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Abstract 18 

 19 

MET, the receptor tyrosine kinase (RTK) for hepatocyte growth factor, is a proto-oncogene involved in 20 

embryonic development and throughout life in homeostasis and tissue regeneration. Deregulation of MET 21 

signaling has been reported in numerous malignancies, prompting great interest in MET targeting for cancer 22 

therapy. The present review offers a summary of the biology of MET and its known functions in normal 23 

physiology and carcinogenesis, followed by an overview of the most relevant MET-targeting strategies and 24 

corresponding clinical trials, highlighting both past setbacks and promising future prospects. By placing 25 

their efforts on a more precise stratification strategy through the genetic analysis of tumors, modern trials 26 

such as the NCI-MATCH trial could revive the past enthusiasm for MET-targeted therapy. 27 
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The MET receptor tyrosine kinase 28 

Genesis of the MET field 29 

MET (also called c-Met or HGFR) is known as the receptor tyrosine kinase (RTK) for hepatocyte growth 30 

factor (HGF) and its functions are essential for both embryogenesis and tissue regeneration [1]. However, 31 

MET was originally discovered as a potent oncogene more than 30 years ago, and its role in cancer 32 

development has been the object of numerous studies since the initial characterization [2]. 33 

In 1984, Cooper et al. reported the identification of a chemically-induced oncogene in a human 34 

osteosarcoma cell line and suggested to name it MET, a reference to the mutagenic compound that was used 35 

in their study: N-methyl-N’-nitro-N-nitrosoguanidine [3]. While they initially mapped MET to chromosome 36 

7 and excluded any relation to other oncogenes known at the time, two more years were needed to 37 

demonstrate that the generated active oncoprotein actually was the result of the fusion of two separate loci 38 

from distinct chromosomes. This genetic rearrangement consisted of a sequence derived from chromosome 39 

1 on the 5’ end (called tpr; translocated promoter region) and a section of the MET proto-oncogene from 40 

chromosome 7 on the 3’ end, leading to the strong expression of a chimeric mRNA due to the tpr-originating 41 

sequence [4]. This resulted in the expression of a truncated cytoplasmic protein exhibiting constitutive 42 

activation because of the spontaneous dimerization enabled by the leucine zipper domain of tpr [5]. Quickly 43 

thereafter, MET was shown to have homology with both the growth factor receptor and the receptor tyrosine 44 

kinase families [6], followed by the demonstration that it was indeed the receptor tyrosine kinase for HGF, 45 

which was incidentally shown to be identical to another MET ligand called scatter factor (SF) [7].  46 

These initial discoveries laid the groundwork for the investigation into the structure and biological functions 47 

of MET, presented below. 48 

MET: gene, RNA and protein structure 49 

The locus encoding human MET is positioned on the long arm of chromosome 7 (7q31.2) and consists of 50 

24 exons transcribed into a 6637 nucleotide long mRNA, translated into a 1390 aminoacid long protein 51 
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(canonical isoform, www.ncbi.nlm.nih.gov/gene/4233). MET transcription is controlled by a variety of 52 

transcription factors: HIF-1α under hypoxic conditions, AP-1 upon HGF stimulation, members of the PAX 53 

family, NF-κB, Ets1, SP1, YB1 and the TCF family of transcription factors downstream of the Wnt pathway 54 

[2]. Additional mechanisms of regulation, including epigenetic modifications such as DNA methylation, 55 

histone acetylation and RNA interference have been studied and were summarized by Jack Zhang and Andy 56 

Babic (2015) [8]. The major mRNA isoform resulting from splicing is translated into a single 170 kDa chain 57 

in the ER [9]. Subsequently, this precursor is glycosylated in the Golgi apparatus and cleaved by furin in 58 

the post-Golgi compartment into α (50 kDa) and β (145 kDa) chains, which remain linked by a disulfide 59 

bond to form the mature form of MET. This mature MET will localize to the cell membrane with a single-60 

pass transmembrane β subunit and the α subunit being entirely extracellular [8]. Several functional domains 61 

span the length of the receptor: on the extracellular part, a SEMA domain encompasses the α and part of the 62 

β chains, followed by a PSI (plexin-semaphorin-integrin) domain and four IPT (immunoglobulin-plexin-63 

transcription factor) domains. The intracellular section of the receptor consists of a juxtamembrane (JM) 64 

domain, a tyrosine kinase (TK) domain and a carboxyl-terminal multifunctional docking site (MFDS) [10]. 65 

On the extracellular side, the SEMA domain is essential for the dimerization and activation of MET [11] as 66 

well as for binding of HGF [10], although the IPT domains have also been shown to have a high affinity for 67 

HGF binding [12]. Between these two sections, the PSI domain contains several disulfide bonds necessary 68 

for the proper orientation of the receptor towards the ligand [13]. Two regulatory phosphorylation sites 69 

reside in the JM domain, directly below the cell membrane: serine 985 and tyrosine 1003 [14,15]. The 70 

tyrosine kinase domain of MET is below the transmembrane domain and contains two tyrosine residues at 71 

positions 1234 and 1235. The phosphorylation of these sites is an essential step of the activation of the MET 72 

receptor, leading to the phosphorylation of two additional tyrosines (1349 and 1356) in the carboxyl-73 

terminal docking site, enabling recruitment of adapter proteins and transduction of the signal [16]. See 74 

Figure 1 for a schematic representation of MET. 75 
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HGF/SF: gene, RNA and protein structure 76 

HGF was initially isolated from rat platelets in 1987 and cloned in 1989 [17] while SF was independently 77 

described at the same time as a factor of cell motility [18]. The gene encoding HGF is located on 78 

chromosome 7 (7q21.11) and contains 18 exons, transcribed into a 5987 nucleotide long mRNA, itself 79 

translated into a 728 aminoacid long protein (www.ncbi.nlm.nih.gov/gene/3082). Transcriptional regulation 80 

of this locus is controlled by, among other factors, TNFα, IL-6, TGFβ, CRE, and estrogens [19]. HGF is 81 

secreted as a single chain that is proteolytically cleaved into α (69 kDa) and β (34 kDa) subunits by various 82 

proteases such as urokinase, matriptase and hepsin [20]. The two subunits remain linked by a disulfide bond 83 

and bind heparin in the extracellular matrix via the α subunit [17,21]. The α chain contains an N-terminal 84 

loop followed by four Kringle domains (K 1-4) while the β subunit is homologous to serine proteases of the 85 

chymotrypsin family but has no enzymatic activity (SPH domain) [22,23]. The α chain of HGF is sufficient 86 

for binding with the IPT domains of MET with a high affinity, but the β subunit is necessary for proper 87 

MET activation by receptor homodimerization and binds the SEMA domain with lower affinity [12,21]. 88 

