,
the wheel graphs, the open wheel graphs, the friendship graphs, the triangular book
graphs, the quadrilateral book graph and the disconnected graphs. Lastly, we dis-
cuss the complement of a graph and its relation to the reconstructability of a graph.

In Section A.4, we list some variants to the idea of reconstructing a graph from
its deck.

Note that through this appendix, we mean by a graph, unlabeled graph.

A.1.1 Definitions and properties

Definition A.1. Let G be a simple graph. The minimum order of a component in G
is cmin(G). The maximum order of a component in G is cmax(G).

Definition A.2. Let G(V,E) be a simple graph and v a vertex in V (G). The graph
G− v denoted by Gv is a vertex-deleted subgraph of G obtained by removing v from
V (G) and all the incident edges to v. For examples see Section B.0.1.

Definition A.3. Let G(V,E) be a simple graph. The deck denoted by D(G) is the
multi-set {Gv : v ∈ V (G)}.

D
′ is the multi-set {Gv : v ∈ V (G), k(Gv) = k(G)}.

D
′′ is the multi-set {Gv : v ∈ V (G), k(Gv) = k(G), cmin(Gv) = cmin(G)− 1}.

Definition A.4. Let G(V,E) be a simple graph. A graph H is said to be a construc-
tion of G if V (G) = V (H) and for every v in V (G), Gv is isomorphic to Hv. Further G
is called reconstructable if every construction of G is isomorphic to G.

Note: Not every graph is reconstructable, for example K2 or 2K1.

Definition A.5. Let τ be a class of graphs. The class τ is called recognizable if for
every graph G in τ , every construction of G is isomorphic to a graph in τ .
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Definition A.6. A function s defined on a class τ of graphs, is reconstructable, if for
each graph G in τ , s takes the same value for all constructions of G.

A.1.2 Kelly’s lemma

Lemma A.7 (Kelly’s lemma). [BH74] Let G and H be two simple graphs where
|V (H)| < |V (G)|. Let s(H,G) be the number of subgraphs in G isomorphic to H.

s(H,G) is reconstructable.

Proof. Each subgraph in G isomorphic to H occurs in exactly |V (G)|− |V (H)| of the
subgraphs Gv. Therefore

s(H,G) =

∑
v∈V (G) s(H,Gv)

|V (G)| − |V (H)|
.

Section B.0.3 shows an example.

The order [Har77] By applying Kelly’s lemma to a graph G for a subgraph K1 we
get the number of vertices of G which is the order of G. For examples see Section
B.0.3.

The size [Har77] By applying Kelly’s lemma to a graph G for a subgraph K2 we get
the number of edges of G which is the size of G. For examples see Section B.0.3.

The degree sequence [BH74] By obtaining the order and the size, we could also
obtain the degree sequence. Note that in every Gv, the edges incident from v is
removed, and the number of such edges is the degree of v in G. So for every v in
V (G), deg(v) = |E(G)| − |E(Gv)|.

4 2 2 2 2 2

Figure A.1: Degree sequence of G is (4, 2, 2, 2, 2, 2).

The number of components

Lemma A.8. Let G be a simple graph. The number of components of G is recon-
structable.

Proof. When a vertex v in G is deleted, either the number of components of G will
increase if v is a cut vertex, or it will stay the same if v is not cut vertex. Hence, the
minimum number of components in any Gv is the number of components of G.
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The minimum order of a component

Lemma A.9. Let G be a simple graph. The minimum order of a component in G is
reconstructable.

Proof. Consider the D′(G), the minimum order of a component in G equals one plus
the minimum order of any component in all Gv in D′(G) since it is obtained from the
component of minimum order in G by deleting a non cut vertex.

The maximum order of a component

Lemma A.10. Let G be a simple graph. The maximum order of a component in G

is reconstructable.

Proof. Consider the D
′′
(G), the maximum order of a component in G equals the

maximum order of any component in all Gv in D
′′
(G) since D

′′
(G) is obtained from

deleting a non cut vertex from a component in G with minimum order.

A.2 The reconstruction conjecture RC [BH74]

All finite simple undirected graphs with at least three vertices are reconstructable
[BH74].

A.3 The recognition and the reconstruction of spe-
cial graph classes

A.3.1 Graphs with a node with degree n− 1

Lemma A.11. Let G be a graph with a vertex with degree n − 1 where n ≥ 3. G is
reconstructable.

