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PARTIAL REGULARITY OF ALMOST MINIMIZING
RECTIFIABLE G CHAINS IN HILBERT SPACE

THIERRY DE PAUW AND ROGER ZUST

ABSTRACT. We adapt to an infinite dimensional ambient space E.R. Reifen-
berg’s epiperimetric inequality and a quantitative version of D. Preiss’ second
moments computations to establish that the set of regular points of an almost
mass minimizing rectifiable G chain in ¢3 is dense in its support, whenever the
group G of coefficients is so that {||g|| : g € G} is discrete and closed.
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2 THIERRY DE PAUW AND ROGER ZUST

1. INTRODUCTION

Let (X,|-|) be a separable Hilbert space, and (G, || - ||) be a complete normed
Abelian group, and m be a nonnegative integer. We consider m dimensional rec-
tifiable G chains in X, T € %,,(X;G), introduced in [13]. Such T is associated
with an m dimensional rectifiable Borel subset M C X and a Borel measurable
G orientation g(z) corresponding to ™ almost every x € M. Specifically at al-
most every x € M where M admits an approximate m dimensional tangent space
W C X, g(z) is an equivalence class (£, g) where ¢ is an orientation of W and
g € G. Here (£,9) and (£, g’) are equivalent if either they are equal or ¢ and &’
are opposite orientations of W and g = —g’. We set ||g|| = ||(£, 9)]| = |lg||. For
the data consisting of M and g to correspond to a member T' € Z,,,(X; G) we also
require that its mass be finite:

M(T) = /M lg(@)|dA™ ) < co.

In [13] m dimensional rectifiable G chains are understood as members of the larger
groups %,,(X;G) of m dimensional flat G chains. This allows for introducing
the standard tools of Geometric Measure Theory : Boundary Operator; Push-
Forward by Lipschitzian Mappings; Restriction; Slicing by Lipschitzian Mappings;
Support of a Chain; Convergence in Flat Norm; Constancy Theorem, see [14];
Approximation by Polyhedral G chains, see [10]. We will use all of these in the
present paper.

The support spt(T) of T € %,,(X;G) consists of those z € X such that
TLB(x,r) # 0 for all » > 0. Without further restriction it may be the case
that spt(7') = X ; this can be achieved for T' consisting of a mass convergent series
of properly chosen G oriented circles whose collection of centers is dense. We say
a € spt(T)\spt(97T) is a regular point of T' whenever there exists a neighborhood U
of a in X such that spt(7)NU is an embedded m dimensional Holder continuously
differentiable submanifold of X. In this situation there exists a possibly smaller
neighborhood V' C U of a with the following property. There are C' > 0, o > 0 and
0 < ¢ < oo such that for every z € V, every 0 < r < min{J¢, dist(x, spt(9T))}, and
every S € Zn(X; G), if spt(S) C B(x,r) and 95 = 0, then

M(TLB(z,r) < (1+Cr*)M(TLB(z,r) + 5).

If T verifies the property stated in the last sentence, we say T is (M, Cr®,§) min-
imizing in V. If the specific C, « and § are irrelevant we simply say 7' is almost
mass minimizing in V. This class of geometric variational objects was introduced,
and their regularity studied, by F.J. Almgren [2] in the framework of subsets of
X = (3 rather than chains. Still in a finite dimensional ambient space, E. Bombieri
[8] adapted Almgren’s definition to rectifiable Z chains, essentially as that given
above, and studied their regularity following [2].

Examples of (M, Cr®, §) minimizing chains T' € %,,,(X; G) in V encompass the
case when C =0, § = oo and V = X \ spt(9T). These include mass minimizing
G chains in the sense that M(T) = inf{M(S) : S € %, (X;G) and S = 9T}.
If a is a regular point of such mass minimizing 7' and W, is the tangent space
of spt(T) at a then spt(7T) is, in a neighborhood of a, the (translated) graph of a
smooth f : W, — W (with f(0) = 0). Furthermore, near the origin, f satisfies the
minimal surface equation in case m+1 = dim X, the minimal surface system in case
m+1 < dim X < oo, and a corresponding infinite dimensional system of Partial
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Differential Equations in case dim X = oo. Since Df(0) = 0 (as W, is tangent
to spt(T') at a) the so-called blow-up f of f, ie. the weak limit in the Hilbert
Sobolev space of properly rescaled and renormalized versions of f, is harmonic :
A(f,e) = 0 whenever e is a unit vector in Wi-. A weak version of this observation
applied to Lipschitzian maps f that approximate the support of 7" near points
a that verify additional “closeness to flat” assumptions, is at the heart of many
proofs of Regularity Theorems for either minimizers of mass or stationary chains.
This technique goes back to E. De Giorgi [9]. However in case T is (M, Cr®,J)
minimizing, a is a regular point of spt(7") and the latter is, near a, the graph of
some Hélder continuously differentiable f : W, — W, then f need not solve any
Partial Differential Equation whatsoever, as indeed the graph of any such f has the
almost mass minimizing property. Our main result is as follows.

1.1. Theorem. Assume G is such that {||g|| : g € G} is discrete and closed and
T € Zn(X;G) is almost mass minimizing in an open set V. C X \ spt(9T). It
follows that there exists a relatively open set U C spt(T) NV which is an embedded
m dimensional Hélder continuously differentiable submanifold of X, and which is
dense in spt(T)NV. If one further assumes that ||g|| = 1 for all g € G\ {0g} then
" (spt(T)NVA\U) = 0.

We now review relevant earlier results in this vein.

e The case of minimizers in the finite dimensional setting. Here T &
R (53 @) is mass minimizing. If m +1 = n and G = Z, this is E. De
Giorgi’s Theorem [9] established in the framework of oriented frontiers.
In case m is arbitrary the result has been established by E.R. Reifenberg
[20, 21] in a different setting than ours. E.R. Reifenberg [19] considers
some compact groups of coefficients, he considers sets rather than rectifi-
able chains and the boundary conditions are expressed by means of Cech
homology groups, finally his sets minimize size rather than mass, i.e. Haus-
dorff measure not weighted by coefficients norm. His method differs from
the analysis of blow-up set forth by E. De Giorgi and has inspired the
present paper. F.J. Almgren establishes the result in the framework of
rectifiable chains minimizing the integral of some elliptic integrands, [1].

o The case of almost minimizers in the finite dimensional setting. Here T €
R, (035 7) is almost mass minimizing. The regularity has been established
by E. Bombieri [8] following the scheme of proof set forth by F.J. Almgren
[2] in the framework of sets rather than chains.

e The case of minimizers in the infinite dimensional setting. Here T &
R (L2; Z) is mass minimizing. L. Ambrosio, C. De Lellis and T. Schmidt [4]
have established the result in the framework of “currents in metric spaces”
[6].

A C* version of the regularity theorem holds when the bound Cr® quantifying the
almost minimizing property is replaced by a coarser bound that decays fast enough,
see the remark after Theorem 5.13. In Section 6 we show that the discreteness of
G is necessary and give an example of a mass minimizing chain, with coefficients
in a totally disconnected compact normed group, and without any regular point,
Example 6.1. Proposition 6.2 shows that any chain induced by a C1* submanifold
of X is almost mass minimizing, as we claimed above, and more generally the sum
of finitely many O submanifolds that “nicely” intersect in a common set ¥ is
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almost mass minimizing as well. Taking for > a Cantor set of positive S measure
we show that the set of regular points need not be co-null in general, Example 6.3.

One serious difficulty with working in infinite dimension is the lack of certain
compactness results that are specific to a finite dimensional ambient space. Specif-
ically, the essential Excess Decay Lemma is established in [2] and [8] by contradic-
tion, a delicate argument based on compactness. Such reasoning seems to be bound
to fail in /5. We now turn to briefly describing the scheme of proof of Theorem 1.1.

Let T € Zm(X; G). We let || T|| denote the finite Borel measure in X associated
with T', i.e. |T|(B) = [ llgr|lds#™ LMy where My and gr are respectively the
m dimensional rectifiable set and the G orientation of T. Let ¢ € X, r > 0 and
W e G(X,m). Assume for definiteness ©™ (|||, a) = 1. We consider the following

two quantities.
T|(B
exc™(||T||,a,r) = W B

and
1 . .92
s [, A - WIT ).

The first one we call the spherical excess. To get a sense of what these quantify,
assume spt(T") N B(a,r) coincides with (a + I'y) N B(a,r) where I'y is the graph
of some f : W — W+ with small Lipschitz constant so that (a + I'y) N B(a,r) is
contained in a slab around a+ W whose height is small with respect to . Upon con-
sidering cylindrical versions of exc” and B2, and calculating the Taylor expansion
of the Hilbertian Jacobian of f, one can check that

1 / 9

— 1D flasd ™
a(m)r™ Jywaso,n e
(where || - ||us stands for the Hilbert-Schmidt norm), and

1
BT, a,r, W ,:V_/ fl2dsem .
27 )% 72 o

:BS(HTHvavTv W) =

exc™(|T||,a,r) =

It is classical to check that if 7' is mass minimizing then exc™(||T||,a,r) is a
nondecreasing function of 0 < r < dist(a,spt(9T)), for every a ¢ spt(0T). In
case T is almost mass minimizing, the spherical excess is almost nondecreasing in
the sense that exp[C’ro‘]% — 1 is nondecreasing. This is a useful fact used
throughout the paper. The three steps of the proof are now the following.

(H) Identifying a set of hypotheses called “closeness to flat” that guarantee that
T is sufficiently close to flat in some ball B(a,r), both in the sense that
spt(T) N B(a,r) is close in Hausdorff distance to (a +W)NB(a,r) for some
W € G(X,m), and in the sense that ||T||(B(a,r)) is close to the measure
a(m)r™ of the m dimensional disk (a+W)NB(a,r) weighted by the “local
coefficient” of T near a. The existence of such W by no means implies
that it is the “tangent space” to spt(7T) at a and the remaining part of the
analysis consists in estimating how much these W may vary as r tends to
0. Another feature of the “closeness to flat” assumption is that it should
be verified by an open dense set of points in the support. This is where the
assumption that G be discrete comes into play.

(1) Showing that, under (H), for a € spt(T') the spherical excess decays fast
enough, specifically exc™(||T||,a,r) < Cr?Y for some v > 0.
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(2) Showing that, under (H), there exists W,, € G(X,m) (not necessar-
ily the same as in the assumption (H)) such that B3(|T|,a,r, Wa,) <
Cexc™(||T||,a,r)?. Tt will then ensue from (2) that W, = lim, 0 W,.,
exists, and that W, and W} are close to one another according to how a
and b are close. This is enough to finish off the proof.

Let us now briefly comment on steps (1) and (2). To keep the notations short we
assume a = 0 and we abbreviate ¢r(r) = || T||(B(0,r)), er(r) = exc™(||T||,0,r),
and for convenience we introduce the non normalized version of the spherical excess,
namely ep(r) = exc™(||T||,0,7) = a(m)r™ exc™(||T||,0,r) = ¢r(r) —a(m)r™. We
ought to determine whether er(r) < Cr7, which is equivalent to er(r) < Crm(1+e)
where we have abbreviated ¢ = ym™!. In case T is mass minimizing er(r) is
nondecreasing and nonnegative. In case 7' is merely almost mass minimizing we
would have to introduce a multiplicative factor exp[Cr®] in the computations, which
we omit in these introductory remarks. Thus assuming that er(r) > 0, the growth

er(r) < Crm+9) will follow from the differential inequality

d d
m(1+ 6)5 logr < . loger(r),

which is thus equivalent to

In estimating rm~teln(r) = rm= (¢ (r) — ma(m)r™=t) = rm= ¢4 (r) — a(m)r™

we observe that

%¢/T(T) > —M((T,|-|,r) = M([0]x(T, |- |, 7)) = ¢c..(r)

3=

is the measure in B(0,r) of the cone C, with vertex 0 and with base the slice
(T,|- ],y = 0(TLB(0,r)). In other words C, = [0]xd(TLB(0,7)). Thus we are
asking whether

(1 +e)er(r) < ¢, (r) —a(m)r™ = ec,(r) .

The inequality er(r) < fec, (r), for some 0 < ¢ < 1, is the quantitative im-
provement on the monotonicity inequality that we call the “Reifenberg epiperi-
metric inequality”. In order to evoke its proof let us assume that r = 1 and
that spt(T) N Zw(0,1) = Ty, N Zw(0,1) for some W € G(X,m) and some
fw : W — W, where Zy (0, 1) denotes the cylinder ;' (W NB(0,1)). We let hy
be the homogeneous extension of degree 1, to W N B(0,1), of fw|gdry(wnB(0,1))-
The question is then (up to error terms due to the replacement of a ball by a
cylinder, and which are small with respect to e (1)) whether the following holds:

ay [ DfwlEdrm <o Db 3™
WnB(0,1) WNB(0,1)

To see that this cannot be true in general it suffices to observe that if hy, is linear
and nonzero then it is harmonic and hence a solution of the Dirichlet problem: It
minimizes its Dirichlet energy among those maps having the same boundary values
and thus fyr cannot have strictly less Dirichlet energy. This drawback can be
overcomie if we can make sure hyy is far enough from being linear, which amounts
to choosing W initially so as to cancel the linear part of hyy. This should mean
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that, if possible, hy is orthogonal to linear functions in the Lebesgue space Lo (W N
B(0,1), ™). In other words we seek for a W € G(X,m) such that

(1.2) / (hw (), v){z,u)d™(x) =0
WnB(0,1)

for every unit vectors u € W and v € W+. E.R. Reifenberg solves this problem by
minimizing a functional over the Grassmannian G(¢5,m). In the infinite dimen-
sional setting the Grassmannian lacks the compactness required to make this work
and instead we argue as follows. Abbreviating C' = C; = [0]xI(T'LB(0,1)), we
consider the quadratic form

Qcl) = / (. 9)2d|C(v) = (&, Le ()
B(0,1)

where
Le(x) = / vz, 1)d|C () -
B(0,1)

We notice that Lo is a positive self-adjoint compact operator on X and there-
fore X admits an orthonormal basis of eigenvectors eq,es,... of L, according to
the spectral theorem. We order these as usual so that \y > Ay > ... > 0 for
the corresponding eigenvalues. In fact, since we assume T (and hence C) to be
sufficiently close to flat in B(0,1), Q¢ is close to a multiple of |my (-)[?. Thus
it W e G(X,m) is generated by eq, ..., e, then W is close to W (appearing in
(H)). Moreover L¢a(er) = ey for every k, and therefore (ej, Lo(ex)) = 0 for all
j=1,..,mandall k =m+1,m+2,..., which is (1.2) up to some small error terms
depending on the initial closeness to flat. With W replaced by W it will be possible
to find f;, with boundary values same as hy;, and achieving the improvement of
(1.1). Of course the graph of fi;, may not meet at all the support of 7" in B(0, 1),
yet

/A 1D 12od™ 2 en(1)
WNB(0,1)

according to the almost mass minimizing property of 7. We can now infer that
er(1l) < fec(1). Our proof follows very closely the arguments of E.R. Reifenberg
in [20]. The essential differences are the averaging of the different layers to account
for the elements of the normed group G and the use of the quadratic form Q¢ as
explained above.

At this point it is perhaps worth saying a word on how to obtain fy in (1.1)
provided (1.2) holds. One way would be to find the optimal fy for the problem, i.e.
the mapping fw each of whose coordinates is harmonic. This is indeed how E.R.
Reifenberg proceeded. Nevertheless the computations that establish (1.1), involving
identities for spherical harmonics, work as well for any homogeneous extension of
hw, of degree 14+t > 1 (with 6 depending on t). In other words, contrary to popular
belief, there exist proofs of partial regularity for (almost) mass minimizing chains
that do not involve at any stage the use of harmonic functions. Sure enough, after
we realized this, we found out that C.B. Morrey had also reported this fact in [17,
Lemma 10.6.13].

Finally we turn to briefly discussing step (2) of our proof, i.e. the sort of Poincaré
inequality with an exponent, B3(||T||,a,r,W) < Cexc™(T,a,r)? whenever (H)
holds. In fact, according to the Ahlfors regularity of spt(7’) (a consequence of almost
monotonicity), this is equivalent to Bu (|| T||, a, 7, W) < exc™(||T||, a,7)? (for some
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different 0 < 8 < 1). Readers familiar with regularity proofs will recognize here a
height bound, usually obtained as a corollary of graphical Lipschitz approximation
of the support, and that would definitely be one way to go about it for instance
when G = Z. Here, as we used a quadratic form @ associated to T already, we
choose to be consistent and keep using it. This sort of moments computations has
been set forth in [18], and a quantitative version was described in [11]. We review
the idea behind it and point out the differences with [11].

Assume for simplicity a = 0 € spt(T'). We notice that according to Cavalieri’s
principle, information about the growth of ||T'||(B(0, r)) is equivalent to information
about the growth of

- 2
Vizhan = [ (7 fo—yP) A7),

B(z,r)
As its variable x appears in the moving domain of integration, this function V does
not immediately occur as being differentiable in . We therefore introduce a slight
variation of V', the polynomial function

4
2
VATl z, ) = / (r =l =yP)"dITl(y) = Y Pl Tl . 7)
B(0,r) k=0

which is expanded in a sum of Pj’s, polynomials in « homogeneous of degree k. A
simple computation yields

VATl w,m) = VAT 27| < © (4 af 4 774248 o)

From this we infer that if we divide V and V by r™*+2 the corresponding functions
will be close up to O(|z|?) when |z| < r, and up to o(|z|?) when |x| = o(1)r, so that
information about the variations of | T||(B(0,7)), and in turn about the variations
of V, translates to information about the polynomials P,. We then use the fact
that P, normalizes to a dimensionless quantity when divided by »™*2, and contains
a term akin to ) defined above. Specifically,

Py(|IT] 2.7) = 4Qr(z,7) — 2] /B (2 — yP?) dI ()

0,r)

where, as above,

Qrlar) = /B o T,

and if
m + 2 m + 2
P,=——P and =
? a(m)rm+2 2 and Qr a(m)rm+2 @r
then, for instance,
(1.3) tr Qp(-,7) —m| < CrY

under (H), where 4/ is a function of v appearing in step (1). Assuming for now
that the first moment P;, which is a version of a center of mass of ||T]| in B(0,r)
that initially normalizes as »™*!, can be made as small as Cr?" when divided by

r™+2 we end up showing that

1Qr(a,r) — |22 < Cr|zf?
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whenever 2 € spt(T), ©"(|T||,z) = 1 and |z| = '™, If we manage to find
orthogonal vectors 1, ..., 2, € spt(T) such that |z;| = r'+7" and @™(||T|, z;) = 1,
then we infer from the inequality above, from the definition of P, and from (1.3)
that

1 / . 2 ’
— dist™(y, W)d| T||(y) < Cr”
2 B (0,r)

(1.4)
and we will be done. In [11] the orthogonal frame 1, ..., 2, in spt(7") was found be-
cause spt(T") was shown to be Reifenberg flat under (H), and therefore a topological
m disk according to [20]. The Reifenberg flatness however followed by a compact-
ness argument not available in infinite dimension. Instead we take advantage of the
fact that T is rectifiable and hence for || T|| almost every a we can assume we look at
a scale r(a) small enough to start with that spt(7') N B(a,r) is close to its tangent
space W, at a (notice a tangent space exists because ¢2 has the Radon-Nikodym
property, and closeness occurs in Hausdorff distance thanks to Ahlfors regularity).
At that small scale r(a) (and all smaller scales) we can find x1, ..., z,, with the
required properties. We then show in 5.8, using a backward bootstrap argument
that the same holds at larger scales r provided the density ratio at scale r is not
much larger than 1. This can be done at neighboring points up the same largest
scale o thanks to almost monotonicity, see 5.7. To summarize, we establish that
(1.4) now holds at scales uniformly small 0 < r < 7y and that spt(7) N B(a,r) is in
fact Reifenberg flat, 5.9. It then classically follows from (1.4) that spt(7) N B(a,r)
is ¢

2. PRELIMINARY RESULTS FOR CHAINS IN A HILBERT SPACE

Throughout these notes (X, (-, -}) is a separable Hilbert space with dim(X) > m,
and T € %,,(X; @) is a chain with coefficients in a complete normed Abelian group

(G,] - ). A norm on an Abelian group is a function || - || : G — [0, 00) such that
for all g, h € G,
() I =gl =gl

(2) llg + Al < llgll + |21,

(3) |lgll = 0 if and only if g = Og.
The vector space norm on X is denoted by | - | to distinguish it from the one on G.
Since the support of T is a separable subset of X, the statements we make remain
true for any Hilbert ambient space because we can always restrict to a separable
complete subspace thereof. The Grassmannian of m-dimensional subspaces of X
is denoted by G(X,m). Given an m-plane W € G(X, m) we denote by 7y the
orthogonal projection of X onto W. We often use these projections as push-forwards
for chains. In order to speak about chains on a plane W € G(X,m) it is necessary
that we choose an orientation on W. This orientation is mostly not so important
since we are interested in the mass of the chains which is independent of this
choice. In case we work with a collection of planes that are close to each other,
we implicitly assume that these orientations are compatible in the sense that the
orthogonal projection from one to the other is orientation preserving.

With B(z,r) and U(z,r) we denote the closed, respectively open, ball of radius

r > 0 around = € X. Sometimes we may also use B(r) := B(0,r), U(r) := U(0,r),
B := B(0,1) and U := U(0,1). Similarly, for A C X we denote by B(A,r) and
U(A,r) the closed, respectively open, tubular neighborhood of radius r around A.
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For intersections we use B4 (x,r) := B(x,r) N A and Uy (x,r) := U(z,r) N A. The
cylinder around = € X of radius r above an m-dimensional plane W € G(X,m) is
given by Zw (x,7) := 7w 1 (Bw (mw (), 7)), or in special cases Zy (r) := Zw (0, 7)
and Zw = Zw(0,1). a(m) denotes the volume of the unit ball in R™. For two
nonempty subsets A, A’ C X the Hausdorff distance is

di(A,A) :==inf{r >0: ACB(4",r), A CcB(A,r)}
= max {sup dist(x, A"), sup dist(a/, A)} :
€A T A
In the rest of this section we describe some of the basic tools we need in the process.

2.1. Grassmannian and Hausdorff distance. The Grassmannian G(X,m) can
be equipped with a complete metric. Two natural definitions of a metric are shown
to be equivalent in the following lemma. Here || - || denotes the operator norm.

2.1. Lemma. Let m > 1 be an integer and V1, Va € G(X,m). The following hold:

(1) llmv, = mv || = du(Vi N B(0,1),V2 N B(0,1));

(2) |7y, — mv, || = max{|v — my, (v)| : v € V1 N B(0,1)};

(3) llmye o my || < llwvy — mwe |-
Proof. We start with the trivial observation that dist(v, V; N B(0, 1)) = dist(v, V;)
whenever v € B(0, 1), ¢ = 1,2, which will be used repeatedly without further notice.
Next we observe that
(2.1) max{dist(v,V2) : v € Vi N B(0, 1)} < |7y, — mva]| -
Indeed suppose v € V4 N B(0, 1), then

dist(v, V) = [my,s (0)] = ficx (v) — 05 ()] = v, (0) = 70, ()] < s — v |

which establishes (2.1). Swapping V; and V; in (2.1) we obtain
(22) dH(‘/l ﬂB(O,l),‘/QﬂB(O,l)) < ||7TV1 —7TV2H .

In order to prove conclusion (1) it remains to prove the reverse inequality:

(2.3) Iy, — vy || < max {UGV%%X(OJ)dist(U, V3), Uevﬁr%agc(oyl)dist(v, Vl)} .

We prove inequality (2.3) first in case m = 1 and dim(X) = 2. We leave to
the reader the simple computation showing that, in this special case, the map
XNS(0,1) 5 R:z— |my, (x) — my (z)| is constant. Therefore

(2.4) 1mv2 = v, || = 3 () = 79, (V) = [y ()] = dist(v, Va)

for every v € V1 N S(0,1).

Next we assume m > 2 and dim(X) < co. We choose v* which maximizes
S(0,1) = R : v = |my, (v) — M, (v)[%, so that |7y, — 7, || = |7y, (V) — 7y, (V)]
According to the Lagrange Multiplier Theorem there exists A € R such that A\v* =
my, (VF) — my (v*). If A = 0 then ||my; — my|| = 0 and (2.3) clearly holds. We
henceforth assume A # 0. If 7y, (v*) = 0 then v* € V3, consequently ||my, — my, || =
|mv, (0F)] = [v*] = 1 = |v* — 7y, (v*)] < max{dist(v,V7) : v € Vo N B(0,1)},
thus (2.3) holds. Similarly if 7y, (v*) = 0 then ||my, — 7, || < max{dist(v,V2) : v €
1NB(0,1)}, and (2.3) holds as well. Assuming now that my, (v*) # 0 # my, (v*) we
define V' := span{my, (v*), my, (v*)}, so that v € V. We note dimV' = 2 (assuming
if possible that dim V' = 1, it would ensue vy, (v*) = t.my, (v*) for some t # 0, and
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in turn v* = A7t — 1)my, (v*) € Va, thus also v* = my, (v*) = t~1my, (v*) € V7,
whence A\v* = v* —v* = 0, a contradiction), as well as dim VNV =1 =dim VN Ts.
In other words we may apply the previous 2 dimensional case applies to V, VN V;
and V' N V,. To this end we notice that m,, (v) = myny,(v) whenever v € V (it
suffices to observe that 7y, (v) € V for v = my, (v*), j = 1,2, which is obvious if
j =i whereas if j =2, i = 1 then my, (my, (v*)) = (A+1)my, (v*) € V, and the other
case is similar). Thus,

[mvi = T |l = |mv; (vF) = my, (07))]
= |mvan (v) = mvav, (v7)]

= ||7TVmV1 fV—ﬂ'Vrﬂé fVH

A

< max{ max dist(v, V N V), max dist(v,VﬁVl)}
veVNVINB(0,1) veVNLNB(0,1)

= max { max dist(v, Va), max dist(v, V3 )}
veVNVINB(0,1) veVNLNB(0,1)

< max { max  dist(v,V2), max  dist(v, Vl)}
v€ViNB(0,1) veVaNB(0,1)
< ||7TV1 - 7TV2H :
This completes the proof of (2.3) in case dim(X) < oo and we leave it to the reader
to check it also holds when dim(X) = oco. Conclusion (1) now readily follows,
whereas conclusion (2) holds because it holds in case dim X = 2 and all inequalities
above are equalities.
In order to prove (3) we simply notice that
[y, oy || = [[(idx — mv,) o v ||
= [[(ldx — ) o (my; — 7y, ) + (idx — 7y, ) 0 73 )|
<yl vy = v |-

O

We will need some estimates on the closeness of different planes that approximate
some set S C X. Such estimates are established in the results below.

2.2. Definition. Let m > 0 be an integer, S C X, z € S, r > 0 and € > 0. We say
that S is € flat at (x,r) if there exists V' € G(X,m) such that

du (SN B(z,7), (x +V)NB(z,r)) <er.
We also define
G(S,z,re) :={V e G(X,m) : du(SNB(z,r), (z + V)N B(z,7)) < er}.

The dimension m does not appear either in the notation or in the terminology
since it will always be clear from the context. We leave it to the reader to check
the trivial and useful fact that G(X, m) C G(S,z,r, €) whenever € > 1.

2.3. Lemma. Assume that
(1) SCX,z€S, R>0,e>0and0< A <1;
(2) Ve G(S,x,R,e).

Then V € G(S, 2, AR, 2eA™1).
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Proof. If A < € then there is nothing to prove, according to the remark right before
the Lemma. Thus we assume from now on that € < A\. Let ( € SNB(z, \R) C
SNB(z, R). Define £ :=x+my (¢ —x). Since | —z| = |y (( —2)| < |¢—2| < AR
one has § € (z + V) NB(z, AR). Furthermore,
|€ — ¢ =dist(¢,x + V) < dist(¢, (x + V)N B(x, R)) < eR
by assumption (2). It follows that
SNB(z,AR) C B[(z + V) NB(z,AR), (eA™") AR] .

Let now £ € (z+V)NB(x,AR) and € < ¢ < \. Define ¢’ =z + A1 (A—¢€)(£ —x)
and observe that [¢ —z| = AN — &) — x| < (A — é)R < R. In particular
¢ € (z+V)NB(z, R) and according to assumption (2) there exists ¢ € SNB(x, R)
such that |¢/ — (| < €R. Note that

(= <[C—¢&|+]|¢ -2 <éR+ (A - &R =R,
whence in fact ¢ € SN B(z, AR), and also

=€l < =€+ ¢ <ER+|1=AT A =9 .[¢ — =
<éR+eN'AR = 2R.
Therefore
(z+V)NB(z,AR) C B[SNB(z,AR), (2¢A™") AR]
and the conclusion follows from the arbitrariness of € > e. O

2.4. Corollary (Same center, different scales). Assume that
(1) SCX,z€S,¢e>0and0<r<R;
(2) V. € G(S,z,r,€) and Vg € G(S,z, R, ¢).
Then
du(V. N B(0,1),VRN B(0,1)) < e (1+2Rr™ ") .

