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Abstract

In this paper, we introduce the task of generating a sharp

slow-motion video given a low frame rate blurry video. We

propose a data-driven approach, where the training data

is captured with a high frame rate camera and blurry im-

ages are simulated through an averaging process. While it

is possible to train a neural network to recover the sharp

frames from their average, there is no guarantee of the tem-

poral smoothness for the formed video, as the frames are

estimated independently. To address the temporal smooth-

ness requirement we propose a system with two networks:

One, DeblurNet, to predict sharp keyframes and the sec-

ond, InterpNet, to predict intermediate frames between the

generated keyframes. A smooth transition is ensured by in-

terpolating between consecutive keyframes using InterpNet.

Moreover, the proposed scheme enables further increase in

frame rate without retraining the network, by applying In-

terpNet recursively between pairs of sharp frames. We eval-

uate the proposed method on several datasets, including a

novel dataset captured with a Sony RX V camera. We also

demonstrate its performance of increasing the frame rate up

to 20 times on real blurry videos.

1. Introduction

The understanding of fast moving objects is a challeng-

ing task that the average human eye can tackle only through

the aid of specialized hardware. Fortunately, commercial

cameras that can capture events in extreme slow-motion

have been made available by recent advances in the technol-

ogy. At one end of the camera spectrum are very expensive

and high-quality devices, used mostly by movie makers. At

the other end of the spectrum are cheaper commercial prod-

ucts that currently offer up to 240 frames per second (FPS).

The latter cameras tend to suffer from low signal-to-noise

ratio. This problem, however, is a general challenge, since

an increase of the frame rate causes a reduction of the ex-

posure and, consequently, of the amount of light imping-

ing on the sensor, which leads to poor signal to noise ra-

tio. Another challenge of these cameras is that they require

enormous transfer bandwidth and storage space. Moreover,

with an increasing frame rate, frames share a lot of content,

which makes the whole capture process resource-wasteful.

A cheaper and more resource-efficient alternative to the

high frame rate and high noise-sensitivity hardware solu-

tion is to use low frame rate cameras with long exposures

and increase their frame rate computationally. This has

been addressed by developing algorithms to interpolate sub-

sequent frames so that objects in the scene move natu-

rally [17]. However, using long exposures to image mov-

ing objects may result in motion blur. Thus, simply inter-

polating frames of a low frame rate camera may result in

unrealistic high frame rate blurry videos. To synthesize the

frames captured with a high frame rate camera and its small

exposure time, it is also necessary to perform motion de-

blurring. A direct solution is to combine the existing state of

the art methods for video deblurring (e.g., [24]), which yield

sharp frames corresponding to each input blurry frame, and

those for video interpolation (e.g., [6]), which generate in-

termediate frames between the deblurred frames, sequen-

tially. However, a naı̈ve combination of these methods is

suboptimal, because the deblurring process eliminates use-

ful temporal information. In fact, blurry frames contain in-

formation about the intermediate sharp frames (as their av-

erage), and once deblurred, the recovered frame will contain

information only about one of the intermediate frames.

To address these issues, we propose the system illus-

trated in Fig. 1. The method is built as a combination of

deblurring and interpolation, by introducing two neural net-

works: DeblurNet and InterpNet. The first network takes as

input four blurry frames and outputs five sharp keyframes,

which lie between the two middle input frames (highlighted

in blue in Fig. 1(a)). The second network takes as input

two subsequent keyframes and two blurry inputs, and gen-

erates a sharp frame between the two keyframes. Interp-

Net brings three benefits: 1) it generates realistic interme-

diate frames by exploiting the motion information stored

in the input blurry frames; 2) it ensures a smooth temporal

transition between output frames (see “frame across inputs”

in Fig. 1(b)) by using keyframes from subsequent blurry

frames quadruplets; 3) it allows to interpolate an arbitrary
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Figure 1: (a) DeblurNet outputs keyframes of the video. (b) InterpNet outputs the intermediate frames between the keyframes.

output frame rate, through its recursive application to pairs

of output frames. With reference to Fig. 1, InterpNet could

also be applied to pairs of subsequent output frames (e.g.,

between the keyframe S5
2 and the interpolated frame S6

2 ) to

generate a new intermediate frame. In the experiments, we

show each of these benefits and, in particular, the ability of

our method to achieve a 20-fold increase in the frame rate.

