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Abstract

Stimulation of PC-12 cells with epidermal (EGF) versus nerve (NGF)
growth factors (GFs) biases the distribution between transient and
sustained single-cell ERK activity states, and between proliferation
and differentiation fates within a cell population. We report that
fibroblast GF (FGF2) evokes a distinct behavior that consists of a
gradually changing population distribution of transient/sustained
ERK signaling states in response to increasing inputs in a dose
response. Temporally controlled GF perturbations of MAPK signal-
ing dynamics applied using microfluidics reveal that this wider mix
of ERK states emerges through the combination of an intracellular
feedback, and competition of FGF2 binding to FGF receptors
(FGFRs) and heparan sulfate proteoglycan (HSPG) co-receptors. We
show that the latter experimental modality is instructive for model
selection using a Bayesian parameter inference. Our results
provide novel insights into how different receptor tyrosine kinase
(RTK) systems differentially wire the MAPK network to fine-tune
fate decisions at the cell population level.
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Introduction

Signaling dynamics, rather than steady states, have been shown to
control cell fate responses (Levine et al, 2013). For multiple
systems including receptor tyrosine kinase signaling (RTK), signal-
ing heterogeneity can explain the fate variability observed within a
cell population (Cohen-Saidon et al, 2009; Chen et al, 2012). Both
biological noise extrinsic to individual cells and intrinsic variability
within signaling networks shape the cell fate. It has been proposed
that the dynamic nature of signal transduction enables accurate

information transmission in the presence of noise (Wollman,
2018). Measuring single-cell signaling dynamics is therefore key to
understanding how cellular responses correlate with specific cell
fate decisions.

The extracellular signal-regulated kinase (ERK) is a key regulator
of fates such as proliferation and differentiation. It functions within
a mitogen-activated protein kinase (MAPK) signaling pathway in
which growth factor (GF) receptors activate a membrane-resident
Ras GTPase that subsequently triggers a MAPK cascade leading to
ERK activation (Avraham & Yarden, 2011). Rat adrenal pheochro-
mocytoma PC-12 cells have been widely used as a model system to
study the regulation of cell fate by MAPK signaling (Marshall,
1995). Stimulation with EGF or NGF leads to population-averaged
transient or sustained ERK states, which specifically trigger prolifer-
ation or differentiation. Thus, ERK signal duration has been
proposed as a key determinant of cell fate (Marshall, 1995; Santos
et al, 2007). These distinct ERK states result from GF-dependent
control of the MAPK network (Santos et al, 2007), with negative
and positive feedback producing all-or-none adaptive or bistable
outputs, respectively (Xiong & Ferrell, 2003; Santos et al, 2007;
Avraham & Yarden, 2011). More recently, single-cell assays have
indicated that EGF/NGF induces heterogeneous dynamic signaling
states across a cell population (Ryu et al, 2015). While EGF leads to
transient ERK activity responses, NGF induces transient or sustained
responses in an isogenic population due to variability in expression
of signaling components and receptor-dependent modulation of the
negative and positive feedback loops. This might explain how NGF
can induce a heterogeneous mix of differentiating and proliferating
cells (Chen et al, 2012). Further support that dynamic ERK signaling
states control fate decisions stems from model-based prediction of
dynamic GF stimulation schemes that induce synthetic ERK activity
patterns that determine fate decision independently of GF identity
(Ryu et al, 2015).

An additional GF, FGF2, also activates ERK through FGF recep-
tors (FGFRs) and regulates processes such as angiogenesis, wound
healing, and development (Ornitz & Itoh, 2015). Upon FGF2 stimu-
lation, FGFR dimerizes, autophosphorylates, recruits adaptors, and
activates the Ras/RAF/MEK/ERK cascade (Ornitz & Itoh, 2015). In
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PC-12 cells, FGF2 induces sustained ERK activity, which correlates
with differentiation (Qui & Green, 1992). FGF-FGFR interactions are
further regulated by a heparan sulfate proteoglycan co-receptor
(HSPG) (Ornitz, 2000; Matsuo & Kimura-Yoshida, 2013). FGF2 initi-
ally binds to HSPGs through a high-affinity interaction, followed by
a 2™ lower affinity interaction leading to a HSPG/FGF2/FGFR
trimeric complex. The latter subsequently dimerizes to a dimer of
trimer complex that can autophosphorylate and signal downstream
(Ornitz & Itoh, 2015). In marked contrast to signaling systems that
exhibit sigmoidal dose responses, FGF2 elicits a biphasic dose
response of signaling and cell fate outputs, where an intermediate
concentration of FGF2 elicits higher activation of signaling and fate
outputs compared to low and high FGF2 concentrations. For exam-
ple, bell-shaped neuronal differentiation (Williams et al, 1994), or
cell proliferation fate outputs (Zhu et al, 2010) are observed in FGF2
dose-response challenges in different cell systems. This correlates
with a biphasic dose response of ERK activity outputs (Zhu et al,
2010; Kanodia et al, 2014). The ability of FGF2 to induce biphasic
dose responses has been proposed to emerge from competition of
FGF2 binding to HSPGs and the FGFR (Kanodia et al, 2014).
However, the FGF2-dependent signaling network has been signifi-
cantly less defined than the network downstream of EGF and NGF.

An important question in the signaling field is how different
RTKs can specify different cell fates by using the MAPK network.
Here, we explore how FGF2 controls ERK activity dynamics at the
single-cell level in PC-12 cells. We find that FGF2 induces a mix of
dynamic ERK states that are distinct from those of EGF/NGF. An
increase in FGF2 input gradually modulates the distribution of tran-
sient/sustained ERK states. Using microfluidics to temporally
perturb the MAPK signaling network, we further explore the logic
behind these different signaling states. Our data together with math-
ematical modeling show that the FGF2-dependent MAPK signaling
network underlying these responses consists of an extracellular
FGF2/FGFR/HSPG interaction layer coupled to an intracellular
MAPK network layer with a simple negative feedback. We conclude
that EGF, NGF, and FGF2 wire the MAPK network differently to
induce distinct population distributions of ERK states that fine-tune
fate decisions at the cell population level. Our data therefore provide
new insights into how different RTKs decode binding of their
cognate GF by engaging distinct MAPK network structures. Our
results suggest that the FGF2/MAPK signaling network has evolved
to translate increasing FGF2 inputs into gradual changes in the
population distribution of dynamic ERK states. This might be impor-
tant to regulate fate decisions during the interpretation of
morphogen gradient.