Proof. We put A = rR™! and we infer from Lemma 2.3 that du((z + Vg) N
B(z,7),SNB(z,r)) < 2eA~!r. Since also dy ((z + V) NB(z,7), SNB(z,7)) < er,
it follows from the triangle inequality for the Hausdorff distance, and from its in-
variance under translation, that dg (V, NB(0,7), VRNB(0,7)) < e(14+2Xx"Y)r. O

2.5. Lemma (Different centers, same scale). Assume that
(1) SCX,z1,20€85,¢e>0,v>1, R>0,0<A<1, |1 —a2| < (1= ANR;
(2) 1-A+e+v <1
(3) Vi € G(S,xi, R,€), i =1,2.
Then
dH(Vl n B(O, 1), Von B(O, 1)) < 3ev.

Proof. We let the relation R = vr define » > 0. Choose € > € such that 1 — A+ ¢é+
v=t < 1. Let hy € Vi NB(0,r) and define & := 21 + hy € (1 + Vi) N B(x1,7) C
(x1 4+ V1) N B(z1, R). Choose y € S N B(z1, R) such that |y — & | < éR, according
to hypothesis (3). Observe that

ly—a2| < |y —&|+1& —a1| + |21 — 22| CER+v 'R+ (1 -NR<R

and define & := xa+ 7y, (y—x2). Since y € SNB(x2, R) it follows from assumption
(3) that |y —&| < eR. Define also ¢g := x5+ my, (r1 —2). Since z2 € SNB(z1, (1—
A)R) € SN B(zg, R) it follows again from assumption (3) that |co — 21| < €R.
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Finally we let hg 1= & — ¢o € Va. Since |ha| = |7y, (v — 21)|] < |y — 21| < r one has
he € Vo N B(0,r). Furthermore,

|h1 — ha| = [&1 — 21 — &2 + c2
<l =yl +ly =&l +]z —c

<éR+eR+eR
< 3évr
so that
VinB(0,r) C B[VaNB(0,r),3évr] .
The conclusion follows from the arbitrariness of € > € and Lemma 2.1(2). il

2.2. Jacobians in Hilbert space. Let V € G(X,m) be an m-plane. For a linear
map L :V — VI we define JL to be the non-negative number such that
1+ (JL)* =det(idy + L*L) = det(L*L),

where L = idy + L : V — X is the direct sum of idy and L. If (e1,...,e,,) is an
orthonormal basis of V', we can define the matrix M;; := (Le;, Le;) and for any
K c{1,...,m} we denote by M the submatrix of M corresponding to the indices
in K. The determinant in question calculates as

1+ (jL)2 = det(éij + Mij)

= > (V] Giots) + Miogi))
TESH =1
=1+ Z det(Mk) .

K#0
The Hilbert-Schmidt norm of L is given by

| L] us := tr(L*L)> .
The following identity relates the Hilbert-Schmidt norm to J L,
(2.5) (TL)? = Ll + Y det(Mg).

#K>2
Further, if 0 < A\ < .-~ < A2, are the eigenvalues of L*L and || L| is the usual
operator norm of L, then

(2.6) Lip(L) = [|L[| = A < (A2 4 -+ A2)% = ||L||us < vm| L] .

If f: ACV — V!&is a map that is differentiable at z € A we also use the
abbreviation J f, instead of JDf,.

2.3. Chains, Slicing and tangent planes. With &,,(X;G) and Z,,(X;G) we
denote the m-dimensional polyhedral, respectively rectifiable, chains in the Hilbert
space X with coefficients in G. We refer to [13] and [14] for precise definitions
and properties of these spaces. Here is a sketch and some basic results we will
use later on. Consider a rectifiable G-chain T' € %Z,,,(X;G). According to the
definition, 7' can be represented by a sequence of bi-Lipschitz maps ~; : K; — X
defined on compact sets K; C R" and measurable maps g; : K; — G such that
vi(Ki) Ny (K;) = 0 for i # j. The set My := |, vi(K;) is S -rectifiable and
g : X — G is defined by g(z) := Og for x ¢ My and g(z) := gi(v; *(v)) if
x € v(K;). Clearly, g is "™-measurable and it is further assumed to be integrable,
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respectively that the corresponding measure ||T'|| := 2™ ||g|| is finite. The mass
of T is the total measure M(T') = ||T'||(X). For any Borel set B C X, the restriction
TL B is well defined by the weight function xypg : X — G. Obviously,

M(TLB) = / (@) d™ ().

BNMrp

Since the metric differential (in the sense of Kirchheim [16]) of each ~; is represented
by a scalar product at almost every point, we can further assume that the v; are
close to isometries, i.e. given a A > 1 we can find parametrizations ~; as above such
that max{Lip(v;), Lip(y; 1)} < A, see [16, Lemma 4] and [15, Lemma 3.2.2].

The m-density of ||T|| at a point x is defined by

m = i 1Bz, 7))
O™ (1T, ) = lim (

a(m)rm

in case the limit exists. It can be shown that for ||T'||-a.e. point = € X, there holds
(Tl z) = g(=)]-

Let f: X — R™ be a Lipschitz map for some n < m. Following [13, Section 3.7],
the slice (T, f,y) is an element of %Z,,_,(X;G) for almost every y € R™. In par-
ticular, for almost every y, the set My N f~1{y} is ™ "-rectifiable and has a
G-orientation given by +g. On a given chart K; define T; as the m-dimensional
G-chain equipped with G-orientation g;. For almost all y it follows from [13, The-
orem 3.8.1] that

(T, f,)vi(Ks) = (TLvi(Kq), f,y) = Yig(Ti f o vi,9) -

Hence by the coarea formula [15, Theorem 3.2.12],

- M(T, f,y)Lvi(K:)) dy

= ; M (vi (T, f o vi, ) dy

<Lip(y)"™ ™" | M{T;, fovi,y))dy
Rn
~ L) [ f (=) do™ () dy
n iN(foyi)~H{y}

= Lin()" " [ I (@ICu(D(f 03 o

where C), (L) denotes the coarea factor of a linear map L : R™ — R™. In [5, Lemma
9.3] or the proof of [15, Lemma 3.2.10] it is shown that in case the kernel K of L has
dimension m — n, then C, (L) = J(q)/Jm—n(p|x) (otherwise Cy (L) = 0), where
q=L+p:R™ — R™ is linear and p is injective on K. In the setting of Hilbert
spaces we have Ji(q)Ji (¢) = Josw (¢ ® ¢') in case ¢ : W — RF, ¢/ : W/ — R¥
and W @& W' is a direct sum of Hilbert spaces of dimension k and k' respectively.
Hence, Cy, (L) = Jp(L| k1) and in particular Cy, (L) < ||L||™ = Lip(L)". Applied to
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the situation above and assuming that max{Lip(v;), Lip(vy; 1)} < A we get

M((T, f.y)Li(K:)) dy < A™ " Lip(f 0 7:)" / lgi(2)| de
R™ K;

< N Lip(f)" M(y; ', (TLi(K5)))
< A Lip(f)" M(TL;(K;)).

Summing over all ¢ and taking the limit for A — 1 we get

(2.7) | MUT, £,90) dy < Lip(f)" M(T) .

Another important tool we need is the cone construction. For a rectifiable chain
T € #Zm-1(X; @) one can construct the cone over T' with center z € X, [z]xT €
Km(X;G). In case T is a polyhedral chain we can write T' =), g;[S;] for finitely
many oriented simplices S;. If © = 0, then [0]xT = )", ¢;[S;] where S! := {ta :
t € [0,1],z € S;} and an appropriate orientation. For general rectifiable chains
we may define [0]xT := 4 ([0,1] x T) where ¢(t,z) = tx. If B C 9B(0,r)
has 7™~ ! finite measure, then the set B’ = {tz : t € [0,1],z € B} satisfies
A (B') = LA™ 1(B) as one can verify easily. Hence if spt(T) C 9B(0,r) and
OT = 0, then O([0]xT') =T and

(2.8) M([0] xT) = % M(T) .

In case B C X \ U(0,r) we get (B NB(0,r)) < L1 (B) since the or-
thogonal projection of X \ B(0,r) onto 0B(0,r) is 1-Lipschitz. Hence if spt(T") C
X\ U(0,7) and 9T = 0, then spt(9([0]xT)) C X \ U(0,r) and

(2.9) M([0]xT) < % M(T).

The basic idea in order to establish a regularity result for some chain T is to show
that spt(T') can be uniformly approximated by planes. Rectifiable measures in R™
have weak tangent planes almost everywhere. It is then a classical observation that
this tangent plane is actually a tangent plane for the support of the measure in case
the measure is Ahlfors regular. Here we show this fact for chains in X. For this it
is crucial that Hilbert spaces have the Radon-Nikodym property, which allows to
differentiate Lipschitz maps R™ — X at almost every point. For a Radon measure
¢in X and V € G(X, m) we define

Boold,,m, V) := 1" sup{|myr(y — 2)| : y € spt(¢) N B(x,7)}.

2.6. Lemma. Let X be a Hilbert space, T € %pn(X;G) and let U C spt(T) be a
relatively open set with dist(U,spt(9T)) > ro > 0. Assume that there are constants
ca > ¢1 > 0 such that ||T|| is Ahlfors reqular in U in the sense that for all x € U
and 0 < r < 1o,

(2.10) cra(m)r™ < ||T|(B(z,r)) < coa(m)r™.
Then for ||T||-a.e. © € U there is a plane W,, € G(X, m) such that
lr%l,BOO(HTH,x,T, W) =0.
Moreover, there is some 1, > 0 such that for all 0 < r < r,, there holds
Boo(IT||, 2,7, W,) <271 and
W, 4 (TL(B(:Z:, )N Zw, (z, 2_1r))) = g.[Bw, (7w, (x),27 )],
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for some g, € G with ||g.|| = O™ (|T|, z).

Proof. The bounds on volumes of balls (2.10) imply that ¢; < ©™*(||T|],z) < ¢
for all x € U and by a standard result of measure theory

(2.11) 1 H™(B) < ||T(B) < 2Mea ™ (B)

for all Borel measurable subsets B C U, see e.g. [7, Theorem 2.4.3]. As in Subsec-
tion 2.3 let 4 : K; — U be countably many bi-Lipschitz maps defined on compact
sets K; C R™ with pairwise disjoint images and (U \ ;7' (K;)) = 0. Let
gi : K; — G be s™-measurable functions such that TLU = Y7, 75 (gi[Ki])
and ||g;|| € [c1,c2]. The #™-measurable function g : X — G is defined to be
gio (7)™ on v¢(K;) and equal to Og on the complement of the union of all these
sets. We can further assume that for each i the inverse of 4 is extended to a Lip-
schitz map ¢ : X — R™. Kirszbraun’s Theorem allows to extend 4’ to a Lipschitz
map ¢ : R™ — X. In what follows we don’t need a sharp control on the Lipschitz
constant of these extensions and just assume that Lip(vy%), Lip(¢)*) < L for some
L > 1. The extended maps ~° are differentiable almost everywhere since Hilbert
spaces have the Radon-Nikodym property. For a proof of this see for example [12,
1.2]. The Radon-Nikodym property implies as in a standard proof of Rademacher’s
Theorem that each ~° is differentiable at almost every point of R™. With the help
of the area formula we see that for .7#"-almost every point « € U there is an index
7 and y € K; such that

(1) 7'(y) ==,

(2) D, exists and has rank m,

(3) O (ALK, y) = O™ (A LY(K;),z) = O™ (A LU,z) = 1,

(4) |lg:ll : K; — R has an approximate point of continuity at y.
Let W, € G(X,m) be the image of DW;. The differentiability of 4* at v and the fact
that 4% is L-bi-Lipschitz on K; imply that for any 0 < € < % thereisa 0 < 7. < 7o
such that B(x,re) Nspt(T) C U and for all 0 < r < re,

(2.12)  dist(y"(B(y, Lr)),x + W,) < er, and ' (K; \ B(y, L)) c U\ B(z,r),
and with (3),
(1—=3712m¢cy) tere™)a(m)r™ < 2™ (v (K;) N B(z,7))
< 2"(U NB(x,r))
(2.13) < (143712™e) e e™)a(m)r™ .
The inclusions in (2.12) imply
(2.14) Y(K;) N B(x,7) C N(z,er),

where N(z,t) :={z € U : dist(z,2 + W) <t} for t > 0. Assume by contradiction
that for some 0 < r < r¢ there is a point

(2.15) 2 € UNB(z,r/2) \ N(x,2er).

Then obviously B(z/,er) C B(z,r) and dist(B(2/,er),x + W) > er as well as
AU NB(2 er)) > (2Mca) " tera(m)(er)™ by (2.10) and (2.11). Hence with the
first estimate of (2.13) and (2.14),

AU NB(xz,7)) > A" (v (K;) NB(x,7)) + 2™U \ N(z,er))
> (1+3712™e) tere™a(m)r™.
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This contradicts the last estimate of (2.13).  Thus (2.15) is wrong and
lim sup,.| o Boo (|||, 2,7, W2) < 4e for all € > 0. This proves the first statement.

To establish the statement about the projections, let r, := 2 'rg—1. Then
Boo(IT||s 2,7, W) < 271 for all 0 < r < 7,. For almost every such r, (T, d,,r) =
I(TLB(x,r)) € Hm-1(X;G), where dy(z) = |x — z|. Since spt((T,dy,r)) C
OB(z,7) N N(z,27r) we get that |mw, (2 — x)| > 271r for all z € spt((T,dy, 7).
Hence the constancy theorem [14, Theorem 6.4] implies that for 0 < s < 271r,

WWZ#(TL(B({E, r)N Zw, (x, s)) = (WWI#(TLB({E, T))) LB(mw, (x),s),

and this chain is equal to g, s[B(mw, (), s)] for some g, s € G. The map (r,s) —
gr.s 1s locally constant by the constancy theorem and since the domain {(r,s) €
(0,75) x (0,7;) : 28 < r} is connected, this function is constant. Therefore we find
a unique g, € G as in the second statement of the lemma. It remains to show that

O (T, ) = || -

Since |71 (B, 1) = %, e, 185 © (7)1 4™ and [1g1] € [er,ca.
it follows directly from (3) and (4) that ||g|| is ##™-approximately continuous at x
and
(2.16) O™ (T, ) = O™ (T~ (K:),2) = |lg(x)]l -
Consider the L-Lipschitz function f : X — R given by

F(2) = max{[y'(2) — ¢*(2)|, L7z — xl}.
If 2 € y1(K;), then f(z) = ['(2) — ¢! (x)| and also
B(z, L7 'r) c {f <r} CcB(a,Lr).

As before, (T, f,r) = O(TL{f <r}) € Z-1(X;G) for almost every r > 0. With
(3) and the coarea formula we find a sequence rj, € [27%71,27¥] such that

A H(0B(y, k) N K)

lim =1,

k—o00 %m—l(aB(y, T‘k))
as well as (T, f,ri) = O(TL{f < rp}) € Zpm-1(X;G) for all k. From this
it follows that -Ldu(9B(y,7) N Ki,dB(y,7)) — 0. Because 7* : R™ — X
is Lipschitz, differentiable at y and lim,joBoo(||T|], 2,7, W) = 0, it follows
from (3) that % dist(spt({T', f, 7)), v (K;)) — 0 and further %dH (Y(0B(y,rx) N
K;),spt((T, f, rk>)) — 0. Thus

1
oA (@B(y, 7). 5pt(9T3)) = 0,

for the push-forward Ty := 9% (TL{f < 7}) € Zm(R™; G). The constancy theo-
rem implies now that there are g € G and a sequence 0 < s;, < ri, with sg/rp — 1
and

(2.17) TLB(y, sk) = gx[B(y, sx)] -
From the construction of the push-forward as in [13, 3.5], it follows that
Ty, = gi[Ki N B(y,ri)] + ¥l (TLA),
for some #™-measurable set Ay C U\ 7*(K;). From (3) and (2.16) it follows that
%%m(dﬂ'(/lk)) — 0 and also % M(% (TLAy)) — 0. With (2.17) we conclude

that g; = gr on B(y,7x/2) \ ¥(Ax). Since rp € [27%71,27K]  this shows that
gk = gr+1 if k is large enough. Hence g; is approximately equal to some ¢/, € G
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at y € K; with ||g.|| = |lg(x)]| = @™(||T||,z) by (4) and (2_.16). It follows that
7 M(T}, — g4 [B(y, m)]) — 0. Thus, 7 M(TLA{S <7} — 74 (92[B(y, 7)) — 0
and further

(2.18) % M (mw, 4 (TLAS < 1}) — (w0792 (G, [B(y,r)])) = 0.

From the fact that my, o+ is differentiable at y and (2.17),

(2.19) M(g,[z" + D(mw, ©7")y(B(0,1))] = (0, © 7w, 074 (g[B(y, 1)) = 0,

for k — oo, where 1,(2) := 1(z — 2’) + 2’ and 2’ = m, (z). We already know that

mw, projects T around z to a chain with weight g, hence g, = ¢, follows from
(2.18) and (2.19). This concludes the proof. O

The following lemma shows that the group element associated with a projection
doesn’t change for projections to nearby planes. This is a direct consequence of the
constancy theorem.

2.7. Lemma. Let T € %, (X;G) be rectifiable chain. Assume that there is an
m-plane V € G(X, m) such that,

(1) spt(T) € B(0,1) and spt(0T) C 0B(0,1),

(2) Iy ()] < 1 for o € spt(T),

(3) mv#(TLZv (0, 3)) = go[Bv (0, 3)].
Then for any W € G(X,m) that satisfies |[mw — v | < £,

Tw(TLZw(0,271) = go[Bw (0,27 1)].
We assume that W and V' are given orientations such that the projection my :
W — V is orientation preserving.

Proof. There is a Lipschitz family of m-planes t — W, connecting V with W such
that ||mw, — mw.|| < L|s — t| and |ry (w) — w| < 57 |w| for all s,¢ € [0,1] and
w € W;. With Lemma 2.1, the latter is equivalent to ||my — mw, | < 57! for all
t. Such a family of planes is for example given by im(L;) where L; : W — X is
defined by Li(w) := 7y (w) + tmy 1 (w). With a reparametrization, we may assume
that W; = V. Wi, =W for t < 471 Let S := [[0, 1]] x T e %erl(R X X,G) and
¥ :[0,1] x X — [0,1] x V be the Lipschitz map given by ¢ (¢, z) = (¢, 7v o mw, ().
We identify [0, 1] x V isometrically (in an orientation preserving way) with [0, 1] x
R™ C R™*L. The boundary of S is given by, see [15, 4.1.8] and the definition of
the boundary in [13, Section 5.1],

(2.20) 0S =[1] x T —[0] x T —[0,1] x OT .

Let x € spt(T). By assumption, = can be written as x = v + v+ with v € By (0,1)
and [v*| <571 It follows by the closeness of W; to V/,

mwe (@)] = 7w, (@) — 2| < |mw, (v) — o] + |mw, () — 0]
v 2 3
2.21 < —4-=-<-.
( ) 5 + 575

In particular if |z| = 1,

[mv o mw, ()| 2 [7v (2)] = [7v (7w, () — 2)[ = 1 = [my e (@)] = |mye ()]

(2.22) o251
: >1-z>¢

W~
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Fix some to € (0,1) and let B := (to,1 —to) x Uy (0, 1). Because of (2.20) and
(2.22), the set B lies outside the support of the boundary 0¢4S. The constancy
theorem implies that (xS)L B = g[B] for some g € G. For almost all t € [to, 1—t(]

we have for the projection 7(t,x) :=t,

(g S)LB,m,t) = (g[Bl, 7, t) = g([t] x [Uv(0,571)]).

Considering tg < t < 4= we infer g = go. The same slicing argument shows that

((mv o mw, ) # T)LUv(0,571) = go[Uy (0,57 1],

for almost all t € [tg, 1 —to]. my : Wy — V is bi-Lipschitz and orientation preserving
(by assumption). Hence we get for some small p > 0 (such that Uy, (0,p) C
v~ 1 (U (0, 7)),

(mw, £ T)LUw, (0, p) = (mw, 1)L Uw, (0, p) = go[Uw, (0, p)] -

Since (2)? + (4)? < 1 and (2.21), we again see by the constancy theorem on W
that the conclusion of the lemma holds for W = Wj.

O

2.4. Excess over a plane. For a chain T € %,,(X;G), an m-plane V € G(X,m)
and an #"-measurable set B C V the excess over B is defined by

Exc(T,V,B) := M (TLr' (B)) = M (ry4(TLm,' (B))) .

Since Lip(my) = 1, this number is non-negative and for disjoint Borel measurable
sets B, B’ C V it is Exc(T,V, B) + Exc(T,V, B’) = Exc(T,V,B U B’). From this
it follows that Exc is subadditive on the Borel o-algebra on V. We also use the
notation

Exc(T,V,x,r) = Exc(T,V,By (my(z),r)),

and for z at the origin we abbreviate Exc, (T, V) for Exc(T,V,0,r). We will occa-
sionally calculate the excess for different masses. For example S(T') denotes the size
of T and is just the Hausdorff measure of the underlying set M. Alternatively,
S(T) is the mass with respect to the discrete norm on G taking only the values 0
and 1. The excess with respect to S is denoted by Exc(T,V, B, S), and similarly if
we work with another mass. Here we give some first implications of small excess.
For a given T € %Z,,(X;G) and V € G(X,m) we denote by Es the set of points
x € By (0,1) for which M, := 7y ~'{x} N M7 contains more than one point. One
can show that this set is Lebesgue measurable and hence Fy contains a Borel set
El with .£™(FEy \ Eb) = 0.

2.8. Lemma ([20, Lemma 5|). Let T' € %,,(X; G) and assume there is an m-plane
V € G(X,m) such that Excy(T,V,S) <e. Then,

HM(E) < | #M, dr < 2.
E>
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Proof. The Jacobian of a map on an m-rectifiable set is bounded by the mth power
of its Lipschitz constant. The area formula leads to,

/#dex§2 #M, — 1dx
By By

—9 / Ty | M) (2) dA™ (=) — 2.6 (L)
ﬂvfl(Eé)mMT

< 2™ (my TH(EY) N My) — ™ (EY))
=2Exc(T,V, E},S) < 2¢.
O

A similar estimate is obtained by summing over the normed group elements in
the preimage.

2.9. Lemma. Let T' € %.,,(X;G) and assume there is an m-plane V € G(X,m)
with spt(dT) N Zy = 0. Let go € G be such that wy (T Zyv) = go[Bv(0,1)], then

> lg@)l = llgol
yeMy
for almost every x € By (0,1). If further
max{Excy (T', V), [|gol| Exc1 (T, V. 8)} < [|golle ,
then,

/E > el dx < 3|golle.

YyEM,

Proof. The slices (T, my, ) are defined for almost every 2 and concentrated on the
finite set My, ie. (T, mv,x) = > . F&(y)[y] with + if my : Tan(Mr,y) — V' is
orientation preserving and — otherwise. By [13, Theorem 3.8.1] we have

Y teW)le] = v (T 7y, @) = (wv T mv, @) = gola]
yeM,

for almost all z € By (0, 1) since on By (0,1) the chain myxT is a multiple of go.
The first statement of the lemma now follows from the triangle inequality of the
norm. By the assumption on the mass excess,

/E/ > le@)l - llgol da

2 yeEM,

= /71 g1 (my | Mr)(2) dA™ (2) — || gol| 5™ (E3)
7 (BYy)NMr

<[ e ) ~ ol )
my (E3)NMrp
= EXC(Ta Vi Eé) < HQOHG'
By Lemma 2.8 it is also [}, |lgol|dz < 2||golle, hence the result follows. O
2

Often we assume that we are away from the boundary and close to a plane, i.e. by
truncating, translating and scaling we are in the situation where spt(97) N Zy = 0.
By the constancy theorem for G chains [14, Theorem 6.4] it follows that there is an
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element go € G such that myx(TLZy) = go[Bv(0,1)]. Next we give conditions
such that the size excess is small if the mass excess is small.
2.10. Lemma. Let T € Z(X;G), V € G(X,m) and € > 0 such that

(1) spt(dT) N Zv =,

(2) myu(TLZy) = go[Bv(0,1)] for some go € G\ {0},

(3) e™(||T),z) > %HgOH for ||T||-almost every x € X,

(4) Exci(T,V) < llgolle.
Then Excy(T,V,S) < 5e.
Proof. Let My C Zy be an J¢™-rectifiable set with ||T||(Zv \ Mr) = 0 and
g(z) = 0¢ for @ ¢ Mp. Since ©™(||T||,z) = ||g(z)| for ||T|-almost every = € X,
assumption (3) is equivalent to ||g(z)[| > 2||go| for ||T|-almost every = € X.

As before let F be the set of those x € By (0,1) for which M, := m;' {z} N M7

contains more than one point. For almost every x € By (0,1) \ E2, the set M,

consists of exactly one point y for which ||g(y)|| = ||go]|. Using the area formula
and the first part of Lemma 2.9,

laolle > [ (@)l ™ @) = lgolatm)
Mt
> [ @@ @ = [ e

T v (0,1)
— [ el - ol ds
By (0,1)

yeEM,

:/E > lg@)l = lgoll da

yEM,

6
> [ Jlaoll = lgol dz
E2

1 m
= §||90||% (E2) .
If E C By(0,1) is Borel measurable with 22 (E) < 4, then
lgoll- 7™ (Mr N 7y (B)) < 5 M(TLy (E))

< = (Exc(T,V, E) + |lgo|| #™(E))

QO WO

< S lgoll(e + ).

Let By D Es be a Borel set with £™(Bs \ F2) = 0 and set By := By(0,1) \ Ba, .
As shown above, it is 2™ (Bg) < 2¢ and hence

Excy(T,V,S) = " (Mr) — a(m)
— (M (N (By)) - (B
+ A (My N1yt (Ba)) — ™ (By)
< llgoll ™ Exc(T, V, By) + 5™ (Mr Ny (Bz))

4
§€+§(6+26)§56.
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2.5. Quadratic forms associated to a chain. In order for a chain to be close
to a submanifold near some point, it is necessary that it can locally be well ap-
proximated by planes. The quadratic form associated to a G-chain we introduce
below will actually be used twice in these notes. First in the proof of the epiperi-
metric inequality in Section 3, and second, as part of the moments computations
in Section 4.

For T € Z,,(X;G), z € X and r > 0 we define the quadratic form

QT x.r)(y) = — 2 /B o dTIC).

a(m)rmt2

The reason for this particular normalization is that in case T = g[V] for some
oriented m-plane V € G(X,m), then Q(T,z,r)(y) = ||g|l|mv (y)|* for all z € V and
r > 0. This is demonstrated in Lemma 2.11 below. With Lg : X — X we denote
the self-adjoint operator associated to a quadratic form @, i.e. Q(y) = (y, Lo (y)).
We now show that in case a chain is close to a plane V near x, then Lo s, is
close to the orthogonal projection my .

2.11. Lemma. There is a constant cz.11(m) > 0 with the following property. Let
T € Zn(X;G) and x € spt(T). Assume there is an m-plane V € G(X,m) and
0<p<l1,0<e<1 with

(1) spt(dT) N Zy (x,7) =0,

(2) myu(TLZy(z,7)) = go[By (mv (x),r)] for some go € G\ {0¢},
(3) |myo(y — )| < pr for all y € spt(T) N Zv (x,7),

4) (T, «") > %ol for |T|-a.e. a,

(5) Exc(T,V,z,r) < |gol|er™

Then

tr(Q(T, x,7)) — mllgoll < ca11llgoll(p* +¢),
ILore,r) — llgollmv]l < e2a1llgoll(p +€) .

Proof. By translating and rescaling 7" we can assume that © = 0 and » = 1. This
is justified by the scaling factor in the definition of Q(T,z,r). Let (e;)i>1 be an
orthonormal basis of X such that ey, ..., e, € V. We define the quadratic form Q'
on X by

m 4+ 2
Q') '=—+Hgo|| / e
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" is indeed a quadratic form with corresponding bilinear form @’ N =
Q q p g Q'(y,y
m2 || g0 | fBV(O 1)<y,z><y’,z> dz. If y € V with |y| = 1, the symmetry of Q' im-

a(m)
plies that
1 m
(y,2)%dz = — / (es,2)?dz
/BV(O,T) m ; By (0,r)
1
= = |z|2 dz
m JBy(0,r)
1 T
= —/ 21 (8™ 10, 5)) ds
m Jo
1 T
(2.23) = —/ s"Ma(m)mdr = MT”HQ.
m Jo m+ 2

Therefore, Q'(y) = ||go|l|mv (y)|? for all y € X and by the formula 2Q’(y,y’) =
Qy+y) - Qy) - Q'y) we get

Q' (v, ") = llgoll{mv (), v (y")) = (v, llgollmv (¥))

for all y,y’ € X. Hence, Lo = ||go||my. We show next that @’ is close to Q(T',0,1).