See Figure 1 for a schematic representation of HGF. 89 

MET in development and tissue regeneration 90 

MET activation and signal transduction pathways 91 

As presented above, MET is a transmembrane protein activated by its homodimerization upon binding of 92 

HGF. The signaling pathways activated by this event described below affect the cellular processes presented 93 

in the next section.  94 

Upon dimerization of MET, the tyrosine residues 1234 and 1235 in the kinase domain are 95 

transphosphorylated, leading to phosphorylation of two additional tyrosine residues (1349 and 1356) in the 96 

docking domain [16]. This phosphorylated docking domain forms an SH2 recognition motif enabling the 97 

recruitment of adaptor and effector proteins such as Grb2, Gab1, SHC, CRK, PI3K, PLCγ, SHIP-2 and 98 

STAT-3 [2,16]. One remarkable difference between MET and other RTKs is that Gab1 can bind MET either 99 
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indirectly through Grb2, or directly thanks to a MET binding domain, whereas it can only bind other RTKs 100 

indirectly [24]. Acting together, these adapters either activate signaling cascades or recruit other proteins, 101 

which will themselves signal downstream. This causes the activation of pathways essential for growth, 102 

proliferation and cell motility through the following signaling cascades. Through binding and activation of 103 

the PI3K subunit p85, MET induces Akt signaling, leading to the activation of mTOR, a complex 104 

responsible for cellular growth and protein translation [16]. Additionally, Akt affects the p53 pathway by 105 

activating MDM2 while inactivating pro-apoptotic factors such as BAD and thus offers protection from 106 

apoptosis [25]. Finally, Akt activates positive cell cycle regulators such as Myc and cyclin D1 by inhibiting 107 

GSK3β [26]. Another major signaling pathway downstream of MET is the MAPK cascade. By recruiting 108 

SOS via Grb2, MET activates the small GTPase Ras, which subsequently activates Raf, a kinase responsible 109 

for the phosphorylation of MEK1/2. Activated MEK1/2 will phosphorylate the next kinases in the cascade: 110 

the Mitogen-Activated Protein Kinases (MAPK) ERK1/2. Active ERK1/2 translocate into the nucleus, 111 

where their kinase activity promotes the stabilization of transcription factors responsible for motility and 112 

cell cycle progression in the G1-S transition [27,28]. 113 

Additional pathways are activated by MET, such as the STAT-3 cascade and NF-κB signaling. STAT-3 114 

binds and is phosphorylated by MET, leading to its translocation into the nucleus where it acts as a 115 

transcription factor for several genes related to proliferation, differentiation and morphological changes such 116 

as the formation of tubules [29]. NF-κB is part of a family of rapid-acting transcription factors kept inactive 117 

in the cytoplasm by IκB, which is itself controlled by IKK. Through the PI3K-Akt pathway, MET activates 118 

IKK, which subsequently phosphorylates IκB, promoting its ubiquitination and degradation, releasing NF-119 

κB. Free NF-κB translocates into the nucleus and promotes the transcription of mitogenic, anti-apoptotic 120 

and general cell-protective genes [30]. One more signaling axis worth mentioning, as it is connected to 121 

epithelial-mesenchymal transition (EMT) via the promotion of cell migration and anchorage-independent 122 

growth, occurs through FAK via the activation of Src by MET. Activated FAK regulates cell-matrix 123 

adhesion as well as cytoskeleton reorganization and promotes cell invasion [31]. This process is assisted by 124 

the protective role of MET against anoikis, a form of cell death caused by cell detachment from the 125 
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extracellular matrix [32]. Finally, MET can also crosstalk with various other membrane proteins, forming a 126 

complex network. For instance, interaction with CD44v6, a glycoprotein involved in cell-matrix and cell-127 

cell adhesion, is required for HGF-dependent activation of MET in several cancer cell lines, is crucial for 128 

Ras activation through SOS and connects MET to the cytoskeleton [33]; α6β4 integrin, a receptor for 129 

laminin, plays a role in MET-controlled invasive growth by associating with MET and enhancing PI3K, 130 

SHC and Ras signaling [34]; and the semaphorin receptor Plexin B1, a regulator of cell-cell interaction also 131 

associates with MET to enhance its activation and thus promote invasive growth [35]. Moreover, MET has 132 

been hypothesized to protect cells from apoptosis by interacting with Fas and preventing FasL binding [36]. 133 

Under normal circumstances, MET is downregulated by various mechanisms, including negative feedbacks. 134 

Notably, active MET is phosphorylated on tyrosine 1003, leading to the recruitment of Cbl, an E3 ubiquitin 135 

ligase that will target MET degradation via two pathways: multiple monoubiquitination promotes its 136 

trafficking to the lysosome via the endosomal network for proteolytic degradation, whereas 137 

polyubiquitination promotes its proteasomal degradation [15,37]. The activation of PKC through PLCγ 138 

constitutes another negative feedback mechanism, as PKC-dependent phosphorylation of MET serine 985 139 

downregulates MET tyrosine kinase activity, whereas PP2A can dephosphorylate serine 985 and counteract 140 

the action of PKC [14]. Ubiquitin-dependent degradation of MET is not the only proteolytic mechanism 141 

downregulating MET: ADAM metalloproteases can cleave MET in the extracellular domain and cause the 142 

shedding of its ectodomain, followed by cleavage of the intracellular domain by γ-secretase [38]. This acts 143 

in two ways to downregulate MET: first by reducing the number of receptors available for HGF binding, 144 

second by releasing the ligand-binding domain of MET proteins, which will act as decoy receptors and thus 145 

reduce the amount of free HGF available for MET activation. This mechanism acts independently of MET 146 

activation and enables a constant low-grade attenuation of MET signaling [39]. Finally, several 147 

phosphatases have been shown to inhibit MET directly by dephosphorylating its tyrosine residues. Such 148 

phosphatases include PTP1B and TCPTP (which dephosphorylate tyrosines in the catalytic domain) as well 149 

as DEP1, LAR and RPTP-β (which target tyrosines in the docking domain) [40–43]. For an overview of the 150 

pathways activated by MET and their biological outcomes, see Figure 1. Altogether, this depicts MET as a 151 
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tightly regulated RTK involved in numerous cellular pathways. As MET has been shown to be crucial in 152 

many processes in embryonic development and tissue repair, these pathways have been the object of 153 

thorough studies, which are summarized in the next section.  154 

The physiological functions of MET 155 

As mentioned earlier, MET was initially discovered because of its oncogenic potential. However, the normal 156 

function of MET is to act as essential regulator of various cellular function playing a pivotal role in the 157 

development of various tissue types, as well as an important factor for tissue repair [1]. 158 