Results

FGF2 induces dynamic signaling states distinct from those
induced by EGF/NGF

EGF/NGF-triggered ERK activity responses have been widely studied
in PC-12 cells. However, single-cell studies have revealed a much
higher signaling complexity than previously anticipated (Ryu et al,
2015). Here, we asked if FGF2 potentially induces ERK activity
dynamics within a cell population that are distinct from those of
EGF/NGF. To study FGF2 signaling at the single-cell level, we used
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a PC-12 cell line stably expressing EKAR2G, a fluorescence reso-
nance energy transfer (FRET)-based biosensor for endogenous,
cytosolic ERK activity. EKAR2G has been extensively validated else-
where (Harvey et al, 2008; Fritz et al, 2013). To extract single-cell
temporal ERK activity patterns, we used a CellProfiler-based
(Kamentsky et al, 2011) image analysis pipeline for segmentation
and tracking of single cells, and for computation of a per-cell aver-
age FRET biosensor ratio. We used a computer-programmable
microfluidic device to temporally perturb cells using GF pulses
(Fig 1A).

First, we stimulated cells with a typical EGF/NGF/FGF2 concen-
tration of 25 ng/ml (Fig 1B and C). We used a fluorescent dextran
for quality control of the GF delivery by the microfluidic device
(Fig 1C, lower red trace). As expected, when we evaluated popula-
tion-averaged temporal ERK activity patterns, EGF led to transient
ERK activity, while NGF induced a peak followed by sustained ERK
activity with an amplitude lower than the peak. In contrast, FGF2
led to a transient ERK peak that was sharper than the one evoked by
EGF. After this fast adaptation, ERK activity gradually increases over
time. Since increasing FGF2 concentration induces a biphasic dose
response in fate determination and ERK activity in a variety of cell
systems (Zhu et al, 2010; Kanodia et al, 2014), we also tested such
increase in our system. We stimulated PC-12 cells with EGF/NGF/
FGF2 concentration in a 0.25-250 ng/ml range, as in previous
works (Zhu et al, 2010; Kanodia et al, 2014; Fig 1D). On average,
all EGF concentrations triggered an initial ERK peak with identical
amplitude but with faster adaptation at higher GF concentrations. In
contrast, 0.25 ng/ml NGF only induced moderate ERK activity with-
out an initial ERK activity peak. 2.5 ng/ml NGF led to sustained
ERK activity after a small initial peak. 25 and 250 ng/ml led to
almost indistinguishable profiles of an ERK activity peak followed
by sustained ERK activity. FGF2 stimulation led to different popula-
tion-averaged temporal ERK activity patterns than both EGF and
NGF. Indeed, 0.25 ng/ml FGF2 led to sustained ERK activity without
a robust initial peak, whereas 2.5, 25, and 250 ng/ml FGF2 led to a
clearly defined initial ERK transient. At 25 and 250 ng/ml FGF2,
after the initial transient, we again observed slow ERK activity
recovery. The previously described biphasic dose response of ERK
activity is evident when we consider a time point after the initial
ERK activity peak (Zhu et al, 2010; Kanodia et al, 2014). Addition-
ally, we observe that the amplitude of the 1° ERK peak activity was
highly similar across GF identity/concentration (Fig EV1A).

FGF2 dose response leads to an ERK activity population
distribution that is wider than that associated with EGF and NGF

Heterogeneous single-cell dynamic signaling states were evident
when single-cell temporal ERK activity patterns were overlaid over
population-averaged temporal ERK activity patterns (Fig EV1B). To
examine this heterogeneity, we pooled all trajectories (EGF, NGF,
and FGF2—4 concentrations) using a time interval ranging from
shortly before GF stimulation to 60" after stimulation (Fig 1E). We
then applied hierarchical clustering with dynamic time warping
(DTW) (Giorgino, 2009) to extract classes of single-cell temporal
ERK activity patterns. DTW calculates similarity between two time
series by matching shape features that may be shifted in time
between the two series. Visual inspection of the dendrogram
obtained from this procedure led us to identify 6 major dynamic

© 2019 The Authors
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Figure 1. FGF2 induces different dynamic ERK activity signaling states than EGF/NGF.

A Flow-based, microfluidic device for temporal GF delivery. Computer-controlled, pressure pump enables mixing of medium and GFs to deliver GF pulses in cells
cultured in the microfluidic device. The right panel illustrates typical GF stimulation patterns.

B Representative EKAR2G ratio images of cells treated with 25 ng/ml EGF, NGF, and FGF2. Ratio images are color-coded so that warm/cold colors represent high/low
ERK activation levels. Scale bar = 50 pum.

C,D Population averages of ERK activity dynamics in response to stimulation with 25 ng/ml (C), or with a dose-response challenge using 0.25, 2.5, 25, and 250 ng/ml
EGF, NGF, and FGF2 (D). Single-cell time series were normalized to their own means before GF stimulation, t = [0, 40]. Red curve at the bottom of panel C
indicates GF stimulation profile measured simultaneously using an Alexa 546-labeled dextran. N = [48, 120] cells per GF concentration. ERK dynamics measured at
2’ intervals.

E Hierarchical clustering of pooled (N = 983) single-cell time series from panel (D). To focus on relevant ERK dynamics, we trimmed x-axis to t = [36, 100] min. Each
row of the heatmap corresponds to a time series of a single cell. We used dynamic time warping and Ward’s linkage method for building the dendrogram, which
was then cut to distinguish 6 clusters that are color-coded on the left.

F Average ERK activity across 6 clusters identified in panel (E), color-coded as in (E).

Distribution of ERK activity trajectories across 6 clusters from panels (E and F) in response to different GF dosages.

H Separability between populations of single-cell trajectories calculated as normalized area under the curve of Jeffries—Matusita distance along time (Materials and

Methods, Appendix Fig S2B). The dendrogram was created using the complete-linkage method.