By assumption spt(TLZy(\/1—p?)) C spt(TLB(0,1)) and hence
the constancy theorem implies (myx(TLB(0,1)))LBy(0,/1—p?) =
go[Bv(0,+/1 — p?)]. Thus with the smallness of the excess,

m
2

lgolla(m)(1 = p*) % < M(TLB(0,1)) < [lgoll(ex(m) + ) -

As before let My C spt(T) N Zy be a o-compact ##™-rectifiable set on which
ITLZy | is concentrated, and g : My — G is a measurable function characterizing
T. For y € B(0,1) write the orthogonal decomposition with respect to V' as y =
Yo + y-. The area formula leads to

[ wardnie = [ gl dene)
B(0,1) B(0,1)NMr

> / lg() | (9 202 (ry | M) (2) dt™ ()
B

(0,1)NMyp

Z/ S (e

—p2
By (0,4/1—p )zeﬁ‘;l(z,)mMT

= &N (Yo, 20) + (v s 7)) d2’
/BV(O,\/lpz) zewvl%;)mMT

> g0l (g, 2")% — 2p g | d2.
/BV(O 2) Z

1—
’ P z€my (2 )NMr
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Similarly,

/Bv(o,l) . 72 Ig(2)ll dz" = /MT lg(2)||J (mv|Mr) dA™(2)

Trvl(z’)ﬂMT

<[ Igenane)
— M(TLZy)
< ol e + a(m).

With (2.23),
aron - 5= [ IERC
> Z(;?I\gol\ l/BV(Q 1_p2)<yv,2'>2d2'— (e +a(m))2p
= llgoll (1 = p?) " |y |? - ’;”‘(—;jngon(e +a(m))2p
> lgolllmv () = ellgolle

for some ¢(m) > 0. To obtain an upper bound, a similar calculation shows,

[ wararicrs [ le@i e )
B(0,1) My
= [ Mg + () )

(2.24) < /M 18 (Wor 20)? + 2p + p?) ™ (2)

Lemma 2.8 and Lemma 2.10 imply that 5™ (E2) < 10e¢ where E; C By (0,1) is
the set of those x for which M, = w‘jl{x} N My contains more than one point.
By the first part of Lemma 2.9 we can find a Borel set F; such that M, = {y.}
and ||g(yz)|l = |lgo|| for z € Ey and Ey U Ey has full measure in By (0,1). We
can find countable many pairwise disjoint compact sets K; C my ~1(E;) N Mz such
that 7y : K; — K] := my(K;) C By (0,1) is bi-Lipschitz with inverse ¢; such
that sup Jo; < 1+ € and the remaining set M’ := M7y N7y ~1(E;) \ U; K; satisfies
A (my(M')) = 0. By replacing Eq with U; K if necessary, we can assume that
M’ = (). The compact sets K/ are pairwise disjoint since every x € E; has only one
preimage in Myp. Using the additivity of the excess,

ool > Bxe(.V.B) = Y [ g™~ [ ool

~laol 3= [ (i) =1) a2

>4 ool 3 [ (2 30T ~ s

Similarly,

M(TLay ' (By(0,1) \ Ex)) < [|gof| (4™ (E2) +¢) < 11]golle.
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Combining these estimates with (2.24) leads to

/ <y,z>2dIIT|\(z)§/ 18 (Yo, 20)* + 2p + p?) d#™ ()
B(0,1) M

< / 18(2) (o 20)? + 3p) dA™ (2)
~1(E))NMr
+M(TLry ' (By(0,1)\ E1))(1+3p)

<ol 3 [ (G + 39) T () '+ il
< HgoHZ/ (e 39) 0+ 8ol

Slool [, o)+ Blgolatm)p + 45loolc

Hence, Q(T,0,1)(y) < Q'(y) —i—cHgoH(p—i—e) for some ¢(m) > 0. And with the lower
bound we obtain |Q(T,0,1)(y) — Q'(y)| < cl|gol|(p + €)|y|* for all y € X. It follows
directly that

(' (Loeroa) — Lo )W) = 1Q(T,0, 1)y, y) = Q"W y)| < cllgoll(p+€) .

for all y,y" € B(0,1). If we set y' = (LQ(T,O,l) - LQ’)(Z/)/KLQ(T,O,l) - LQ')(?J)| we
get the result about the projection.

Next we estimate the trace of the quadratic form. By the monotone convergence
theorem,

rQT0.1) = ¥ QT 0.1)(e) = 2 /B(O e aTc)

i>1 i>1

o AL
a(m) B(0,1)

With similar calculations as before,

/ =2 d|IT] (=) < / lg() (2] + ?) d™ (2)
B(0,1) M~

</ g + %) de™ (2
ﬂvfl(El)mMT
+M(TLmy ' (By(0,1)\ E1))(1 + p?)

<llaol 3= [ (P + )" d'+ 2ol
<llaol X [ 1+ 0+ 2l

<lool [ P+ atm)lgol o + 2l
1

Since tr Q" = m||go||, the result follows. O

It is easy to check that the quadratic forms Q(T, x, r) are compact. Without loss
of generality assume that = 0 and r = 1. If (y;) is a sequence in X converging
weakly to y, then there is a finite constant C' > 0 such that |y;| < C for all i. For
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any z € B(0,1) we get (y;,2)% < C2. So, by Lebesgue’s Dominated Convergence
Theorem and using the fact that ||T']] is a finite measure,

. .oom+2
lim Q(T,0,1)(y;) = lim / (i, 2)2 d|TI|(2)
B(0,1)

i—o0 i—oo a(m)

m+2/ . 9
=—— Tim (y;, 2)” d|[T|(2)
a(m) Jg(,1) i~

m+ 2

/ (0,22 dIT)(2) = QT 2,r)(y)
B(0,1)

It follows from the spectral theorem that there is an orthonormal basis (ey) C X
of eigenvectors of Ly(r ;). The only accumulation point of the set of eigenvalues
(M) corresponding to (eg) is 0 and we can assume that this sequence is ordered as
AL > Ay > > 0. Let W, € G(X, m) be the m-plane spanned by eq,...,epn.

a(m)

2.12. Lemma. Assume T satisfies the same assumptions as in Lemma 2.11 for
z e X, r >0 and anm-plane V € G(X,m). Ifcg 11(p+e€) <1, then |X;—|/goll| <
co 11llgoll(p+€) fori=1,....,m and Wy, is close to V in the sense that

7w, —mv|| < 2v/meg 11(p +¢).

Proof. Again we assume that x = 0 and » = 1. Let v be a unit vector in V
orthogonal to V'’ := span{ej,...,en—1}. Such a vector exists since orthogonal
projection mys @ V. — V' has nontrivial kernel. We can write v = Y. wve;
with 1 = |[v]? = D ism v7. By Lemma 2.11 we get [|goll[v] — |Loere,n(v)] <

c9 11lgol|(p + €)|v| and further,
lgol*(1 = e2.11(p +€)* < 1Lz () = D- Nawif* < A,
i>m
Hence, [|go|(1 —c2.11(p+€)) < Am < -+ < A1. To obtain the upper bound we use
again Lemma 2.11,

A1 < llgollmyv (e1) — Area] + [lgoll|mv (e1)]
< lllgollmv(e1) = Loer,a,m(en)l + llgoll
<c911ll90ll(p +€) + llgoll -
This shows the first estimate of the lemma. For ¢ = 1,...,m, this implies that
llgollle: — mv (eq)| < [llgolles — Aieil + | Lqr,z,r) (i) — llgollmv (e:)]
<2¢c9 11ll90ll(p+€),

and therefore |w—my (w)| < 2y/me|w| for all w € Wy, ,.. With Lemma 2.1, the proof
is finished. O

3. REIFENBERG’S EPIPERIMETRIC INEQUALITY FOR A POLYHEDRAL CONE

This section essentially contains the results covered by Reifenberg in [20]. In
the setting of manifolds they can also be found in the book [17] of Morrey. The
proofs here often contain a bit more detail, and where appropriate we use the tools
for chains such as slicing and push-forwards to clarify the arguments. The main
object in this section is a polyhedral cone P € £2,,(X;G) in a Hilbert space X
with coefficients in a normed Abelian group G. We assume that spt(P) has finite
diameter but we could as well work with the infinite cone generated by P. The main
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statement of this section is Theorem 3.18 which essentially states that if P is close
to an m-plane V € G(X,m), then there is a comparison surface S € £,,(X; Q)
with 9(SLB(0,1)) = 9(PLB(0,1)) and

M(SLB(0,1)) = [[golle(m) < AM(PLB(0,1)) — [[gol|e(m)) ,

for some constant 0 < A(m) < 1 and some gy € G representing the group element
of the projection from P to V. We will apply this theorem in Proposition 5.4 to
a rectifiable chain by approximating it with polyhedral chains which is justified by
[10].

3.1. Assumptions and preliminaries. Until further notice we assume that 0 <
p < %, 0<e< % and V € G(X,m) is an m-plane with:

(1) P is in general position with respect to V, i.e. P can be written as a finite
formal sum ", g;[S;] of oriented m-simplices S; and g; € G such that my
restricted to S; is one-to-one and orientation preserving.

(2) spt(OP)N Zy(2) = 0.

(3) PL Zy is 1-homogeneous in its domain, i.e. 7,4 (PL Zy) = PL Zy (r) where
nr(p) = rp is the scaling by r € [0,2] in X.

(4) mv4(PLZy) = go[Bv(0,1)] for some go € G\ {0c}.

(5) llgill > 3lgol-

(6) Exci(P,V) < ||gole.

(7) |myo(x)] < pfor all x € spt(P) N Zy.

(8) € < pbm.

Combining (4) and (6) we get

M(PLZv) — |lgolla(m) < llgolle-
Similarly, it follows directly from Lemma 2.10 that
(3.1) Exc1(P,V,8S) = " (spt(P) N Zy) — a(m) < 5e.

For the most part of this section we could replace (5) by a bound like Excy (P, V, S) <
e. The properties for P stated above are scaling invariant with respect to ||go|| and
by replacing the group norm || - || with || - ||/||go|| if necessary we may assume that
goll = 1.

By the general position assumption (1) we can write P = ). ¢;[S;] for finitely
many almost disjoint oriented m-simplices S; and g; # Og. Because P is 1-
homogeneous we can assume that S; is the convex hull of S} U {0} where S is
some (m — 1)-simplex in X \ Zy(2). It follows that spt(P) = |J, S; and therefore
the set P, := 7' (z) Nspt(P) is finite for all 2 € By (0,1). Any such simplex
S; can be uniquely expressed as the graph of an affine map y* : my(S;) — V=*.
Let I, be the collection of all ¢ for which z € 7y (S;). Note that for almost every
x € By (0,1), z +y*(z) is in the interior of S; for every i € I,. Further, for almost

every x € By (0,1),
Z 9i = 9o,

icl,
since we assume that 7y : S; — V is orientation preserving. The map y* is defined
in a neighborhood of x if  + y*(z) is in the interior of S;. As in Subsections 2.4
and 2.5 let E4 be the points in By (0, 1) where 7y has only one preimage in spt(P)
lying in the interior of some simplex S; and E2 = By (0,1)\ E; be the complement.
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For a point = € E; we write y(z) for the only element in V+ with z+y(z) € spt(P).
Some immediate consequences of Lemma 2.8, Lemma 2.9 and (3.1) are

(3.2) %m(EQ) < / #1,. dr < 10e¢,
B>

(3.3) / S llgil dz < 15]golle

24€el,

Further, by our assumptions on P and the area formula, there holds for any
Borel set B C V,

%m(spt(P)ﬂﬁ;l(B)):Z%m(&ﬁwv / Z (T4 Jyw 2d33
i i€l
and
M (PLr" ZM gilSLy (B / S llgill (1+ (Tyh)?)? da
1€l

We know that (P, my,x) is in Z(X; G) for almost every « € V and because of the
observation above we get that

(P, z) ngﬂry
i€,

As in [20] we often use orthogonal coordinates € V and y € V+.
We define for any = € By (0, 1),

IDyll(x) == > I Dyl
i€l

and similarly ||Dy||us(z) is defined.
Here are some basic estimates we will need later on.

1. Lemma ([20, Lemma 1]). Let a,b > 0, ay,...,ar > 0, A1,..., A\ > 0 with
M+ -+ X =1andd € (0,1]. Then

(34) (+a+0%)" < (1+a®) 4 (80 - 1),

(35) (14 ua e+ M)t < (1+a) o (L)
(3.6) (1+52a2)%—1§5((1+a2)%_1)7

(3.7) (l—i—ab)% —-1< %572172_'_5((14_&2)% _1) '

Proof. Abbreviating a? = 1+ a?, 32 = 1+ b2 and squaring both sides of (3.4) we
notice it is equivalent to aw + § < 1 + «af, which readily holds as @« > 1 and § > 1.
Next, introducing h(t) = V1 +t2, t > 0, we notice (3.5) expresses the convexity
of h. Letting g(s) = s™' [7 B = s7*(h(s) — h(0)) we note (3.6) is equivalent to g
being nondecreasing. Computing ¢’ this in turn is equivalent to s~* [ h' < h/(s), a
consequence of the fact that h’ is nondecreasing. In order to establish (3.7) we notice
h is nondecreasing, convex, h(t) < 1+§ and we apply (3.6) as follows : h(vab)—1 <

h(3%+36a)—1<42 (h(%)—1)+%(h(6a)—1)<%—2 16 (h(6a) — 1). O
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Now, let W be a k-dimensional subspace of V' and W its orthogonal complement
in V. Then for all w' € W+ the slice (P, 7y 1, w') is defined and an element of
P(X;G). Writing 2 = w4+ w' € W + W for some z € By(0,1), we have by
iterated slicing and the assumption on P,

<<P77TWL7w/>a7TW7w> - <P7 (7TwL,7Tw), (wlvw» - <Pa 7TV7$> .
So, for some fixed w' € W+ N By(0,1) the slice P’ := (P,my ., w') satisfies

X{(P',mw,w) = x(P,mv,z) = go (where x denotes the augmentation map) for
all w e W with w + v’ € By/(0,1). Further,

OP" = (=1)™ F(OP, ., w'),
and hence
spt(OP') N Zy = spt({OP, myy 1, w')) N Zy C spt(OP)N Zy = 0.
As a result spt(O(P'LZy)) C 0Zy.

3.2. Mass estimate of the averaged cone. Let [x1,z2] be the straight line
segment connecting two different points 21,22 € By (0,1). Let W be the oriented
(m — 1)-dimensional subspace of V' orthogonal to x5 — 1. By the general position
assumption the set spt(P) N7y ([x1,22]) is a union of finitely many straight lines
each lying in some simplex S;. We define the truncated slice,

P(‘Tlvx?) = <P7 7TW7w>|—7T\;1([$17‘T2])7

where w € W N By(0,1) is the vector with 7y (x2) = 7w (x1) = w. By the
observations above and some general facts about slices, P(x1,z2) € 21(X;QG),
mvaP(x1,22) = go[r1,22] (given the right orientation on W) and hence
Ty 40P (21, 22) = go[r2] — go[z1].

3.2. Lemma ([20, Lemma 2]). If 1,22 € Fy, then

y(z1) = y(22)| < /[ ] I Dyll(z) d" (x).
T1,T2

Proof. As noted above, P(z1,z2) is a well-defined non-zero polyhedral 1-chain with
support in spt(P) Ny ([x1, 22]) and OP (a1, 22) = golw2 + y(x2)] —go[x1 + y(21)]-
We want to show that there is a curve in spt(P(z1,22)) connecting x1 + y(z1) and
22 + y(z2). As a polyhedral 1-chain, P(z1,x2) is a finite sum of loops g;[L;] and
curves g;[C;] connecting x1 +y(z1) with xo+y(x2). For any loop, my4(g:[L:]) = 0
by the constancy theorem, since 0(g;[L;]) = 0. Since mv4 >~ 9;[C;] = go[x1, z2] #
0, the set of C}’s is not empty.

Thus there is a piecewise linear curve « : [0,L] — spt(P(x1,x2)) connecting
x1+y(x1) and 22 +y(22) that is injective and satisfies |7/|| = 1 almost everywhere.
By the area formula

L
F@(mv 0 7)' (1)l dt = Y. fWdrH (@),
/0 /[w“ te(myoy) (@)

for all measurable functions f. Set f(t) := |(my o) (t)|~*. If y(¢) is in some simplex
Si(+) in a neighborhood of ¢, then by (2.6)

F() = |mv (/1)1 < Lip(y'™) = [[Dy" @]



PARTIAL REGULARITY OF ALMOST MINIMIZING G CHAINS 29

Finally,
L
o) =yl < L= [ fOlvon)©]di
0
= D Y LU A
enw2lie(ryomn=1(@)
<[ Slpvire,
[e1,22] e,
and by definition this is exactly the integral of || Dy]|. O

3.3. Lemma ([20, Lemma 3]). There is a constant cz3(m) > 0 with the following
property. If f is a measurable nonnegative homogeneous function of degree 0 on V'
(i.e. f(tx) = f(x) for all t > 0), then

/ da:/ da:’/ dzp~ " x|T™f(2) < 03,3p/ flx)dx.
By (0,1) By (z,p|z]) [z,z'] By (0,1)

Proof. Let
Z:={lz| <1} x {|2| <1} x (A € [0,p]} € V2 x R,
7' = A{(z,2',2") e V3 :|z| < 1,|z — 2| < plx|, 2" € [x,2]} C V3,

and define ¢ : Z — Z' by ¢(z, 2", N) := (z,z + plz|a’,z + Mz|z') and g : Z - R
by g(z,2',X) == f(x + Alz|2’). ¢ is bi-Lipschitz onto its image and Jp(g 4/ x) =
p" 2| 2| < p™|z|™ holds almost everywhere on Z. By the area formula,

/ / / e () < / / / gle.2' )
|z|<1 J|z—a'|<plx| Jz€[z,2'] |z|<1 J]z’|<1 JXg(0,p]
|z’|<1 JXe[0,p] /|z|<1

<a(m)p max / fla+ Nazlz").
( ) |z’ |<1,X€[0,p] |z|<1 ( | | )

By assumption A < p < 1. For fixed A and 2/, the map ¢ : @ — 2 + A|z[2’ is a
bijection of By (0, 1) onto a subset of By (0,2) with

(3.8) D)y (v) =v+ ﬁ(aj, vy’ .

Hence det Dy, =1+ )\I;—I@z, 2') € [3, 3] since we assume that p < 1. Therefore,

f((x)) dz

By (0,1)

/ f()(det D)~ da
% (Bv(0,1))

< 2/ f(z)dx.
By (0,2)

/ f(@ + Aale)
2 <1

Finally,

/ f(x)dx:/ 2mf(2x)dx:/ 2" f(x) dx,
By (0,2) By (0,1) By (0,1)
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and the statement follows. O

The next estimate and its proof is directly taken from [20].

3.4. Lemma ([20, Lemma 4]). Let p be a finite measure on E and f € L=(E, u)
a positive function. Then

min{(/Efdu)z,(/Eldu>2} §3(/Eldu) (/E(1+f2)%—1du> .
Proof. The Cauchy-Schwarz inequality implies that
([Efdu>2= (/E ((HFJ;;+1)%((1+f2)é+1)%dﬂ>2
< (L) (fosr 1)
= (/E(Hf?)% —1du> (/E2+((1+f2)% —1)du> .

If [L(1+ )2 —1ldp < J Ldp, it follows that

(L)'= ([ - ([ o9)
(o' s () ([ -10).

We define an average function y : By (0,2) — V- by

g@) = Y ') = (X lall) X louly'a).

i€l €1, €1,

Note that for 7#™-a.e. v € By (0,1) it is [|goll < > e, llgsll- Obviously, [y(z)| < p
for #™-a.e. x € By(0,1) and for x € E; we have y(x) = y(x). A suitable
smoothed version of y is obtained by the map v : By (0,1) — V- with

and otherwise,

v(z) = (a(m)p™ ™) / y(2)dz.

By (z,plz|)

Because P is 1-homogeneous, so are y and v. Here are first estimates of v.
3.5. Lemma ([20, Lemma 7]). For all x € By(0,1),
lv(z)| < 2p,

and there is a constant cz 5(m) > 0 such that

[ S v -y @l de < et

v(0,1) e,
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Proof. By the definition of ¥y and the assumption on the height bound of P it is
clear that |y(z)| < p for € By/(0,1). Fix some z € By (0,4). To obtain shorter
formulas we abbreviate B, , := By (z,p|z|) and |B,,| = #"™(B,,,). Clearly,
B, C By(0,1) and hence

V@) < @mpel™) [yl
By (z,plz|)
(3.9) < |Bapl " Baplp = p.

This immediately implies the first statement of the lemma. By (3.9) and (3.2) we
have on E; C By (0,1),

|v(x (z)]? dz < 4max{|v(z)], |y (z)|}? dx .
B Jo B

< 4p2 #1, dx
E>

(3.10) < 40ep?.
Using that Fs is a cone, it follows with (3.2) and the bounds /e < p™ < 1 that
| B "1™ (B2 N By (@, plz))) < [Ba,p| ™A™ (B2 N By (0, (1 + p)lz))
< B, " 110e(1 + p)™ 2™
(3.11) <10-2Ma(m) tye.
With (3.10) and (3.11) it follows that there is some c(m) > 0 with

/BV(O ZGZI [v(z (z)|? dw
SB[ s -yi@)]| d

2
cep +/
ElﬂBv(O,%) icl, Bz’p

2
oo+ [ [Basl [ 156~ y@)]de]| da
ElﬂBv( l) B

z,p

2
<ce + | B [ iy~ y@d| + evp] do.
ElﬂBV 0, %) ElﬁBz,p

IN

IN

Because (a + b)? < 2(a® + b?) we get that the expression above is bounded by

(3.12) cep® + 2/
E1NBy (0,%)

for some ¢’(m) > 0. Since |2'| < 2|z| <1 for 2’ € B, , and y is 1-homogeneous,

/ ly(z") —y(z)|da’ < / 3plz|da’ <3 (1 > / dx’ /
ElﬂBI’p B x x/]

By Lemma 3.2,

[ we)-v@lar< [ [ oy,
ElﬁBz,p Bz,p [:E,:E/]

2
|Bz,p|71/ ly(z') —Y($)|d$/] dx,
ElﬁBz-Yp

z,p
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and hence the second term of (3.12) is bounded by

Bal- mm{/ w [ oyl [ f H

Hence we can apply Lemma 3.4 and (3.13) is smaller or equal

3c<m>/El|Bm,p|-2 (/B da’ / )(/B o’ / (1+ Dy} —1 )
<selm) [ [Buy 2B ol ( [, @[ asipyin? - 1)

<seom) [ BeTlel [ @t [ oyt o
By (0,1)

(3.13) c(m)/

Because || Dy]|| is 0-homogeneous, so is (1 + IDyl2)z — 1 and by Lemma 3.3 the
term above is smaller than or equal to

3e(m)a(m) lcs.3p° /B (1+ |Dy|?) -

)

Using (14 (32, a;)?)z < >0+ a2)z, | Dyi|| < Jy' for almost all z and (3.1) we

see that
1
) 2\ 2
Z||Dy;|>> ds

[ asioypioa | 1+(
By (0,1) By (0,1) il

s/ S (1+[Dy?)? — 1da
B

V(O’l) i€l

< / 14 (Tyh)?
vag)gg( )

=" (spt(P) N Zy) —a(m) < 5e.

=

—1ldx

Plugging this back into (3.12) gives that fBV(O 1) Yier, V(@) —¥'(@)[? dz < e”p?e
5 x
for some ¢”(m) > 0. By homogeneity the lemma follows. O

Next we want to estimate the differential Dv,. It will also become clear from
the following proof that v is differentiable at all x # 0.

3.6. Lemma ([20, Lemma 8|). There is a constant c36(m) > 0 such that for all
T E BV(Oa 1) \ {0}7
[DVellus < (14 03,6P)(a(m)0m|11?|m)_1/ 1Dy lss dz -
By (w,p|z])

Proof. By definition

V(@) = (e(m)p™|z™)! /

By (z,p|z|)

The map ¥y is piecewise linear and in particular differentiable outside a set of mea-
sure zero. Let v € By (0,1) and ¢ > 0. The Lebesgue Dominated Convergence

y()ds=alm) " [y plal)dz
By (0,1)



PARTIAL REGULARITY OF ALMOST MINIMIZING G CHAINS 33

Theorem implies that
1
v+ t0) = v(@))

1
— a(m)"! / L5 + to+ zple + to]) — 9 + zpla])) dz
By (0,1) U

(3.14) — a(m)™! / DY o zpla)(v + zp(x,v)) dz,
By (0,1)
for t — 0. Hence with (2.6),

(3'15) |Dvw(v)| < a(m)_l / |D5’z+2p|x|(v)| + p”DS’erzP\z\HHS dz.
By (0,1)

For an orthonormal basis (e1, . .., e,) of V, using the multivariate Jensen inequality

((][“1)2+"'+(][“m)2)% S][(a§+---+a3n)%,

to (3.15) leads to
1DV s = (Z |Dvm<ez->|2)

- _ _ 2\ ?
< a(m) ! / (Z (|Dyx+zp\z\(ei)| + p”Dnyrzp\z\HHs) ) dz
By (0,1)

%

[N

-

1
2

< a(m)_l / (”Dym-i-zp\w\Hfls + (mp2 + 2\/Ep)||Dym+zp\w\Hfls) dz
BV(O,I)
< (1+ Vmp)e(m)™! / 1DF oo s d=
By (0,1
< (14 vimp) am)p™ o) [ 1D s d
By (z,p|z|)
O

In the next Lemma we estimate the derivatives of v pointwise.

3.7. Lemma ([20, Lemma 9]). There is a constant cz7(m) > 0 such that
| DV, |lus < csred and hence |v(z)| < cse3|z| for all 2 € By (0,1).

Proof. Fix a point € By (0,1). For shorter formulas we abbreviate B, , :=
By (z, p|z|). The Cauchy-Schwarz inequality implies

_ _ 1
/ | DF|lus = / (IDy|12)*
B B

z,p z,p

:/B (+ D310 — 1) (@ + D3I +1)°

1
_ 1 2
[ asiosizgi 1) (f
By, Bw,p
1
_ 1 2
[ avipsiz? —1) (2|Bz,p|+ /
Ba., B

1
2
1+ |Dyl%)% + 1)

_ 1 2
(1 + D5l - 1)

@,p
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By definition y(2) = >, 0i(2)y*(2), where 8;(z) = lgill (X jer, lg;lD~t <
llgillllgol| ~*. For almost every & € By (0, 1) there holds,

ID5¢les = [ D 0v7) ||, = | X 6:€)Dvi
icle icle

HS

< Z 51‘(5)”1)}’2”}18 .
’L'Glg

Using Lemma 3.1 and the fact that || Dy’ ||ss < Jy? for almost all 2,

[ oaviszgi-rs [ (e (Taemyi)’) e

@ Ba,p icl,
1 . 1
< [0S ol (1 D5 ~ ol ds
faoll Js.., 2
1

> lgill (1 +(T¥D)?)* = llgoll d=

S R
g0l JBy (0,040 1) 57
= (14 p)"|2|™lgoll~" Exc1(P, V)
(3.17) < 2"z[™e.

Hence

/ |DF|lus < (2™]2|™€)% (27 |2[™ e + 2| By, ) 2

= (2™|z[™e)% (2™ |z[™e + 2a(m)p™ 2| ™)

< c(m)|z|"e?
for some constant ¢(m) > 0. By Lemma 3.6 and because €5 < P we get for x # 0,

_ m 1
[1DVellus < (1+ e3.6p)(a(m)p™[x|™) " e|z|™e3

=c(l+c3gp)a(m) e

ol
IS

€

1
;1
=c'es,

for some constant ¢’(m) > 0. O

Because ||Dv,| < ||[Dvyl|lus < v/m||Dv,| the statement in the lemma above
is true for both norms. Further estimates on the integral of this differential is
needed. In the following lemma the particular definition of the averaging function

y(@) = O er 9517 Yicr, llgilly*(z) is used in an essential way.