MET is mostly expressed by epithelial cells of various tissues and organs (including the gastrointestinal 159 

tract, lung, liver, kidney, thyroid and skin) as well as some endothelial cells, cells in the hematopoietic 160 

lineage, B cells and in neurons of various brains structures, while HGF is mainly expressed and secreted by 161 

mesenchymal cells such as fibroblasts as a cytokine that modulates the proliferation of epithelial cells [44–162 

49]. As the other name of HGF – scatter factor – suggests, it also affects the “scattering” of MET-expressing 163 

cells and controls invasive growth by its motogenic, mitogenic and morphogenic properties [50]. MET acts 164 

as the main coordinator of the various stages of this complex program that involves proliferation, matrix 165 

degradation, survival and migration: together MET and HGF form the basis for epithelial and mesenchymal 166 

interaction, wound closure and angiogenesis at various stages of life [51]. As such, MET signaling is 167 

essential in vivo: deletion of HGF was shown to impair proper placental and fetal development in mice, 168 

leading to in utero death. Among the affected tissues, liver was strongly impacted and showed drastic size 169 

reduction [52]. By virtue of being expressed in many more organs, MET signaling is key for the 170 

development of additional types of tissues, including the pancreas, muscles and various types of neurons 171 

[53–55]. It regulates angiogenesis by promoting VEGF signaling while downregulating TSP-1, and thus 172 

stimulating endothelial cell motility [45,56], and can also promote hematopoiesis [46]. As a token of the 173 

pleiotropic functions of MET, a recently discovered mutation in the fourth IPT domain (F841V) has been 174 

linked to hearing loss in humans [57]. 175 
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MET functions are not limited solely to development: by promoting proliferation and invasion, it is a crucial 176 

component of wound repair when the invasive growth of remaining cells needs to be reactivated to 177 

reconstitute the damaged tissues. Along with other factors, MET signaling plays a key role in liver and 178 

kidney regeneration [58,59]. Bone remodeling also involves MET signaling as both osteoclasts and 179 

osteoblasts express MET and osteoclasts secrete HGF, leading to a crosstalk between these cell types to 180 

ensure proper bone resorption and deposition [60]. Beyond its functions directly involved in repair, MET 181 

signaling plays a protective role in damaged tissues (such as ischemic cardiac muscle) by protecting cells 182 

from apoptosis [61]. As a whole, the HGF-MET tandem can be described as a crucial factor for cellular 183 

proliferation, growth and motility. While these functions are essential for normal life, they can be hijacked 184 

to support cancer development, which will be described in the next section. 185 

The oncogenic facet of MET: a key player in cancer development and 186 

progression 187 

Mechanisms of MET/HGF deregulation 188 

The initial discovery of MET was made by the generation of an artificially induced oncogenic fusion protein, 189 

and while this particular rearrangement was later also observed in human gastric cancerous lesions, a 190 

plethora of different mechanisms leading to MET deregulation can naturally occur at all stages of 191 

carcinogenesis and caught the interest of researchers promptly after the initial discovery of tpr-MET [62]. 192 

Various mechanisms have been shown to lead to MET deregulation in cancer, the most obvious one being 193 

HGF-dependent: the stromal cells surrounding tumors frequently express HGF [63]. Ligand-dependent 194 

activation of MET sometimes happens in an autocrine instead of paracrine fashion, however the 195 

overexpression of MET is sometimes necessary for tumor cells to respond to HGF [64,65]. As a matter of 196 

fact, MET overexpression is the most frequent cause of its constitutive activation in a ligand-independent 197 

manner and results mostly from transcriptional upregulation. Examples of this have been reported in a 198 

breadth of distinct carcinomas including thyroid, colorectal, ovarian, pancreatic, lung, and breast cancer 199 
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[66–71]. Hypoxia is one of the mechanisms that can trigger increased transcription of MET: as mentioned 200 

above, HIF-1α can promote the transcription of MET [72]. Interestingly, MET overexpression can occur as 201 

a response to radiotherapy through the ATM-NF-κB signaling pathway [73]. Activation of other oncogenes, 202 

such as Ras, can upregulate MET expression as well [74]. A less common way for tumor cells to overexpress 203 

MET is the amplification of its locus. Such gene amplification has been reported in esophageal 204 

adenocarcinoma, medulloblastoma, cancer of the pancreas and of the gastrointestinal tract [75–78]. In lung 205 

adenocarcinomas, MET amplification has also been documented as an acquired resistance mechanism to 206 

EGFR targeted therapy [79]. Activation of MET due to its overexpression is thought to happen through its 207 

spontaneous dimerization via the SEMA domain and is linked to cell-matrix adhesion mechanisms. [69,80]. 208 

However, some tumors rely on point mutations to activate MET without overexpressing it. The relevance 209 

of activating MET mutations is underscored by the evidence that in HNSCC, the selection of somatic MET 210 

mutations is promoted during metastatic spread [81]. These genetic aberrations include mutations in the 211 

kinase domain of MET and have been described in both hereditary and sporadic forms of papillary renal 212 

cell carcinomas as well as in gastric cancer [82,83]. Many of these mutations have been thoroughly studied 213 

by their ectopic expression in various cellular systems, such as the NIH 3T3 mouse fibroblast model [84].  214 

Ineffective downregulation of MET through the inactivation of pathways leading to MET dephosphorylation 215 

or degradation can also lead to increased MET activation [85]. A relevant example of these mechanisms is 216 

seen in a family of mutations leading to alternative splicing and hence skipping exon 14 of MET. The 217 

resulting protein lacks a section of the juxtamembrane domain containing serine 985 and tyrosine 1003 218 

which, as previously mentioned, are capital for the downregulation and degradation of MET [86]. These 219 

mutations were first observed in lung cancer cases as a response mechanism to EGFR inhibition by MET 220 

activation, and were later detected in subpopulations of brain and gastric cancer patients [87]. While a 221 

relatively rare mutation, it could serve as a biomarker for patient stratification, as presented in later sections 222 

of this review. 223 
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Finally, MET activation can result from the activation of other RTKs. For instance, stimulation of EGFR 224 

with its ligand EGF promotes MET activation via the MAPK signaling pathway when both RTKs are co-225 

expressed [88]. Another example is RON, an RTK structurally related to MET. These receptors can interact 226 

together and are sufficiently similar for the activation of one to lead to the phosphorylation of the other [89]. 227 

Similarly, several other RTKs, including IGF-1R and AXL, can interact with MET and cause its activation 228 

[90,91].  229 

The significance of MET in cancer: a prognostic marker and a target 230 

MET deregulation can happen at any stage of cancer development, and together all the activation 231 

mechanisms presented above have been shown to promote both primary tumor formation and the transition 232 

to metastatic disease [66]. Various studies have associated high MET expression and activation with poor 233 

outcome [92]. For instance, high expression is known to correlate with markers of negative prognosis in 234 

thyroid carcinoma, is a significant negative prognostic marker in NSCLC and is a predictor of tumor 235 

invasion and lymph node metastases in colon cancer [93–95]. These last two examples are representative of 236 

two classes of cancer that are of particular interest in the context of MET: gastrointestinal and lung cancers. 237 