To guarantee the success of training, as was done in

recent works on video deblurring, we build a synthetic

dataset of blurry/sharp images. Sharp images are obtained

by capturing videos with a high FPS camera and the cor-

responding blurry frames are obtained by averaging those

images and adding noise. Instead of using existing datasets,

which are captured using smartphone cameras and Go-

Pros [7, 16, 19, 24, 25], we collect a new dataset consisting

of 1080P videos at 250 FPS by using a Sony RX V cam-

era. The images captured by smartphone cameras and Go-

Pros tend to have low signal-to-noise ratio. In contrast, our

dataset provides better image quality due to the large pixel

size of the Sony camera sensor. We will release this dataset

to the community, to contribute and foster future research

on video deblurring and interpolation algorithms.

Our main contributions are summarized as follows:

1. To the best of our knowledge, this is the first work to

generate sharp slow-motion videos from blurry videos;

2. We provide a novel high-quality video dataset, which

can be used for video deblurring, video frame interpo-

lation and the joint problem proposed and addressed in

this paper;

3. We introduce novel technical components that: 1) en-

sure the temporal smoothness of the output sequence;

2) exploit motion embedded in each motion-blurred

frame; 3) enable the generation of videos with arbi-

trary frame rates; 4) yield higher quality slow-motion

videos than in prior work.

2. Related Work

Motion Deblurring. Motion deblurring is an extremely

challenging problem due to its ill-posed nature. Classi-

cal approaches formulate image deblurring problems with

a space-invariant blur model and optimize it by introducing

image priors/regularizations that characterize natural image

statistics to address the ill-posedness [1, 3, 8, 20, 22, 27, 28].

However, real-world blurry images typically contain space-

varying blur [26], due to a depth variation in the scene

and the non-translational motion of the camera and ob-

jects. Some works address the non-uniform deblurring

problem by simultaneously recovering blur kernels and

scene depth [5, 21] or via scene segmentation [9]. Recently,

convolutional neural networks (CNNs) have been applied

to bypass the computationally expensive kernel estimation

step, and achieve impressive results [4, 7, 16, 18, 19, 25].

These methods often decrease contrast in areas with low

contrast and therefore generate results with cartoon-like ef-

fects. To recover the missing high-frequency details during

the blur process, the method [13] adopts a Wasserstein gen-

erative adversarial network (GAN) to render realistic de-

blurred images.

An extension of the above work is video deblurring,

where the sharpening needs to be applied to a sequence of

blurry frames about the same scene. The pioneering work

of Cho et al. [2] explores the similarity between frames of

the same video and exploits sharp patches from neighboring

frames. In [11], an integrated model is proposed to jointly

predict the defocus blur, optical flow and latent frames. Re-

cently, with the advance of deep learning, great progress

has been made in video deblurring. [24] deploys a U-net

structure that takes five consecutive blurry frames and re-

turns the deblurred third frame. By exploiting a recurrent

architecture, [10] achieves real time performance.

Frame Interpolation. Frame interpolation is commonly

used for frame rate conversion, image morphing, and

motion-based video compression. Conventional approaches

address the problem by estimating optical flow between in-
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put frames and interpolating the frames of interest via some

given image formation model [15, 31]. These optical-flow-

based approaches are able to render intermediate frames at

any positions between input frames. However, the quality of

the interpolated images heavily depends on the accuracy of

the optical flow estimate. Recent methods adopt data-driven

approaches to estimate the dense correspondence and ren-

der the interest frames in end-to-end CNNs [14, 30]. Un-

like flow-based methods, [17] treats each pixel of the in-

terpolated frame as a local convolution between two corre-

sponding patches of the input frames, and learns a CNN to

estimate space-varying and separable convolutional kernels

for each pixel. To enable multi-frame interpolation, a flow-

based CNN is proposed with a special handling of occlu-

sions [6]. Although these CNN-based interpolation meth-

ods achieve impressive results on sharp input frames, they

are not able to produce accurate results when applied to in-

put frames degraded by blur.