Data information: In panels (C, D, and F), gray band indicates 95% CI for the mean, representative of 3 replicates. In panels (D and F), black horizontal bar indicates GF
stimulation.
Source data are available online for this figure.
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patterns/clusters, which are highlighted by vertical color bars in
Fig 1E. Figure 1F summarizes population averages for each cluster,
while Fig EV1C displays single-cell temporal ERK activity patterns
for each cluster. Even though all clusters differ in amplitude, we can
recognize adaptive behavior in clusters 1, 3, and 4, and sustained
activation in clusters 2, 5, and 6. We then computed the population
distribution of these representative single-cell temporal ERK activity
patterns across all experimental conditions (Fig 1G). Low-amplitude
adaptive and sustained ERK activities (clusters 1 and 2) were largely
absent from responses to all EGF stimulations, indicating robust
ERK signaling. With the increase of EGF, an adaptive cluster 3
replaced sustained clusters 5 and 6. In contrast, the lowest NGF
dose induced a mix of low-amplitude adaptive and sustained
responses. High NGF concentrations induced high-amplitude
sustained clusters 5 and 6 with a decreasing contribution of interme-
diate responses. We observed a wider mix of cluster distribution for
FGF2 dose response. 0.25 ng/ml FGF2 led to a mix of low- and
high-amplitude sustained responses. 2.5 ng/ml FGF2 decreased
sustained responses in favor of cluster 4 (high amplitude, intermedi-
ate adaptation). Then, with an increased FGF2 dosage the distribu-
tion shifted to strongly adaptive responses with low and high
amplitudes.

Intrigued by the fact that FGF2 induces slow ERK activity recov-
ery after the 1% peak at 25 and 250 ng/ml in population-averaged
measurements (Fig 1D), we tested if this was also the case at the
single-cell level. For that purpose, we repeated the clustering analy-
sis individually for EGF, NGF, and FGF2 dose-response experiments
on a time ranging from shortly before GF addition to 160" after stim-
ulation (Fig EV1D). For FGF2, this again identified single-cell
temporal ERK activity patterns that displayed a robust 1st ERK activ-
ity peak followed by different levels of adaptation (clusters 1-3), or
sustained ERK activity. Importantly, the three adaptive clusters that
were present at high FGF2 concentrations displayed slow ERK activ-
ity recovery after adaptation. This specific phenomenon is not
present in EGF/NGF dose responses.

To independently assess that FGF2 evokes a distinct and wider
mix of single-cell temporal ERK activity patterns than EGF/NGF in
a dose response, we applied PCA decomposition and calculated
accumulated pairwise distances of the response distribution at dif-
ferent time points (Figs 1H and EV2). Both approaches showed
that single-cell temporal ERK activity pattern population distribu-
tions for different GF dosages are more separated for FGF2
(Appendix Text).

Decoding FGF2/MAPK signaling network properties by temporal
perturbation of ERK dynamics

We then sought to identify the signaling network structure that
explains how the FGFR/MAPK network evokes ERK states different
from those evoked by EGF/NGF. For that purpose, we dynamically
perturbed cells by delivering single or multiple GF pulses of different
lengths and concentrations using our microfluidic device (Fig 1A).
This approach captures salient features of the MAPK network not
accessible with sustained GF stimulation and, in many cases,
induces population-homogeneous signaling states that are simpler
to interpret (Ryu et al, 2015). We stimulated PC-12 cells with pulses
of 3/, 10’, and 60" with the four concentrations of each GF used
previously. We plotted the population-averaged temporal ERK

4 of 17 Molecular Systems Biology ~15: e8947 | 2019

Yannick Blum et al

activity patterns (Fig 2) and used hierarchical clustering to extract
representative dynamic patterns for each GF pulse pattern
(Fig EV3).

The pulsed EGF/NGF dose responses were consistent with our
previous observations (Ryu et al, 2015). Population-averaged
temporal ERK activity patterns exhibited a full-amplitude initial ERK
activity peak followed by robust adaptation for all EGF concentra-
tions for 3’ or 10’ pulse, except for a 3’ 0.25 ng/ml EGF pulse
(Fig 2A) where the peak was less pronounced. The 60’ EGF pulse
revealed distinct adaptation kinetics after the initial ERK activity
peak with faster adaptation at higher EGF dose. As observed in
sustained stimulation, full adaptation occurred concomitantly with
EGF washout. Clustering of single-cell temporal ERK activity
patterns revealed adaptive responses across the EGF doses and puls-
ing schemes (Fig EV3A). In the case of NGF, the 0.25 ng/ml concen-
tration did not yield ERK activation across any pulsing scheme
(Fig 3B). Above this concentration, high NGF input (achieved by
increasing dose and/or pulse duration) gradually shifted the popula-
tion-averaged temporal ERK activity patterns from transient to more
sustained profile. Clustering of single-cell temporal ERK activity
patterns revealed a mix of transient and sustained responses, with
sustained clusters contributing more at high NGF inputs (Fig EV3B).

Intriguingly, varying FGF2 dosage and pulse duration again
revealed more complex population-averaged temporal ERK activity
patterns than for EGF/NGF (Fig 2C). At a threshold input, we
observed a new dynamic pattern, whereby an initial adaptive ERK
activity peak was followed by a rebound that then decayed slowly.
This dynamic pattern was visible at 25 ng/ml 10’ pulse and at
250 ng/ml 3" and 10’ pulse. Lower or shorter FGF2 dosages induced
only transient ERK activities. Clustering revealed a transient cluster
as well as the characteristic ERK activity with a rebound (Fig EV3C).
The latter cluster was enriched at high FGF2 inputs.

The 60’ FGF2 pulse led to even more complex population-
averaged temporal ERK activity patterns. The pattern with ERK
activity rebound emerged at 2.5-250 ng/ml FGF2, and for these
concentrations, the rebound ensued only after GF was washed
away. The adaptation after the initial peak was stronger at higher
GF dosages. In contrast, at the lower concentration of 0.25 ng/ml
FGF2, we observed sustained activation during the GF pulse and a
slow decay after GF washout. Clustering of responses to 60" pulse
confirms that the lowest FGF2 dosage induces high and low
sustained responses without a rebound, while higher GF concentra-
tions result in a much stronger adaptation after the initial peak.