Proof. Choose from the deck of G, the specific subgraph G\{v}, where v is a vertex
in G with degree n − 1. Add v and connect it to every other vertex to reconstruct
G.

A.3.2 The regular graphs

Lemma A.12. [Har77] Regular graphs with order at least three are recognizable.

Proof. Let G be a graph and let τ be the class of regular graphs. By obtaining the
degree sequence from the deck of G, we recognize that G is isomorphic to a graph
in τ .

Lemma A.13. [Har77] Regular graphs with order at least three are reconstructable.
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Proof. Let G be a ∆−regular graph . Let Gv be a specific vertex-deleted subgraph
of G. Add a vertex to Gv and from this vertex only one unique choice is to join it with
all the vertices in Gv with degree ∆− 1.

For examples see Section B.0.4.

A.3.3 The tree graphs

Lemma A.14. [Har77] Tree graphs with order at least three are reconstructable.

A.3.4 The path graphs

Corollary A.15. The path Pn graph is reconstructable.

Proof. By Lemma A.14.

A.3.5 The cycle graphs

Corollary A.16. The cycle Cn graph is reconstructable.

Proof. By Lemma A.13.

A.3.6 The star graphs

Corollary A.17. The star Sn graph is reconstructable.

Proof. By Lemma A.14.

A.3.7 The double star graphs

Corollary A.18. The double star Sr,t graph is reconstructable.

Proof. By Lemma A.14.

A.3.8 The complete graph graphs

Corollary A.19. The complete graph Kn is reconstructable.

Proof. By Lemma A.13.

A.3.9 The complete bipartite graph graphs

Lemma A.20. The class of complete bipartite graphs is reconstructable.

Proof. Let Kn,m be on the form G(U ∪W,E) where |U | = n, |W | = m and U,W are
the partition sets of Kn,m. There are three cases according to n and m.

Case 1: n = m then the graph is regular which is reconstructable class.
Case 2: n = m + 1. Obtain the degree sequence which will be on the form

{n, n, · · · , n, n−1, n−1, · · · , n−1}. Choose specificGv in which the degree sequence
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is of the form {n, n, · · · , n, n− 2, n− 2, · · · , n− 2}. Add a vertex to Gv and connect it
to the vertices which needs to complete its degree.
Or Choose specific Gv in which the degree sequence is of the form {n − 1, n −
1, · · · , n − 1, n − 1, n − 1, · · · , n − 1}. Add a vertex to Gv and connect it to any n

vertices.
Case 3: n > m + 2. Obtain the degree sequence which will be on the form

{n, n, · · · , n,m − a,m − a, · · · ,m − a} where a > 2. Choose any Gv , add a vertex
and connect it to all the vertices which needs to complete its degree.

A.3.10 The wheel graphs

Corollary A.21. The wheel Wn graph is reconstructable.

Proof. By Lemma A.11.

A.3.11 The open wheel graphs

Corollary A.22. The open wheel W ′
n graph is reconstructable.

Proof. By Lemma A.11.

A.3.12 The friendship graphs

Corollary A.23. The friendship Fn graph is reconstructable.

Proof. By Lemma A.11.

A.3.13 The triangular book graph graphs

Corollary A.24. The triangular book Bn graph is reconstructable.

Proof. By Lemma A.11.

A.3.14 The quadrilateral book graph graphs

Corollary A.25. The quadrilateral book Bn,2 graph is reconstructable.

Proof. Obtain the degree sequence. Choose specific Gv in the deck with one vertex
of maximum degree deleted, then connect it to all the other vertices which needs to
complete its degree.

A.3.15 Disconnected graphs

Lemma A.26. [CKS73] A graph G is connected if and only if at least two of its
vertex-deleted subgraphs in its deck are connected.
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Proof. Consider the longest path in G. The endpoints of this path can not be cut
vertices. Both of them are only connected to vertices in the path since if they are
connected to vertices not on path, the path could be extended which is contradiction
for longest path.

To prove the converse, assume we have two specific connected vertex-deleted
subgraphs, Gu and Gv. Consider Gu, either it was obtained from a connected graph
or obtained from a graph composed of an isolated vertex and Gu. But if we con-
sider Gv, it is connected with no isolated vertex, then G must be connected with no
isolated vertices.

Corollary A.27. [CKS73] A graph G is disconnected if and only if at most one of its
vertex-deleted subgraphs in its deck is connected.