To the best of our knowledge, the problem described in

this paper has not been addressed before. The closest re-

lated work is [7] that extracts seven frames from a single

motion blurred image. Thus, to obtain a sharp slow-motion

video one could apply their method independently to each

blurry frame. This approach however faces two issues: first,

temporal ordering within each group of seven frames has to

be determined, and second, temporal smoothness between

intra-/inter-group frames is not guaranteed.

3. Video Slow-Motion and Deblurring

The problem of extracting a sharp video in slow-motion

given a blurry video entails two aspects: one is image de-

blurring and the other is temporal upsampling. We solve

the first aspect through a deblurring neural network, which

takes as input multiple blurry frames and generates a few

sharp frames. We handle the second aspect through an in-

terpolation neural network that generates an intermediate

frame between two sharp input frames (for example, pro-

duced by the deblurring network). The presence of mo-

tion blur in the input frames may seem only a nuisance as

it complicates the task of generating a high-quality video

in slow-motion. However, motion blur carries information

about motion in a video, although in an ambiguous form,

and this is quite useful in the extraction of accurate and real-

istic slow-motion. Therefore, when we use the interpolation

network, we feed as input not only two sharp frames, but

also the blurry inputs from which the sharp frames are ex-

tracted. The fact that the interpolating network still benefits

from the blurry frames may suggest that one can solve the

overall task with a single feedforward neural network. This

solution, however, cannot ensure temporal smoothness. In

fact, as the network generates a new output sequence, its

first frame may not show a smooth temporal transition from

the last frame generated by the previous processing. This

is due to the fact that the network has no complete knowl-

edge of the past processing. This problem remains even if

we feed multiple blurry images as input to the network, be-

cause this input would change from one processing to the

next. A possible solution is to use a recurrent neural net-

work, which could store the past in its state. However, the

training of recurrent neural networks to generate videos is

extremely challenging. Therefore, we propose to approxi-

mate the recurrent approach by unfolding and distributing

the extraction of the frames over several processing stages.

In our architecture intermediate outputs from current and

past inputs are combined together to generate the final out-

put (see “frame across inputs” in Fig. 1(b)). This step is

fundamental in ensuring the temporal smoothness in our

method.

3.1. Image Formation and Notation

We approximate a blurry frame as a discrete averag-

ing process during the exposure time, as already done

in [7, 16, 24]. Let τ be the number of discretized sharp

frames between two blurry image captures. Let also τ −∆
be the number of sharp frames during which the camera

aperture is open for one capture, and ∆ when the aperture

is closed. Then, we denote a sharp frame as St
i , where t =

1, . . . , τ indicates the sharp frames within a capture and i

indicates the corresponding captured blurry image. Finally,

we can introduce the blurry frame Bi = 1

τ−∆

∑τ−∆

t=1
St
i .

With this notation we call gap frames the frames St
i with

t = τ − ∆ + 1, . . . , τ . In our method we choose τ = 10
and ∆ = 1. Therefore, we have only one gap frame S10

i for

each i-th blurry image Bi.