While MET mutations or amplifications are rare in gastric and colorectal cancer (CRC), overexpression of 238 

MET and HGF at the mRNA and protein levels is common and can be observed in up to 40-70% of patient 239 

samples, correlates with tumor stage and is a prognostic marker of clinical outcome [66,96–99]. Moreover, 240 

MET expression is a predictor of invasive growth in gastric cancers and is associated with higher 241 

occurrences of lymph node and liver metastases [32,95,100]. Cellular and in vivo models of gastric and 242 

colorectal cancer have confirmed these observations and show that blockade of MET signaling reduces 243 

tumor growth and spread [32,101–103]. Overall, while the various methods and scoring systems used to 244 

assess MET-positivity make the prognostic value of its aberrant expression difficult to gauge, systematic 245 

reviews and meta-analyses associate high MET expression with higher hazard ratios and poor prognosis in 246 

gastric and colorectal cancer [104]. Interestingly, MET amplification has been observed as a resistance 247 

mechanism to EGFR inhibition in metastatic colorectal cancer, a phenomenon that can also occur in 248 
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NSCLC, either by selecting for pre-existing MET-amplified subclones or by inducing de novo copy number 249 

gains [105,106]. Lung cancer studies also led to the discovery of another clinically relevant phenomenon: 250 

MET exon 14 skipping mutations [107]. Because of such genetic aberrations, MET is considered a major 251 

oncogene and a potential target in NSCLC [108]. Indeed, there is evidence for the efficacy of MET-targeting 252 

therapies in NSCLC cases exhibiting MET alterations [86]. 253 

A more global picture of the role of MET in cancer depicts this RTK as an overall negative factor. Combined 254 

data from multiple studies accessed from the cBioPortal website reveal that MET genetic alterations are 255 

common in various types of cancers (Figure 2A), the highest mutation rate is observed in lung cancers 256 

whereas esophageal squamous cell carcinomas show the highest amplification rate. RNA sequencing shows 257 

overexpression in all cancer types: the highest median expression is found in papillary renal cell carcinoma 258 

(PRCC), often combined with amplification or copy number gain, and the lowest overexpression is seen in 259 

acute myeloid leukemia (AML) (Figure 2B). Strikingly, disease outcome is significantly worse for cases 260 

with MET alterations compared with non-altered MET, showing a median overall survival of 66.7 versus 261 

92.4 months (Figure 2C). 262 

As will be discussed further below, these observations have led to a great interest in the development of 263 

MET targeting compounds, in particular for the treatment of MET-addicted tumors, as covered by various 264 

reviews [80,109]. 265 

MET as an addicting oncogene 266 

Oncogene addiction, an expression that was first coined by Bernard Weinstein in 2002, denotes the fact that 267 

despite having multiple genetic alterations, the survival and proliferation of some tumor cells rely 268 

exclusively on one (or a few) specific oncogenes, the earliest examples being Myc, Ras, Bcr-Abl and 269 

HER2/neu [110–114]. Thus, the inhibition of the addicting oncogene is often sufficient to induce 270 

proliferative arrest, senescence, apoptosis or terminal differentiation in addicted cancer cells [115]. While 271 

this phenomenon was first observed in artificial models, this field of research was quickly translated to 272 

applicable treatment strategies in the clinic with oncogene-targeted therapies. Imatinib, a specific inhibitor 273 
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of Bcr-Abl, the product of the Philadelphia chromosome translocation and a cause of chronic myeloid 274 

leukemia, showed remarkable efficacy in patients [116]. Similarly, inhibition of HER2 with the monoclonal 275 

antibody trastuzumab was shown to be efficacious and well tolerated in breast cancer patients displaying 276 

strong overexpression of the receptor [117]. Over the years, evidence has emerged that oncogene addiction 277 

can occur in many types of cancer and for several oncogenes, including major RTKs such as EGFR, VEGFR 278 

and KIT [118]. Numerous clinical trials have shown the efficacy of targeted therapies against EGFR in lung 279 

cancers driven by that oncogene, significantly improving progression free-survival (PFS) compared to 280 

standard of care, but most trials failed to show higher overall survival [119–122]. Similarly, additional 281 

examples of therapies targeting addiction to various oncogenes, both in preclinical and clinical trials, have 282 

shown strong early response but failed to elicit durable effects [123]. This can be explained by the 283 

development of resistance to the therapeutic compound via one or several mechanisms including the 284 

selection or acquisition of protective mutations in the target and the escape from addiction, relying instead 285 

on other pathways or oncogenes for cancer cell survival and proliferation, highlighting the need for 286 

combination therapy [118,124,125]. As emphasized previously, MET is a potent oncogene involved in 287 

various stages of neoplastic and metastatic development as well as in resistance mechanisms to therapies 288 

targeting other oncogenes. Moreover, there is evidence for MET addiction in the preclinical and clinical 289 

settings, making this receptor a prime target for targeted therapy [80]. For instance, the MET inhibitor PHA-290 

665752 has proven remarkably efficient in inducing apoptosis in gastric cancer cell lines harboring 291 

amplification of wild-type MET, while sparing cell lines without copy number alterations [103]. Similarly, 292 

out of a panel of 35 human cancer cell lines, the eight lines with the highest expression of active MET were 293 

shown to be significantly sensitive to the MET-targeting antibody ABT-700 [126]. While the most 294 

promising results of MET-targeting therapies have been observed in the preclinical setting, their potential 295 

translational application is supported by case reports describing encouraging results for their use in MET-296 

amplified lung and gastric cancer patients [127–129]. 297 
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Targeting MET in the clinic: tools, trials, troubles and tentative 298 

treatments 299 

Many angles of attack have been used to target the HGF-MET signaling axis in cancer cells. A wide variety 300 

of compounds have been developed, such as decoy ligands, docking site blockers and chimeric ribozyme 301 

constructs leading to the degradation of MET mRNA [130–132]. However, such strategies have not been 302 

clinically tested at this point. Therefore, the main focus of this section will be the two most commonly used 303 

categories of compounds: antibodies targeting either HGF or MET, and small molecules inhibitors of MET.  304 