To probe network architectural features that might work at
longer timescales and to test how the MAPK network responds to
novel GF inputs before full adaptation, we subjected PC-12 cells to
multiple 3’ pulses separated by 20’ pauses (Fig 3A). Multiple pulses
of EGF led to transient population-averaged temporal ERK activity
patterns with 20’ timescale adaptation that were in phase with the
pulse pattern (Fig 3A). As previously shown (Ryu et al, 2015),
increasing EGF concentrations correlated with increased ERK activ-
ity peak amplitude desensitization over the timescale of hours. Clus-
tering confirmed homogeneous single-cell temporal ERK activity
patterns across the population (Fig 3B). Multi-pulse 3’-20" NGF also
led to transient population-averaged temporal ERK activity patterns
that were in phase with the stimulation pattern (Fig 3C). Again, as
previously described (Ryu et al, 2015), desensitization occurred at
the timescale of hours, but this was not dependent on the NGF

© 2019 The Authors
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Figure 2. ERK activity dynamics in response to single-pulse stimulation.

A-C Population average of ERK activity dynamics in response to 3/, 10, and 60’ EGF (A), NGF (B), and FGF2 (C) single-pulse stimulation. Single-cell time series were
normalized to their own means before the GF stimulation, t = [0, 40]. Solid lines—population mean, N = [39, 166], replicates: EGF: 1, NGF: 1, FGF: representative of
3 replicates; gray bands—95% ClI for the mean; black horizontal bars—duration of GF stimulation.

Source data are available online for this figure.

concentration as for EGF. Additionally, adaptation of individual ERK
activity pulses weakened with an increased NGF dosage. Clustering
indicated that this phenomenon emerged from a mix of cells with
different adaptive strengths, with weakly adaptive subpopulation
dominating higher NGF concentrations (Fig 3D).

In contrast, FGF2 multi-pulse datasets revealed distinct popula-
tion-averaged temporal ERK activity patterns (Fig 3E, Movie EV1)
than those seen with EGF and NGF. Consistently, with the single-
pulse data, 0.25 ng/ml FGF2 pulses did not activate ERK, while
2.5 ng/ml FGF2 pulses did induce adaptive ERK activity peaks in
phase with the GF stimulation. 25 ng/ml FGF2 led to an initial peak
followed by sustained ERK activity of amplitude lower than that of
the initial peak. 250 ng/ml FGF2 pulses led to ERK activity peak
immediately followed by short adaptation and a rebound phase,
ultimately leading to sustained ERK activity. Re-triggering with the
second pulse then led to immediate adaptation, followed by recov-
ery to sustained ERK activity levels. Thus, from the 2"¢ pulse on,
ERK activity was anti-phasic with respect to the stimulation pattern.
To evaluate single-cell temporal ERK activity patterns associated
with population averages, we used hierarchical clustering with
Euclidean distance to preserve information about any potential
phase shift (Fig 3F). We also omitted the 0.25 ng/ml FGF2 dataset
to avoid non-responding cells. We identified four clusters, two of
which resembled the in-phase ERK activity induced by the 2.5 ng/
ml FGF2 (clusters 1 and 2), while the remaining two resembled the

© 2019 The Authors

anti-phase ERK activity evoked by the 250 ng/ml FGF2 (clusters 3
and 4). Indeed, 2.5 ng/ml FGF2 consists of in-phase clusters, while
250 ng/ml FGF2 is dominated by anti-phase single-cell temporal
ERK activity patterns. 25 ng/ml FGF evoked a 35-65% population
distribution of in- and anti-phase single-cell temporal ERK activity
patterns, explaining the emergence of sustained ERK activity in
population-averaged measurements. Together, these datasets indi-
cate the existence of different MAPK network circuitries down-
stream of the three GFs, with FGF2 being able to evoke more
distinct signaling states than EGF/NGF (e.g., a phase shift at high
FGF2 concentrations). The FGF2 concentration-dependent gradual
emergence of the ERK phase shift in multi-pulse experiments paral-
lels FGF2's ability to gradually shift the population distribution of
transient/sustained ERK states in response to sustained stimulation.

Evaluating the role of HSPGs in the FGF2 signaling responses

Heparan sulfate proteoglycans are important modulators of FGF2
signaling and enable a biphasic dose response of signaling outputs
(Kanodia et al, 2014). To evaluate the role of HSPGs, we took
advantage of the widely used chlorate (NaClO;) treatment to inhibit
HSPG sulfation, and thus binding of FGF2 to HSPGs (Ornitz & Itoh,
2015). We benchmarked the effect of that perturbation against the
FGF2-specific gradual phase shift in ERK activity in response to
increasing input in a multi-pulse experiment. We gradually inhibited
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Figure 3. ERK activity dynamics in response to multi-pulse stimulation.

A Population average of ERK activity dynamics in response to a multi-pulse 3'~20" EGF stimulation. Single-cell time series were normalized to their own means before

the GF stimulation, t = [0, 40].

B Cluster averages of ERK activity and distribution of single-cell trajectories across clusters.
C Population average of ERK activity dynamics in response to a multi-pulse 3'-20' NGF stimulation. Single-cell time series were normalized to their own means before

the GF stimulation, t = [0, 40].

D Cluster averages of ERK activity and distribution of single-cell trajectories across clusters.
E Population average of ERK activity dynamics in response to a multi-pulse 3'-20" FGF2 stimulation. Single-cell time series were normalized to their own means before

the GF stimulation, t = [0, 40].

F Cluster averages of ERK activity and distribution of single-cell trajectories across clusters.

Data information: We performed hierarchical clustering with the Manhattan distance and the complete-linkage method; we cut the dendrogram at 3 (B, D) and 4

clusters (F) for visualization. Solid lines—population mean, N =
black horizontal bars—duration of GF stimulation.
Source data are available online for this figure.