3.2. Problem Statement

Our task is to retrieve the sharp frames St
i with t =

1, . . . , 10 from the blurry images Bi. In [7] this task was

solved by mapping a single blurry image to the correspond-

ing sharp frames. However, this mapping is ambiguous as

the temporal ordering is unknown. To address this ambigu-

ity we use multiple blurry images as input. One option is

to use two consecutive blurry images B1+i, B2+i. In this

case if we choose {Ŝt
1+i}t=5,...,10, {Ŝ

t
2+i}t=1,...,4 as out-

put, then the network must learn to exploit both blurry im-

ages B1+i, B2+i and to focus on the temporal transitions

between the two inputs. Another option is to use more

blurry images, as they provide more information. In fact, we

found that using four consecutive blurry images was a good

computational/accuracy tradeoff for the current network ar-

chitectures. Thus, we describe our task as that of extracting

frames {Ŝt
2+i}t=5,...,10, {Ŝ

t
3+i}t=1,...,4 from blurry images

B1+i, B2+i, B3+i, B4+i and for any i. For simplicity, we

use the following more compact notation for the input im-

ages Bi
.
= (B1+i, B2+i, B3+i, B4+i).
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blurry video cropped video [7] naı̈ve constrained TN TNTT

Figure 2: Ablation study. From left to right: blurry video, cropped region of the blurry video, video results from [7], naı̈ve,

constrained, TN and TNTT approaches. Full version with videos can be found on the project page1.

blurry video cropped blurry video 5x slow motion 10x slow motion 20x slow motion

Figure 3: Results on real data with different output frame rates. 5x times results are from (only DeblurNet), 10x are from

(DeblurNet + InterpNet), and 20x are from (DeblurNet+InterpNet+InterpNet). Full version with videos can be found on

the project page.

3.3. Methods

In this section, we discuss several potential formulations

and network architectures for our task, and finally introduce

the proposed method. In the experiments, we compare these

alternative methods via ablation studies. To avoid error ac-

cumulation we focus on end-to-end approaches.

Naı̈ve Approach. A straightforward approach is to estimate

all the output frames at once. We use the ℓ1-loss between

the predicted outputs and the ground truth. In this approach,

we consider training a single network ρ. More precisely,

ρj , with j = 1, . . . , 10, represents the j-th output of the

network. The loss function for a single video is defined as

Lnaı̈ve =
∑

i

∑10

j=1

∣

∣ěij
∣

∣

1
, (1)

where i indicates the index of the video frame, and ěij is the

error between the prediction and the ground truth

ěij =

{

ρj (Bi)− S
j+4

2+i , j = 1, . . . , 6

ρj (Bi)− S
j−6

3+i , j = 7, . . . , 10.

By training on this loss function, the model is able to

achieve a better performance than applying state-of-the-art

deblurring and interpolation sequentially. However, there

are two main limitations of this approach. First, the output

frame rate cannot be changed after training. Second, there is

no guarantee that the output frames are temporally smooth,

because Ŝ4
3+i and Ŝ5

3+i are estimated independently from

the two inputs Bi and Bi+1. In Fig. 2, we show that the

naı̈ve approach introduces flickering artifacts.

Constrained Approach. To achieve temporal smoothness,

an intuitive idea is to predict overlapping frames from con-

secutive inputs and constrain them to match. To this aim

1https://github.com/MeiguangJin/slow-motion

we train ρ so that it outputs instead 11 frames, with an ex-

tra Ŝ5
3+i from the input Bi. By doing this, Ŝ5

3+i will be

extracted from both the inputs Bi and Bi+1. We then in-

troduce a new loss term that imposes the similarity between

Ŝ5
3+i = êi11 + S5

3+i from Bi and Ŝ5
3+i = êi+1

1 + S5
3+i from

Bi+1, i.e.,

Lconstrained =
∑

i

∣

∣êi11 − êi+1
1

∣

∣

1
+
∑11

j=1

∣

∣êij
∣

∣

1
+
∣

∣êi+1
j

∣

∣

1
(2)

where

êij =

{

ρj (Bi)− S
j+4

2+i , j = 1, . . . , 6

ρj (Bi)− S
j−6

3+i , j = 7, . . . , 11.

We find experimentally that this approach is not very effec-

tive in encouraging temporal smoothness (see Fig. 2). To

ensure this smoothness at run time, the network ρ would

need to know the future output, but this is not available.