Antibodies targeting HGF and MET 305 

Targeting oncogenes with antibodies is sometimes viewed as preferable than the use of small molecule 306 

inhibitors because antibodies can be more specific, are usually well tolerated, can elicit cumulative cellular 307 

responses and have longer half-lives, but need to be administered intravenously whereas small molecule 308 

inhibitors are available orally and can target receptors regardless of their mechanism of activation (ligand-309 

dependent or -independent) [2,133]. There currently is a number of humanized and fully human monoclonal 310 

antibodies (mAbs) targeting MET or HGF in development or in clinical trials. The main mechanism of 311 

action of anti-HGF mAbs is to prevent the binding of HGF to MET by targeting domains required for their 312 

interaction. Antibodies targeting MET can act similarly to prevent HGF binding, but have also shown 313 

indirect mechanisms of actions such as receptor degradation or downregulation and immune-mediated 314 

antibody-dependent cellular cytotoxicity (ADCC) or complement-dependent cytotoxicity (CDC) [133]. 315 

HGF-targeting mAbs include the fully human IgG2 rilotumumab (AMG 102, Amgen, Thousand Oaks, 316 

California, USA) preventing interaction with MET by targeting the SPH domain of HGF [134], the 317 

humanized IgG1 ficlatuzumab (AV-299, Aveo Pharmaceuticals, Cambridge, Massachusetts, USA) [135], 318 

and the mAb L2G7 (Galaxy Biotech, Sunnyvale, California, USA)/TAK-701 (Takeda pharmaceutical, 319 

Osaka, Japan) [136], all of which are under clinical investigation. Additional anti-HGF antibodies are also 320 
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being studied at the preclinical level, such as SFN68, which binds HGF in complex with MET, and the 321 

bispecific (MET- and serum albumin-binding) nanobodies 1E2-Alb1 and 6E10-Alb8 [137,138]. 322 

As mentioned before, MET targeting antibodies can elicit diverse cellular responses depending on their 323 

nature and the domain they bind. R13 and R28 (OncoMed Pharmaceuticals, Redwood city, California, USA) 324 

are fully human mAbs used in tandem that compete with HGF for binding and induce ADCC [139]. 325 

SAIT301 (Samsung Inc, Yongin, Republic of Korea) is a humanized mAb that leads to MET downregulation 326 

by internalization and lysosomal degradation via LRIG1 [140]. Similarly, emibetuzumab (LY2875358, Eli 327 

Lilly, Indianapolis, Indiana, USA) is a humanized IgG4 that induces internalization and degradation of MET 328 

and prevents HGF binding [141]. ABT-700 (AbbVie, Lake Bluff, Illinois, USA) is a humanized IgG1 that 329 

blocks HGF binding and induces ADCC by recruiting natural killer cells to mediate the lysis of the targeted 330 

cells [126]. An antibody-drug conjugate (ADC) has been developed from ABT-700: ABBV-399 (AbbVie). 331 

This ADC is composed of the antibody and the cytotoxic microtubule inhibitor monomethylaurstatin E, 332 

connected by a cleavable linker. Using an ADC could present the advantage of efficiently targeting cancer 333 

cells with high expression of MET regardless of MET activation or addiction, while sparing normal cells 334 

expressing lower levels of MET [142]. Onartuzumab (MetMab/OA-5D5, Genentech, South San Francisco, 335 

California, USA) is a humanized monovalent antibody that competes with HGF by binding to the SEMA 336 

domain of MET [143]. DN30 (Metheresis Translational Research SA, Lugano, Switzerland) is a chimeric 337 

mouse IgG2A that induces ADAM-10 mediated shedding of receptor by binding the 4th IPT domain of MET 338 

and altering the conformation of the receptor, which has the benefit of preventing MET activation and 339 

releasing decoy MET moieties that can titer HGF away from cancer cells. The original form of the 340 

compound had a flaw common to several receptor-targeting antibodies: since antibodies contain two binding 341 

domains, DN30 could act as a partial agonist of MET by bringing two receptors together, leading to ligand-342 

independent dimerization and activation. This issue was solved by converting the compound to a smaller 343 

monovalent Fab (MvDN30), which unfortunately had an increased renal clearance due to its small size 344 

[144]. Two strategies could be explored to solve the resulting shorter half-life: stabilizing the plasma 345 

availability of the compound (for example by PEGylation) or enabling continuous production of the Fab in 346 
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patients by gene transfer therapy, a route that is investigated in preclinical models of glioblastoma 347 

multiforme, where MET has been described as a marker of cancer stem cells [145]. 348 

Small molecule inhibitors of MET 349 

As mentioned earlier, small molecule tyrosine kinase inhibitors (TKIs) have the benefit of targeting the 350 

activated receptor regardless of ligand presence by preventing ATP from reaching the ATP-binding pocket 351 

of the kinase domain [146]. However, TKIs can vary in their specificity: some compounds have 352 

demonstrated remarkable specificity for MET while others inhibit several kinases with varying affinities. 353 

One notable exception to the ATP-competitive mode of action is the case of Tivantinib (ARQ197, Daiichi 354 

Sankyo, Tokyo, Japan, and ArQule Inc, Woburn, Massachusetts, USA), which was initially presented as an 355 

allosteric inhibitor of MET locking the receptor in the inactive conformation, but has subsequently been 356 

shown to exert its cytotoxic activity by interfering with microtubule dynamics without affecting MET 357 

activation [147]. Table 1 lists relevant examples of non-selective and selective TKIs that are at various 358 

stages of clinical trials [2,109]. 359 

MET/HGF targeting in clinical trials 360 

Over the years, many of the compounds presented above have progressed through clinical trials with varying 361 

degrees of success. While there are too many completed and ongoing trials to be comprehensively presented 362 

here, previous reviews have regularly summarized their progress, and only the most relevant examples of 363 

completed or ongoing studies are highlighted below [2,80,109,133,146,148]. It should be noted that 364 

currently only two non-selective MET TKIs have been approved for use, but not specifically for their MET-365 

inhibiting action: cabozantinib for medullary thyroid cancer and kidney cancer, and crizotinib for ALK and 366 

ROS1 positive NSCLC [149,150]. However, these and other compounds are still being evaluated for other 367 

cases, with many trials focusing on lung and gastrointestinal cancers due to the role this signaling axis plays 368 

in the development and progression of these malignancies, as mentioned earlier. Nonetheless, a number of 369 

studies is also being performed for other types of cancer, such as HCC, castration-resistant prostate cancer, 370 

renal cell carcinoma or metastatic melanoma [151]. Altogether, these trials have produced mixed results for 371 
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the use of MET/HGF-targeting compounds in the clinic. As mentioned earlier, the main mechanism of MET 372 

activation is ligand-independent and relies on the overexpression of the receptor, explaining why the 373 

majority of the currently explored strategies focus on targeting MET rather than HGF. However, HGF-374 

targeting compounds have also been investigated and notable examples are presented below. 375 