HSPG sulfation with 10, 25, and 50 mM NaClO; and evaluated bind-
ing of a fluorescently labeled FGF2 to (un-)perturbed cells (Fig 4A
and B). We observed increasing quanta of FGF2 fluorescence
retained after each pulse in unperturbed cells, likely reflecting incre-
mental HSPG binding, as well as endocytosed material. In contrast,
gradual HSPG inhibition resulted in progressive loss of FGF2 bind-
ing to the cell, with almost no remaining FGF2 at 50 mM NaClOs.
Non-treated cells exposed to 2.5 ng/ml FGF2 pulses displayed the
typical in-phase pattern. Gradual NaClO;-mediated HSPG inhibition
led to blunting of the ERK activity amplitudes that however
remained in-phase, with only low residual ERK activity at 50 mM
NaClO; (Fig 4C). While untreated cells exposed to 250 ng/ml FGF2
displayed the typical anti-phasic ERK activity, gradual NaClO;-
mediated HSPG inhibition progressively rescued in-phase ERK activ-
ity, at the same time decreasing ERK activity amplitude (Fig 4D).
These results show that FGF2’s ability to evoke ERK phase shifting
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[52, 91], replicates: EGF: 1, NGF: 1, FGF: representative of 3 replicates; gray bands—95% Cl for the mean;

in multi-pulse dose-response experiments depends on HSPG/FGF2
interactions.

Cell fate decision in response to sustained and pulsed
GF stimulation

We then set out to correlate ERK activity dynamics with fate deci-
sions. We repeated select sustained and pulsed dose-response
experiments and evaluated the differentiation fate by quantifying
neurite outgrowth using an automated image segmentation pipeline
(Fig SA and B). 0.25 ng/ml EGF led to low but still measurable
levels of differentiation, which is consistent with its ability to induce
slowly adapting, almost sustained ERK signaling (Figs 1D-G and
EV1A). Higher EGF dosages that cause faster ERK adaptation
resulted in lower cell differentiation. We observed low levels of dif-
ferentiation at 0.25 ng/ml NGF, which is consistent with low
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Figure 4. ERK activity dynamics in response to HSPG perturbation.
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A-D Whole-cell mean fluorescence intensity of labeled FGF2 (HiLyte 647) used in a dose-response challenge with 10, 25, and 50 mM of NaClOs and a multi-pulse 3'-20"
stimulation with FGF2 2.5 ng/ml (A, C), and 250 ng/ml (B, D). (C, D) Population average of ERK activity dynamics in response to the dose-response challenge. Solid
lines—population mean, N =[43, 65] representative of 2 replicates; gray bands—95% Cl for the mean; black bars—duration of GF stimulation.

Source data are available online for this figure.

amplitudes of single-cell temporal ERK activity patterns at this GF
concentration. 2.5-250 ng/ml NGF led to potent differentiation,
which is in line with largely sustained single-cell temporal ERK
activity patterns. FGF2 induced a biphasic dose response in differen-
tiation levels. At 0.25 ng/ml FGF2, we observed low levels of
differentiation, which does not correlate with a mix of high- and
low-amplitude sustained single-cell temporal ERK activity patterns
(Fig 1D, F and G). 2.5 and 25 ng/ml FGF2, which consist of a mix
of robust transient and sustained single-cell temporal ERK activity
patterns, led to relatively high differentiation, however not to the
level evoked by NGF. Finally, 250 ng/ml FGF2 dominated by tran-
sient single-cell temporal ERK activity patterns displayed lower
levels of differentiation than 2.5 and 25 ng/ml FGF2. Except for
0.25 ng/ml FGF2, a qualitative correlation exists between single-cell
temporal ERK activity patterns and the differentiation fate.

Similar to what we have shown for EGF/NGF (Ryu et al, 2015),
we asked if induction of different signaling states through dynamic
GF stimulation would allow us to manipulate cell fate decisions
(Fig 5C and D). We reasoned that a 3’ pulse of 250 ng/ml FGF2 that
leads to an ERK activity peak followed by a sustained rebound that
lasts hours (Fig 2C) would result in high differentiation. In contrast,
a 3’ pulse stimulation at a lower FGF2 dosage, which does not
induce ERK activity rebound, should not induce differentiation. We
indeed observed a correlation between this specific signaling state
and differentiation. As expected, control 3’ pulsed EGF stimulation
did not lead to differentiation, except for some low levels of differen-
tiation at 250 ng/ml. We attribute this spurious differentiation to
low levels of the remaining EGF that cannot be completely washed
out after the pulse application by pipetting, thus recapitulating the
0.25 ng/ml EGF sustained stimulation results (Fig SA and B). The 3’
250 ng/ml NGF pulse also led to potent differentiation, which corre-
lated with its ability to induce sustained ERK activity. These results
indicate that sustained ERK signaling states, evoked by specific

© 2019 The Authors

sustained or pulsed GF stimulation, correlate with the differentiation
fate for all three GFs.

Modeling the FGF2-evoked ERK activity responses

We then sought to find a minimal signaling network topology that
could recapitulate the highly specific ERK signaling responses
evoked by FGF2 stimulation. We reasoned that the salient features
visible in dynamic ERK signaling states evoked by sustained and
pulsed GF stimulation would discriminate among candidate model
topologies. We used a Bayesian nested sampling (NS) inference
method (Skilling, 2006) to compute the posterior distribution of
parameter sets for a candidate model based on experimental training
datasets, enabling us to infer parameter ranges that can best repro-
duce the data.

We postulated a set of minimal models that aim to explain the
FGF2-induced ERK activity responses. The models differed with
respect to receptor interactions and intracellular signaling topologies.
Three models of FGF2/HSPG/FGFR interactions (Fig 6A) were as
follows. (i) Simple activation model, whereby sequential FGF2—
HSPG and FGF2-HSPG-FGFR interactions ultimately lead to forma-
tion of a FGF2-HSPG-FGFR dimer and subsequent FGFR activation.
The increase in FGF2 input activates FGFR until all receptors saturate
(Fig 6A, right panel). (ii) Competitive activation model, whereby
FGF2 can also directly bind to FGFR, although this complex does not
activate the receptor. Assuming that FGF2-FGFR binding occurs
faster than the FGF2-HSPG binding, a biphasic dose response can
emerge as previously proposed (Kanodia et al, 2014; Fig 6A, right
panel). Low/medium FGF2 concentrations lead to FGFR activation,
while high FGF2 dosage titrates FGFR, precluding the formation of
signaling-competent FGF2-HSPG-FGFR complexes. (iii) Competitive
joint-activation model. In contrast to the competitive activation

model, the FGF2-FGFR complex is signaling-competent as
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Figure 5. Differentiation fate analysis in response to sustained/pulsed, GF dose-response stimulation.