Proposed Approach. In our approach we split the extrac-

tion of sharp frames via two neural networks: the Deblur-

Net, which we denote with φj , with j = 1, . . . , 5 and out-

puts five sharp keyframes, and the InterpNet, which we de-

note with ψ and outputs the frame between two generated

keyframes. The key idea is not to extract all output frames

simultaneously, but rather to allow some frames to be ex-

tracted conditionally on others. This delay allows us to

build a smoother transition between frames generated from

subsequent inputs even at run time. More precisely, given

the input Bi, DeblurNet outputs five keyframes Ŝ5
2+i, Ŝ

7
2+i,

Ŝ9
2+i, Ŝ

1
3+i and Ŝ3

3+i (i.e., the odd-indexed sharp frames).

Afterwards, InterpNet extracts frames Ŝ6
2+i, Ŝ

8
2+i, Ŝ

10
2+i,

and Ŝ2
3+i (i.e., the even-indexed sharp frames) conditioned

on the outputs of DeblurNet. We then define the loss func-

tion for a single video as in the naı̈ve approach as

Lproposed =
∑

i

∑10

j=1

∣

∣eij
∣

∣

1
, (3)

8115



(a) (b)

Figure 4: (a) Architecture of DeblurNet and (b) residual dense block.

blurry input [13] + [6] [16] + [6] [24] + [6] blurry + [6] [6] + [13] [6] + [16] [6] + [24] blurry + flow

[13] + flow [16] + flow [24] + flow flow + [13] flow + [16] flow + [24] GT + flow TNTT GT

Figure 5: Gap frame interpolation comparison.

where the errors are defined as


















ei
2k−1

= φk(Bi)− S2k+3

2+i
, k = 1, 2, 3

ei
2k−1

= φk(Bi)− S2k−7

3+i
, k = 4, 5

ei
2k

= ψ(B2+i, φk(Bi), φk+1(Bi), B3+i)− S2k+4

2+i
, k = 1, 2, 3

ei
2k

= ψ(B2+i, φk(Bi), φk+1(Bi), B3+i)− S2k−6

3+i
, k = 4

ei
2k

= ψ (B2+i, φk(Bi), φ1(Bi+1), B3+i)− S2k−6

3+i
, k = 5.

DeblurNet takes as input the blurry frames Bi as before.

However, now also InterpNet takes as input blurry frames.

More precisely, it uses the blurry frames B2+i and B3+i,

which directly relate to all the outputs. Moreover, the last

error ei10 is the term that encourages temporal smoothness

during training. The overall model is shown in Fig. 1.

The proposed training improves significantly over the

naı̈ve and constrained approaches, as shown quantitatively

in Tables 1 and 2 and qualitatively in Fig. 2. To show that

training with the error ei10 is necessary to avoid flickering

artifacts, we distinguish two versions of our method. We

call Two-Network with Temporal-Transition (TNTT) the

case where ei10 is used in the loss function and simply Two-

Network (TN) the case without ei10. The proposed archi-

tecture allows also to increase the frame rate at run-time by

applying InterpNet between pairs of adjacent frames of the

previous output sequence. This allows to double the frame

rate by increasing the number of computations. Because

frames at lower frame rates are available sooner than those

at higher frame rates, this arrangement appeals to systems

that render videos with flexible frame rates. We demon-

strate our approach with a 5× frame rate increase (only De-

blurNet), a 10× frame rate increase (DeblurNet + Interp-

Net), and a 20× frame rate increase (DeblurNet + InterpNet

+ InterpNet) in Fig. 3.

3.4. Model Architecture and Loss Functions

Both DeblurNet and InterpNet are feedforward convolu-

tional neural networks, and we adopt an architecture similar

to that used in the recent super-resolution work [29]. The ar-

chitecture of DeblurNet (see Fig. 4a) employs several resid-

ual dense blocks (RDB) [29] (see Fig. 4b), which exploit

full hierarchical features from all the convolutional layers.