The anti-HGF mAb rilotumumab has undergone phase III clinical trials (RILOMET-1 and 2, NCT01697072 376 

and NCT02137343) as first-line therapy in patients with advanced MET-positive gastric and 377 

gastroesophageal cancer, in combination with ECX chemotherapy. Unfortunately, after the promising 378 

results of a phase II trial, the RILOMET studies showed that the addition of rilotumumab to chemotherapy 379 

performed worse than chemotherapy alone, leading to the early termination of the trials [152,153]. Similarly, 380 

the phase II MEGA study compared the combination of rilotumumab plus mFOLFOX6 versus mFOLFOX6 381 

alone as a first-line treatment for HER2-negative advanced gastric and gastroesophageal cancer but failed 382 

to show improvements with the addition of rilotumumab (NCT01443065). 383 

The phase III METGastric study evaluated the benefits of the addition of onartuzumab to mFOLFOX6 as a 384 

first-line treatment of MET-positive but HER2-negative metastatic gastric and gastroesophageal 385 

adenocarcinoma, but failed to show any significant improvement [154]. A promising phase II clinical trial 386 

studying the addition of onartuzumab to EGFR inhibition for the treatment of advanced NSCLC showed 387 

benefit in the MET-positive population, but failed to confirm this result in a subsequent phase III trial. Two 388 

hypotheses have been proposed to explain this unfortunate turn of events: compounds preventing the 389 

interaction between MET and HGF might be ineffective in this setting (for example in the case of ligand-390 

independent activation of MET), or the biomarkers used for patient recruitment were inadequate [155,156]. 391 

The results of additional phase III studies are still pending. 392 

Crizotinib, as mentioned before, is a multitarget inhibitor and has been approved for the treatment of NSCLC 393 

expressing the fusion proteins EML4-ALK or CD74-ROS1, two types of cancer where its efficacy was 394 

demonstrated [149,150]. However, its pertinence as a MET inhibitor is still being evaluated. Early results 395 

of a Crizotinib trial showed some promise for the treatment of NSCLC harboring MET exon 14 skipping 396 
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mutations [157]. The phase I PROFILE 1001 trial has also been testing the efficacy of this compound in 397 

lung cancer and other solid tumors exhibiting MET, ALK or ROS1 alteration. While the study is still 398 

ongoing, preliminary results have shown benefits for patients with advanced, ROS1-rearranged or MET-399 

amplified NSCLC [158,159]. Likewise, several ongoing phase II trials are evaluating the performance of 400 

crizotinib in NSCLC and other cancers, focusing on genetic alterations such as MET amplification and 401 

mutation (NCT02034981, NCT02499614, NCT03088930). Similar trials are also being performed for 402 

gastric cancer: a pilot phase I study showed that MET-amplified gastroesophageal adenocarcinoma could 403 

transiently respond to crizotinib [160], the subsequent phase II study has yet to publish conclusions 404 

(NCT02435108). At the present time, the phase I MErCuRIC1 trial represents a first attempt at combining 405 

crizotinib with a MEK inhibitor in a cohort of CRC patients harboring amplified MET and either wild-type 406 

or mutated Ras (NCT02510001) [161].  407 

Cabozantinib is the second non-selective MET inhibitor that has been approved for use in the clinic: for 408 

advanced, unresectable medullary thyroid cancer and for kidney cancer as a second-line treatment after anti-409 

angiogenic therapy [162,163]. As for crizotinib, the approved use of cabozantinib does not involve the status 410 

of MET in the tumor. There is currently limited evidence for the benefit of using cabozantinib specifically 411 

to target MET: a case report presented one patient with MET exon 14 skipping who showed complete 412 

response, and the phase III CELESTIAL trial in HCC, a disease where MET has been implicated, showed 413 

a slight but significant improvement in PFS and overall survival for patients treated with cabozantinib, but 414 

did not report on a MET-specific response [157,164–166]. Several phase II trials are currently testing 415 

cabozantinib specifically for lung and salivary gland cancer harboring MET alterations (NCT03729297, 416 

NCT01639508, NCT03911193, NCT02132598). 417 

Selective MET inhibitors are also being investigated in clinical trials, with some studies specifically 418 

focusing on the status of MET in the tumors. Capmatinib displayed improvements for patients with MET-419 

overexpressing or amplified NSCLC in a phase I trial, and a phase Ib/II study with EGFR-targeted therapy-420 

resistant NSCLC showed benefits for tumors having high MET copy number gains [167,168]. Numerous 421 
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phase II trials are currently testing Capmatinib in MET-dysregulated NSCLC and HCC (NCT03693339, 422 

NCT02750215, NCT01737827, NCT01610336, NCT02414139, NCT02276027). 423 

Tepotinib had an antitumor effect in a phase I study, which led to the start of a phase I/II study in MET-424 

positive HCC as an alternative to sorafenib (an inhibitor of VEGFR) [169–172] and the opening of the 425 

recruitment for a phase II trial in advanced NSCLC harboring MET exon 14 skipping mutations or MET 426 

amplification (NCT02864992). Recently, a trial has been set up to assess the combination of tepotinib with 427 

a 3rd generation EGFR inhibitor to treat EGFR-mutated, MET-amplified NSCLC having acquired resistance 428 

to EGFR inhibitors (NCT03940703). 429 

AMG 337 has been evaluated in a phase I trial for various advanced malignancies where it elicited a 430 

favorable response in MET-amplified tumors [173]. Unfortunately, the following phase II study was 431 

terminated early after an intermediate review revealed that the treatment had a lower-than-expected activity 432 

compared to the phase I trial, despite the selection of patients exhibiting MET amplification [173]. Another 433 

phase II study is currently recruiting patients with advanced or metastatic solid tumors harboring MET 434 

overexpression or exon 14 skipping mutations (NCT03147976). 435 

 Savolitinib is involved in numerous trials at different stages, including a phase II study in lung cancer, 436 

selecting for MET exon 14 mutated cases (NCT02897479), and several phase I/II studies in advanced gastric 437 

adenocarcinoma or metastatic CRC with MET overexpression as second- or third-line treatment, alone or 438 

combined with docetaxel (NCT03592641, NCT02449551, NCT02447380). Of note, savolitinib is also 439 

being evaluated in a phase III study in MET-driven, unresectable, locally advanced or metastatic PRCC 440 

(NCT03091192), following a promising phase II trial in a similar setting where HGF mutations or MET 441 

alterations correlated with better response (NCT02127710) [174]. 442 
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The road ahead: better aiming, or better weapons? 443 

The stratification struggles 444 

Patient stratification for targeted therapy is not always a trivial affair: some targets can be more difficult to 445 

select than others. Whereas HER2 amplification is a common phenomenon in breast and gastric cancer (15-446 

30% and 21-33%, respectively) [175], leading to a large population in which treatment options such as 447 

trastuzumab and lapatinib have been tested and validated, true MET amplification is a rarer occurrence. 448 