A Representative images of differentiation experiments of sustained stimulation with respective GF. Cells are stained for alpha-tubulin and are shown in inverted black/

B

white contrast.
Fraction of differentiated cells from sustained stimulation, calculated as fraction of cells with the total neurite outgrowth longer than the diameter of the cell soma
using a CellProfiler-based automated image analysis routine. On average, 4,000 cells per condition were included in the analysis (min = 1,600, max = 12,500). Error
bars indicate 95% Cl for the mean.
Representative images of differentiation experiments of single 3-min pulse stimulation with respective GF. Cells are stained for alpha-tubulin and are shown in
inverted black/white contrast. Scale bar = 50 pum.
Fraction of differentiated cells from 3-min single-pulse stimulation, calculated as fraction of cells with the total neurite outgrowth longer than the diameter of the
cell soma using a CellProfiler-based automated image analysis routine. On average, 4,000 cells per condition were included in the analysis (min = 1,600,

max = 12,500). Error bars indicate 95% Cl for the mean.

Source data are available online for this figure.

previously proposed (Ornitz & Itoh, 2015). The signaling strength of
FGF2-FGFR complex can be different from the FGF2-HSPG-FGFR
complex, which allows residual levels of receptor activation, even at

high FGF2 concentrations (Fig 6A, right panel).
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For the intracellular signaling layer, we simplified the MAPK
network by taking into account the Ras GTPase, as well as the Raf/
MEK/ERK kinase cascade that itself allows the production of switch-

like ERK activity (Fig 6B). We considered (i) a basic model without
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Figure 6. Description of candidate FGFR/FGF2 network models.

Yannick Blum et al

A lllustration of the three proposed receptor activation mechanisms. Simple activation: Only the FGFR-FGF2—HSPG complex activates downstream MAPK signaling (blue
arrow). Competitive activation: the same as simple activation, but FGFR can bind FGF2 without HSPG. The resulting FGFR-FGF2 complex does not activate
downstream pathways. Competitive joint activation: the same as competitive activation, but both FGFR-FGF2-HSPG and FGFR-FGF2 activate downstream MAPK
signaling. Right panel indicates how FGFR activity will evolve upon FGF2 stimulation.

B Proposed MAPK network feedback models. The minimal set of MAPK signaling nodes is shown, including a negative feedback regulator protein (NFB). Asterisks denote
activated forms of these nodes. Basic system: no feedback or feed-forward structure. Incoherent feed-forward: Activation of the negative regulator is proportional to
FGFR activation. Negative feedback: Activation of the negative regulator is proportional to ERK activation. Incoherent feed-forward and negative feedback: Activation
of the negative regulator is proportional to the product of RTK activation and ERK activation.

C A systematic overview of all proposed model topologies. The models are labeled A-D for different intracellular feedback structures, and 1-3 for the different receptor

models.

D An overview of our model selection procedure. We start with our set of 12 candidate models and a training set of experimental observations. For each of the
candidate models, we perform Bayesian parameter inference using the approximate nested sampling algorithm. We obtain a posterior distribution of the parameters
for each candidate model. We then subsequently benchmark models/associated parameter spaces for their ability to predict ERK activity dynamics for unobserved
pulsed stimulation schemes. Finally, we further evaluate the ability of the candidate models to predict a biological perturbation (HSPG perturbation).

any feedbacks. We then added three different wirings to get the
following models: (ii) a generic negative feedback from ERK to Raf
as previously proposed (Santos et al, 2007); (iii) an incoherent feed-
forward (IFF) system in which RTK modulates an intermediate
negative regulator of Raf, termed negative feedback protein (NFB),
based on our recent finding (Ryu et al, 2015); and (iv) a hybrid
system in which the negative regulator of Raf is modulated by both
an RTK-based IFF and a negative feedback from ERK to Raf in a
multiplicative way (Ryu et al, 2015). While there is some support in
the literature for the existence of positive feedback within the ERK
signaling cascade (Santos et al, 2007), we first explored previously
described negative feedback topologies that were proposed for the
FGF2/MAPK signaling network (Kanodia et al, 2014), and investi-
gated their interplay with the different receptor models.

By combining the three extracellular layer receptor models with
the four intracellular MAPK network feedback models, we obtained
a total of 12 candidate models (Fig 6C). The models consist of 9-15
species and up to 39 parameters. To account for the nonlinear
nature of FRET measurements, we explicitly modeled the nonlinear
relationship between the ratiometric output of the biosensor and the
underlying activity of ERK as previously described (Birtwistle et al,
2011). The iterative steps of our modeling approach are depicted in
Fig 6D and described below.

To avoid overfitting, we restrained the training datasets to four
experimental conditions that capture dynamic features specifically
relevant to FGF2/MAPK signaling: (i) Sustained 2.5 ng/ml FGF2
exhibits only low level of post-ERK activity peak adaptation
(Figs 1D and EVIC); (ii) sustained 250 ng/ml FGF2 exhibits high
level of post-ERK activity peak adaptation followed by slow recov-
ery of ERK activity (Figs 1D and EV1C); (iii) 2.5 ng/ml FGF2 multi-
pulse exhibits population-homogeneous ERK activity pulses in
phase with the stimulus (Fig 3E); and (iv) 250 ng/ml FGF2 multi-
pulse exhibits population-homogeneous anti-phasic ERK activity
pulses (Fig 3E), and thus also captures the capability of ERK activity
to rebound immediately after adaptation when a high concentration
FGF2 pulse is applied. One rationale for focusing on these specific
datasets was that our NS approach infers parameters on population-
averaged ERK activity responses. We therefore avoided datasets that
display highly heterogeneous single-cell ERK activity responses.
These include stimulation with 0.25 ng/ml FGF2, which exhibits a
mix of high- and low-amplitude single-cell ERK activity responses;
or 25 ng/ml FGF2 multi-pulse stimulation, which results in a mix of
in- and anti-phase single-cell ERK activity responses (Fig 3E and F).
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For each of the 12 candidate models, we used NS to infer the
parameters that explain the dynamic ERK activity observed in four
training sets. We plotted the simulations for 500 sampled parameter
vectors from the posterior as well as for the best parameter set
(maximum likelihood estimate) and compared it to the correspond-
ing experimental data (Fig EV4). Quantification of models’ perfor-
mance given experimental data with the Bayesian evidence (BE;
Fig 6C, red number on top left of each model) excluded models A1l
and B1 (which exhibited roughly a 280 orders of magnitude lower
BE than the other models). Visual inspection of the 10 remaining
models revealed that they faithfully reproduced many of the features
of the training sets. The only model able to stringently explain all
observations of the training dataset was the most complex model
D3. The remaining models succeeded in reproducing the anti-phasic
dose response for the pulse stimulation. Models A2, A3, C2, C3, and
D2 failed to reproduce the initial peak, but succeeded in reproducing
the ERK rebound upon sustained stimulation.