Proof. The contrapositive of the previous Lemma.

Corollary A.28. [CKS73] Disconnected graphs with order at least three are recog-
nizable.

Lemma A.29. [CKS73] Disconnected graphs with order at least three are recon-
structable.

Proof. If there were any isolated vertices then construct the graph by choosing a Gv

which needs 0 edges to be added and just add an isolated vertex to reconstruct G.
Assuming no isolated vertices exist, and according to order of components in G we
have different cases:

Number of components with order: cmin(G) cmin(G) + 1 (cmin(G) + 2) >

Case 1 > 1 > 0 > 1

Case 2 1 k − 1 0

Case 3 > 2 > 0 0

Case 1:

Number of components with order: cmin(G) cmin(G) + 1 (cmin(G) + 2) >

Case 1 > 1 > 0 > 1

Consider a graph Gu from D
′′
(G). Note that the component of order cmin(G) − 1 in

Gu is obtained from removing a non cut vertex from a component of order cmin(G) in
G. Also, note that all the components in Gu of order at least (cmin(G) + 1) are also
components in G.

Let the number of components of order (cmin(G)) in Gu be a. Consider a graph
Gw in D

′
(G) \ D′′(G) and the number of components of order (cmin(G)) = a + 1.

Note in Gw there is no component of order cmin(G) − 1, thus Gw has a component
obtained from G by removing a non cut vertex from a component with order at least
cmin(G) + 2 but it cannot be from a component of order cmin(G) + 1 since the number
of components of order cmin(G) equals a + 1. Note in Gw the components of order
(cmin(G)) are the components of order cmin(G) in G. So from Gw we obtain the
components in G with order (m + 1) and from Gu we obtain all other components,
Thus G is reconstructed.

Case 2:
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Number of components with order: cmin(G) cmin(G) + 1 (cmin(G) + 2)

Case 2 1 k − 1 0

From a graph in D′′(G) we can obtain all graphs of order cmin(G) + 1 in G. We need
to obtain the components of order cmin(G) in G. Note all graphs in D

′
(G) \ D′′(G)

contain a pair of components of order cmin(G). According to these pairs we have
three cases:

Case 2.1: All pairs are isomorphic to a graph H. Then H is in G.
Case 2.2: All pairs are composed of two non isomorphic graphs. One of them

is in G and the other is obtained by removing a non cut-vertex from any component
in G with order cmin(G) + 1. By removing a non cut-vertex from any component of
order cmin(G) + 1, we can differentiate between the pair and obtain the one in G.

Case 3.3: The pairs are sometimes different. The component in G with order
cmin(G) will always be there in every pair.

Case 3:

Number of components with order: cmin(G) cmin(G) + 1 (cmin(G) + 2)

Case 3 k 0 0

Note the components in every graph in D′′) of order cmin(G) are also components in
G. Note for every componentH in aGv inD′′, the number of components isomorphic
to H in G is the maximum number of component isomorphic to H in any graph in
D
′′
(G), unless all the components of order cmin(G) in G are isomorphic, then we

increment the number by one.

A.3.16 Complement

Lemma A.30. [Har77] A graphG is reconstructable if and only if Ḡ is reconstructable.

Proof. There is a bijection f between G and Ḡ which maps every v in V (G) to a u in
V (Ḡ) and if {v1, v2} ∈ E(G) then {f(v1), f(v2)} /∈ E(Ḡ) and if {v1, v2} /∈ E(G) then
{f(v1), f(v2)} ∈ E(Ḡ). Then for every vertex v in V (G) the bijection holds between
Gv and Ḡf(v). Thus if G is constructible then Ḡ is constructible.

The converse is proved by similar way.

This Lemma helps us to determine if a graph is constructible from its comple-
ment. For example, if the complement of the graph is disconnected then the graph
is reconstructable since the class of disconnected graphs are reconstructable.

A.4 Other variants of decks

• The deck is a set not a multi-set.

• Edge deleted deck, such that edges is deleted from the graph G not vertices.

• Special kind of deck, for example in case of trees: maximal subtrees.
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B. The reconstruction conjecture ex-
amples

B.0.1 Vertex-deleted subgraph

a

G G− a

Figure B.1: A vertex-deleted subgraph.