3.8. Lemma ([20, Lemma 10]). There is a constant c3.g(m) > 0 such that

J

Proof. For x € By abbreviate again B, , := By (z, p|z|). Combining (3.16) and
(3.17) as obtained in the proof of Lemma 3.7 above with the estimate ¢ < p™*1,

1 i 1
> lgill (1 +1Dv2l36)* da < es.s]l0llpe +/ Y lgill (L + 1Dy |3)? da

Viel, Bv jer,
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we get,
2
([ 105.s)
Baz,p
_i2 2 _n2 a1
<(f avipsizoi-1)(Bal+ [0 ipsiEo-1)
Bz,p Bz
<([ a+ios)t 1) (2atmpmialn + 2miaine)
Baup
12 Nk
(318 <2a(mye"(+ep) [ (14 Dyl - 1,
z,p
for some constant c¢(m) > 0. Using the fact that (1 +a2)z < 1+ 1a?, it follows
from Lemma 3.6 and (3.18) that for ¢’ = max{cg g,c},
2 1 1 2
A+ Dvlas)2 =1 <5 | DIl
BV BV
1 2
<3 [ |a+esenatmpmian [ 105l
By Bz,p

IN

5 [, 20 enampemem [ byl -1

@,p

_ _ 1
- / (1+¢p)a(m)" / (14 1Dt oo 20 — 1d2
BV BV

(3.19) <O+nf mye [0+ 1DFs it~ 1ds.
v

z€By

Asin (3.8), for fixed z € By (0, 1) the map ¢ :  — x+p|z|z is a bijection of By (0,1)
and a subset of By (0, 14+p) with D1, (v) = v+2 (2, v)z and det Dy, = 1+ (x, 2)

|| ||

for x # 0. It is det D, > 1 — p and since we assume that p < % we obtain

det D(y ™) < 11, <1+ 2p,

for almost all £ € ¥(By(0,1)). By the homogeneity of || Dy||us,

_ 1
/ (14 | DYt piafel2)¥ — 1da
By (0,1)
- / ((1+ [ Dye]20)* — 1) det D(¢~")e de
¥»(By (0,1))
_ 1
< (1+29) / (1+ | Dye|2,)} — 1de
By (0,14p)

— @21+ [ (1 Dyl - e
By (0,1)

(3:20) <) [ @ IDel) - e,
By (0,1)
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for some constant ¢”(m) > 0. By the excess bound in term of €, we obtain as in
(3.17),

/BV(1+|DSf|is)% _1§/B (1+(Z(5 I\Dygl\Hs) )2 e

i€le

1
< [ 36O (IR - 1de
By

lEIg

< lgoll~ / S gl (1+ (Ty2)2) = lgoll de

1615
(3.21) = |lgo| ' Exci(P, V) <e.
Combining (3.19),(3.20) and (3.21) we see that for ¢’ = max{c”,c'},

1 _ 1
/ (L4 IDV]Z)E —1< (1+c"p)! / (1+ |Dyel20)} — 1de
I3\/ I3\/

— 1
<cpet [ (D3l - e,

By
for some constant ¢’/ (m) > 0. With (3.5) of Lemma 3.1 we obtain,

-1
1 i 1
/ 1+ [Dv]is)? < C""P6+/ <Z ||gj||> D gl (1 +IDyl17s) 7 dg
By Bv \jer, i€le
Applying (3.3), Lemma 3.7 and €3 < p to the estimate above leads to,

L Xt (- 1Dv) = 1) as

Viiel,

%
Sllgol\/E (1+ I1Dva|2) —1dx+/ S gl Dva 2, d
1

24el,

1 2
< ool /B (1+ [Dva|2)* — 1dz + 15| golecg ¢
v

"

1g0llpe

o [ (Shat) ot (64 10w )t - 1) a

JEIL i€l,

< 15¢c3 7/lgolle? + ¢

1
< segr +< olloc+ [ 3l (14105215 1)

Viiel,
Adding [ >ic;, [l9:ll to both sides, the lemma follows. O
By assumption (4) we have my»(PL Zy) = go[Bv(0,1)]. Define the rectifiable
G-chain T := (idy + v)%(g0[Bv (0,1)]) € %Zm(X; G). Lemma 3.5 implies that
du((spt(P) Uspt(T")) N Zy, By (0,1)) < 2p < 1.

Let ¢ : X — X be some Lipschitz map with the following properties: for x € V
and y € V1,

(1) e@+y) =z +y,if |z] > J or [y > 2,

(2) ¢z +y) =2+ v(z), if |2| < 5 and |y <1,
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(3) e(e+y) ==+ (4z] - 2)y + (3 - dlz))v(x)), if 5 < |o < J and [y <1,
Define T := px P € #,,(X;G). It is easy to check that
(1) A(TLZv(3)) =d(PLZv(3)),

(2) mvx(TLZv) = go[Bv (0, 1)],
(3) T|_12V(§)= B’LZV(%%
(4) 1

spt(T) N7yt (z) = | {z+ B = 4fal)v(@) + @]z - 2)y'(2)} .
i€l

3.9. Lemma ([20, Lemma 11]). There are constants c3.9(m), p3.o(m),eszo(m) > 0
such that if 0 < p < p3o(m) and 0 < € < e39(m) (recall we also always assume
€ < p%™), then

| S a0+ (@) de < caslamlober [ 3 a1+ (¥4 o,

i€l, i€l,
where z' := (4r — 2)y' + (3 —4r)v, r(z) :=|z| and A :={z € V : & < |z] < 3}.

Proof. We start by noticing that 0 < 4|z| —2 < 1 as well as 0 < 3 —4|z| < 1, two
facts we will freely use without further reference in the course of this proof. For
almost all x € A it is

(3.22) Dzl (v) = (4|z| — 2)Dy"(v) + (3 — 4|z|)Dv,(v) + 4z, v)

Fix a point z for which all the differentials in the formula above exist and consider
the matrix M}, := (Dz (ey), Dz (e;)) for some orthonormal basis (e1,...,€m,) of
V. Applying (2.5),

(J2,)° = det(Mj).

K20
For simplicity we assume that the e, = e};’s are eigenvectors of Dyi*Dy; with
eigenvalues (Ai)?, for \i > 0, and A’ is the corresponding diagonal matrix (i.e.
Al = (Dyi(el), Dy’ (el)) = (N\i)?*0k1). We can write

My = (dfz| = 2)*Ajy + (3 — 4|z[)(Dva(e}), Dva(e})) + Riy
where

| Ria| < 16]y" (x) = v(2)* + 8| Dvolly’ (z) — v(z)]

(3.23) , A
+ (I1Dvall +4ly" (z) = v(@) ) (A + A7) -

Next we estimate the minors of M corresponding to some nonempty subset K C
{1,...,m}. Using (3.22) to expand each M}, = det(M%k}) we find that for subsets
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with one element K = {k},

1Dz, 2 = 3 det (1},

k=1
< (A =2)* Y Afy + B —4fal)® Y |Dvaler)?
k=1 k=1
(3.24) +2(4fz] - 2)(3 — 4fz]) > _(Dyk(ex), Dva(ex))
k=1

+16]y*(z) — v(2)|* + 8]y*(z) — v(2)| (I[Dvall + [ Dy )
2
= ((tlal = DDy s + 3 = ) Dvels

+16]y"(z) — v(2)|* + 8]y*(z) — v(2)| (IIDva + [ Dy ) -

Furthermore the exists a constant ¢ = c(m) > 0 such that if #K > 2 then,
det(Mi) < (4]z| — 2)* det(A%) + ¢/ Dv,|*
(3.25) +e(ly' (@) = v(@)? + [ Dva |y’ (z) — v(@)])
c(ly'(z) = v(@)| + | Dva|)(Ty5)?

We now indicate how to obtain the above inequality:

det(Mij,) = Z (—1)l! H M,

0ESy keK

= 3 0 T (] = 22A4 0 + B — Al (Dva(el), Da(el ) + Rioiry)

0ESy keK
-y 07 3 ([ —z)?AzC,(k))
O'ES Ki,K2,K3 ke K4
< [T 3= 4lz)*(Dva(e}), Dva(e ) (H R )
keKso keKs

where the last sum extends over all partitions { K1, Ko, K3} of K. Letting q := #K,
the term corresponding to Ko = K3 = () equals (4|z| — 2)%9 det(A%) when o = idg
and zero otherwise, whereas the term corresponding to K; = K3 = ) is bounded
above by (3—4|z|)?9|| Dv,||?? regardless of o. These are respectively bounded above
by (4]z| —2)% det(A%) and by || Dv.||* since 0 < det(A%), since ¢ > 2, and since we
may assume || Dv,|| < 03'7(m)6% < 1 provided ¢ is small enough depending upon
€. Thus these two terms, corresponding to all o € S, are accounted for in the first
line of (3.25). In order to bound from above the other terms, we start by observing
that if ) # K C {1,...,m} then

[T %) < det(I + A) — 1= (Tyh)?,
keK

Furthermore a product [],..x A};U(k) is either zero (when o # idk) or equal to
[T,c i (X;)?, thus in both cases it is less than or equal to (Jy?)?. Now the remaining
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terms corresponding to K3 = () have necessarily K; # () # Ko and are therefore
bounded above by

(H A?@(k)) <H |DV1||2> < |IDv.|[(TyL)?,

ke K, keEK2

and are accounted for in the last line of (3.25). Next we consider the terms corre-
sponding to K3 # () and we define a’, and b’, in the obvious way, according to (3.23),
so that |Ri,| < al +b% (AL + A7) and we notice that we may assume 0 < a’ <1 and
0 < b% <1 provided ¢ is small enough depending on m. Now

IT Rio

keKs

< H (ap + (N + Xor))
ke K3
N SRCACHTEN | QRSN
Ks31,K32 kEK3 2
- a’, if Kg0=1
"0 e, Nk + X)) i K2 #0

where the sum extends over partitions {K3 1, K32} of K3. Thus the terms corre-
sponding to K3 # 0, K32 = 0 and K; = ) are accounted for in the second line of
(3.25), whereas the terms where K3 # (), K32 = () and K7 # () are accounted for in
the third line of (3.25) because |y*(z) — v(x)| < 1. It remains to consider the terms
for which K32 # (). The following sum extends over partitions {L1, L2} of K3

Hum&w—z<nx> M x

kEK3 2 L1,Lo \k€L: k€o(Lsz)
_ 7\2 i
=2 I oW II x
Lyi,La \k€LiNo(L3) k€L160(L2)

< IO o I o
Ly,L> \keLiNo(L2) k€L160(L2)
Ai>1

We first analyze the various subcases occurring as K7 = (. If Ly No(La) # 0,
the corresponding term is bounded above by b%(Jy%)? and thus is accounted for
in the third line of (3.25). The same occurs if Ly No(L2) = () but there exists
k € Ly © o(Ly) such that \i > 1. Now if A < 1 for all k € Ly & o(Ls), and
LiNno(Ly) = 0, we pick two )\};1,)\};2 € L1 © o(Ly) with k; # ko (this is possible
since #(L160(La)) > 2 because L1No (L) = () and we observe that we can bound
afactor Aj, Al < % ((A;,)? + (ML,)?) < (Jyi)? and, again, the corresponding term
is bounded above by b%(Jy:)? and thus is accounted for in the third line of (3.25).
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Finally it remains only to consider the case when K59 # 0 and Ky # 0. We
observe these terms are bounded above by

(Mote) (T o0)| T oir
keK1 keLiNo(Ls) k€L160(L2)
AL>1

Clearly K1y N L1 C K1 N K3 = 0. If o, # idk, then the second factor above
(corresponding to k € K1) vanishes, thus we may assume K; No(Lz) = 0 but then

the product is of the type b [T,z (A;)? with K # 0 and (3.25) is established.
Summing up (3.25) over all K with #K > 2 we find that

(72" = 1Dz = D det(Mg)

< (le] - 22((TyL) — |DYLI%) + | Dval®
Ty (@) - v(@) + [ Dvally () — v(@))
Ty (@) - v(@)] + [ Dval) (YL,
and with the help of (3.24), recalling that || Dy ||lus < Ty,
(T) < (2] - 2°((T¥L)? — | Dy’ %)
2
n (<4|w| )|y s + (3 4|:c|>||Dvm|Hs) D,
Iy @) — v(@) + [ Dvallly' () — v@))
Ty (@) — v(@)] + [ DVl (TYL)
+ lyi(z) - v(@) | DyL

—~ o~

2
< ((tle] = 2755 + 3= daDDvills )+ IDwe]!

+c(ly'(z) = v(z)[* + | Dva]lly’ (z) — v(z)])
+(|y'(z) = v(@)| + | Dv. ) (TyE)?
+cly'(z) — v(z)||| Dy |

2 6
= (<4lxl = 2)Ty, + (3 - 4|x|>||Dvx|Hs) +YRI@)

v(
v(

A/—\

for some ¢’(m) > 0, where the R¥(x), j = 1,...,6, are readily defined by the last
equality.

Now from the above inequality, applying seven times (3.4) of Lemma 3.1, and
one time (3.5), we see that

(326) (1+(T2)2)% < (2] —2) (1 + (Ty')?)? + (3 —dja]) (1+ [ Dva|2)?

+ZG:(1+R” %—1).

Jj=1
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Since the maps x +— ||g;(z)||, © — ||Dvy|us and x — Jy? are O-homogeneous for
all ¢ we obtain, thanks to Lemma 3.8,

/||— ST lgill 1+ [1Dva||2e)? doa™ = (x)

1€,
— [ S lall @ D)
dr JBy (0,r) = e
1
—nr [ S gl (14 v ) d
By (0.1) (2T
. 1
<ot [ S gl (14 (T30 e e ganloe
Bv(0.1) (5T
. 1
B / S gl (L4 (Tyh)?)® do™ (z) + mr™  eg gllgollpe -
‘z‘:Tiejz
Therefore,
X 1 1
/A S gl <<4|x| S 2) (14 (Tyh)?)F + (3= 4la]) (1+ | Dva2,)? )da:
i€ly

= /j ((4r—2) /M_TZ loill (14 (Ty2)?)* doem = (z)

5 icl,
2 \3 m—1

s [ Yl (4 1DV <x>)dr

z:TiEIz

< / % (<4r ~2) /|| S llgol (1 + (Tyi))* dorm= @)

2 icl,
e 4”/ X el (1 (Ty8)2)? ™ (a)

=Tiel,

+ (3 - 4T)mrm1C3'8||go||pe> dr

. 1
< meg gllgoll pe + / > lgill (1+ (Ty2)")* da.

icl,
Thus it follows from (3.26) that

=

/ Z llgill (1 + (Jz;)2)§ dr < mC3_8||go||pe+/ Z N3]l (1 + (jy;)2) d
Ajer, Aier,
6 1
#30 [Slal (0+ Ro@) 1) e
j=174er,

In order to complete the proof of the Lemma it is therefore sufficient to establish
that

N
[ 3 ol (0 R @)* 1) do < mllaolote
i€ly
for some ¢/(m) >0 and all j =1,...,6.
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Clearly,
(14 B (2))7 — 1 < R (z) < || Dv,|[* < c'ch et
(1+R2(@))* —1 < R%(x) < c/ly'(x) - v(2) .

Setting & := p? < 1 we obtain with (3.7) of Lemma 3.1,

. 1 1
(1+R®(2))* =1 = (1+c||Dvellly’(z) = v(z)[)* —
1
< 3072y (@) = v(@)* + 6 (1+||Dvx|\ 1),
1,y . X
< 3¢y (@) — v(@)? +p% ((1+1Dvef?) - 1)

Setting ¢ := |y’ (z) — v(z)| < ¢/3p < 1 provided p is small enough depending on
m, we infer from (3.6) of Lemma 3.1 that

1 1
2 2

(1+R*x)” —1=(1+Cy' () — v(x)|(TyL)?*)* —1
< @3p)t ((1+ (T3t - ).

Similarly, if € is small enough such that ¢’ C3'7€% < 1, then Lemma 3.7 implies that
c||Dv;|| <1 and it follows from (3.6) of Lemma 3.1 that

. 1 1
(1+R%@)* —1=(1+c|[Dva](Ty;)*)* =1
1
< (clegp)et ((1+(jyx) )? - 1) .
Finally, applying again (3.7) of Lemma 3.1 with & := pz,

1
2

(14 R%a))* — 1= (1+ ¢y (2) — v(@)|| DyL])* —
1 —2 /2 2 %
< L072y (@) — v(a) +5(1+|\Dymn 1)

=

IN

%c”pﬂyi(m V@ ot (5 T5)

1).

We next integrate these over x € A. By (3.3),

[ S ot [0+ @)? -] ar < |5 palas

i€,

4
cel [ ol do +c'ed 15] o]
Eq

< (a(m) +15)c||golle5 .

For the remaining terms note that by (3.3) and Lemma 3.5,

J S aiivte) -y @rde < [ soliyte) vl de 95t [ o de

i€l, Eq 2 4e1,
< (cg.5 + 135)|[goll p%€ -
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Further by Lemma 3.8,

[ Sl (@ 1Dval) 1) da

€1,

3
<easloolioet [ 3o ((1+ IDY2IR) = 1) do

Viiel,
. 1
< C3.8Hgo||Pf+/ > lgill A+ 173012 = llgoll da
Viel,
< (eggp+1lgolle,

and obviously,

1

[ Sl (00 @) 1) s [l (004 090%) ol e

i€, icly
< llgolle-
Combining these estimates we obtain

[ 3l [+ R @) =1] de < e

i€l

[ 3l [+ B2 @) E =1] de < & m)lgnloPe,

i€,

. 1 B
[ 3l [+ R @)E =1 de < & mlanlote,

i€l

. 1 A
[ 3 lal [+ Rt @)E = 1] de < & mlanlote,

i€l
. 1 A
[ St [+ RO 1] e < ot
i€l -
. 1 B
[ 3l [+ R @)E = 1] de < & mlanlote,
i€l B -

for some constant ¢’ (m) > 0. Since we assume that ¢ < pf < pb < 1, the sum

of all the integrals involving the R-terms is bounded by ¢’ (m)]||go||pZe for some
constant ¢/(m) > 0. O

3.10. Lemma ([20, Lemma 12]). There is a constant c¢3.190(m) > 0 such that

/ (1+ (Tve)?)? da g/ (1+ ||Dva|%.)? do + c3.10€5 .
BV(O 1) BV(O,l)

Proof. By Lemma 3.7 we know that ||Dv,| < C3'7€%. Hence letting M denote the
matrix of Dv} Dv, with respect to some orthonormal basis of V,

(Tva)® = [IDvefs + Y det(Mx) < DV |2 + et
HEK>2

for some constant c(m) > 0, and the statement follows by Lemma 3.1, i.e. by
integrating the estimate

1+ (Tve)?)? < (L+ || Dva||2s +cei)2 < (14| Dvy]|26) % + ceb .
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Combining the results of this subsection we get:

3.11. Proposition. There is a constant cs.11(m) > 0 with the following property.
If p < p39 and € < €39, then

M(TLZv(27Y)) < czaillgollpe + M(PLZv(271),
M(T) < cg.11llgollp? e + M(P).
Proof. By the construction of T', it is TL Zy (2)¢ = PL Zy(2)°. By Lemma 3.9
M(TL{} < [my ()] < }) < M(PL{3 < |mv(@)] < 2}) + c3.gllgollote.

Further, by the definition of 7, Lemma 3.10 and Lemma 3.8 (note that €3 < p)
applied to the integration domain By (0, 1),

M (TLZy(27")) = M ((idv + v)%(g0[Bv (0,27 1)])

= g0 (1+ (Tva)?)? da
By (0,271)

1 4
<lgoll [ IDvalR) o+ e planle’
By (0,271)

0,2-

i 1
<[ Sl IDyHE) de+ (.10 + e el
By (0,271)

icl,

4 1
<[ S el Iy e+ (e300 + e ol
By (02-1) /T,

=M (PLZv(27")) + (c3.10 + c3.8)rllg0ll€ -

Adding up the masses of these two regions gives the result. 0

3.3. Plane selection via a quadratic form. Additionally to the assumptions
on P in the beginning of Subsection 3.1 we further assume that p < p3 g (without
mentioning it repeatedly) and that € < €3 9. With Ty := (idy 4+ v)x(g0[Bv(0,2)])
we denote the cone generated by the graph of v over V and weight go. Let
Q = Q(Ty,0,1) be the quadratic form associated to the chain T as defined in
Subsection 2.5, i.e.

m+ 2 m
Qy) == ——llgoll (y,x)* dA™ (x).
a(m) B(0,1)Nspt(Ty)
As noted before Lemma 2.12, the quadratic form @ is compact and hence X has
an orthonormal basis (ey )y, of eigenvectors of Q). Let W € G(X, m) be the m-plane
spanned by ey, ..., e, corresponding to the m largest eigenvalues of Q.

3.12. Lemma. There are constants cz.i2(m) > 0 and 0 < €312 < €39 with
C3,12(63,12)% < % and the following property. If 0 < € < €3.12, then:
(1) |lmw — 7v | < ez.12€3.
(2) mw : spt(Ty) — W is injective and the map w : By (0,1) — WL with
graph(w) = spt(Ty L Zw ) is 1-homogeneous, continuously differentiable in
By (0,1)\ {0} with | Dw,| < c3.12€5.
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(3) For x € By (0,1), y € W+ with |z, |y| <1,

(3.27)

/s (y, w(2))(z, 2) dA™ 1 (2)| < c3.10¢,

Proof. By Lemma 3.7 we have a height bound for T, over By (0, 1) of C3'76% and by
Proposition 3.11 the excess is bounded by Exci(Tv,V) < 2™c3 11|90l/pe + [|go]le.
The first statement is now a direct consequence of Lemma 2.12 and there is some
c(m) > 0 such that ||y — 7y || < ce3. We may assume that e is small enough
such that max{c,C3_7}6% < 1. For v € V we have [v — i (v)] < ced fv| < vl
respectively, 1|v| < |mw (v)]. Now, consider two points p,p’ € spt(Ty), i.e. p =
v+ v(v) and p’ = v + v(v') for v,0' € V. By Lemma 3.7, v is Lipschitz with
constant C3'7€% and hence

[mwi(p =) =lp—p —7wp—p)l
<= —aw (v =) +|v(v) = V() = mw (v(v) = v(v'))|
< ces|v—v'| + 2¢q 7€ v — |
< 2(c+ 2¢3 7)€ [mw (v — ') .
Also
[mw (p = P)| = 7w (v = v")| = 7w (v(v) = v(2"))]
> |mw (v — /)| — e3.7€5 v — V']

> (1 — 2cg 7¢3)|mw (v — v')|

1
> glmw (v =)l

Combined we get
1
T (p =Pl < e3|mw (p =PI,
for some constant ¢’(m) > 0. This in turn implies that w is well defined and
Lipschitz with the constant as stated in (2). Since my o (idy + v) is of class C*
outside the origin, it follows from the inverse function theorem that the same holds

for w and || Dw,|| < Lip(w) < ¢’e3. This shows (2).
Let D :=B(0,1) Nspt(Ty). For z € W and y € W+ with |2/, |y| <1,

__alm)
= ol = [ 2w arm ()

:/ (w0 £ W)y w + w(w)) (1 + (Twa)2)? duw
mw (D)

N / (, w) (y, w(w)) (1 + (Tw)?)? dw.
ﬂw(D)
Because of |[Dw,|| < ¢/e3, we note as in the proof of Lemma 3.10 that
1< (14 (Jw.)?)? <14c"es,

for some constant ¢”(m) > 0. Hence |s(w)| < ¢”€3 for s(w) = (14 (Twy)?)z — 1
and w € By (0,1). Further, 2™ (B (0,1)\mw (D)) < ¢’e since the height bound
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obtained above implies By (0, V1 — ¢2¢3) C my (D) and |w(w)| < ¢e3 < 1if e is
small enough. Hence,

/BW(OJ)<y=w<w>><x,w> dw‘
/13w(0,1)<y7 w(w)) (2, w)(1 + s(w)) dw’

<

+

/ o ) s dw}

/ {y, w(w))(z, w)(1 + S(w))dw' +a(m)||w]leol|s]loc
Buw (0,1)\mw (D)

< A" (Bw(0,1) \ 7w (D))[[Wl[oo2 + a(m)||wl sl

<ce,
for some constant ¢”/(m) > 0. By the homogeneity of w the last statement of the
lemma follows. O

Let
1

3.28 wp = ———— w(z)d#A™ Yx) e W,
(3.28) o o W@ )

and note that a(m)m = #™ 1 (Sy). Instead of taking the harmonic extension of
w over Sy as in [20], we follow [17] and define h : By, (0,1) — W= by

h(tz) :== wo + t* (w(z) — wo) ,

for |z] = 1and ¢ € [0,1]. For a point x € Sy we denote with Dgw,, the derivative of

the restriction of w to Sy at the point x. The following calculations are contained
in [17].

3.13. Lemma. There is a constant c3.13(m) > 0 such that if 0 < e < €3.12, then
[ @ cend+ [ a+ o)k,
Bw (0,1) Bw (0,1)

and further

1 .
/ (Ol)l\Dhl\iS=—+2 Aw(z) = wol? + [ Dswa [ 7™ (2),
w Y,
Lo ol = [ W@ sl ).
w Y,

Proof. By definition and the 1-homogeneity of w it is
h(z) = wo + |2]* (W (2/]z]) — wo) = wo (1 = |2*) + |z|w(z).
Hence,
Dh, (w) = —2(x,w)wq + (x/|z|, w)w(z) + || Dw, (w) .

If + # 0 and ey,...,e, is an orthonormal basis of W with e; = |z|~tx, then
|z|Dw,(e1) = w(z) and further

Dh,(e1) = =2|x|wg + w(x) + |z|Dw,(e1) = 2(w(z) — |z|wo)
= 2[a|(w(z/[z]) —wo) .
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For k£ > 2 by the 1-homogeneity of w,
Dh,(ex) = |x|Dw,(er) = |$C|D5W‘m‘—1m(€k).

Hence,

IDhs |3 =D [Dha(er)|”
k

= |Dhy(e1)|* + |z|? Z |Dsw10i(ex)]?
k>2

= 4|z*|w(z/|z]) — wol* + |z[* | Dswy i 75 »
and in particular with the definition of wy and Lemma 3.12,

| Dbyl < 16Lip(w)? + | Dw,|[3; < 17c3 1965 .
The first statement follows now exactly as in Lemma 3.10. Similarly,
[1Dwa[3s = [w(@/|2))]* + | Dswaja s -

Integrating gives

[ iouiz= [ [ ingae
Bw (0,1) Sw(r

- / 2 dr / Aw(z/r) — wol> + | Dsway | dA™ ()
0 Sw(’r)

1
/ bl dr/ 4|w(z) — w0|2 + HDSWI”iS dj‘fm_l(a:)
0 Sw

1
— _ dlw(z) — wol? + ||Dsw,||?. d#™ 1 (z) .
m 2/SW |w(x) ol + [[Dswa s (z)

And similarly,
1
/ |Dwl2, = / L gy / w(@)|? + [ Dswal2. dr™ " (z)
By (0,1) Sw

2 m—1
= o L 1D ).
g

It is L*(Sw) = @2 Hi(Sw) where H;(Sw) denotes the Hilbert space of har-
monic polynomials of degree i on Sy = S™ . Hence for a fixed orthonormal basis
(e1)i>m of W we can write the restriction w! = (w,e;) as a sum >, wipl with
w! € R and p! € H;(Sw) of unit L2-norm. It is understood that the partial sums
converge in L? to w! : By (0,1) — R. Every p! is the restriction of a harmonic
homogeneous polynomial of degree i (the extension is just given by pé(mc) = ripﬁ(x)
for 7 > 0), which is for simplicity also denoted by p!. Thus

Jo, o= [, St Z/s

W m<l m<l
—zz/ Pi@E =YY
m<l 1=0 m<l i= 0

2
3

< a(m)mc312e s
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if we assume that € is small enough. In particular, for each fixed i, 3, _,(w})? <
oo. Furthermore, since H;(Sy ) is finite dimensional, there is a constant C'(i,m)
depending only on i and m such that |pl(x)| < C(i,m) for all |z| < 1. Hence,
2

< C(i,m)? Z (wh)? =0,

m<N<I<N'

sup
|| <1

wfpﬁ(:c)el
m<N<I<N'

as N, N’ — oo, and the partial sums
(w — Z wﬁpﬁ(m)el>
m<I<N N>m

converge uniformly with respect to the norm in X for N — oo to some w; :
By (0,1) — W+, Similarly, the norms of the derivatives up to some fixed order
of these partial sums converge uniformly as well, hence w; is smooth because the
partial sums are. Note that wq is the constant map with value as defined in
(3.28). Finally, it is not hard to see that the partial sums ), w; converge to w in
L?(Sw, W),

3.14. Lemma. There is a constant cs.14(m) > 0 with the following property. If
0 <€ <eg19, then [Willoo := sup ;< [W1(2)] < cz.14(m)e.