To handle interpolation and deblurring tasks with large mo-

tion, the network requires a wide receptive field. Towards

this purpose, we first use a pixel reshuffle layer that rear-

ranges tensor elements between the spatial and channel co-

ordinates, as was done in [7], and later on its inverse layer,

pixel shuffle, also called sub-pixel convolution in [23]. In-

terpNet shares the same structure as DeblurNet and only dif-

fers in the number of RDBs and the number of outputs. De-

blurNet includes 20 RDBs and predicts five frames, while

InterpNet includes 10 RDBs and estimates one frame. Ex-

cept for the first convolutional layer using 5× 5 kernels and

the convolutional layer after the concat layer using 1×1 ker-

nels, all other convolutional layers use 3 × 3 kernels in our

networks. In both networks, the number of feature channels

are 128, the growth rate for the RDBs is set to 48 and 5

convolution layers are used in each RDB.

3.5. Training Data

We find empirically that training using the data gener-

ated by averaging generalizes well to real data. Thus, we

collect a new dataset with 40 high-quality videos at 250 FPS

from a Sony RX V camera, and each video contains 1000

frames at 1080P. To the best of our knowledge, this dataset

is the largest high-quality, high-resolution and high-frame-

rate video dataset currently available. To avoid domain bias

towards the capturing device during training, we include 20

GoPro 720P videos at 240 FPS from the work [16], where

each video contains 900 frames. During the training, we

synthesize the blurry inputs on the fly such that all frames

can be used for training. For a qualitative comparison, we

use a separate test set including 5 GoPro 240 FPS videos
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blurry video [13]+ [6] [16]+ [6] [24] + [6]

[13]+flow [16]+flow [24]+flow TNTT

blurry video [13]+ [6] [16]+ [6] [24] + [6]

[13]+flow [16]+flow [24]+flow TNTT

Figure 6: Comparisons on real data: Blurry videos are captured from our sony camera (Full HD video). Full version with

videos can be found on the project page.

from [16], 4 Sony RX V 250 FPS videos that we captured

and real blurry videos captured with a Sony camera under

25 FPS in Full HD mode.

3.6. Implementation Details

The proposed method is implemented with PyTorch. We

use a batch-size of 4 and a patch-size of 224 × 224 pixels

for training. Samples are augmented by random rotation

and flipping, as well as adding 1% Gaussian noise. We use

the Adam optimizer [12] and start with a learning rate of

5 · 10−5. The learning rate is divided by 2 after every 20K

iterations and we run 100K iterations in total. The whole

training takes about 2 days with two TITAN X GPUs.

4. Experiments

In this section, we carry out a number of experiments

to evaluate both quantitatively and qualitatively the deblur-

ring/interpolation performance of our network. For the

quantitative comparison, we select 9 videos, of which five

are GoPro videos at 240FPS from [16], and four are from

our own Sony RX V camera captured at 250FPS. #1 to #5

in Tables 1 and 2 denote the GoPro videos, #6 to #9 are the

Sony videos. Each video contains 400 sharp frames, and

we average 9 frames to synthesize a blurry input. Between

two blurry frames we discard one sharp frame. Hence, all

together we generate 40 blurry frames from each video.

Deblurring. Because our network is able to both deblur the

input blurry frames and interpolate between them, we eval-

uate the network deblurring performance separately from

its deblurring+interpolation performance. For deblurring,

we compare with the state of the art single image deblur-

ring methods [13, 16] and a video deblurring approach [24],

which uses five blurry inputs. Since we use four input

frames, while [13, 16] use a single input frame, we take

[13, 16] as baseline methods to improve upon. PSNR eval-

uation is shown for each video in Table 1. It can be seen

that our network performs much better than the other three

approaches on both datasets. Two synthetic and real com-

parisons are shown in Fig. 8 for a qualitative evaluation.

Slow Motion and Deblurring. Our network is able to si-

multaneously deblur and interpolate nine frames given four

blurry inputs. We quantitatively evaluate the accuracy of

these nine reconstructed frames. Because this is a novel

problem, there are no existing algorithms that we can com-

pare to. To better emphasize our contributions we use

as alternative approaches the combinations of existing de-
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Table 1: Deblurring performance on the middle sharp

frames in terms of PSNR .