To further discriminate between the models, we benchmarked
them against FGF2 stimulation patterns that were not used for train-
ing. With our microfluidic setup, we induced a 5’ single-pulse stimu-
lation (Appendix Fig S1A), as well as a more complex multi-pulse
stimulation (3’ pulse/30’ pause/20" pulse/60’ pause/5’ pulse), at
both 2.5 and 250 ng/ml FGF2 (Appendix Fig S1B). The latter
induces ERK responses constrained by multiple feedbacks of the
FGF2/MAPK signaling within one experiment, thus resulting in
dynamics not seen in our previous experiments. For each of the 10
remaining models, we sampled 500 parameter sets from each poste-
rior and plotted the simulated ERK activity using the best fit to the
experimental dataset (Fig EV5). Since BE can only be computed for
the dataset used for inference of the parameter posterior, we relied
on visual inspection to evaluate the performance of the model fitting
to the prediction dataset. This led us to exclude models that did not
reproduce the general trends of the experimental datasets. This
retained 4 models: B2, B3, C3, and D3, which are characterized by
FGF2's ability to directly bind FGFR in addition to canonical FGFR/
HSPG interactions, as well as different intracellular feedback struc-
tures.

Given the importance of FGF2/HSPG interactions, we used the
HSPG perturbation dataset to further discriminate the models. We
set the HSPG concentration to zero and simulated the 4 remaining
models using the maximum likelihood estimate of the training data
(Fig 7A). The model B3 was the only one that recapitulated our
experimental NaClO; perturbation (Fig 7B). Thus, this model
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reproduced several features of the training data (Fig EV4), faithfully
predicted unobserved ERK activity resulting from alternate dynamic
stimulation (Fig EVS5), and was the only one that predicted the
effects of the HSPG perturbation (Fig 7A). Indeed, our approach
remains coarse-grained to some extent since the slow ERK recovery
after the sustained stimulation with 250 ng/ml FGF2 is captured
with slightly different timescales (Fig EV4), suggesting that some
additional mechanisms are at play.

While exploring MAPK models that are based on negative feed-
back yielded a satisfactory solution for explaining our data, the pres-
ence of sustained ERK activity in response to sustained stimulation
with 2.5 ng/ml FGF2 suggested the possibility of a signaling
network with positive feedback. To explore this, we formulated a
range of new models that include positive feedback. The models E1,
E2, and E3 included the three different extracellular receptor interac-
tion schemes and a simple intracellular topology with positive feed-
back only (Appendix Fig S2A). The models B1’, Cl’, and D1’ are
variations of models B1, C1, and D1 shown in Fig 6C that include a
positive feedback in addition to feedbacks explored previously
(Appendix Fig S2B). In these models, we only focused on a simple
activation modality in the receptor layer (Fig 6A). Our aim was to
test whether the combination of negative/positive feedbacks would
function in a similar context as EGF/NGF, of which the cognate
receptors are not interacting competitively. Only some of the
features of the training dataset could be recapitulated by models that
included the positive feedback. Also, none of these models could
produce a good fit to validation datasets (Appendix Fig S2). We
therefore conclude that the positive feedback cannot explain FGF2's
ability to induce the observed ERK states.

Discussion

An important question in the signaling field is how different RTKs,
despite converging on a small number of core signaling processes
(including MAPKs), can induce different fates (Lemmon & Schles-
singer, 2010). An emerging concept is that the MAPK network is
wired differently downstream of specific RTKs to generate distinct
dynamic ERK states (Marshall, 1995; Santos et al, 2007). The latter
are subsequently integrated into fate decisions through additional
signal integration layers (Murphy et al, 2002; Gillies et al, 2017;
Uhlitz et al, 2017). Here, we extend this notion by showing that
FGF2, which has been poorly studied with respect to MAPK signal-
ing dynamics, wires the MAPK network with a different logic than
EGF/NGF, to induce distinct ERK states.

FGF2 dose response gradually shifts the population distribution
of ERK states

We report that FGF2 evokes strikingly different single-cell ERK
states than EGF/NGF. Increasing FGF2 doses over 4 orders of
magnitude gradually shifts the population distribution of ERK states
from sustained toward adaptive response, albeit with a slow, long-
term rebound (Fig 1E-G). This is consistent with the previously
documented population-averaged biphasic dose responses of ERK
activity and phenotypic outputs (Zhu et al, 2010; Kanodia et al,
2014). In contrast, increasing EGF doses trigger purely adaptive
responses, and NGF produces both adaptive and sustained
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responses, with a steep shift toward the latter at high input. These
GF identity/concentration-dependent population distributions of
ERK states are quantified using cluster decomposition (Fig 1G), PCA
(Fig EV2A) and a distance metric to compare the separability of
time courses (Figs 1H and EV2B and C). These results indicate that
a single time-lapse recording of ERK activity from the sustained
FGF2 dose-response challenge distinguishes low and high concen-
trations with a higher certainty than for EGF or NGF.

Pulsed FGF2 dose-response experiments also indicated FGF2's
ability to gradually induce distinct and wider ERK state population
distributions than EGF/NGF. Increasing levels of pulsed FGF2 grad-
ually led to robust switch-like activation and strong adaptation,
followed by a clear rebound leading to sustained ERK activity
(Figs 2C and EV3C), with adaptation remaining for the pulse dura-
tion in the 60’ pulse experiment (Figs 2C and EV3C). In the multi-
pulse dose-response experiment, increasing FGF2 gradually led to a
phase shift of ERK activity patterns relative to the GF pulse (Fig 3)
that depended on HSPG interactions (Fig 4), while EGF/NGF was
unable to produce such a phase shift. These results again highlight
FGF2’s ability to gradually shift the ERK state population distribu-
tion and thus to translate increasing GF inputs into more clearly
distinct signaling states than EGF/NGF.