Proof. Fori# 1,z € W and y € W,
/ (y, wi(2))z, 2) dA™ 1 (2) =0,
Sw

since H1 L H; if i # 1 and 2z — (x,z) € Hy. Because Y, w; converge to w in L?
and (3.27) we get

< €3.12¢,

/S (w1 (2)) i, 2) A (2)

for all z € W and y € W+ with |z|,|y| < 1. Since wip} : W — R is a linear
functional it is represented by some vector w; € W with (e;, wi(2)) = (wy, z). If we
set =), KFep, y= > Me; and w; = Dok wl’“/ek/ € X it follows

| wwien@aarmte) = 3 [ e o zieninten, 2 e )

k0 Sw

_Z/S KN (wy, 2) (en, 2) A1 (2)

= Z/ EAWF (e, 2) (er, 2) dA(2)
kk 1Y Sw

:Z/ KXW (e, 2)2 ™1 (2)
ki Y Sw

= Z c(m)kF AN wf = c(m) Z (Ney, kFwhep)

k1l kLU

=c(m) Y (Ner, {wr, 2)er) = e(m) (y, wi()) ,

L
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for some c(m) > 0 depending only on m. Hence letting y = wy(x) and referring to

(3.27),
il = (o wi(e) ) < elm)eg poc.
Since x is arbitrary the proof is complete. O

For p,q € ’H;C(Sm*l) it is a standard exercise using the divergence theorem to
show that (with V we understand the gradient in R™)

/ Vp -VqdaA™ " = k(m+ 2k — 2)/ pqdA™
sm—1 gm—1
whereas for harmonic polynomials p and g of different degree both integrals are
zero. With 0,p = kp we get (for |z| = 1)
Vp - Vp = || Dpl3s = k*p* + | Dsplls

and hence
/ |Dspll2gd#™ !t = k(m—|—2k—2)/ p?dam! —kz/ p?dam!
gm—1 gm—1 gm—1

:k(m+k—2)/ prdaAm .
Sm—l

More generally, if f = >, fipr is a finite sum of homogeneous harmonic polyno-
mials py of degree k and L?-norm 1 we get as in [17]

(3.29) | IDsfIe ™t = 3 fehm + 1k =2).
k

The restriction of any polynomial to the sphere is the finite sum of homogeneous
harmonic polynomials and the formula remains true for f in Cl(Sm_l, R) by ap-
proximation.

Let w = wo + Wi + > 5, Wi as before with convergence in L2(S™ ', W),

whereas with uniform convergence on 8!,
Wi = Z wépéel .
I>n
Note that p) = #™ (8™ 1)~z = (a(m)m) 2 by normalization. As in [17],
although there without the error term in e, we get the following estimate.

3.15. Lemma. There is some constant c3.15(m) > 0 such that if 0 < € < €3 19,
then

2m

| Dh|%, < cs15€° + | Dw|2, .

‘/BW(Oxl) " 2m +1 Bu (0.1) HS
Proof. With Lemma 3.13 and (3.29) we get
1
Dh 2 - 4 _ 2 D . 2 d%mfl
~/BW(O,1) H HHS m + 2 /SW |W($) W0| + H SW ||HS (ac)
= 1 1\2 1\2
_m—_i_Q{Zl Z (wi)” + Z (wy,)*k(m+k—2)].

I>m,k>1 I>m,k>1
By Lemma 3.14 it is

3 (@h)? = [[wilf < ¢lwill% < ee?,
I>m
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for some constants ¢’(m) > 0 and c(m) = cg 14(m)c’(m) > 0. Hence,

1
Dh|?. <ce® + —— w24+ k(m+k—2)].
L In oz, 2 (kP i )

Similarly by Lemma 3.13,

1
IDWIE =~ 3 (w1 + G+ k- 2)].
/13w(0.,1> " mz>§zo
As in [17],
1
IDh|2, < ce® + —— (wh) [+ k(m + k = 2)]
/BW(OJ) " m+2z>n§z2 '
1 3
) 12
_ 1 1+ k(m+k—2)] |1
ce +m+2 Z (wy)*[1 + k(m + )]{+1+k(m+k—2)
I>m,k>2
3
< ce? m 1 / Dw||?
<ee +m+2{ +1+2m} [ D

2m

=ce’ + I Dw[3s -

2m+1 Bw (0,1)
O

3.4. A competitor better than the cone. In Subsection 3.2 we defined the
comparison surface T" and in Proposition 3.11 we saw that M(T') can’t be much
bigger than M(P). We now modify T on the cylinder Zv(%) to get a new chain S.
We work on a 4-times smaller scale than in the last subsection, so we replace the h
constructed there by hy := 47'h(4x). The new chain S is defined by

(1) SLZw(3)e :=TLZw(3)",

(2) SLZw(}) := (idw + ha)4 (g0[Bw (0, H)])-
The plane W is close to V by Lemma 3.12. So we can assume that e is small enough
such that

(3.30) spt(T) N Zw (471 Cspt(T) N Zy(271),  and

(3.31) SLB(0,1)° = TLB(0,1)° = PLB(0,1)".

By the construction of h and because w is 1-homogeneous we have hy(z) = w(x)
for [z| = ; and hence P = 9T = 0S. Note that the comparison surface S is
obtained via a push-forward from 7" and hence also from P, ie. S = 4P for
some Lipschitz map v : X — X with spt(¢)) contained in a neighborhood of 0 (for
example, By (0,1) 4+ By 1 (0,2p) would be okay).

Before we give the main result, we compare the mass over the planes W and V.
The Lemma is essentially contained in [20].

3.16. Lemma ([20, Lemma 14]). There are constants ¢3.16(m) > 0 and 0 < €3.16 <
€3.12 such that if 0 < p,e < e3.16, then

M(TyLZw) < M(TyLZy)
implies

|M(PLZW) —M(PLZy) - [M(TyLZw) — M(TVI_ZV)H < c3.16|90|| pe -
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Proof. As noted in [20, Lemma 13], an elementary calculation shows that

[2l? + Iv(@)? ~ k(w)?)% 0.

ML Zw) = [ ool 4 (7va))! (

By ]2
iy2y L 2 4 yi(a))? — Ki(x)2\ 2
M(PL Zy) — /B S ol + (yh)) <|x| ly <|§>|| @)) "
Viiel,

where k(z) := |my o (z +v(z))| and k4 (z) := |mp o (z +yi(2))]. Tt is [y'(z)| < p for
|z| < 1 by the assumption on P. Using € < p?,

K(2) = |z +y' (@) — 7w (@ + y' (2)] < 2p+ |z — 7w (2)] < 2 + 3 19¢8
<(2+c312)p-
Similarly, k(z) < (2¢3. 7 + C3'12)€%. For i € I, let

m
2

o) o= (L KOy TE

|z[?
_ 2 ()2 — k()2 2
ey o (LAY @P @\
|z[?
The Taylor polynomial approximation for ¢ € [—%, %] implies that (1 +1¢)~% =

m—+2

— Zt+ R(t) and R(t) = W(l + &)~ "2 12 for some § € [—1, 3]. So, if € and
p are small, there is a constant ¢(m) > 0 such that

m xX 2_ vI{T 2 4
(3.32) ‘5(@ - 5% < ce®
(3.33) o) - G| < ot

Hence, for some ¢/(m) > 0, both |§%(z)| and |§(z)| are bounded by ¢’p?. It is

M(PLZw) ~M(PLZ) = | 3 lal(1+ (T52)36' @) do

i€l,
= [ ol s
Bv jcr,
S @) (0 @y 1) .
Bv jer,
and therefore
(3.34) M(PLZw) — M(PLZy) —/ Z lgil|6° (x) dz| < c/||gollp%e,
By

icly
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by the excess estimate on P and the bound on [§°(z)| above. Similarly it follows
from Lemma 3.8 and Lemma 3.10,

‘M(TVI_ZW) CM(TWLZy) /B lgoll6(a) dz

< [ 1@l 1+ vy —1) ds
SC/PQ((C3.8+C3.10)|90|6+/B S llgll (1 + (Tyi)?)E - |go||dx)

Viiel,
(335 <ol

for some constant ¢”(m) > 0. Since we assume that M(TyL Zy ) < M(TyL Zy) it
follows from (3.35) that fB llgolld(x) dz < c”||gol|p?e. Then by (3.32)

mk
Hgol\/ ||2”' dx<||go||/ 5(2) + et du

< (¢ +a(m)c)|gollpe .
By 1-homogeneity of k and v,

ool k(a)? = vte)f ds
2 " 2
2 (¢ s afmolali’

(3.36) < c”|lgollpe,

IN

for some ¢”’(m) > 0. Because of (3.2), Lemma 3.7, Lemma 3.8 and the assumption
on P and assuming e is small,

ool [ 32 @) de < ol || #Tiv) e+ ool [ iviol dr

Viiel,

< 10cg 7]lgolle? + Hgoll/ (z)[2 dz
< 10c3 7ll90lle + 4| 0] / (1+ [v(@)]?)? — 1da
By

1
< 10¢3 7]lgolle + 490 /B (1+ |Dva|29)} — 1da
v
< (10cg 7 +4c3 ) llgolle
i 1
+”‘/B S gl (0 + (755 — llgoll da
v

i€1,
(3.37) < <" golle,

/I/I(

for some ¢””(m) > 0. Using a similar calculation, the bound k(z) < (2¢c37 +

C3'12)6% and (3.36), ¢ can be assumed big enough such that also

(3.38) 190l *da < c""|lgolle.

By 161



PARTIAL REGULARITY OF ALMOST MINIMIZING G CHAINS 53

There is a Lipschitz constant L(m) > 0 for which |(1+s)~% —(1+t)7%| < Lfs—t|
if |s|, t] < 1 . The assumption on P and the 1-homogeneity of vy’ ,k and k* imply
with (3.2), (3.3), (3.32) and (3.33),

L SN

i€,
- HgoH/ (0= #1,)0( |dx+/ S loolla*(e) — llgalo'(z) | de
By Viiel,
Hlaoll [ 3 166) - (a)] da
Bv e,
<l | e+ / #L0goll + 3 Nl da
i€l
)% k() - |yi(z
ol |2<>|_ @ - WGP,
b 2 T ]
< 35¢||g0||p* e—|—3L||g0H/ Z ||v i($)|2‘ + |k(a;)2 _ ki(x)‘z‘ dz .

Viiel,

Instead of the factor 3 above we could use 2. Since [k(z) —k'(z)| < |v(z)—y*(z)|
by the definition of k and k, there holds

V(@) = Iy ()] + [k(2)* — K (2)?]
< () -y (@) +2v(@)|lv(@) -y

()]
+[k(z) — K (2)|* + 2k(2)[k(z) — k' (2)]
<2lv(@) =¥ (@) +2(v ()] + k@) |v(@) — ¥ ()]

Hence by Lemma 3.5, the fact that 2ab < pa® + p~1b2, (3.37) and (3.38),

/B lgoll6@@) — 3 flgall6*(a

i€,

< 35¢[|gollp%e

+3L”90H/B > 2v(@)llv(z) = y'(@)] + 2k(2)|v(z) — y'(z)| da

€1,
< 35¢|[gollp? €+3L||90H/ D Av@) + pk(@) + 207 V(@) — ' (2)|* da
Viiel,
< (35¢" + 6¢""" L + 6¢3 5L)]gol| pe -

If we apply this in (3.34) and (3.35), the lemma follows. O
Next we give another technical lemma that will be used in the main result of this

section. It essentially tells that if a rather flat cone is far away from some plane,
then the cylindrical excess over this plane is large.

3.17. Lemma. Let C € Z,,,(X;G) be an infinite (or large enough) cone with center
0. Assume that there is some 0 < § < % and V € G(X,m) such that,

(1) spt(8(CLZy (0,2))) € X\ Zv(0,2),
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(2) my#(CLZv) = go[Bv(0,1)],
(3) |myo(z)] <8 for x € spt(C) N Zy.

If for some X > 2 and U € G(X, m) there holds

1
5> 7o — v || > 6Ad,

then |mye ()] > 2(A —2)d for some x € spt(C) N Zy and

Exc,(C,U) > ||g0|\;%)\252.
Proof. Note first that Lemma 2.7 implies 7y 4 (CL Zy) = go[Bw (0, 1)] for the same
group element go € G. Let A be the set of points u € By (0, 1) for which |my 1 (u)] <
2)d. A is closed, contains the origin and by the triangle inequality it is also convex.
By assumption and Lemma 2.1 there is some u € By (0,1) such that |my.(u)| =
|y (u) —u| > 6AS. Hence su ¢ A. By the hyperplane separation theorem there is
a half-plane Uy of U that contains %u and is disjoint from A. Hence there is some
ball A’ := By (ug, 5) C By(0,1) \ A. Let z € spt(C) N Zy with 7y (z) € A’ and
|mye(x)] < 2X6. Then |z] < 14 2X6 < 2 and hence |my, . (z)] < dist(V,spt(C) N
Zyv(0,2)) < 26. Further,

[y (@) + |my o (@) 2 [y (@) + [y (rp e (2)] 2 [ryv e (@ = 7pe (2)]

2 |my o (mu(@))] > 2A0,

and because \ > 2,
[Ty (z)] > 206 —25 > AJ .

This shows the first conclusion and further that if z € spt(C) with my(z) € A/,
then |7y (z)| > 206.

Set C" = ). gi[Si] as a finite sum over oriented simplices .S; for which one vertex
is at the origin and the other vertices outside Zy such that CLZy = C'LZy. Let
A" be the subset of those points u € A’ for which the set my ~1{u} N spt(C’) is
finite and contained in the interior of any simplex it intersects. my(A”) has full
measure in A’. For x € A” let I, be the collection of those i for which x € 7 (S;)
and as we did for P in the first sections, let y* : U — U* be the affine map
such that 2’ + y*(z') is in S; if 2’ is close to . From Lemma 2.9 it follows that
Yier, lgill = llgoll. Tt is Ty, > [[Dy,| = y*(2)] > 20 for x € A” by (2.5) and
(2.6). Using (14 a2z > 1+ +a® for a < 1 we get

Exc,(C,U) = Exc(C,U, A”) :/ D gl 1+ (Ty2)?)? = llgoll da
A//

1€,
-/ 5 0+ 092 o
> [lgollo2™ (A”) [(1 +(A6)?)E — 1}

a(m
> ool 2 52

O

Below is the main result of this section, the epiperimetric inequality of Reifenberg
[20] adapted to G-chains in Hilbert spaces.
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3.18. Theorem. There is a constant e31s(m) > 0 with the following property. Let
P e 2,,(X;G) be a cone with center 0 and V' be an m-plane such that:

(1) spt(OP) N Zy(2) =0,
(2) mv4(PLZy) = 9ol By (0, 1] for some go € G\ {0c},
(3) llg(@)]l = Fllgoll for || P|-almost every x € X

(4) |y (z)| < esas for x € spt(P)N Zy,

(5) EXCl(P, V) < ||g0H63.18.

Then there is some S € X (X; G) with I(SLB(0,1)) = O(PLB(0,1)) and
M(SLB(0,1)) - [[golle(m) < As.1s(M(PLB(0,1)) — [|golex(m))

_4-m—1
Jor Az1g = 72m+21mj_1 < 1.

Proof. As noted in the beginning of this section, the group norm can be normalized
such that ||go]| = 1. Let €315 > 0 be small enough such that

L 1
24)N\/e3.18 < (263,18) o < €3.12 < 2—0
where \? := 2a(m) 713"+ > 526 > 22, Let V' € G(X,m) be such that
Exc1(P, V') < 2inf {Exc1(P,U) : |7y — 7o < 75} -

Then € := Exc; (P, V') < 2e3.18 < €312 and hence [|my — my|| < 6A\/e318 < % by
Lemma 3.17. Since spt(P) N Zy: C B(0,2), there holds |my/1 ()| < 24\\/€315 <
pi= (263_18)ﬁ < €312 In particular

EXCl(P,VI) < 2inf{Excl(P, U) : ||7TV/ —7TU|| < %} s

and Lemma 3.12 implies ||my, — || < 2—10 for the plane W used in the construction
of the competitor S. By changing V'’ slightly we can assume that P is in general
position with respect to V' (Excy(P,U) is continuous in U and the m-planes for
which P is in general position are dense in G(X,m)). Hence €, p and V' satisfy
all the conditions at the beginning of Subsection 3.1 and the subsequent estimates.
For the rest of this proof we identify V’ with V. Let S be the comparison surface as
described in the beginning of this subsection. Lemma 3.13 and Lemma 3.15 imply

M(SL Zyw (471)) — 4-™a(m) — 4*m/B (14 (Th)?)* — 1de

< cgget +47m/ (1+ || Dhy|2)% — 1dx

Bw

1
<cgrget +47" [ SIDh[E o

Bw
4
< (c3.13 +¢€3.15)€3
2m

1
q-m || Dw,||?. dx .
Ha T [ 51wl de
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Because

: lat 4+ (1+a%)z —1fora €[0,1] and | Dw, |4 < c3.19¢3, we get
for some ¢(m) > 0,
M(SLZw (471) — 4" "a(m)
4 m 2m 1
<ceb 44 2m+1/BW<1+||Dwz|§s>z—1dx
4 2m 1
<ces 47" 1 2))? —1d
Sces +4T BW(+(JW)) x
4 m -1 -m
= ced + [M(TLZw (471)) — 4 " a(m)]
2m+1
Hence,

M(SLZy) = M(TL(Zy \ Zw (4™ 1))) + M(SLZw (471))
< el + M(TL(Zy \ Zw(471))
4 " a(m)
2m+1
M(TLZw(47")) — 4 "a(m)] .

+

M(TL Zy (471
ST (TLZw (4 7)) +

= ced + M(TLZy) —

2m+1

If M(TLZw (471)) > M(TLZy(471)) we estimate using Proposition 3.11,

M(SLZy) < ce? + M(TLZy) — Sy [M(TLZw(471)) — 4" "a(m)]

< ced + M(TL(Zy \ Zv(471)))
2m _ 4 ™a(m)
2m+1M(T"ZV(4 D)+ 2m + 1
< (c+egq1)pe+ M(PL(Zv \ Zv(471))
2m _ 4~ (m)
2m+1M(P|‘Z"(4 O+ 2m + 1

= (c+c311)p2e+ M(PLZy)
1
2m+1

+

+

[M(PLZy(47")) — 47 "a(m)]

2m+1-4"7 4-m

— 3 M(PL Z
(c+e311)p2e+ D (PL v)+2m+1

a(m).

On the other hand, if M(TLZw(47") < M(TLZy(47')) it follows from

Lemma 3.16 and the almost minimality of the plane V' with respect to the excess
of P,

Excy—1(T,V) < c3.1gpe + Excy—1 (T, W) + Excy—1 (P, V) — Excy—1 (P, W)
< ¢3.16p¢ + Excy—1 (T, W) 4+ 27" Excy—1 (P, V).
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Hence, with the same derivations as in the other case above,
1
M(SL Zy) < ces + M(TLZy) — g s (T, W)
<(c+c316)pe + M(TLZv)
1
- m [EXC4—1 (T, V) — 2_1 EXC471 (P, V)]
2m+1—4"m

2m+1
4-m 2-14=m
T 1a(m) + Dy Excy (P, V).

2m +
By subtracting a(m) from these estimates we obtain in both cases
2m+1—2714—m
2m+1
for some ¢’(m) > 0. If we assume that €315 is small enough such that for p =
(2€3.18) 57,

< (c+egq1 +e3q6)pie+ M(PL Zy)

Exci(S,V) < cpre+ Exc,(P,V),

_9—14—m _ f4—m—1
c’p%+2m+1 274 <2m—|—1 4 Y

2m+1 - 2m+1
we obtain Exc (S, V) < X Exci (P, V). Finally, by (3.31),
M(SLB(0,1)) —a(m) = M(SLZy) — M(PL(Zy \ B(0,1))) — a(m)
< AM(PLB(0,1)) + M(PL(Zy \ B(0,1))) — a(m)]
- M(PL(Zv \ B(0,1)))
< AM(PLB(0,1)) —e(m)) .

4. MOMENTS COMPUTATIONS AND GOOD APPROXIMATIONS BY PLANES

4.1. Nearly monotonic, almost monotonic and epiperimetric chains. Let
¢ be a finite Borel measure on X. For x € X and r > 0 we define

excl' (¢, z, 1) == sup{ ((b(B(I’t)) _ B, S))> 0<s<t< r} )

a(m)tm a(m)s™
- . o(B(z,t)  ¢(B(x,8))) .
exc™ (¢, x,r) = sup{( a(m)tm — a(m)s™ >+.0<s§t§r},

exc™ (¢, x,r) := max{excl' (¢, z,r),exc™* (p,z,7)}.

Throughout the rest of these notes we use the term gauge or gauge function for
an increasing function & : (0,6] — Ry for some § > 0 with lim,_,o&(r) = 0. Let
T € #Zn(X;G). For a subset A C X \ spt(9T) we say that T is nearly monotonic
in A if there is a gauge &, : (0,0] — R such that

excl ([T, z,r) < &(r),
for all x € A and 0 < r < min{0, dist(x,spt(971))}. We say that T is almost
monotonic in A if there is a gauge £ : (0,0] — R such that
IT[(B(x, 7))

i exp(Er) = o
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is an increasing function for all z € A and all 0 < r < min{J¢, dist(x, spt(97T))}.
The following Lemma is an adaptation of [11, Lemma 3.2.3] to the setting of
rectifiable chains Hilbert spaces. The proof goes through unchanged.

4.1. Lemma. If T € %, (X;G) is nearly monotonic in A C X \ spt(9T), then
the density ©™(||T||, x) exists for all x € A and is finite. Further, the function
x = O™ (|T|,x) is upper semicontinuous in A.

Proof. Let & : (0,0] — Ry be a gauge with respect to which T is nearly
monotonic. For z € A and 0 < r < min{¢,dist(x,spt(0T))} we abbreviate
fz(r) :=a(m)~tr=™||T||(B(z,r)). By assumption

—&(R) < fo(R) = ful(r),
for all z € A and 0 < r < R < min{0, dist(x, spt(97"))}. Therefore,

—&(R) < liminf(fa(R) — fo(r)) = fo(R) — limsup fo(r),
r rl0

and, in turn,

0 < liminf f,(R) — li (7).
< liinf fo(R) Hrrlfowf (r)

This shows that the densities @ (||T||, z) exist for all x € A. Let (z;) be a se-
quence in A with lim; o 2; = @ € A and |z; — z| < 27! min{d, dist(x, spt(9T))}
for all . Since ||T|| is a finite Borel measure, the function p — ||T|[(B(z,p)) is
continuous in all but countably many r > 0. If we pick a point of continuity
0 < r < 27 min{4, dist(z,spt(97))}, then

O (TNl i) < fai (1) + &x(r)

< folr+ 2 —:CI)<1 + M) + &(r),

for all . Hence for all such r,

lim sup O™ (| T, z:) < falr) +&:(r) .

71— 00

Taking the limit for » — 0, we see that limsup,_, . O™ (||T], z;) < ©™(||T|,z). O

The following observation is essentially [11, Lemma 3.4.1]. For the reader’s
convenience we repeat the proof here.

42. Lemma. If T € %, (X;G) is almost monotonic in A C X \ spt(0T) with
gauge & : (0,0] = Ry, then T is nearly monotonic in A with gauge &, := c4.2€, for
some constant c4.2(m,d,&(5), M(T)) > 0.

Proof. Forxz € Aand 0 < r < min{Jd, dist(x,spt(9T"))} we abbreviate again f;(r) :=
a(m)~r=™||T||(B(x,r)). Because T is almost monotonic,

(1) < o1 = expl€(0) s

Let o == &£(0) " *(exp(£(8)) — 1). Then for z € Aand 0 < r < s <4,

fu(r) < exp(€(r)) fu(r) < exp(£(s))fu(s)
L+ c2€(s)) fu(s) < fa(s) + c1c26(s) .

<
<
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A rather simple consequence of nearly monotonicity and lower density bounds
is the compactness of the support away from the boundary and Ahlfors-regularity
of the associated measure. The latter observation will be important in connection
with Lemma 2.6 about tangent planes.

4.3. Lemma. LetT € %,,(X;G) andU C X be an open set with dist(U, spt(9T)) >
ro > 0. Assume that there is a constant 0 > 0 such that:

(1) ©™(||T)|,z) > 0 for ||T||-almost all z € cl(U).
(2) exc?™(||T||,z,m0) < & for all z € cl(U).
(3) T is nearly monotonic in cl(U).

Then spt(T) Ncl(U) is compact and for all 0 < r < 1o and x € spt(T) Ncl(U) there
holds

0 _ ITI[(B(z,r))
— < — << c(M(T 0 .
2~ alm)rm < e(M(T), 70,6, m)
Proof. As a closed subset of a complete space, spt(T) Ncl(U) is itself complete. It
remains to show that this set is totally bounded. By assumption, for ||7'||-almost
all z € cl(U) and all 0 < r < ro,

(4.1) 6 <om(|T|,2) < w L0

a(m)rm 2’

and hence £ a(m)r™ < ||T|(B(z,r)). The nearly monotonicity of 7" and Lemma

4.1 show that (4.1) holds for every = € spt(T) N cl(U). Let z1,...,x; be points in
spt(T) N cl(U) with d(x;, ;) > 2r for i # j. Then

k
K ga(m)rm <3 IT) (Blair) < M(T).

Thus there is an upper bound on the number of points that are 2r-separated. Taking
a maximal collection of such points it follows that spt(7') N cl(U) can be covered

by |M(T)(4a(m)r™)~'] closed balls of radius 2r. This is true for any r < ro and

spt(T) N cl(U) is therefore totally bounded and hence compact.
The first inequality of the second conclusion follows from (4.1). Finally, for all
x €spt(T)Ncl(U) and 0 < r < ro,

ITUBer)  ITUBER) | )

M(T)
= a(m)rl am)ry 27

O

4.2. Moments computations. Let ¢ be a finite Borel measure on X. As defined
in the introduction of the seminal paper [18] by Preiss and later used in [11], we
define some integrals for r > 0, compare with [11, §4.1]. First,

V(b r) = /B R )
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. . 4
This can be written as a sum V(¢,z,7) = >, Pr(¢, z,7), where

Po(z.7) = / (% — [yP)? da(y)

B(0,r)

PG =1, [ o V=) 20N
Py(o,z,1) = 4/

B(0,r)

(2, 5)” d(y) — 2] / "2 |y de(y)

B(0,r)
Py(o,2,7) = —dla]? / (2, ) dé(y)
B(0,r)

Py(¢,z,7) := |z[*p(B(0, 7).
We further define

o 22 Jyl?
b(p.r) = /B o V0 ) dotw),

Qé.r)(x) == / (2,9 do(y)

B(0,r)
We have already encountered the quadratic form () in Subsection 2.5 although with
a particular renormalization. This same renormalization of the quantities above is

what we define next and use boldface letters for those. Let v(m) := %—TQ) and
define:
V(p,x,r) :i=v(m) "2V (¢, 2, 1),
Pi(o,x,r) :=v(m) 'r ™ 2P (¢,z,7), k=0,....4,
b(¢,7) :=w(m) "'~ ?0(g,7),
Q(¢,r) :=w(m) ™" 2Q(4,7)
Further let

woma)i= [ QWAL a=012

The following simple identities will be important,

a(m) ~ w(m,0) —w(m,1)  a(m)—w(m,1)
(4.2) m+2 v(m) = m a m ’
and hence
~ 2a(m)
(4.3) w(m,1) = 2 2v(m).

The following results in this section are from [11], the proofs below are almost
the same with the minor difference that & is a continuous increasing function for
which we don’t require that lim, o &(r) = 0. This will be important when applied
in Lemma 5.8, where only small bounds on the spherical excess are assumed. For
the reader’s convenience we repeat the proofs here.

4.4. Lemma. [11, Lemma 4.1.1] Let © € X and r,e > 0 be such that
¢(B(z,p))

afmpm

<e,
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for every 0 < p <r. Then for every ¢ =0,1,2,... one has

< ew(m, q)r2atm .

/ (% — |z — )7 d(y) — w(m, q)rT+™
B(z,r)

Proof. Tt suffices to observe that with Cavalieri’s principle,

2q

/ (r2 — |z — )7 do(y) = / o (B (v (2 —11)¥)) az'(t)
B(z,r) 0

< 1—|—e/ 2m (B0, (2 —15)2)) ag'(t

(e [ 2m(B(0.(2-t0)")) a2
—ro [ P lPyaen)
B™(0,r)

= (14 lm, g1

The other inequality is proved exactly the same way. O

Next is an a priori bound on the trace of Q(¢,r).