B.0.2 Deck
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2
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4

5

6
G

2

3

4

5

6
G− 1

13

4

5

6
G− 2

1

2

4

5

6
G− 3

1

2

3

5

6
G− 4

1

2

3

4 6
G− 5

1

2

3

4

5

G− 6

Figure B.1: A deck.
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B.0.3 Kelly’s lemma example

By applying Kelly’s lemma on a graph G for a subgraph C3 and C4 we get in G the
number of cycles of length three and four respectively.

The Figure B.2 shows how to obtain the number of subgraphs of G which is
isomorphic to C3, from the deck of G.

0 1 1 1 0 0

Figure B.2: s(C3, G) = 0+1+1+1+0+0
6−3

= 1.

The Figure B.3 shows how to obtain the number of subgraphs of G which is
isomorphic to C4, from the deck of G.

0 0 0 0 1 1

Figure B.3: s(C4, G) = 0+0+0+0+1+1
6−4

= 1.

By applying Kelly’s lemma on a graph G for a subgraph K2 we get in G the
number of edges which is known to be the size of G. By using the subgraph K1 we
get the number of vertices in G which is known as the order of G.

The Figure B.4 shows how to obtain the number of subgraphs of G which is
isomorphic to K2, from the deck of G.

3 5 5 5 5 5

Figure B.4: s(K2, G) = 3+5+5+5+5+5
6−2

= 7.

The Figure B.5 shows how to obtain the number of subgraphs of G which is
isomorphic to K1, from the deck of G.

5 5 5 5 5 5

Figure B.5: s(K1, G) = 5+5+5+5+5+5
6−1

= 6.
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B.0.4 Regular graphs example

Figure B.6: Regular graph.
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C. The alliance examples

C.0.1 Defensive alliance

Only one vertex without any allies will lose whenever attacked by more than one
neighbour.

Attack−−−−→
scenario

Figure C.1: No allies to defend.

With an alliance of two, still every attack with more than two will lead to lose on
any of the alliance vertices.

Attacks−−−−−→
scenarios

Figure C.2: Number of defending allies is not enough.

With an alliance of three, no possible attack will lead to lose of any vertex in the
alliance. It is well defended.
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Attacks−−−−−→
scenarios

Figure C.3: Number of defending allies is enough.

C.0.2 Defensive alliance and strong defensive alliance

The set of the three blue vertices is defen-
sive alliance but not strong defensive al-
liance.

The set of the four blue vertices is defensive
alliance and strong defensive alliance.

C.0.3 K-defensive alliance

Consider the blue set in the following figures:

1-defensive alliance 0-defensive alliance −1-defensive alliance

Figure C.4: K−defensive alliance.

C.0.4 Offensive alliance

Only one vertex without any allies will lose whenever it attack vertices which is sup-
ported by neighbours.
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Attack−−−−→
scenario

Figure C.5: No allies to attack with.

With an alliance of two, still every attack on a vertex supported by just one neigh-
bour will fail.

Attacks−−−−−→
scenarios

Figure C.6: Number of attacking allies is not enough.

With an alliance of four, every possible attack will lead to nearly a win despite of
support.

Attacks−−−−−→
scenarios

Figure C.7: Number of attacking allies is enough.
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C.0.5 Offensive alliance and strong offensive alliance

The set of the four blue vertices is offensive
alliance but not strong offensive alliance.

The set of the five blue vertices is offensive
alliance and strong offensive alliance.

C.0.6 Dual alliance

The set of the four blue vertices is dual al-
liance or powerful alliance. Both offensive
alliance and defensive alliance.

C.0.7 Global alliance

The set of the four blue vertices is global
offensive alliance.

C.0.8 Critical alliance

The set of the three blue vertices is criti-
cal(minimal) defensive alliance.
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C.0.9 Weighted alliance

Consider the blue set of vertices in the following figure:

5

10

2

4

1

6

4

Figure C.8: Weighted alliance.
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D. The python code to obtain the de-
fensive alliance polynomial

A python program to obtain the da(G;x, y) for a graph G with a small order.