Method\Video #1 #2 #3 #4 #5 #6 #7 #8 #9

Blurry 31.8 31.9 26.8 25.5 22.9 36.5 27.1 32.8 39.2

Nah [16] 33.0 32.4 27.7 26.2 26.0 35.6 28.0 29.9 35.6

Su [24] 33.2 32.5 28.0 27.0 26.0 35.9 29.4 32.1 34.4

Kupyn [13] 31.6 31.4 26.5 25.3 23.4 33.5 23.8 32.2 34.8

Naı̈ve 33.9 34.5 29.3 27.9 26.3 38.3 31.3 35.4 38.6

TN 33.9 34.5 29.4 27.9 26.3 38.3 31.3 35.5 38.7

TNTT 33.9 34.6 29.3 28.0 26.3 38.3 31.4 35.5 38.7

blurring and interpolation methods. We evaluate the per-

formance of two schemes, interpolation after deblurring

and deblurring after interpolation. We consider the high-

performance methods [13], [16] and [24] for deblurring.

For interpolation, we consider two approaches: One is to

apply a flow-based approach from [24], and the other is

the state of the art video interpolation method [6]. Essen-

tially, both interpolation approaches involve optical flow es-

timates between two frames, thus generating any possible

slow motion video. This enables a frame to frame recon-

struction comparison with TNTT. By combining the three

deblurring approaches [13], [16] and [24] with the two in-

terpolation techniques under the two schemes (pre/post de-

blurring), we evaluate 12 different video reconstruction re-

sults. All results are shown in Table 2. We observe that

TNTT can perform better than other alternative approaches.

Notice that in many cases, a two-step approach tends to ac-

cumulate artifacts in the first step and degrade the video

quality. This might yield a performance that is worse than

simply interpolating the input blurry frames. To ignore the

artifacts from the deblurring step, we also show the inter-

polation performance of applying the flow approach to the

ground truth sharp frames. Results are shown in the last

second block of Table 2. We can see that interpolation with

ground truth frames outperforms all the other alternative ap-

proaches. However, TNTT is still better. This is due to the

fact that our InterpNet can make use of motion information

in the blurry inputs. This also shows empirically that solv-

ing the problem in two separate steps (deblurring and then

interpolation) is sub optimal, even when the ground truth

(for deblurring) is given. For a qualitative evaluation, we

show the interpolated results of the gap frame in Fig. 5.

Ablation Study. To see the effectiveness of our design

choices, we evaluate our network and other design choices

both quantitatively and qualitatively. In Table 1, we see

that both naı̈ve and TN methods achieve a very close per-

formance to TNTT in the deblurring of the center frame.

However, TNTT outperforms the other two approaches con-

sistently in the interpolation evaluation in Table 2. Since

optical flow is an indicator of motion, we also measure the

temporal smoothness of our output videos with optical flow.

We apply a flow estimation algorithm to three consecutive

Table 2: Interpolation performance on 9 interpolated frames

in terms of PSNR .