4.5. Lemma. [11, Lemma 4.1.2] Let r,e > 0 be such that
$(B(0,p) }

1| <e
a(m)p™

)

for every 0 < p <r. Then
[tr Q(o,7r) —m| < e(m+4).

Proof. Let eq,es,... be an orthonormal basis of X. Then
wQo.) = Qe = [ Pdsw),
i>1 B(0,r)

Therefore we have with (4.2) and Lemma 4.4,

mom) 2 — Q6| = )+~ [y sy

B(0,r)
< fotm,vrm2 = [ 2= ) do)
B(0,r)
+ fwm, 0)r™ 2 = 126(B(0,7))|
< ew(m, 1)r™? 4+ cw(m,0)r™+2.
Dividing both sides by v(m)r™*2 gives the result. O

In Proposition 4.12 the quadratic form Q(¢,r) is controlled in terms of the
excess. In order to do so we need some bound on the length of b(¢,r) in terms of
the spherical excess. Define

V(goz,r) = /B 0l doty),
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4.6. Lemma. [11, Lemma 4.2.1] There is a constant cq.¢(m) > 0 with the following
property. Whenever 2|xz| < r, then

’V(qﬁ,x,r) - V(qﬁ,x,r)} < cqg(m)v(m)r™ (r|x|3(r_m¢(B(0,r)))
+ r?|z|? exc™ (¢,0,2r)) .

Proof. The following statements are easy to check:

(1) (B(z,r) \ B(0,r)) U(B(0,r) \ B(z,7)) C B(z,r + [z]) \ B(z,r — |]);

(2) Ify € (B(z,r) \ B(0,7)) U (B(0,7) \ B(w,7)), then |r* — |z — y|*| < 3r|];

(3) B(0,r —2|z|) C B(z,r — |z|) C B(z,r + |z]) € B(0,r 4 2|z|).
The statements (1) and (3)

0<r—lz|<l|oz -yl <r+]a,

are obvious. To see (2), note that because of (1),

whence

r? —2r|z| + |z < |z —y* <+ 20|z + |z,
Statement (2) now follows by noting that |x|? < r|z|. Using these properties we
see that

V(¢.2,r) = V(,z,7)| < 9r%|a]*¢[(B(,r) \ B(0,)) U (B(0,r) \ B(z,7))]
< 9r%|af* (6(B(@, 7 + |2])) — ¢(B(a, 7 — |2])))
(4.4) < 9|2 (&(B(0, + 2|z))) — (B0, — 2[z)))) .
Since r + 2|z| < 2r, we have that

SBO.r +20e)) _ 9BO.0) | e

a(m)(r+2z))™ = a(m)r
so that
d(B(0,r + 2|z])) < <1 + @) d(B(0,7)) + a(m)(r + 2|z|)" exc™ (¢, 0,2r) .
Similarly,
B0 =20eD) | 6BON) ey
a(m)( 2" = alm)r @0
so that

6B, - 20a) = (1= 21) " 6(B(0.1) - am)(r - 20e)" exc™ (6,0.).
From this we deduce that
H(B(O.7 +2Ja)) ~ 6(B(0.7 ~ 2Ja))

<@ ((1+22) - (1-24))

+ (1 +2™)a(m)r™ exc™ (¢,0,2r)

2
< ¢(B(0, r))m2mM + (1+2™)a(m)r™ exc™" (¢, 0,2r).
r
Plugging this into (4.4) gives the result. O

4.7. Definition. Given z1,25 € X and r > 0 we define the deviation as

¢(B(x1,7)) — ¢(B(x2,7)) '

Tm

dev™ (¢, x1,20,7) 1=
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4.8. Lemma. [11, Lemma 4.2.3] There is a constant cq.g(m) > 0 such that
V(g,2,r) = V($,0,7) < cag(m)y(m)r™* (dev™ (¢, z,0,7)
+ exc' (¢, x,r) + exc™ (9,0, r)) ,
V(¢,2,7) = V($,0,7)| < cas(mv(m)r™*(|dev™(¢,2,0,7)|
+ exc” (¢, x,r) + exc™ (¢, 0, r)) .

Proof. As in the proof of Lemma 4.4,
Viorn=[ 0=l —uff st

<[ e@Eet =) s
- / 6(B(z, p))Ap(r® — p?) AL (p)

Similarly for V(gb, 0,7), so that

(45) V((b,i[:,?‘) - V(¢7 O,T) = (¢(B($, p)) - ¢(B(07 p)))4p(7‘2 - p2) dgl(p) :

S~

For 0 < p < r we have

oBap) _ HBEr) |
a(m)p™ a(m)rm
so that
m @(B(x,r m m
(4.6) o(B(x,p)) <p % +a(m)p™ excl' (¢, x,r).
Similarly,
m ¢ B 07 r m mx
@n om0 < o PBOI g exe (0,0.1).
One also checks that
(4.8) / 4o (2 = p2) AL (p) = 8(m +2) "~ (m + 4) "L
0
Plugging (4.6) and (4.7) into (4.5) and using (4.8) yields the first estimate. To
obtain the second it suffices to apply the first one with = and 0 swapped. O

Next we obtain a trivial bound on |[b(¢, )| due to the normalization.

4.9. Lemma. [11, Lemma 4.3.1] There is a constant c4.9(m) > 0 with the following
property. If ©™(¢$,0) = 1, then

[b(¢,7)| < 2r(1 + exc™(¢,0,7)).
Proof. 1t suffices to apply Lemma 4.4:
o< [l = o) dotw)
B(0,r)
< 7(1+exc™(p,0,r))w(m, 1)rm2,
and divide by v(m)rm+2. O

We will also need to control the deviation in the following way.
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4.10. Lemma. [11, Lemma 4.3.2] Assume that ©™(¢$,0) = 1, 0 < r < R and
|z| = €R for some 0 < e <1. Then

a(m) tdev™ (¢, x,0,7) <m2™ te(1 4 exc™(4,0,2R))
+ exc™ (9,0,2R) + exc™ (¢, , ).

Proof. Tt suffices to compute:

(o) dov(6.2.0.1) — LBET) _ 9BO.7)

a(m)rm a(m)rm
GBER) | o 6(BO.1)
= a(m)R™ +excl(9, @, R) a(m)rm

_ (R+]a)™ 9(BO.R+[a])  4(B(,r)
- R™  a(m)(R+|z))™  a(m)rm
+ exc' (¢, x, R)
B0, R+ |z[)
a(m)(R + [x|)™
¢BO, R+ |z])) $B(O,r)) m
a(m)(R+ el afmyn X 00T
<m2™ e(1 + exc™ (4,0, R+ |z|))

+ exc™ (4,0, R+ |z|) + excl' (¢, x, R)

<((14+¢™-1)

O

The following is an improvement on Lemma 4.9. Note that compared with [11,
Proposition 4.3.3] we don’t assume that lim;_,o () = 0.

4.11. Lemma. [11, Proposition 4.3.3] There is a constant c4.11(m) > 0 with the
following property. Let 0 < 247 < rg < 1 and assume there is a continuous
increasing function & : (0,79] — [0, 1] with

(1) ©™(6,0) =1,

(2) excl'(6,2,p) < E(p) for 0 < p < /7 and z € B(O,7),

(8) exc™(¢,0,p) < &(p) for 0 < p <2y/r.
Then

|b(o,7)] < C4,11(m)rmax{\4/F, 5(2\/F)} )

Proof. We start by choosing 0 < y(m) < £ and n(m) such that

(4.9) n(m) = 4y(m) — y(m)*(2cy ¢ + 8 + 8(m +2)) > 0.
We define a continuous increasing function e : (0,79] — R4 by €(p) := max{p, {(p)}.

Now either |y(m)b(¢,r)| < r\/e(y/r) or |y(m)b(p,r)| > ry/e(v/r). We will sub-
sequently derive an estimate for |b(¢, )| in the latter case. We first observe that
since 2r < \/r,

(4.10) re(2r) < re(vr) < r/e(v/r) < y(m)b(g,7)].

According to Lemma 4.9, [b(¢,r)| < 4r and hence |y(m)b(¢,r)| < § < r as well.
Since €(y/7) > /7 we see that

(4.11) [y(m)b(¢,7)] <7 < Vre(2v7r).
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According to (4.10) and (4.11), the intermediate value theorem applied to the func-
tion
[r, /1] = Ry, p e pe(2p)
ensures that there exists some r < R < /r with Re(2R) = |y(m)b(¢,r)|. For
the point z := v(m)b(¢,r) we have z € B (O, %) Since Py(¢,z,7) = V(6,0,1) =
V(qﬁ, 0,7) we deduce from Lemma 4.6, Lemma 4.8 and Lemma 4.10 together with
|z| = Re(2R) that
P1(¢,$,T) + P2(¢7 x, 'f‘) + P3(¢,$,T) + P4(¢,$,7°)
= V(¢a €T, T) - PO((bv €z, T)
< V(¢7 z, 'f‘) - V((bv xz, T)’ + V(¢7 Z, 'f‘) - V(¢7 0, T)

< C4'6(m)l/(m)rm(2r|:1:|3 + r2|x|2)
m)r™ 4 (a(m)m2™ 'e(2R)2

1+ a(m))(exc™(¢,0,2R) + exc]'(¢,z, R))) .

+cg.8(m)y(
+(

Define
c(m) := 3max{a(m)m2™,a(m) + 1},

and divide the estimate above by v(m)r™*2. Recalling the definition of €, hypothe-
ses (2), (3) and 2|z| <,

Pl((bax?T) + P2(¢7 x, ’f‘) + Pg((b,.’l,',?”) + P4(¢7 x, ’f‘)
2 2|z|
< foPey glm) (

+ C4_8(m)371c(m)7‘2 (6(2R) + exc™(,0,2R) + exc}' (¢, x, R)))
(4.12) < |z]*2c4 (m) + ¢4 g(m)e(m)r?e(2R).

+1

We further observe that according to Lemma 4.4,

Py(g,2,7) > —2alu(m) " r—m? / o o)
B(0,r

Y

Y

_8|I|25

as well as,

Pa(6,2,7)| < djafPu(m)~lrm-2 /B o [T d90)
0,r

< 8(m+2)[z|?,
and Py(¢,z,7) > 0. Together with (4.12) this yields
(4.13)  Pi(d,z,7) < |2[*(2c4 g(m) + 8 + 8(m + 2)) + ¢4 g(m)c(m)r’e(2R).
Finally recall that z = «(m)b(¢, ) so that |z|? = v(m)?|b(¢,r)[* and
4
P1¢,(E,T:7<.’I],/ y’f‘2—y2d¢y>
.00 = s (o [, 00 = Py

)

= 4(z,b(¢, 1)) = 4y(m)[b(e,7)|*.
Therefore, by (4.9), (4.13) becomes,
n(m)[b(¢,r)|* < eq g(m)c(m)r’e(2R)
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and in turn with (4.10):

(4.14) b(,7)| < \/n(m)~Leg glm)e(m)ry/e(2v7).

We recall that according to the initial dichotomy either (4.14) holds true or

(¢, )| < y(m)~'ry/e(Vr).

This proves the lemma. (I

The following proposition is the key estimate of these moment computations.

4.12. Proposition. [11, Proposition 4.4.1] There is a constant c4.12(m) > 0 with
the following property. Let x € X, 0 < 2y/r <1y <1 and & : (0,79] — [0,1] be a
continuous increasing function and assume that

(1) ©7(9,0) = O™ (6,2) = 1,
(2) lo| = rmax { 7, V€@V |

(3) exc(¢,y,p) < &(p) for 0 <p < /1 andy € B(0,r),
(4) exc™(¢,y,p) < E&(p) for 0 < p < 2y/r and y € {0, z}.

Then
Q6.7 (@) — [a?] < C4.12(m)|w|2max{\g/7_“, : g(zﬁ)} |

Proof. First note that as in the proof of Lemma 4.11 above, Lemma 4.6 together
with Lemma 4.8 imply that

|Py(d, 1) + Po(d,x, 1) + Ps(d,x,r) + Py, x,r)]|
= V(¢ z,r) — Fo(¢,,7)|
V(@ a,m) = V(eya,m)| +|V(6,2.7) = V(0,0,7)
< cg g(mpw(myr™ (r|z* (1 +&(r)) + r?|z[¢(2r))
(4.15) + cq g(my(m)r™ (| dev™ (¢, 2,0,7)| + 2¢(r)) .

Next we estimate | dev'™ (¢, x,0,7)| by

_ ’0#(13(077“)) B ¢(B($=7°))’

ja(m) ™" dev™ (¢, ,0,7)]

a(m)rm
o(BO, 1)  m m(p gy 2B T))
<[ AR 0700 + |07 (0.0) - L)
< exc™(¢,0,7) + exc™ (¢, xz, 1)
(4.16) < 2¢(r).

To simplify the writing, we introduce the following notation:

atr) = max { 97, ife(2um |
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Dividing (4.15) by v(m)r™*2 and using (4.16) and hypothesis (2), we obtain
|P1(¢7 T, 'f‘) + P2(¢7 Z, T) + P3(¢7 xz, 'f‘) + P4(¢7 Z, T)'
<cyglmlel? (E1+0) + e20)
+ 04'8(m)7"2 (| dev™(¢,x,0,r)| + 2§(T))
< g 6(m)|zf* (n(r) (1 + &(r)) + &(2r))
(4.17) +c4.8(m)2(1 +a(m))|z|*n(r)~2(r) -
According to Lemma 4.11 we also have that
|P1(¢7 €z, 'f‘)l = 4‘|<‘T7 b((bv T)>|
< deg p(mfalrmax { V7. 52 |
(4.18) = 4ey 11 (m)|z|*n(r).

Furthermore,

||

[Py (6,2, 7)| < djzw(m) L2 / j2lly] dé(y)

B(0,r)
< dfaPv(m) = " 2en(r)r¢(B(0, 1))
(4.19) < A(m+ 2)[zPn(r) (1 +£(r),

as well as
Pu(e,z,7)| = [a['v(m) '™ "26(B(0,7))
< JalPn(r)2r2u(m) 2 6(B(0, 1)
(4.20) < (m+ 2)[an(r) (1 + £0))
Plugging (4.18),(4.19) and (4.20) into (4.17), and observing that £(2r) < n(r) as
well as 7(r)~2&(r) < \/&(r), we find that
P2 (¢, 2,7)] < eq g(m)]zf* (n(r)(1 +&(r)) +€(2r))
+2(1 + a(m))ey g(m)|z[*n(r)~'&(r)
+dey g1 (m)la*n(r)
+5(m + 2)[a*n(r)(1 +£(r))
(4.21) < c(m)|al*n(r),

for some c¢(m) > 0 depending only on m. Finally, recalling the definition of
Py(¢p, z,7) and referring to Lemma 4.4, it is an easy matter to check that

(4.22) 41Q(¢,7)(@) — || < 4exc™ (9,0, 2)|z|* + [Pa(, 2,7)].
Plugging (4.21) into (4.22) yields the expected estimate. O

The lack of local compactness of the Hilbert space X prevents us from showing
that spt(¢) is Reifenberg flat in a neighborhood of the origin as done in [11]. But
if ¢ = ||T|| is Ahlfors regular we have additional structure. First we know that
tangent planes exist almost everywhere by Lemma 2.6 and a slicing argument as
used in the proof of Lemma 4.13 below allows us to find orthogonal frames in the
support of ¢ = ||T|| at all small scales around a point that possesses a tangent
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plane. A priori, the closeness to a tangent plane at a given scale depends on the
particular point, but the moment computations above can be used to make this
scale uniform in some small neighborhood.

4.3. Uniform closeness to planes. We now show how to find an orthogonal
family in the support of a rectifiable chain. This is similar to [11, Proposition
4.6.2], although simpler, because of the additional structure of a rectifiable chain
we don’t need to assume that the support is Reifenberg flat. We actually will use
this family in order to show that the support of some almost monotonic chain is
Reifenberg flat. Given a Radon measure ¢ in X, x € X, r > 0 and W € G(X,m)
we define

1

Balo .. W) (m / sty =o)F d¢<y>) "

Boo(d, 2,7, W) :=r~  sup{|mw s (y — 2)] : y € spt(¢) N Bz, 7)} .
4.13. Lemma. Let T € %,,(X;G) and assume that W € G(X,m) and 0 < p <
(25y/m)~1 are such that
(1) spt(T) € B(0,1) and spt(0T) C 0B(0,1),
(2) mw4(TLZw(0,271)) #0,
Let p/ := mips. Then p' < L and for every s € (2¢',1] there is an orthonormal
family eq, ... e, € X with se; € spt(T), i = 1,...,m.

Proof. Note that if vy, ..., v, € X are orthonormal vectors with |7y 1 (v;)] < ¢ and
V :=span{vi,...,vn} € G(X,m), then

(4.23) da(By (0,1), By (0,1)) < sup{|mw (z)] : @ € By (0,1)} < /mec.

By hypothesis (3) (and since 1 — p < /1 — p?), spt(0T) N Zw (1 — p) = 0 and the
constancy theorem implies together with (2) that there is some go # 0 with

Twx(TLZw (1 = p)) = go[Bw (0,1 = p)].
For an m-plane V and r > 0 let ¢y, : B(0,1) \ Zv(r) — V be the Lipschitz

map given by ¥y .(z) = |z||my (x)] " 7y (z). This map preserves the norm and
orthogonality in the following sense,
(4.24) v, (z)] =]z, andforyeV oy,.(z) Lyszly.

The fist statement is obvious, for the second note that if = v + v+ with v € V
and v € V4, then 9y, (x) = \v for some A # 0 and hence
<1/Jv,r($)7y> = )\<U7y> = )‘<:E7 y> 9

for y € V. Let Hy, : [0,1] x (B(0,1) \ Zv(r)) — V be the Lipschitz homotopy
Hy,(t,z) = tmy(z) + (1 — )y, (x) between 9y, and my. By assumption my :
spt(T) N Zw (1 — p) = Bw (0,1 — p) is surjective. We next show that

(4.25) Bw (0,1) \ Bw (0,2p) C ¢hw,,(spt(T) \ Zw (p)) -

This is essentially a consequence of the constancy theorem. More precisely, consider
the rectifiable chain S := [0,1] x (TLZw (p)°) € Zm+1(R x X;G) and the set
B, :=Bw(0,1—p)\Bw(0,2p). Clearly, Hy,,4S = 0 because the image lies in an
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m-dimensional plane. By the homotopy formula for G-chains (compare with the
proof of Lemma 2.7),

0= B(HWW#S) = Hyw,,4#08
= Hw,p ([1] X (TLZw (p)°) — [0] x (TLZw (p)°) — [0,1] x d(TLZw (p)°))
= mw#(TLZw (p)°) — Yw.,p(TLZw (p)°) — Hw,p% ([0, 1] x d(TLZw (p)°)) -

Because of hypothesis (1) and (3), Hw,,4(spt([0,1] x 0(TLZw(p)¢)) C W\ B,
and on B,, (mwx(TLZw(p)°))LB, = go[B,]. So the same must be true for
Yw,pp (T Zw (p)°), and since go # 0, the inclusion in (4.25) holds by the constancy
theorem because Yw,,(d(TLZw (p)°)) C 0Bw (0,1) UBw (0, 2p).

Pick some wy; € W with |wi| = s, where s € (2p/,1]. Since 2p < 2p' < s,
(4.25) implies the existence of some e; € X with se; € spt(T') and ¢ ,(se1) =
wi. Because w,, preserves the norm by (4.24), e; is of unit length. Let V}
be the orthogonal complement of w; in W. Again by (4.24), the vector e; is also
orthogonal to V; C W. Consider the new m-plane Wj spanned by e; and V;. There
holds |my 1 (se1)| < p because seq € spt(T') and hence dy(Bw (0, 1), Bw, (0,1)) <
Vmps~t by (4.23). Accordingly,

< (1+vms Hp <2vmps™ < Vmpp' ™
=p <5°%

Because of Lemma 2.7, the new plane W; satisfies the same hypotheses as W with
p’ in place of p.

Assume that for k& < m we have already constructed some orthonormal vectors
€1, ..., e orthogonal to some m—k dimensional subspace Vi, C W with se; € spt(T')
for all .. With W} we denote the m-plane spanned by ey, ..., e and V. Now, pick
a w1 € Vi with |wgy1| = s and s € (29, 1]. The same calculation as for Wy gives
that

max{ﬂoo(”THaOv 15 Wk)a dH(BW(Ov 1)5 BWk (07 1))} < p/ < 5_1 )

and as in (4.25) there is some ey41 € X with sex1 € spt(T) and Yw, p(s€rt1) =
Wit1. Let Vi1 be the orthogonal complement of wy4q in V. Since wy4q is
orthogonal to each of the vectors eq, ..., e, and to Vi1 the same holds for e;41 by
(4.24) applied to the map v¥w, . The new plane Wi has the same properties
we obtained for Wj. Proceeding this way we get the desired orthonormal vectors
€1y, Cme O

Lemma 4.5 together with Proposition 4.12 allow us to control 82 with respect
to some plane that is spanned by an orthogonal frame in the support of ¢. This
corresponds to Lemma 4.7.2 and Proposition 4.7.3 in [11].

4.14. Proposition. There is a constant c4.14(m) > 0 with the following property.
Let ¢ be a finite Borel measure on X, z;, 2, € X fori=1,....mandk>1 be a
sequence of points. Further assume that 0 < 4y/1 <rg <1 and & : (0,70] — (0, 3]
is a continuous increasing function such that

(1) $(0B(0,r)) =0,

(2) limp_yo0 |25k — 24| = 0 for all i,
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(8) x; L xj fori+#j, and |z;| = rn(r) for
olr) = max{ 97, /e (27 }.

(4) ©™(4,0) = O™ (¢p,x; %) = O™ (¢p,y) =1 for all i, k and ¢-almost all y €
B(0,r),
(5) eX(Ci”()aﬁ,y, p) < &(p) for 0 < p <4y/r and y € B(0,2r),
(6) exc™* (¢,y,p) <&(p) for 0 < p<4yr andy e {0,z i,k > 1}.
Then
Boo(6,0,7/2,W) < C4,14(m)n(r)ﬁ ,
where W := span{x1,...,Tm }.

Proof. If k is big enough, then Wy := span{zi ..., Zm ) is an m-dimensional
subspace of X and W} converges to W. Without loss of generality we assume
that Wi, € G(X,m) for all k and 0 < |x; k| < 2rn(r) < 2r for all ¢ and k. Let
ei, fix € X be the unit vectors such that |x;x|fix = ®ik and |zile; = x; and
let em+t1,k,s €m+2,ks €m+3,ks--- Dbe an orthonormal basis of W,j- By assumption
s — sn(s) is continuous, strictly increasing and satisfies limgjg sn(s) = 0. Hence
there is a unique r; ; > 0 for which |z; x| = r; k0 (ri k) for some 0 < 7; , < 2r and

(4.26) kli)rgo ax [rig — 1| = hrgo max [n(rik) —n(r)] =0.
Further, there is an orthonormal basis ej k, ..., em r of Wi with
(4.27) khrn 1r<nzlx lrn(r)eir — zig| = hnol0 11<nélx lei — fix] =0.

e;r, can for example be constructed via the Gram-Schmidt procedure from e; j.
From hypothesis (1) it follows that

(4.28) lig)l o(B(0,r+¢€)) — p(B(0,r—¢€)) =0.
By the assumption on £ we have for all 0 < p <,
% - 1‘ < max{exc™(¢,0,r), exc™ (,0,r)} < £(r).

Lemma 4.5 then implies that for all k,

1 2
‘Zwé(o_r)@i,k,w dg(y)

i>1

(4.29) = m—trQ(¢,r)| < (m+4)¢(r).

Additionally, Proposition 4.12 implies that for all 7, k,

1 / 2 1 2
l-—— fikeo )" do(y)| = —5 [|Tin]” — Q& 7i1) (w4 k
L B(o,ri,k)< )~ do(y) e || ] ( )(@ik)|
(4.30) < g q2(m)n(rin).
From (4.26), (4.27) and (4.28) we get
1 / 9
€ 1= MaxX |—————> Jik:y)” do(y
1<i<m lf(m)riJ:r2 B(O,ri,k)< ) )
1

131 s | ey dsw)| 0
(431) S o, k060

for k — oo.
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Since &(r) < n(r) it follows from (4.26), (4.29), (4.30) and (4.31) that for c(m) :=
v(m)(mey 12(m) +2m +4),

1
800, W = iy [ g oty

-y TmH/ (ein y)? do(y)

i>m B(0,r)

vm) Qo) = Y i [ fews ) dotw)

<m

<w(m)((m +4)¢(r) + mC4,12(m)77(7"i,k) + mey)
<

(4.32) c(m) max {n(r),n(ri), ex} = e(m)n(r),
for k — oo. Let d := B2(¢,0,r, W) and define
2
qm = mL2’

Cm =1+ (da(m)~Y)m
S 1= (2(cm — 1)) im
If 6 > 6,,, then
Boo(9,0,7/2,Wy) < 1< (5,'6)™ < 5,05 .
We therefore assume that § < 6,,. Consider the set
B = {y € B0.7) Nspt(9) : |mws (y)] = 6% r | .

Observe that
1
2 2
# =z | o [ G )

1 2qm, .2
2 oz 9(B)O

and therefore
(4.33) $(B) < rmg2i=am)
Now assume there exists y € B(0,7/2) Nspt(¢) with
s ()] > cmd™r.
Put p := (¢ — 1)d%r and notice that B(y, p) C U(0, ) since
p=(cm —1)87 1 < (¢ — 1)0% 1 = (e — 1) (2(em — 1)) ' < ir.
By our assumption on the densities we can assume that ©™(¢,y) = 1. The above
implies that spt(¢) N B(y, p) C B and with (4.33) we obtain

(4.34) ¢(B(y.p)) < ¢(B) < o>,
Since £(p) < &(ro) < 3, the bound on exc(¢,y, p) implies that
B
OBW.L) 5 ) ¢y > 1.

a(m)p™
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Combining this with (4.34) we obtain
La(m)(em — 1)"6™7 ™ = Ta(m)p™ < G(B(y, p)) < 1210
Since mg,, = nf—fQ =2(1 — ==5) = 2(1 — gy,), this gives a contradiction,
1> 2a(m)(cpn —1)™ = La(m)da(m)™" = 2.

Therefore

Boo(6,0,7/2, Wy,) < max{5-9", ¢, }69 = max{2(cp — 1), cpm }0772 .
Since § = Ba(¢, 0,7, W), (4.32) implies that

1

lim sup Boo(¢,0,7/2, W) < ' (m)n(r)=+ ,

k—o00

for some constant ¢’(m) > 0 depending only on m. Because W, NB(0, 1) converges
in Hausdorff distance to W NB(0, 1), we get Boo (¢, 0,7/2, Wi) = Boo(9,0,7/2, W)

and the proposition follows.
O

This is the special case of the proposition above in case £ is the constant function.

4.15. Corollary. There is a constant cq4.15(m) > 0 with the following property. Let
@ be a finite Borel measure on X, xj,xi € X fori=1,...,m and k > 1 and
assume that €,rg,r > 0 are such that:

(1) 0<4yr<rg<e<3,

(2) ¢(0B(0,7)) =0,

(8) limp—yoo |ik — x| =0 for all i,

(4) i L fori#j and |z;| = ret,

(5) O™ (4,0) = O™ (¢, x5 1) = O™ (P, y) = 1 for all i, k and ¢-almost all y €

B(O,To).

(6) excl(6,y,70) < ¢ for y € B(0,2r),

(7) exc"™ (¢p,y,10) <€ fory € {0,z : 1,k >1}.
Then )

,BOO ((b, 0, 'f‘/2, W) < C4,15(’I”I’L)6m s

where W := span{z1,...,Zm}.

5. REGULARITY OF ALMOST MINIMIZER

First we define the main objects of this paper, namely almost mass minimizing
rectifiable chains with respect to some gauge . This is an adaptation of the original
definition of Almgren in [2] to chains. Almgren’s original definition is harder to
work with since competing surfaces have to be obtained by Lipschitz deformations
of the original one and cut and paste constructions are not allowed. Due to slicing,
such cut and paste constructions are easily available for rectifiable G-chains and
this simplifies the arguments greatly. For this reason we follow Bombieri and his
definition of almost mass minimizing integral currents [§].