D.1 The python code to obtain the defensive alliance
polynomial

import networkx as nx
import m a t p l o t l i b . pyp lo t as p l t
from sympy import ∗
import warnings
warnings . f i l t e r w a r n i n g s ( ” ignore ” )
import pandas

#
# power set o f a set
#
def get subsets ( f u l l s e t ) :

l i s t r e p = l i s t ( f u l l s e t )
subsets = [ ]
for i in range (2∗∗ len ( l i s t r e p ) ) :

subset = [ ]
for k in range ( len ( l i s t r e p ) ) :

i f i & 1<<k :
subset . append ( l i s t r e p [ k ] )

subsets . append ( subset )
return subsets

#
# Create a graph∗As an example : complete B i p a r t i t e
#
comp le teB ipa r t i t e = nx . c o m p l e t e b i p a r t i t e g r a p h ( 5 , 3 ) ;
graph = comp le teB ipa r t i t e
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#
# Funct ion to compute the minimuin degree of a subgraph ,
# 2deg−main deg
#
def rank ing ( subgraph , maingraph ) :

v e r t e x L i s t = subgraph . nodes ( ) ;
miniuim = len ( v e r t e x L i s t ) ;
for node in v e r t e x L i s t :

deg=2∗subgraph . degree ( node)−maingraph . degree ( node ) ;
i f deg < miniuim :

miniuim = deg ;
return miniuim ;

#
# S t a r t
#
subsets = get subsets ( graph . nodes ( ) )
order = len ( graph . nodes ( ) )

#
# Create a polynomia l
#
x = Symbol ( ’ x ’ )
y = Symbol ( ’ y ’ )
r e s u l t = x ∗∗1;
for subgraphVertexSet in subsets :

# Remove n u l l graph
i f len ( subgraphVertexSet ) ==0 :

continue ;
# Induce the subgraph
H = graph . subgraph ( subgraphVertexSet )
# Make sure o f c o n n e c t i v i t y
i f nx . is connected (H) != True :

continue ;
r e s u l t += x∗∗ len (H. nodes ( ) ) ∗y ∗∗ ( rank ing (H, graph ) +order )

r e s u l t −= x∗∗1
pr in t r e s u l t
#
# Draw the graph
#
nx . draw networkx ( graph )
p l t . show ( )
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E. Notation

G A pair (V,E) where V is a set of vertices and E is a set of two-
elements subsets of V

V (G) The set V in the graph G
E(G) The set E in the graph G
n The order of the graph G defined by |V (G)|
m The size of the graph G defined by |E(G)|
∆(G) The maximum degree of a vertex in the graph G
δS(u) |{{u, v} ∈ E(G) : v ∈ S}|, where S ⊆ V (G)

S̄ V (G) \ S, where S ⊆ V (G)

H ⊆ G V (H) ⊆ V (G) and E(H) ⊆ E(G)

G[S] The subgraph induced by S in the graph G, where S ⊆ V (G)

H ∪G The graph (V (H) ∪ V (G) , E(H) ∪ E(G))

H +G The graph obtained from H∪G and joining every vertex in G with
every vertex in H

En The edgeless graph with order n and no edges
Kn The complete graph with order n and every two vertices in G are

adjacent
Pn The path graph such that a label for the vertices exist as

v1, v2, . . . , vn then its edge are v1v2, v2v3, . . . , vn−1vn
Cn The cycle graph such that a label for the vertices exist as

v1, v2, . . . , vn then its edge are v1v2, v2v3, . . . , vn−1vn, vnv1

Sn The star graph defined by the graph join nK1 +K1

Wn The wheel graph defined by the graph join Cn +K1

W
′
n The open wheel graph defined by the graph join Pn + K1. This

graph is sometimes also known as Fan
Fn The friendship graph defined by the graph join nK2 + K1. This

graph is also known as Windmill graph
Bn The triangular book graph defined by the graph join nK1 +K2

Bn,2 The quadrilateral book graph defined by the graph join nK2 + k2

Tree A connected graph with no cycles
Component A maximal connected subgraph of a graph G
Cut vertex A vertex in G whose removal results in a graph of more compo-

nents than G

49



N(v) The open neighborhood of v in G defined by {u : u ∈
V (G), {u, v} ∈ E(G)}

N [v] The closed neighborhood of v in G defined by N(v) ∪ {v}
∂(S) The closed neighborhood of the set of vertices S in G defined by⋃

v∈S
(N [v] \ S)

[xk]f(G;x, y) The polynomial of the terms xk in the graph polynomial f(G;x, y)

[xkyl]f(G;x, y) The coefficient of the term xkyl in the graph polynomial f(G;x, y)

k(G) The number of components in the graph G
cmin(G) The minimum order of a component in the graph G
cmax(G) The maximum order of a component in the graph G
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