Similarly, activating mutations are less frequently observed in MET than in EGFR, which can be mutated 449 

in up to 15% of Caucasian NSCLC patients [176]. Unlike these two examples, MET alterations have been 450 

detected in less than 10% of the cases for most cancer types (see Figure 2A), and this comparatively low 451 

MET alteration frequency makes it a challenging candidate for stratification. Furthermore, not all MET 452 

alterations might lead to sensitization to targeted therapy. A recurring question in the field of targeted 453 

therapy is the validity of the target: specific kinase inhibitors can only work if the corresponding kinase is 454 

essential to the growth and survival of the cancer cells [110,118]. Such oncogene addiction can be difficult 455 

to establish outside of a preclinical cellular model, and the setbacks from early clinical trials targeting MET 456 

could have resulted from inappropriate patient selection. Indeed, patient stratification was often initially 457 

made based on MET expression in the tumor, regardless of MET activation (denoted by the phosphorylation 458 

of MET tyrosines 1234/1235), potentially rendering MET targeting ineffective [177]. Indeed, only a fraction 459 

of MET positive tumors are actually p-MET positive [178]. One would think that assessing MET 460 

phosphorylation instead of MET expression in the tumor would be a simple solution to that problem. 461 

Unfortunately, the detection of phosphorylated MET by immunohistochemistry (IHC) remains complicated: 462 

unless extreme precautions are taken in the processing of the tissue and the detection process, the 463 

phosphorylation can be lost [179]. Research from Huang and colleagues highlights the complexity of 464 

defining the proper way to measure MET expression and activation by IHC on archival tissue, their work 465 

suggests that every type of cancer might need a specific companion diagnostic, potentially each with a 466 

different antibody [180]. 467 
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Early trials have been criticized for casting too wide a net by selecting patients using MET detection by IHC 468 

[181]. Therefore, the focus shifted to the detection of genetic alterations showing a better correlation with 469 

the response to MET-targeted therapies, such as MET amplification or MET exon 14 skipping mutations. 470 

However, MET amplification assessment by fluorescence in situ hybridization (FISH) is controversial as 471 

well. Some trials deem that duplication of the whole chromosome 7 is not enough to depict true MET 472 

amplification, and consider that only the amplification of the MET locus, defined by a high ratio of MET to 473 

centromere 7 (MET/CEP7), represents an oncogenic event [181]. What MET/CEP7 threshold should be 474 

applied remains controversial: some trials selected patients with a ratio higher than 2, whereas others defined 475 

MET amplification as a MET/CEP7 higher than five, the most stringent threshold suggesting that less than 476 

1% of the patients might exhibit true amplification, whereas less stringent settings include up to 7% in the 477 

MET-amplified group in gastric or lung cancer studies [181,182]. The stratification of patients harboring 478 

MET exon 14 skipping mutations, which is already being applied in some trials as presented above, could 479 

be a viable alternative selection strategy, enabled by the non-intrusive detection in circulating tumor DNA 480 

[157,179]. Nevertheless, it is important to remember that MET exon 14 skipping only occurs in up to 4% 481 

of NSCLC cases, and selecting such a small subset of patients could exclude other potential responders 482 

[183].  Regardless of the stratification method, it has become clear that only a minute fraction of tumors 483 

exhibit MET addiction, and thus the potential response to standard anti MET treatments might only prove 484 

effective for a very limited population [157,181]. However, recent advances in the field of immunotherapy 485 

could extend MET targeting therapies to tumors expressing MET without addiction to the oncogene, as 486 

presented in the next section. 487 

The rise of personalized immunotherapy 488 

The generation and injection of chimeric antigen receptor (CAR) T-cells is a type of adoptive 489 

immunotherapy and a promising method currently being developed for the treatment of cancer. The 490 

principle behind CAR T therapy is the genetic engineering of a patient’s T-cells ex vivo to express an 491 

artificial receptor (CAR) targeting a surface protein specifically expressed by the targeted tumor cells. 492 
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Modified T-cells are then infused into the patient, where they can target tumor cells independent of the 493 

major histocompatibility complex and trigger tumor cell death primary by cytolysis and by extrinsic 494 

apoptosis induction [184]. Thus, as opposed to TKIs and mAbs which can only affect MET-addicted cells 495 

or cells that express high levels of MET, this therapeutic approach can potentially be used to target cells 496 

expressing the target at a level too low for standard targeted therapy, or those that are not addicted to the 497 

target [185,186]. Currently, CAR T-based therapies have shown the most promise for hematologic 498 

malignancies, while their application to solid tumors remains a challenge [187]. Nevertheless, efforts are 499 

being made to target proteins such as EGFR [188], EphA2 [189] and HER2 [190]. Similarly, MET has been 500 

the object of recent studies evaluating its potential as a CAR T target. In order to overcome the challenge of 501 

solid tumor invasion by T-cells, Tchou and colleagues assessed the feasibility of intratumoral injection of 502 

MET-targeting CAR T-cells for the treatment of metastatic breast cancer. Intratumoral injection has the 503 

added benefit of reducing on-target off-tumor effect, which was further lessened by the transient expression 504 

of the CAR. After observing tumor control with this approach in a mouse xenograft model, six patients were 505 

enrolled for a phase 0 trial. All patients treated presented MET-positive tumors and the injection of CAR T-506 

cells was well tolerated. While no clinical response could be measured, systemic dissemination of CAR T-507 

cells remained limited and histological analysis of the sites of injection revealed the induction of necrosis, 508 

immune cell infiltration and loss of MET-positive cells. This trial was limited in its scope, but serves as an 509 

encouraging proof of concept, opening the door to further studies with larger cohorts and proper controls to 510 

evaluate the efficacy of MET-targeting CAR T therapies [191]. While the study by Tchou et al. generated 511 

a CAR with the single chain variable fragment of an antibody (onartuzumab), other approaches have also 512 

been described. Thayaparan and colleagues generated a CAR by using the NK1 domains of HGF, hijacking 513 

a natural MET-binding mechanism. They applied this approach to the treatment of mesothelioma and 514 

showed positive results in vitro with MET-expressing cell lines. They also showed the safety and efficacy 515 

of locally injected MET-targeting CAR T-cells in an intraperitoneal mouse xenograft model, leading to 516 

tumor regression, albeit only when injecting high doses of CAR T-cells [192]. These promising early results 517 

warrant further research into the efficacy of such therapies in the clinical setting, however the monitoring 518 
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and management of toxicity remains a crucial parameter to promote the application of CAR T therapies 519 

[187]. 520 

Conclusion: the past, present and future of MET signaling-targeted 521 

therapies 522 

As presented in this review, the results of MET/HGF-targeting agents in clinical trials are underwhelming. 523 