5.1. Definition. A rectifiable chain T € %,,(X;G) is (M, &, d)-minimal in a set
A C X \spt(0T) if £ : (0,0] — Ry is a gauge and the following holds: For every
x € A, 0<r<min{d,dist{x,spt(0T)}} and every S € %Z,,(X;G) with

(1) spt(S) € B(z,r),

(2) 0S5 =0,



PARTIAL REGULARITY OF ALMOST MINIMIZING G CHAINS 73

there holds
M(TLB(z,7)) < (1+&(r)) M(TLB(z,7) + 5) .

We will further assume that £ is continuous and satisfies the Dini condition,
s
t
/ M dt < oo.
0 t

The next result is a simple adjustment of [11, Proposition 3.4.5] to the setting of
rectifiable G-chains. Note that because of the definition of almost minimality we
use here, radius of balls instead of diameter of sets, there is no factor 2 appearing
in the lemma below.

5.2. Lemma. Let T € %,,(X;G) be (M,¢&,6)-minimal in A C X \ B(spt(9T),0)

and define
iy [T E()
E(r) = m/o ; dt

for every 0 < r <§. Then T is almost monotonic in A with gauge =.

Proof. For x € A and 0 < r < ¢ define f,(r) := || T||(B(z,7)). Let d, : X — R be
the distance function to x and assume that r is such that (T, d,,r) € Zpm-1(X;G)
as well as O(TLB(x,r)) = (T,dy,r) € #m—1(X;G). This holds for almost all
0 < r < 0 because of [13, Theorem 5.2.4] and by (2.7),

/OTM(<T, dy.s))ds < M(TLB(z, 1)) = fu(r).

Hence for almost all r,
(5.1) M((T,dy, 7)) < fr(r).
Let [x]x(T,dy,r) € Zm(X;G) be the cone over (T, d,,r) with center . There
holds O([z] (T, dy, 7)) = (T, dy,r) and by (2.8),
(5.2) M([2] % (T, dy, 7)) = — M((T, dy, 7)) .
m
The almost minimality of T implies in combination with (5.1) and (5.2) that for
almost all 7,

fa(r) = M(TLB(z,7)) < (1+&(r)) M([z] % (T d, 7))

8

= (1+€() = M((T2dy 1)) < (L4+E(r) - £1(r).
Hence, for almost all » with f,(r) > 0,
oy - de(r) oom 1 m
ogofe) () = 20 > 2t > 1 — ().
Integrating shows that for all 0 < r; < ro < § with f,(r1) > 0,
fa(r2) " m _ s = =

respectively that
exp(E(r1))ry " fa(r1) < exp(E(r2))ry ™ fa(ra) .-

If fi(r1) = 0, the statement is trivial. Hence T is almost monotonic in A with
gauge function =. O
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We will encounter a similar differential equation in connection with the epiperi-
metric inequality in Lemma 5.5.

5.1. Polyhedral approximation and a differential inequality. Because of the
formulation of Reifenberg’s epiperimetric inequality with polyhedral chains we first
need some results that justify this assumption. The required results about polyhe-
dral approximation are contained in [10]. With # > 0 and the group norm ||-|| we as-
sociate a new group norm || - ||¢ defined on G by [|0¢|l¢ = 0 and ||g||s := max{||g||, 0}
whenever g # 0O¢.

5.3. Lemma. Let T € %Z,,(X; G) and r¢ € (0,1] such that spt(dT) N B(0,r) = 0.
Further let > 0 and assume that,

(A) ©"(IT|l, =) = 0 for ||T||-a.e. z € B(0,70),
(B) spt(T) N B(0,ry) is compact.

Let My be the mass on rectifiable G-chains induced by the norm || - || (defined
right before the Lemma). For all s > 0 and almost every r € [0,7¢], T =
I(TLB(0,7)) € Zm-1(X;G) and there is a polyhedral chain P, s € Pp_1(X;G)
and a rectifiable chain R, s € % (X; G) such that

(1) O(R, s + [0]x Prs) =T,

(2) Mg(Rp) < 5 and spt(Brs) € U(spH(T,), ),

(3) max{My (P, s)LB(0,7)), Mp([0] x P-5)} < M([0]%T,.) + s, where P, s is
the infinite cone generated by [0]x Py s.

Proof. Let f : X — R be the 1-Lipschitz function given by f(z) := |z|. As
noted before, the slice (T, f,r) exists for almost every r € R and is an element of
Rm-1(X;G). By [13, Theorem 5.2.4] we have that (T, f,r) = O(TL{f < r}) =
A(TLB(0,r)) = T, for almost every r < ry. By the compactness assumption on T,
the chain 7, has also compact support. It follows from [10, Theorem 4.2 (E)| that
there are P, € Z,—1(X;G) and R, s € %, (X;G) such that P, — T, = OR, s,
My (Ps) < Mo(T,)+ s, Mp(R, ) < s and spt(R, s) C U(spt(7}), s). In particular
we have that 9P, s = 0. (1) and (2) hold by construction. By the lower bound on
the densities there holds M(7),) = My(T;) for almost all r because slices inherit the
group elements from the original chain. From now on we also assume that 2s < r.
As stated in (2.8) and (2.9), M([0]xT) = £+ M(T;) and also,

My ([0]% P, ) LB(0, 7 = 5)) < = My(P,,.) < — My(T}) + =
= M(0]xT;) + =
(5.3) < M([0]xT3) + 5.

Let P, s be a large enough (or infinite) scaled version of [0] x P, s that has its bound-
ary outside U(0,2r). Since spt(P.s) C B(spt(T}),s), we have spt([0]x P, s) C
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spt(P,.5) N B(0,7 + s) and hence with (5.3) (note that 2s < r),
max{Mjy (P, sL_B(0,7)), Mg([0] x P-5)}
S MG(I}T,SI—B(O) r+ S))
(r+s)™ _
< ——My(P ,LB(0,r —
S o(PrsLB(0,r —s))
e

< o (M(O1XT) +-5)

This converges to M([0]xT;) for s — 0 and by replacing s with a smaller value if
necessary, we obtain (3). O

Next we use Reifenberg’s epiperimetric inequality of Theorem 3.18 to obtain a
differential inequality for f(r) := M(TLB(x,r)), where T is an almost minimizing
G-chain.

5.4. Proposition. There is a constant 0 < e5.4(m) < i with the following property.
Let T € Zm(X;G), go € G\ {0c}, 0 <19 < 1,0 <e<es4(m) and assume that
for any 0 < r <ry there is some W, € G(X,m) such that:

(1) spt(0T) C X \ B(0, 3ro),

(2) T is (M, &, 2rg)-minimal in B(0,rq) for a continuous gauge &,

(3) ©™(IT|, ) > Fllgoll for |IT|-a.c. = € B(0, 7o),

(4) du(B(0,2r) Nspt(T), B(0,2r) N W,.) < er,

(5) Exc(TLB(0,2r),0,r,W,) < |l go|ler™,

(6) mw,% (TL(B(0,2r) N Zw,(r))) = go[Bw, (0,7)].
If we set f(r) == M(TLB(0,7)) and X := A3 1g(m), then for almost every r €
[07 T0]7

r _
F(r) < (L+E)— (Af'(r) + (1= Vllgoflec(m)mr™ ) .
Proof. As in Lemma 5.3 we use the notation T, := 9(TLB(0,r)) for r € [0, 7]
Assume that

s < min{HgOHeTm, 2711"} ,

and for the application of Lemma 5.3 let 6 := 2||go| (notice spt(T") N B(0,ro) is
compact according to Lemma 4.3) and consider the two chains R, s and P, as
constructed there. The constant 6 is justified by our assumption on the densities
of ||T||. We also abbreviate ||g|lo := max{||g||, 0} if g # 0¢ and My the associated
mass. Note that M < My, [|golle = [|gol| and M(TLB) = My(TLB) for every
Borel set B € B(0,79). Let Pm and 7T, be the infinite cones generated by [0]x Py s

and [0]x T, respectively. The following holds for almost all r:

(5.4) spt(Ry,s) C U(spt(Tr),s) C U(0,r + ) \ B(0,r —s),
(5.5) spt([0] x Prs + Rys) C U0, 7 +5),

(5.6) ([0 % Prs + Rys) =Ty,

(5.7) M ([0]x Prs) < M([0]xT%) +s, Mo(Rys) < s,

(5.8) My (P, sLB(0,7)) < M([0]%T,) +s.
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We want to show that

(5.9) fr) < (M+&(r) AM([0]xT) + (1 = A)l[golle(m)r™)
for A = X318 € (%, 1). In order to apply Theorem 3.18 it is necessary that the

cone T, has small cylindrical excess, but this may not hold for almost all 7. So we
consider two cases. First assume that AM([0]xT;) > ||goll(er™ + Aa(m)r™). For
W := W,, assumptions (5) and (6) imply,
f(r) <M(TL(B(0,2r) N Zw (r)))

< Exc(TLB(0,2r),0,7, W) + || go||a(m)r™

< [lgoll(er™ + a(m)r™)

S AM([0]%T7) + (1 = A)llgollee(m)r™

< (1+&(m) AM([0]xT;) + (1 = A)llgo[lee(m)r™) .
In the second case M([0]xT,) < |lgo||( A" ter™ + a(m)r™) < |lgol|(2¢ + a(m))r™.
By assumption (4), |my1 (z)| < er for € spt(T)NB(0, 2r) and hence |z] < (14¢€)r

for all « € spt(T")NB(0, 2r) N Zw (). Since we assume s < ||go||er™, it follows from
(5) and (5.8) that

My (P, s Zw (1)) < My(P, sLB(0, (1 +e)r))
= (1+¢)™ Mp(PrsLB(0,7))
S(l+e"M ([[0]] ) s)
< (1+6)"[|goll((2e + a(m))r™ + er™)
< )

(5.10) c(m)llgoller™ + [lgollec(m)r™

for some constant c¢(m) > 0. By the constancy theorem it is my 4 (P sL Zw (1)) =
g[B(0,r)] for some g € G. Tt is indeed g = gy as we will see. From (5.6) it follows
that O([0]%x P, s + R, s — (T'LB(0,7))) = 0 and hence mw4([0]%x P, s + Rys) =
w4 (TLB(0,7)) by the constancy theorem. From assumptions (4), (6) and the fact
that e < 1 it follows that the chain 7y 4 (TLB(0,7)) has weight go on By (0,47 7).
From (5.4), (4), s < % and € < 1 it follows that

spt(mw g Rrs) € Bw (0,7 +5) \ By (0,7 — s —er) C By (0,7 +5) \ By (0,47 7).

So mw 4 ([0] % Pr s) has the same weight as w4 (TLB(0,7)) on By (0,4~ 1r) which
is go. Hence, if c(m)es.4 < €3 18, it follows from (5.10) that

Exc1(Prs, W) < |lgoll€3.18 »

and if €54 < Leg 1g, it follows from (4) and (5.4) that for all @ € spt(F,,) N Zw,

2
s ()| < s VwEWLES 2o

= <desy <€ .
yespt(T) " =5 — ITwe(y)| = r—2es54r 3.18

Hence we can apply Theore_m 3.18 to the cone ]57«75. This gives a new chain S, s €
R (X ; G) with 0S5, s = (P, sLB(0,7 — s)) = 9(([0] x P s )LB(0, r — s)) and

MG(ST,S) S AM@(([[O]]XPTS)LB(O,T - S)) + (1 - )\)HgOHa(m)(r - S)m
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Let S ;= Sr s+ Ry s+ ([0] x P s )LB(0,7 — 5)¢. By (5.6), 95, = T} and by (5.7)
and (5.8),
e(r,s) == Mp(R, s + (0x P, s)LB(0,7 — 5)°))
s (s (L s Ma([0]%T) +5).

and this converges to 0 for s — 0. By the almost minimality of T, (5.5) and (5.7)
it follows for almost all 7 and small enough s,

f(r) =M(TLB(0,7)) < (L +&(r+5)) Mp(S5;.,)
< (L4+&(r + ) (Mo (Sr.s) +e(r, 5))
< (L+&(r+5)) (A Mo (([0] % Prs)LB(0, 7 — 5))
+ (1= Nllgolle(m)(r — )™ + e(r, 5))
< (L+E(r+8)) AM([0]xT) + 5) + (1= Nllgolle(m) (r — 5)™ + e(r, 5)) .
Taking the limit for s — 0 we obtain (5.9) for almost all r € [0,70]. f(r) =

M(TLB(0,7)) is monotonically increasing and hence differentiable almost every-
where. By the integral slice estimate (2.7) we obtain for all 0 < a < b < ry,

b
/ M(T;) dr < M(TL.(B(0,5) \ U(0,a))) = f(b) = f(a).

If r is a Lebesgue point of s — M(T}) and also a point of differentiability for f, then
M(T) < f'(r). Almost every r is such a point, hence M([0]xT,) = £ M(T;) <
- f'(r) for almost all r. Applied to formula (5.9) we obtain the result. O

Next we state a lemma that treats the differential inequality obtained in Propo-
sition 5.4.

5.5. Lemma. Let f,&,Z: (0,r] — [0,00) be gauges and X € (0,1), 8 > 0. Assume
that & is continuous and for almost all r € [0, ro],

=(r /5 dt < oo

Or™ < exp(E(r))f(r

Fr) < (1+£0)
Assume further that (1 + &(ro))VA < Ao < 1, exp(E(rp)) < 2, &£(r) < E(r) and
2(r)
Ao < =) £ 60 for all r
Then for all 0 < r < rg,
exp(=(r LT)_ =) [ Z(ra) "L [ exp(= LTO)_
)2 0 <200 (00 (exvt@rmn L —0) +50)

Proof. Define the function e(r) := exp(Z(r))f(r) — 6r™. By assumption e(r) > 0
and w.l.o.g. we assume that e(r) > 0 for all » > 0. Otherwise we replace £(r) with
&a(r) :=&(r) + ar for a > 0. Since the final estimate is continuous in a we then can
take the limit for a | 0 afterwards.



78 THIERRY DE PAUW AND ROGER ZUST

Since f and = are differentiable almost everywhere, the same is true for e and
therefore,

e (r) = exp(E(r)) f'(r) + E'(r) exp(E(r)) f(r) — Omr™ "
)+ mE (o) + ) — gyt

[I]

= exp(

= exp(E) (1) +m L e(r) — (1 - €r)pmrn

< exp(E(r) (1 +£()— (Af/(1) + (1 = A)mr™ ") = or
= (10D () + (1 - epmm = mE o)

+ exp<5<r>><1 +€(r) = (1 = \)mr™ " — 6r™

(1+€(7‘)) () AL+ £(r))(r)e(r)
+0r™ (exp(E(r)) (1 +&(r) (1 = A) + (1 = £(r) (1 +£(r)A = 1)

(1+€(T)) e'(r) = ML+ &(r)E(r)e(r)
+0r™(1 - )(GXP( (M) +&(r) —1) .
We look at two cases. First assume that for some r,
(5.11) (1= vNe(r) < 0r™(1 — N)(exp(E(r)) (1 + &(r) — 1).
Since we assume that exp(Z(rg)) < 2 and £(r) < Z(r) for all r, we get
e(r) < 0r™ (1+ V) (exp(E(r))(1 +£(r)) — 1)
< 0r™(1+ V) (exp(E(ro))=(r) + 2£(r))
< 20r™ (2E(r) + 22(r))
(5.12) < 80r™=(r) =: g(r).

(11 [1]

For this function g the derivative calculates as
g'(r) = 80mr™ 1 E(r) + 80r™ tmé(r) = 80r™ tm(Z(r) + £())

(5.13) _E ) m

=(r) r
For almost all r at which (5.11) doesn’t hold,

Ar,

Ve(r) < (1 +§(T))E€ (r),

because the sum of this inequality with the one in (5.11) has to be satisfied for
almost every r by our bound on e(r) established before. In this case,

‘//i5[7" / )\()7" / ( )
e(T)§(1+§(7‘0))7€(7‘)_ ~ e'(r )<W

[I]

o

—e'(r).

[I]

\/
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Let h(r) := max{e(r),g(r)}. Then for almost every r € {g > e},

oy gy ED A m  E0) e m
h (T) =9 ( ) E(T) r g( ) E(T) r
and for almost every r € {g < e},

W) — ) 5 Z)HE@m

=(r) r - =(r) r
Hence for almost every r,

Because Z/(r) = Z&(r),

o - 0 - . £(r)\ m
g log(r™=(r)) = I (mlog(r) +log(Z(r))) = (1 + E(r)) .

/
< ot = 3 lou(h(1)
Integrating gives for all 0 < r < ry,
r9'E(ro) < h(ro)
rm=(r) — h(r)’
respectively,
% < };(:L) < E:((;;)) f;(g):) < 7‘6”:5(1{7)“0) (exp(E(rg)) f(ro) — 0ry" + 80r{=(r0))
This shows the lemma. O

Before we proceed we give some remarks on the assumptions on £ in the lemma
above.

5.6. Lemma. The following properties hold for a gauge & : (0,79] — R4.:

(1) If & is concave, then E(r) > m&(r) > &(r) for all r.

(2) If = 3 T) > (2) for all0 <r < s <ry and some 0 < a < 1. Then the same
holds for B € [o, 1] in place of o and ZE(r) > 2&(r) is satisfied for all 7.
Additionally,

E(r)
E(r) +&(r
<

)

A< holds for all r,

A< 2%

=, respectively, «

Proof. If £ is concave, then for 0 < r < rg and 0 < s < 1 there holds &(sr) > s&(r),
respectively, (sr)~1¢(sr) > r~1¢(r). This shows that

E(T):m‘/(:@dth/or%T)dtzmﬁ(r)25(7“).

Let o and § be as in (2), then
) _ &) _ &) el _ €

B gB-aga = gB—apa T gB-a pB = B
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Similarly to the concave case,

E(T)Zm/OT#dth‘/oTta_I%dt
= =(r)

For all r we get
) =(r) m_
=M €D~ E0 T+ 2200 m+a

O

5.2. Upper excess bounds and Reifenberg flatness. First we give conditions
that allow to estimate the excess in a neighborhood of a point with small excess.

5.7. Lemma. Let ¢ be a finite Borel measure on X, 0 < rg,e,n <1, & :(0,2r¢0] —
(0, €] be a gauge and |x| < ron. Assume that

(1) ©™(¢,0) = ©™(¢,2) = 1,

(2) excm(qS,O, 2’/‘0) S 1;

(8) for0<s<t<ryandye {0,x},

expl(e(s)) A2

a(m)s™

¢(B(y, t))

a(m)tm -

< exp(¢(1))
Then

exc™(p,x,70) < exc™ (¢, 0,70(1 + 1)) + 2™ 0 max{n, ¢} .
Proof. Because of (1) and (2), the following estimate holds for all 0 < r < 27y,
¢(B(0,7))

a(m)rm
Let 0 < r < r¢ be such that |z| = nr (if |x| = 0 there is nothing to show). We first
assume that the functions in (3) are strictly increasing on (0, r¢]. Clearly,
¢(B(z,r)) _ oB(O, |2 + 7)) (2] + )™

a(m)rm — a(m)(|z]+r)m™ ™
(
(

(5.14) < exc™(¢,0,2r9) +1< 2.

Hence for 0 <t <r,

exp(&(t)) ‘bs(gn%’ 22) < exp(¢(r)) ﬁ?nf;ﬂ)
(5.15) < explg()(1 -+ )" SO
o imexp(€(e) ) i exp(e(s) s
jvrilgihthese functions are strictly increasing, there is for any s € (0, 7] some s € (0, ]
66N ADED < (e A2
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Thus,

% < —exp((s)) =&(5)) < —exp(=£(s))

If we assume that exp(§(r))(14+n)"™ < 1+ and exp(—{(r)) > 1 —¢ for some 6 > 0,
and combine (5.14), (5.15) with (5.16), we get for s,¢ € (0, 7],

¢B(z,t)  ¢(B(z,5)) B0, (1 +7)))
amim afmm = U g
< exc™(¢,0,7(1+mn))+49.

Since nn < 1 and &(2r¢) < e < 1, there holds

exp(§(r))(1+n)" =1 < (1+4e)(1+2"n) -1

< (44 2™ 4 2™ ) max{e, n}

< 2™ max{e, n},

¢(B(0, s"))

a(m)s'™

G(BO0.5)

(5.16) — )

¢(B(0,5"))

a(m)s'™

—(1-9)

and similarly, exp(—¢(r)) > 1 — e. Hence
exc™ (¢, z,7) < exc™(¢,0,7(1 4+ 1)) + 2" max{e,n} .

This shows the lemma assuming that s — exp(§ (s))% is strictly increasing.

The general case follows by replacing &(s) with £(s) + as and taking the limit
al 0. O

The following bootstrap argument is an application of the moments computa-
tions. It is the key lemma for showing Reifenberg flatness of the support of a chain
in a neighborhood of small excess.

5.8. Lemma. Let T € Z,,(X;G) and 0 < ro, sg,e < 1 be such that:

(1) 0 <4y/s0<rg<e< g

(2) spt(0T) € X \ B(0,2ro).

(3) ©™(||IT)l,z) =6 > 0 for ||T||-almost all x € spt(T") N B(0, 2r¢).

(4) There is a plane W € G(X;G) and gy € G with ||go|]| = ©™(||T],0) = 0,
such that limy o Boo (||T]], 0,7, W) = 0 and for all sufficiently small r,

mwy (TL(B(z,7) N Zw (mw (2),27'7))) = go[Bw (mw (x), 27 'r)] .
(5) there holds,
exc]'(|T]], z,r0) < Oe for all x € B(0,2r¢),
exc* (|| T||, x,ro) < e for || T|| — almost every x € B(O,2roe%) .

If

1 1
Im+2) <
CA15 M) < G

then for all r € (0,s0) there is a plane W, € G(X, m) such that
dy(spt(T) N B(0,r), W,. N B(0,r)) < QC4'15(m)r64<m1+2) .

and

mw, 4 (TLB(0,7) N Zw, (0,%)) = go[Bw, (0, 5)] .
Further, for any r € (0,s9) there is an orthogonal frame x1,...,x, € spt(T) N
0B(0,r) with z; L x; fori#j.
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Proof. Let ¢ :== 071||T||. By assumption, sq satisfies the bounds of Corollary 4.15.
Consider the sequence s defined by sg41 1= 25]66%. The factor 2 in this definition
is to compensate for the fact that the 8 estimate in Corollary 4.15 is at scale 1/2.
This is a monotone sequence with limy_, ., s = 0 since by definition

Sk+1 S 28}66% S %Sk

Because of (4) there is some k > 1 such that for any s € (0, sg),

(5.17) Boo(,0,5, W) < 25\1/%,
and
(518) TW 4 ( (B(O S ﬁ ZW ) g )]]

From Lemma 4.13 we obtain that for all s € (0, s ) there is an orthogonal frame
21(8),...,zn(s) € X such that

(5.19) zi(s) €spt(T), |zi(s)|=s and xz;(s) Lzj(s)ifi#j.

For any r € (0,s5_1) set s := 2rei < s,. Corollary 4.15 implies that for all
but countably many r (i.e. those r with | T||[(0B(0,r)) = 0) there is some plane
W, € G(X,m) with

1
5.20 AT, 0,7, W, D <
(5.20) Bc(IT.0.7.17;) < g 15(m)e 57 < e
More precisely, the plane W, is spanned by the vectors z;(s), i = 1,...,m, from
(5.19) and because of hypothesis (3) we can approximate z;(s) as necessary for
Corollary 4.15. In order to proceed the argument we show that

(521) TW, # (TL(B(O T) N ZV[/7 ( ))) = g()[[:BV[/7 ( R 2)]] .

This is achieved with Lemma 2.7 by estimating the distance from W,. to W. Since
x;(s) € spt(T) N B(0, s) by (5.19), we obtain from (5.20),

mw (2i(s)) = 2i(s)] = [ (2i(s))| < Boo (I, 0,8, W)s <

For all w € Wy, if we write w = >, \iz;(s) with [w]? = 2>, [\i|?,

S
2/m

o) ] < g7 STIN < -

Hence ||mw — mw, || < 1 from Lemma 2.1 and Lemma 2.7 implies together with
(5.18) that (5.21) holds for W, if r € (0,s5_1) and ||T||(0B(0,7)) = 0. Because
the inequality in (5.20) is strict, (5.20) and (5.21) hold for all r € (0, sy—1). Again
from Lemma 4.13 it follows that we can find an orthogonal frame as in (5.19) for
all 7 € (0, s5-1).

Proceeding this way we conclude by induction on k that for all r € (0, s¢) there
is such a plane W, € G(X,m). To obtain the estimate on the Hausdorfl distance
note that for all = € spt(7') N B(0, r),

(r
dist(z, W, N1 B(0,1)) < ¢4 15(m)reTm |
On the other side, (5.21) implies that for any

zeW,NB (Oﬂ“ (1 - C4.15(m)6m))
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there is an ' € spt(T) N B(0,r) with |z — 2'| < 04'157"64(”&1%) . Hence

du(spt(7) N B(0,7), W, N B(0,7)) < 2C4.15(m)r54(m17+2) ,
0

The following result shows that almost monotonic chains have neighborhoods
that are Reifenberg flat. The assumption on the almost constant densities will be
justified below in Lemma 5.11 for nearly monotonic chains if we have a discreteness
assumption on G. Moreover an almost monotonic chain is nearly monotonic because
of Lemma 4.2.

5.9. Theorem. Let T € %,,(X;G) and assume that there are xo € X, 0 > 0,19 €
(0, 1] with

(1) spt(9T) C X \ B(xg,2r9),

(2) O™ (7|, x) = ©™(|IT]|, 0) = 0 for | T||-almost every x € B(xo, ro),

(3) T is almost monotonic in B(xg,ro) for some gauge & : (0,79] — (0, 00).
Then for any € > 0 there is a re € (0,710] such that for all x € spt(T) N B(xzg,re)
and all v € (0,7¢] there is a plane W € G(X, m) and g, € G with the properties,

exc™(|T||, z,7) < Oe,
du(spt(T) N B(x,r), (x + W) N Bz, 7)) <re,

mw# (TL(B(x,r) N Zw (7w (2), ) = g=[Bw (7w (2), 5)] .
and ||gz|| = 0. Further, for any x € spt(T) N B(xzg,r.) and r € (0,7 there is an
orthogonal frame x1,..., Ty with |z;| =r and x + x; € spt(T).

Proof. Fix some € > 0 with

1 1 1
< —min{ — .
i { ST (25/meg 15(m)) 02 }
The finite Borel measure ¢ := 6~!||T|| is almost monotonic in B(xg, ro) with respect
to the same gauge as ||T||. From Lemma 4.2 it follows that exc(||T||,z,r) <
cy 9&(r) for all € B(xo,r9) and 0 < r < ro. Since ©™(¢,z9) = 1 there is a
r1 € (0, %] such that

max{f~'cy 9&(671), exc™ (¢, xo,671)} < €.
According to Lemma 5.7, any « € B(xq, 3r1¢) with ©" (¢, x) = 1 satisfies

exc™ (¢, x,3r1) < exc™ (¢, zo,6r1) + 2" O max{e, e} < 2m e

(1 1
(5:22) = min {8_1’ (25v/mey 15(m))*(m+2) } '

Let ry := %6(7”16)2, respectively, 4,/r2 < rie. Since ¢y 9£(671) < g, it follows from
Lemma 4.3, that ||T|| is Ahlfors-regular in U(xg, 6r1) and hence tangent planes for
T exist for |T||-a.e. € U(xg, 6r1) by Lemma 2.6. Consider a point x € B(zg, r2)
with ©™(||T||, z) = 6 at which such a tangent plane exists. Note that B(z,2r1¢€) C
B(x0,3r1€) and max{exc™" (¢,y,7),exc™(¢,z,7)} < 2™+ 7e if 0 < 41 < 7y,
y € B(z,2r1¢€) and z € B(x, 2r1€) with ©™ (¢, 2) = 1. From Lemma 5.8 and (5.22)
we obtain that for any 0 < r < 73 there is a plane W, , € G(X,m) such that,
2r

(5.23)  du(spt(T)NB(z,7), Wy, NB(z,7)) < 204'15(m)r(2m+7e) D) < %
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and
(5'24) T‘—Wmm# (Tl_(B(fL', T) ﬁ ZW(E,T (ﬂ-Wz,r (‘T)7 %)) = gi”.‘BWm,T (fl;, %)]] :
with ||gz|| = 6. Moreover, there is an orthogonal frame centered at = for all scales

0 < r < 7y as described in the theorem. The set of those points = € spt(T’) N
U(zp,r2) at which tangent planes exist and O™ (||T||,z) = 0 is dense. Thus for all
x € U(zg,r2) Nspt(T) and all 0 < r < 7y there is a W, € G(X,m) such that
(5.23) holds as well as (5.24) for some ¢, , € G with ||gs || = 0. gz, does not
depend on 7 because of Corollary 2.4 and Lemma 2.7. Lemma 4.3 and Lemma 4.2
imply that spt(7")NB(z, ) is compact if € U(xg, r2) and r is small enough. Thus
the statement about the orthogonal frames holds for all points in spt(7)NU(z0, r2).
Let x € spt(T) NU(z,r2) and z; be a sequence in U(zg, rz) with O™ (||T||,z) = 6
that converges to xg. Let 0 < r < 3r; and A > 1 with Ar < 3r;. Applying (5.22)
to the sequence x;,

ITIBEN) o ITIBE ),
a(m)rm i—o0 a(m)rm
< lim sup IT(B(z:, Ar)) OINT + |60 — 0]

isoo | a(m)(Ar)m
<exc™(|T|,z,3r1)+ (A" —1)0
<O2MTTA™ £ (A —1)6.
Similarly we obtain a lower bound of —f2"+7eA=™ 4+ (A\=™ — 1)#. Taking the limit

for A | 1, it follows that exc™(||T||,z,7) < 02™ T8¢ for all z € spt(T) N U(zg, r2)
and 0 < r < 3ry. This concludes the proof. (I

5.3. Main regularity results. Combining Theorem 5.9, Lemma 4.2, Lemma 5.1,
Proposition 5.4, Lemma 5.5 and Lemma 5.6 we obtain.