Method\Video #1 #2 #3 #4 #5 #6 #7 #8 #9

Blurry + Jiang [6] 29.7 29.9 25.1 24.0 22.1 35.2 26.7 32.3 36.3

Blurry + flow 29.5 29.3 24.9 23.8 22.0 34.6 26.6 32.1 35.4

Nah [16]+ Jiang [6] 29.9 30.1 25.1 23.9 24.2 34.6 27.9 30.0 34.4

Su [24]+ Jiang [6] 30.7 30.5 26.0 25.1 24.0 35.0 29.2 32.0 33.4

Kupyn [13]+ Jiang [6] 30.1 30.1 25.3 24.2 22.8 33.0 24.0 32.1 34.0

Jiang [6]+ Nah [16] 30.6 30.6 25.8 24.5 24.1 34.5 27.7 29.8 34.3

Jiang [6]+ Su [24] 30.2 30.1 25.6 24.4 23.4 34.8 28.4 32.4 33.7

Jiang [6]+ Kupyn [13] 29.7 29.8 25.2 24.1 22.5 32.6 23.8 31.7 33.5

Nah [16]+ flow 30.6 30.3 25.7 24.5 24.1 34.4 27.9 30.1 34.2

Su [24]+ flow 30.6 30.2 25.9 24.9 24.0 34.6 29.1 32.0 33.2

Kupyn [13]+ flow 29.1 28.1 24.8 23.8 22.4 31.8 23.9 31.4 31.7

flow + Nah [16] 29.9 29.9 25.2 24.0 23.5 34.0 27.6 29.7 33.6

flow + Su [24] 29.6 29.4 25.1 24.2 23.1 34.2 28.2 32.2 33.3

flow + Kupyn [13] 29.3 29.1 24.7 23.7 22.4 32.4 23.7 31.1 33.0

GT + flow 31.1 31.3 26.9 26.0 25.9 36.1 31.7 34.9 35.8

Naı̈ve 32.3 32.9 28.5 27.0 26.2 37.4 31.2 35.3 36.4

TN 32.2 33.1 28.4 27.1 25.8 37.4 31.0 35.3 36.3

TNTT 32.4 33.2 28.8 27.5 26.9 37.5 31.8 35.5 36.5
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Figure 7: Temporal smoothness comparison. We compute

the optical flow between frames predicted from the TNTT,

naı̈ve, TN methods, and the ground truth. On the ordinate

axis we plot the number of optical flow gradient matching

errors larger than a threshold in logarithmic scale.

ground truth frames to get the flow gradient and use it as a

reference. Similarly we do the same calculation to frames

predicted from the TNTT, naı̈ve and TN methods. Then, we

match the flow gradient to the reference flow gradient. We

count the number of flow gradient matching errors larger

than a threshold (in the range 1, . . . , 8 pixels) and plot the

percentage in logarithmic scale. Results are shown in Fig. 7.

We observe that the TN method preserves smoothness better

than the naı̈ve approach and that the TNTT method achieves

the best performance. We also show a qualitative compari-

son of these three approaches in Fig. 2.

Real Comparison. To see the generalization capability of

our network, we evaluate our approach on real blurry videos

captured with our Sony camera. Notice that real blurry

videos are Full HD low frame rate videos and they are coded

differently from our training dataset. We combine the three

deblurring algorithms [13], [16] and [24] with two interpo-

lation algorithms and show all these results in Fig. 6. One

can observe that our model generates a more realistic video

than other methods especially around the car wheels. More

comparisons can be found in the supplementary material.
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Figure 8: Qualitative comparison: From the left column to the right column: the blurry input, deblurring results of [13], [16],

[24], TNTT and ground truth. The first and second rows are from the GoPro test set [16] and the third and fourth rows are

from our Sony test set. The fifth to eighth rows show two real comparisons captured with our Sony camera (Full HD video).

Slow Motion at Different Frame Rates. As mentioned

in the previous section, DeblurNet extracts 5-fold slow mo-

tion videos. To demonstrate the effectiveness of our Interp-

Net, we recursively apply it and generate 10-fold and 20-

fold slow motion videos. We test on a real blurry video and

results are shown in Fig. 3. One can observe that our Interp-

Net can generate a realistic 20-fold slow motion video.

Limitations. The main limitation of our approach is that

our model is not robust to very large blurs. This is a com-

mon challenge for deblurring networks [7]. In this case,

predicted videos will show flickering artifacts. However,

in this case our model is able to obtain a better deblurring

accuracy than other state of the art deblurring methods.

5. Conclusions

In this paper, we have presented the first method to gen-

erate a sharp slow-motion video from a low frame rate

blurry video. We have shown that the main challenge of

this task is to preserve the temporal smoothness. We have

presented an approach based on two networks, which can

not only address the temporal smoothness issue, but also

increase the frame rate indefinitely. We have demonstrated

that our model can successfully extract slow motion videos

on both synthetic and real blurry videos.
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