However, lessons can be learned from both successes and failures, which should help design future trials 524 

with improved patient selection and drug combinations. It could be remarked that antibody-based therapies 525 

seem to fare worse than small molecule inhibitors. However this might stem from an inferior patient 526 

selection process, as it was often made on the basis of MET expression measured by IHC, a technique that 527 

has limitations due to variables such as fixation and processing of the tissue or subjectivity in the scoring 528 

[193]. Furthermore, measuring MET expression has the downside of not necessarily correlating with MET 529 

activation, denoted by phosphorylation of tyrosine residues. Despite evidence that the presence of 530 

phosphorylated MET is associated with tumor progression and is a predictor of metastasis and survival in 531 

some types of tumors, assessing MET activation or addiction in this fashion has not been widely adopted 532 

for patient accrual [194,195]. As is seen for EGFR-targeting therapies, where efforts are made to enrich for 533 

patients with activating EGFR mutations, screening patients for genetic alterations that are associated with 534 

MET activation (notably MET exon 14 skipping mutation and MET amplification), rather than simply 535 

measuring MET expression, is now considered a superior selection strategy and predictor of response to 536 

MET inhibition in the case of NSCLC [86,157,196,197]. Indeed, ambitious efforts are currently being made 537 

to improve personalized therapy: the MATCH phase II clinical trial is aiming at stratifying patients by 538 

genetic alteration instead of histology to provide them with the appropriate treatment, such as crizotinib in 539 

the presence of MET overexpression or exon 14 mutations [198,199]. 540 

Another lesson can be learned from EGFR-targeting therapies: the inevitable rise of resistance, for example 541 

as a result of the acquisition of a mutation (e.g. EGFR T790M) that can null the effect of the TKI or by 542 
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relying on another RTK such as MET [200]. In the case of EGFR, this has been addressed in two ways: 543 

either by using more recent inhibitors that can overcome the protective effect of the mutation, such as 544 

osimertinib, or by combining EGFR and MET inhibition [197,201]. Similar approaches could be effective 545 

to face the expected emergence of resistance to MET-targeting compounds. Several such resistance 546 

mechanisms in MET-driven tumors and cell lines have been documented and include the selection of 547 

preexisting subclones harboring MET Y1248H (or Y1248C) mutations, rendering cells resistant to 548 

crizotinib, or MET D1228V, protecting against savolitinib. While these mutated variants of MET can be 549 

inhibited by glesatinib or cabozantinib, respectively, additional mutations could be selected or acquired in 550 

treated cells and render them resistant to virtually any inhibitor [202–204]. Resistance to MET inhibition 551 

can also occur through the amplification of HER2 or FGFR2 and de novo Ras mutations, which would 552 

require the combined use of several targeted therapies preemptively or after relapse [205,206]. Drug 553 

combinations can also be rationally designed to directly target processes that involve several RTKs. One 554 

such example would be the combination of VEGFR and MET inhibitors, as both are involved in 555 

angiogenesis [130,207]. Interestingly, such a combination could be necessary to overcome the unforeseen 556 

activation of MET by the inhibition of VEGFR in a particular setting. Indeed, targeting VEGFR in 557 

glioblastoma multiforme can have the unexpected effect of enhancing MET activation, leading to a more 558 

invasive tumor phenotype [208]. 559 

Altogether, despite middling success, preclinical and clinical studies show potential for MET as a 560 

therapeutic target, provided improvements in patient stratifications are made. The recent development of 561 

MET targeting immunotherapy and the granting by the FDA of a priority status to both capmatinib and 562 

tepotinib, based on the promising results of the GEOMETRY mono-1 (NCT02414139) and the VISION 563 

(NCT02864992) studies, highlight that MET remains an appealing target and could renew interest in this 564 

oncogene. Since the resistance to the inhibition of various oncogenes (such as EGFR, BRAF, MEK or 565 

FGFR) can arise through the activation of MET [109], looking forward, one can expect the development of 566 

combination therapies that could pre-emptively address resistance and have a synergistic effect with MET-567 

targeting therapies.  568 
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Figure and Table legends 1114 

Figure 1. Schematic representation of the subunits, domains and known phosphorylation sites of MET and 1115 

HGF, as well as major signaling pathways downstream of MET. 1116 

 1117 

 1118 

  1119 
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Figure 2. Summary of MET alterations frequency and outcome in different cancer types. Visualization of 1120 

the data generated on cBioportal.org [209,210] from 212 studies (see link for detailed list: 1121 

https://www.cbioportal.org/results/cancerTypesSummary?session_id=5d78f196e4b058f36688adc1, last 1122 

accessed on the 11th of September 2019)  1123 

A. Frequency of MET genetic alterations in various cancer studies (studies with an alteration frequency 1124 

lower than 1% have been excluded from the graph). 1125 

B. MET RNA expression in various types of cancer. 1126 

C. Kaplan-Meier graphs showing overall progression-free survival of cancer cases with and without 1127 

MET alterations. 1128 
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 1130 
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Table 1. Summary of MET inhibitors in use and in development. 1132 
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Compound name Company Targeted kinase(s) 

Crizotinib (PF-02341066) Pfizer (New York City, 

New York, USA) 

MET, ALK, RON, AXL, TIE2, ROS1 

Cabozantinib (XL184) Exelixis (Alameda, 

California, USA) 

MET, RET, VEGFR1-3, KIT, FLT3, 

TIE2, TRKB, AXL 

Foretinib (XL880) Exelixis/GlaxoSmithKline 

(London, UK) 

MET, VEGFR2, RON, ERK, AKT, 

PDGFRβ, c-KIT, TIE2 

Glesatinib (MGCD265) MethylGene/Mirati 

Therapeutics (San Diego, 

California, USA) 

MET, RON, VEGFR1-2, PDGFR, KIT, 

FLT3, TIE2, AXL 

Golvatinib (E-7050) Eisai (Tokyo, Japan) MET, VEGFR2, RON, Eph, KIT 

Merestinib (LY2801653) Eli Lilly MET, MST1R, FLT3, AXL, MERTK, 

TIE2, ROS1, NTRK1/2/3, DDR1/2, 

MKNK1/2, VEGFR2 

PF-04217903 Pfizer MET, ALK 

AMG 208 Amgen MET, VEGFR1-3, RON, TIE2 

Capmatinib 

(INC280/INCB28060) 

Incyte (Wilmington, 

Delaware, USA) /Novartis 

(Basel, Switzerland) 

MET 

Tepotinib (EMD1214063) EMD Serono (Darmstadt, 

Germany) 

MET 

AMG 337 Amgen MET 

Savolitinib/Volitinib 

(AZD6094) 

AstraZeneca (Cambridge, 

UK) 

MET 
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OMO-1 (JNJ-38877618) Johnson & Johnson (New 

Brunswick, New Jersey, 

USA) 

ME 
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