5.10. Proposition. Assume that T € % (X;G), xo € spt(T) and ro > 0 satisfy:
(1) spt(0T) C X \ B(xo,2r0).
(2) T is (M, &, ro)-minimal in B(xg,79) for a continuous gauge & with Z(§) =
mfro £6) s < 00
0 s :
(3) ©™(||T),z) = ©™(||T||, z0) = 0 for ||T||-almost every x € B(xg,rq).
(4) Set Ng := {/Ag.18. Assume that (1 + &(ro))Ao < 1, exp(E(ro)) < 2 and

— f(z) is decreasing for some a < mi20,
S )\0

Then there are constants 11 > 0 and c¢5.10(m, 70, =Z(r0), 0, M(T)) > 0 such that for
all 0 <r <y,

exp(=(r ))% — 0 is increasing in v if x € Ulxo,r1),
exc'(|T|,z,7) < c5.102(r), if 2 € Ulxg,r),
GXP(E( ))% —0 < cs5.10 E(’I”) , fo S Spt(T) n U(Io, ’I”l),
(

(TN, 2, r) < es5.102(r), if @ € spt(T) N Ulxg, 1) -
In particular ®m(||TH,:v) =0 for all x € spt(T) N Ulxg,m1).

Proof. From Lemma 5.1 it follows that T is almost monotonic in B(xg,r9) with
gauge = : (0,79] — Ry. From Lemma 4.2 it follows that ||7'|| is nearly monotonic in
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B(zo,r0) with some gauge c, Z where ¢, := ¢4 9(m, 79, Z(r0), M(T")). This shows
the first two conclusions.

From Theorem 5.9 it follows that for any 0 < e < 1 there is a scale 0 < r, <
such that for all x € spt(T') NB(zg,7e) and 0 < r < re there is a plane W = W, ,.
G(X,m) and ¢, € G with ||g;|| = 6 and

o
2
S

excm(”TH,:z:, 2TE) S 965
di(spt(T) N B, 2r), (z + W) N B, 2r)) < re,

mw (TL(B(mw (2),2r) N Zw (1w (2),7)) = g [Bw (7w (2),7)] -

In order to apply Proposition 5.4 we need to check that 7" has small cylindrical
excess over W. But this is rather simple using the two properties above. Let
x € B(0,r.). For simplicity we translate the chain to the origin 7" := 7_,47T,
where 7_,(y) = y — 2. Then for any y € spt(T") N B(0,2r) N Zw (0, r) there holds
ly| <r + re and thus

spt(T") N B(0,2r) N Zyw (0,7) € B (0,7 (1 +¢€)) .

Therefore,

Exc(T'LB(0,2r),0,7,W)

a(m),r.m
— T/ B
- 1 ' B 0,17 + € - m

_ T8 (0,7 (1 +€)))

a(m)(1 4 ¢e)mrm
< (0 + exc™(||T"||,0,2r))(1 +¢)™ — 0
<(@+ed)(1+2"e)—0
<O2™+2e+ 1)e.

(14+e)™—0

So if € is small enough we can apply Proposition 5.4. It follows that for all x €
B(zo,7e) with ©™(||T||, z) = 6 and for almost all 0 < r < r,

ful0) < (14 €()—

where f,(r) = ||T||(B(x,7)) and 0 < A := A3.1g < 1. Note that (4) implies that
(14+&(ro))\/A3.18 < Ao = {/A3.18- Hence with the help of Lemma 5.6 we can
apply Lemma 5.5 and obtain

fa(r)

a(m)rm

(/\fg/c(r) +(1- /\)Ga(m)mrm_l) ,

fa(r)

a(m)rm

— 6 < exp(E(r))

-0 <c"E(r),

for all 0 < r < 7 and some ¢* = c*(m,ro,Z(ro),0, M(T)). Accordingly,
exc™*(||T|],z,r) < (c* + ¢,)2(r) if © € B(xo,r.) satisfies O™ (||T]|,xz) = 6 and
O0<r<re.

Now assume that z € spt(T)NU(xg, ) and let 0 < r < r.. Let x be a sequence
in B(zg,7e) with |z — x| = rd, — 0 and O™ (||T||,zr) = 6 for all k. Since = is
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continuous,
- |T|(B(z,r) m [T Bz, 1))
c’E(r) a(m)rm 0= (1+0) a(m)rm (1 + o)™
m I T (B(zg, r(1 + 1))
Yrm (1 + 5 )™
(1+6)+0)—0

< (1+0k) -0

a(m
< (T+0k)™ (c*E(r
— ¢"E(r),

for k — oo. Hence O™ (||T||,z) = 6 for all z € spt(T) N U(zg,re) and we ob-
tain the third conclusion. If 0 < r < s < 7. are such that (a(m)s™)~*f.(s) >

(a(m)r™)=Lf.(r), then

IT|(B(z,s)) ||TH B 17| (B 1T (B(z,r))
afm)s b= (Fame =0) - (B —9)
< c*E(s) E( ) < (c* +c)Z(s).

O

Before we can apply Proposition 5.10 we need to find an open set in spt(7) \
spt(0T') where the densities are almost constant. This is possible assuming the
normed Abelian group (G, || - ||) is such that {||g|| : ¢ € G} is a discrete and closed
subset of R, or equivalently that

6r(G) ==f{[|lgll — [[Alll : g # R, [lgll, [[n]| < L} >0
for all L > 0.

5.11. Lemma. Let X be a Hilbert space, (G, || -||) be a normed Abelian group such
that {||lg|| : g € G} is discrete, and T € % (X;G) be a rectifiable G-chain that is
nearly monotonic in an open set U C X \ spt(0T). Then there is a dense open
subset Uy of spt(T) N U with the property that the map x — O™ (||T||, z) is locally
|T||-almost constant on Uy. Moreover, if g — |lg|| is constant on G\ {0g}, then
x = O™ (|T,x) is ||T||-almost constant on U.

Proof. Without loss of generality we can assume that [|T]|(U) > 0, otherwise
spt(T)NU = (. It follows from Lemma 4.1 that ©™(||T||, z) exists for all x € U and
the function x — ©™(||T||, z) is upper semicontinuous on U. Let A be the subset
of those € U for which ©™(||T||,z) = |lg(x)|| > 0, where g : X — G is some
A" -measurable G-orientation representing 7. The set A satisfies ||T'[[(U\ A) =0
as we have seen in Subsection 2.3. For L := 2 - essinfp{[|g(z)[| : z € A} > 0t
holds that 0 < 07(G) < essinf)7{[lg(2)| : 2 € A} by the discreteness assumption
on GG. Now fix some point € A with

lg(@)]] < 61(G)/2 + essinfyr{[lg(z)]| : z € A}.

Because © — ||g(x)]| is upper semicontinuous on A, there is some r > 0 such that
B(z,r) C U and for |T|-a.e. y € B(z,r) N A,

essinf 7 {[[g(2)[| : 2 € A} < 8]l < llg()]| +d.(G)/2
< 01 (G) + essinf) ) {llg(2)| : 2 € A}.

Hence for ||T|-a.e. y € B(z, ),
O™ (1Tl y) = llgW)ll = essinfyry{llg(2)[ : z € A}
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This shows that ©™(||T||, y) is equal to some constant § > 0 for | T||-a.e. y € B(x,r).
The same argument shows that for any open subset U’ C U with ||T||(U’) > 0 we
can find an open subset V' C U’ with ||T|[(V’) > 0 on which = — O™ (||T||,z) is
constant. This shows the first statement. If we further assume that [|g|| = 6 > 0 for
all g # Og, then obviously ©™(||T||,z) = |lg(z)|| = 0 for ||T||-almost every xz € U.
Hence we can take Uy = U. [l

This assumption on the group is indeed a necessary one in order to obtain points
of almost constant densities as we will see in Example 6.1. The following lemma is a
standard result for representing sets as graphs. We say that amap f: U C R"™ — X
is of class C'1¢ for some gauge ¢ if there is a constant C' > 0 such that for all z,y € U
there is a linear map D f, : R™ — X such that

[f(y) = f(z) = Dfuly — )| < Clo = yl¢(Clz —yl) .

5.12. Lemma. Let S C X be a closed set with 0 € S and assume that ro > 0 and
n:(0,2r9) — Ry is a gauge with the following properties:

(1) For all x € B(0,79) and all 0 < r < r¢ there is a plane W, € G(X,m)

with
dp(S N B(z,r),(x + W) N B(z,r)) <rn(r).

(2) For W := Wy, assume that mw (S N B(0, ) N Zw(0,72)) = Bw (0, 72).

(3) fozm @ dr < 435

(4) r— @ is decreasing.
Set A(r) = [, @ds. Then there is a unique map f : By (0,%2) — Ws- with

8
graph(f) = SN B(0, %) N Zw (0,%) and f is of class C*1.

Proof. Recall that for the distance on G(X,m) there holds ||my, — my| =
du(By,; (0,1),By,(0,1)) as observed in Lemma 2.1. Since r + "(TT) is assumed
to be decreasing,

(5.25) ﬁ(r)—/()rﬂdSZ/orwds—n(r).

S r

Fix a point z € SNB(0,79) and some 0 < r < ry. Comparing the planes W, , and
W /2 it follows from Corollary 2.4 and n(r/2) < n(r) that

(5.26) [mwe = mw, ol < 0@+ r(r/2)70) = dn(r).

Similarly, it follows from Lemma 2.5 and n(r) < n(ro) < 1 that for 2,y € SN
B(0,79) and 0 < r < ro with |z —y| <r/2,

(5.27) 7w, — 7w, || < 24n(r).

To see this let A = 3,e = n(r) < 1 and v = 4 in the setting of Lemma 2.5. Let
7 := 27Fry. Tt follows from (5.26) and hypothesis (4) that for 0 < k <1,

<D llmwe, = mwe, [l <4 0G0

i>k i>k

(5.28) = /2 n(ii) - 4/02” ) g 47(2ry) .

£ T T
i>k

H/]TWz,rk - T‘—Wmml
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Because the Grassmannian G(X, m) is complete, there is for any = € SN B(z,70)
a plane W, = limy_ 00 Wy . Moreover, if z,y € SN B(0,79) and k > 1 are such
that |z — y| < rg/2, then with (5.25), (5.27) and (5.28),

. = mw, || < llmw.,, = 7w |+ llwws, = 7w, [ ., =7,

(5.29) < 24n(ry) + 80(2rk) < 327(2ry) .
With (5.28) and hypothesis (1),

du(S N B(x,rg),(x + W) NB(z, 1))
<du(SNB(z,rs), (x + Wy ) N B(z,11))
+du((x + Wa k) NB(z,re), (z + We) NB(z, 1))
<rn(re) + || 7w, — 7w, ||

Further, if |z| < ro/2, then with (5.25), (5.27), (5.28) and hypothesis (3),

’ S HFWU,T() - ﬂ—Wm,To ‘+ HT‘—W(E,TO - T‘—Wmmk
< 24n(rg) + 47 (2ro) < 30m(2r0)
1

(5.31) <7

lrw = mw....,

So let z,y € SNB(0,r9/4) and k > 1 such that rp11 < |z—y| < 7. By assumption
there is a v € W, with |z + v — y| < rgn(ry). Because of (5.31),

\mw (z —y)| = 7w, )] = |mw,, (@ +v—y)| = |7w — 7w, [[lz =yl
> [v] = rn(re) = 3lo —yl

Ha =yl = 2rn(ro)

> 2z —y| — 47)(2r) |z — y|

>

Y

75l =yl

Together with hypothesis (2) this shows that 7wy : SNB(0,70/4) N Zw (0,70/8)) —
By (0,79/8) is a bi-Lipschitz map. Let f : By (0,70/4) — W be the map
that represents S N B(0,7r¢/4) N Zw (0,79/8)) as a graph over By, (0,7¢/8). Since
V2|mw (z —y)| > |z —y| for z,y € SN B(0,79/4), we can estimate the Lipschitz
constant by Lip(f) < 1. (5.31) also implies that for v € Wy,
|mw (v)| > Jv| = o] > %”U‘
This shows that my : W, — W is injective and there is a linear map L, : W — W=+
with ||L;|| < 1 which represents W, as a graph over W.
Let w,w’ € By (0,79/8) with rr1 < |w — w'| < 7 for some k > 2 and set
xi=w+ f(w), 2’ :=w' + f(w') € S. Since f is 1-Lipschitz,

o1 < |w —w'| < |z — 2| < Jw —w'| + [f(w) = fw')] < 20w —w'| <y
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In particular z,2’ € S N B(0,79/4) and by (5.30) there is some v € W, with
|z +v—a'| <5ri_17(2rk_1). Because my . (v) = Ly(mw (v)), we conclude

[f(w) = f(w) = Lo(w’ —w)| < [f(w') — f(w) — w2 ()] + | Lo (7w (v) + w — ')
= |mw1 (@’ —z —v)| + [Lo(mw (v + 2 — o))
<22’ —x —v| <107, _17(27rk_1)
< 40w — w'[A(8|w — w'|).

This shows the result. O

Note that if n(r) = cr® for some 0 < a < 1, then 7(r) = £r* and hypothesis
(4) is satisfied because of Lemma 5.6(2). Combining Proposition 5.10, Lemma 5.11
and Lemma 5.12 we obtain our main regularity result.

5.13. Theorem. Let X be a Hilbert space with dim(X) > m > 1 and let (G, || -])
be a normed Abelian group such that {||g|| : g € G} is discrete. There is a constant
0 < ag < 1 with the following property. Let T € % (X;G) and U C X \ spt(T) be
an open set. Assume that T is (M, &, §)-minimal in U for some gauge &(r) = cr®,
where o > 0. Then there is an open dense subset Uyeq of spt(T) NU that is a
CY B -submanifold of X with

min{ag, a}
8(m +2)
Moreover, if g — ||g|| is constant on G\ {0¢}, then
AT SDHT) N U\ Ureg) = T\ Ureg) = 0.

Proof. We can assume that § < 1, and hence T is almost minimal with respect to
1"V*3.18
V23,18

smaller of the two values we can further assume that o < ag. As before we define
E(r):=m [ @ds = oype,

Without loss of generality we can assume that spt(7)NU # () and by exhaustion
we may also assume that dist(U, spt(97)) > 0. Due to Lemma 5.2 and Lemma 4.2,
T is nearly monotonic in U. Because of Lemma 5.11 there is a dense open set Uy of
spt(T) N U that has locally || T||-almost constant densities. With Proposition 5.10

and Lemma 5.6 we deduce that for ||T'|-a.e. zg € Uy there are ¢/, r; > 0 such that

Bi=

the gauge r — cr™in{eoo} where ag 1= m < 1. By restricting to the

exc'(|T]],z,7) < r®*, if 2 € U(zg,71),

exc™ (| T|,z,r) < r*, if z € spt(T) N U(zo,r1) -
The assumption a < g is needed for Proposition 5.10. With Theorem 5.9 we can
further assume that r; is small enough such that we have orthogonal frames in the
support of T" around all points x € spt(T) N U(zg, 1) and for all scales 0 < r < r;.
Let us assume that ©@™(||T||,z) = 6 > 0 for ||T|-a.e. z € U(xg,71). Applying
the moments computations we obtain from Proposition 4.14 that there is a scale
0 <7y <ryandc” > 0such that for all z € spt(T)NU(xg, r2) with O™ (|| T||,z) = 0
and all 0 < r < ry there is a plane W € G(X,m) with

1
m—+2
B (1T, 2,7, W) < €4 14 max{ Vor, ¢= (2\/27‘)}

< C//Tﬂ ,
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and further if r9 is small enough, Theorem 5.9 and Lemma 2.7 imply that
(532) TW # (TL(B(,T, ’f‘) n Zw(ﬂw(,f), %)) = gm[[Bw(wa(JJ), %)]] ,

for some g, € G with ||g,|| = 6. As in the last part of the proof of Lemma 5.8 we
obtain that

(5.33) du(spt(T) N B(z,r), (x + W) NB(z,r)) < 2715

These points x are dense spt(T) N U(xg, r2) and as in the proof of Theorem 5.9 we
conclude that for all x € spt(T) N U(xzg,r2) and 0 < r < 7y there is a plane with
(5.32) and (5.33). If W is such a plane at x¢ and scale 0 < r < rq, the constancy
theorem implies further that that mw : spt(7) N B(xo,7) N Zw (7w (z0),5) —
Bw (mw (20), §) is surjective. This allows to apply Lemma 5.12 and we see that
spt(T) N U(zg,r) is a C1P-submanifold of X if r is small enough. Let Uyeg be
the set of points in spt(7') N U with a relatively open neighborhood which is a
CYP-submanifold of X. The observations above show that any zo € Uy with
O™ (||T||, zo) = € is contained in Uq. Hence ||T'||(Uq\Ureg) = 0 and since spt(T")NUqg
is dense in spt(T') MU, Useg is dense in spt(T) NU. In case g — ||g|| = 0 is constant
on G\ {0¢}, the set of points x¢ € spt(T") N Uy with O™ (|||, z0) = 0 forms a set
of full |T'[|-measure, hence || T'|[(X \ Ureg) = 0 because ||T||(X \ Ug) = 0. O

This theorem can be formulated for other gauge functions £. If we assume that
¢ is a continuous gauge such that:

— 4/~
(1) r— (2) is decreasing, where a < v := min{m1 \;A331é87 s(ml+2)}
(2) E(r):==m [y f(j) ds < oo for all r;

(3) A(r) == [y 77(:) ds < oo for all r where n(r) := E(2/7) el

Under the same assumptions as in the theorem above we obtain a C* regularity
result.
By hypothesis (1) and Lemma 5.6 there is some constant ¢ > 0 such that

(r) > mé(r) > &(r) > ersmim |

(1]

for all small r > 0. Hence

n(r) > max{1, ¢} max{ o iz (w;)}ﬁ .

In order to establish the technical assumption (4) in Lemma 5.12, note that,

e N i IO, L R D

T T2 r4(m+2)" \/_ NG
m4(m+2) 1 m4(m+2)
< — 2 4(M+2) _ ) 4(m+2) )
< -z EV) +r24( Fa (V1) eV

m4(m+2)

This shows that r — @ is decreasing and with the help of Lemma 5.5, Lemma 5.6
and Lemma 5.12, the regularity result follows as in the proof of Theorem 5.13.
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6. EXAMPLES AND COUNTEREXAMPLES

In this section we give examples indicating the sharpness of our results. In the
example below we show that in case {||g|| : ¢ € G} is not discrete, there is in general
no uniform lower density bound and mass minimizing G-chains may have no point
of regularity.

6.1. Example (Discreteness of the group). Let G = (Z/27)° be the Abelian group
with coordinatewise addition in Z/27Z and norm

= 1

H(a17a27a37 cee )” = Z —|CL1| )

i=1
where [1z/97] = 1 and |0z/0z| = 0. As a metric space (G, || - ||) is bi-Lipschitz
equivalent to the standard Cantor set and therefore totally disconnected but not
discrete. Let g; € G be the sequence (ai,a2,as,...) with a; = 1 and a; = 0 for
j #i. Let {p;}i>1 C [0, 1] be a countable dense subset and consider the G-chain

T = Zgiﬂ(o,pi), (1,]91')]] S %1 (R2; G) .

Let 7(xz,y) = = be the projection onto the first coordinate. A straightforward
calculation shows that for ¢ = (1,1,...),

M(m4T) = M(g[(0,0), (1,0)]) = [lgll = > ll:]
i>1
= > M(g[(0,pi), (1, p:)]) = M(T).
i>1
The constancy theorem implies that for any filling S € % (R?; G) of OT there holds
w45 = g[(0,0), (1,0)] and since 7 is 1-Lipschitz,

M(T) = M(r4T) = M(n45) < M(S).

Thus 7T is a mass minimizing filling of T, but spt(T") = [0, 1]? is not #*-rectifiable
and in particular contains no point of regularity and no lower bound on 1-densities.

Under suitable conditions, the set of regular points of an almost minimizing chain
is a C! submanifold. The converse is true too, even allowing for nice unions of such
submanifolds as we show in the proposition below. Let M C X be an oriented m-
dimensional submanifold of regularity C' possibly with boundary. At any z € M
there is a tangent plane Tan(M,x) € G(X,m). Since M is oriented, there is a
unique choice of orientation for Tan(M,x) such that mran(arz) @ M N B(0,7) —
Tan(M, x) is an orientation preserving homeomorphism onto its image for all small
enough 7.

6.2. Proposition. Let 0 < a < 1 and My,..., My C X be compact oriented m-
dimensional submanifolds in X of reqularity C. Let T := [My] + -+ + [My] €
R (X Z). Further assume that there are C, 6 > 0 such that:

(1) If x € M; and y € M; for some 1, j, then

||7TTan(]Wi,m) - 7TTan(]Wj,y) H < C|{E - y|oz .

(2) If x € M;, y € Mj and |x —y| < & for some i,j, then the orthogonal
projection from Tan(M;,y) to Tan(M;, z) is orientation preserving.
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Then there are constants C',0" > 0 such that T is (M,&,d")-minimal with &(t) =
o',

Note that if we consider only one submanifold, then these two conditions are
trivially satisfied. See [11, Lemma 2.2.3] for two different characterizations of C1:®
manifolds in R™ which easily generalize to Hilbert spaces.

Proof. Since all the M; are Holder regular and compact there are constants Cy, d1 >
0 with the following property: If z € M; \ OM; for some i and W € G(X,m) is an
m plane with dy; o := || TTan(ar,,2) — Tw | < 61, then
(1) for all r > 0 with Cr® < §y, the orthogonal projection my : M; NB(z,7) —
Bw,izr C W is a homeomorphism onto a neighborhood By, . of mw ()
in W.
(2) If w : Bw.i 2 — W is the map with the defining property w +w(w) € M
in case w € Ui ¢, then
sup || Dwy|| < Cr(dw,ie +17) -

wWEBW,i,x,r

For (2) compare with the proof of Lemma 5.12 or [11, Lemma 2.2.3]. If we assume
that W satisfies dw,i,e = || TTan(as,,0) — "w || < Cr® < 01, then there is a constant
C5 > 0 such that for all w € By, z,r,

(Tww)? = || Dw, |2 + Z det((Dw} Dw,) ) < Cor?*.
H#K>2
See (2.5) and (2.6). Hence
(14 (Tww)?)? < (14 Cor?)% <14 Cor?.

Because my @ M; N B(z,r) — Bw,izr C W is a homeomorphism by (1), the
cylindrical excess of a compact subset A C M; NB(x, r) over the plane W estimates
as

0<"(A) =" (tw(A)) = / (A)(1 +(Tww)?)? — ldw

< (O / 2 dw
Trw(A)

(61) = CgT‘Qaf%ﬁm(wa(A)) .

Let 0 < 69 < %5 be small enough such that C(2d2)* < §; and consider some
scale 0 < r < 05 and some = € X. Note that by the compatibility of orientations,
spt(0T) = OMy U --- U OMj,. Assume that B(z,r) intersects M;(), ..., M;q) in a
set of positive measure and fix some points x; € A; := M;;) N B(z,7) \ OM;(; as
well as W := Tan(M;(yy, z1). Since 2r <4, for all j = 1,...,1 there holds,

||7TTan(Mi(j),acj) - ﬂ-WH S C|x1 - Ij|a S C(2T)a S 52 .
Because A; C M;(;y N B(w;,2r) it follows from (6.1) that
H(A)) < (L4 Co(2r)**) ™ (mw (4;)) = (1 + Car®*) ™ (mw (4;)

for C5 := 4C5. With the hypothesis on the orientation and relative position of the
submanifolds, M(T') = M([Mi]) + - - - + M([M%]). More precisely, at every point
where two submanifolds meet, they have the same tangent plane with compatible
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orientations and thus their multiplicities do not cancel. Since all the projections
mw @ Aj — W are injective and orientation preserving,

M(TLB(z,r)) = M([A1]) +--- + M([A])
< (L4 Csr®*) M(mw#[Ar]) + -+ + (1 + Csr®®) M(mw 4 [Al])
= (1+ C3r**) M(mw4(TLB(z,7))).
Let S € Zn(X;Z) with spt(S) C B(x,r) and 9S = 0. The constancy theorem
implies 745 = 0 and hence
M(TLB(z, 7)) < (1+ C5r**) M(mw4(TLB(z,r)))
= (1+ C37**) M(mw 4 (TLB(z,7) + 5))
< (14 C3r**)M(TLB(z,7) + S).

This shows that T is almost minimizing. 0

The following example illustrates the proposition above showing that if G = Z,
then the set of regular points of an almost minimizing rectifiable G-chain is in
general not of full measure. The same construction also works for an arbitrary
normed Abelian group G if there are g1, g2 € G\ {0¢} with ||g1]| + ||g2]| = Ilg1 + g2]|-

6.3. Example (Size of the regular set). Let C' C [0,1] be a topological Cantor
set with 2#1(C) > 0 and {0,1} C C. Let v: R — R be a smooth function with
~(t) > 0 for [t| < 1 and ~(t) = 0 for || > 1. We could for example take

[ exp(=1/(1—¢?)) ifJt| <1,
7(lt)'_{op if ) > 1.

Fix an enumeration U; of the connected components of [0, 1]\ C. Since {0,1} C C
each U; is of the forrn (a; — bi, a; +b;) for some 0 < a;,b; < 1. We define v, : R — R
by 7i(t) == ciy(b; 1 (t — a;)) for some ¢; > 0 such that [D*v;| < 27 for all k < .
Set f:R — R to be the sum f := Y. 7;. Then the partial sums >, D*v; converge
uniformly for all & and hence f is smooth and satisfies f(¢t) = 0 for t € C and
f(t)>0forte0,1]\C.

Consider

T := (idg x 0)#[[0, 1]] + (idg % f)#[[(), 1]] S %1(R2; 7).

Clearly, 0T = (g1 + g2)([1] — [0]) and the set C' is the complement of the set of
regular points. Since ||T||(C) = 2 (C) > 0, the set of regular points doesn’t have
full measure. It remains to check that 7" is almost minimizing. Since f € C? has
compact support, there is a constant L > 0 such that for all z,y € R,

[f(y) = f(x) = f'(2)(y — 2)| < Lly — =
Assume that f’(z)? > 4Lf(z) for some € > 0. If f’(z) > 0 let y € R be such that
r—y=f'(x)(2L)"!, and y — x = f'(x)(2L) ! otherwise. We get
Fy) < f@@) + f'(@)(y — 2) + Lly — 2f?

< f(@)AL)™" = f'(@)*(2L) 7! + f'(2)*(4L) ™!
=0.
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This contradicts f(y) > 0 and hence f'(x)? < 4Lf(z) for all z € [0,1] \ C. Let
Wi = {(t,tf(x)) : t € R} be the tangent line at (z, f(z)) to T and Wy = {(¢,0) :
t € R} the tangent line to 7" at (z,0). A simple calculation shows that

7wy — T || < f'(2) < (4L)% f(2)*

and hence for all p, ¢ € spt(T),

1
1T ran(T,p) — Tran(r,o) | < L'lp — g2,

for some L’ > 0. Proposition 6.2 now shows that T is almost minimizing with a
linear gauge £(r) = L4r. A more careful analysis shows that T is actually almost
minimizing with respect to a quadratic gauge function. But since Theorem 5.13
certainly applies to a linear gauge, this is enough to show that almost minimizing
chains can have a branching set of positive measure.
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