Mechanistic insight into the FGF2/MAPK signaling network

To understand the network circuitry underlying FGF2-evoked ERK
signaling states, we took advantage of the salient features evident in
our array of sustained/pulsed experiments combined with a mathe-
matical modeling approach. Our model selection approach consists
of the following steps (Fig 6D): formulation of minimal models that
capture the relevant biology of the signaling system using a priori
knowledge; carrying out Bayesian NS inference of the parameter
space for each candidate model upon training on information-rich
ERK states using temporal perturbations; and benchmarking model
performance by predicting unknown stimulation schemes not used
for training, and HSPG perturbation. We identified a simple network
topology that recapitulates the ERK states observed in all these
experiments. The model consists of a competitive joint activation at
the receptor level (both FGF2/HSPG/FGFR and FGF2/FGFR
complexes contribute to signaling), as well as a negative feedback
loop from ERK to RAF (Fig 7B)—a structure recurrent in many
MAPK networks (Santos et al, 2007; Birtwistle & Kolch, 2011).
Thus, an interplay between a ligand, a co-receptor, and a receptor
that leads to competitive activation of two signaling-competent
complexes, coupled to a simple intracellular negative feedback, can
recapitulate all observed FGF2-dependent ERK states.

To provide intuition about the interplay of the different molecu-
lar species involved in the network, we plotted their latent states.
For the sake of simplicity, we focus on the robust, population-
homogeneous, in- and anti-phase ERK states evoked by multi-pulse
stimulation by 2.5 and 250 ng/ml FGF2 (Fig 7C). Schemes of the
receptor interactions/activities are also provided for clarity (Fig 7D
and E). At 2.5 ng/ml FGF2, FGF2 binds to FGFR and HSPG,
increasing the HSPG+FGF2 and FGFR+HSPG+FGF2 concentration
and leading to strong FGFR activity, as well as increasing the
concentration of FGFR+FGF2 which leads to low FGFR activity
(Fig 7D, top left panel). Upon FGF2 washout, FGF2 unbinds from
the 3 receptor complex species. Thus, the FGF2 pulse initially leads
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Figure 7. Benchmarking models against HSPG perturbation, and description of model latent states.

A Population average of ERK activity dynamics upon stimulation with 250 ng/ml FGF2 without (red) and with 50 mM NaClOs (red) treatment (solid lines). The model
simulations for the four models B2, B3, C3, and D4 are indicated with dotted lines, gray band indicates 95% Cl for the mean.
B Full illustration of the model B3, which is able to reproduce the training data, predict ERK activity dynamics upon unknown stimulation schemes, and reproduce the

ERK activity dynamics upon NaClOs treatment.

C The latent states of the model B3 upon pulse stimulation with 2.5 ng/ml FGF2 (blue) and 250 ng/ml FGF2 (red). Different molecular species are indicated by symbols
(receptor models) or signaling nodes. Asterisks denote activated forms of signaling nodes.

D lllustration of the mechanism responsible for the in- and anti-phase ERK dynamics evoked by 2.5 and 250 ng/ml FGF2. Gray boxes indicate stimulation with FGF2
pulses. Red dots indicate FGF2. Dashed dots indicate unbinding of FGF2 receptor complexes. Teal arrows indicate signaling strengths of different FGF2 receptor
complexes. Plain black arrows indicate fast binding/unbinding events. Dotted black arrows indicate slow unbinding events.

E Qualitative illustration of the abundance of the different receptor species, as well as total FGFR signaling activity. Gray areas indicate FGF2 pulsed stimulation.

to combined high FGFR activity that subsequently adapts to some
extent upon FGF2 washout, translating into a RAF/MEK/ERK acti-
vation/deactivation cycle with robust adaptation due to negative
feedback. During subsequent FGF2 pulses, further increase in
global FGFR activity is observed, explaining the in-phase ERK acti-
vation pattern. At 250 ng/ml FGF2, much more HSPGs will be
FGF2-bound, mostly leading to the formation of HSPG+FGF2 and
FGFR+FGF2 species at the cost of FGFR+HSPG+FGF2 complex
formation. During the 1% pulse, global FGFR activation thus results
from formation of some FGFR+HSPG+FGF2, but to a higher extent
of FGFR+FGF2 complexes. Accordingly, RAF, MEK, and ERK get
activated very similarly to the 2.5 ng/ml FGF2 pulse due to the
switch-like activation enabled by the tripartite structure of the
MAPK network. However, after this first pulse, FGF2 unbinds
faster from FGFR than from HSPG (Fig 7D, bottom middle panel,
plain and dotted arrows). The still abundant HSPG+FGF2 species
are free to engage into FGFR+HSPG+FGF2 complexes, which
induce strong FGFR activity. After initial adaptation due to strong
negative feedback, FGFR activity leads to prolonged ERK activa-
tion. At the 2™ pulse, high FGF2 levels saturate HSPGs. Because
FGF2 binding to FGFR is much quicker than HSPG-FGF2 to FGFR,
a decrease of FGFR+HSPG+FGF2 complexes in favor of FGFR+FGF2
complexes ensues. This leads to an overall decrease in FGFR activ-
ity, followed by ERK inactivation (Fig 7C-E). An important feature
captured by the model, which is already mentioned above, is that
the HSPG+FGFR+FGF2 complex signals much more strongly than
just FGFR+FGF2. This can be observed because Ras activity mostly
follows the profile of HSPG+FGFR+FGF2, rather than that of
FGFR+FGF2 species formation. Indeed, the model prediction that
the HSPG+FGFR+FGF2 complex signals more strongly than the
FGFR+FGF2 complex is expected since the Ilatter has been
proposed to be the canonical, stable signaling unit (Ornitz, 2000).
These results indicate how the ERK activity phase shift emerges
with increasing FGF2 concentrations through modulations of the
abundance of different receptor species with differential signaling
ability. We propose that the same receptor competition mechanism
enables the gradual shift of the population distribution of tran-
sient/sustained ERK activity states in the sustained stimulation
dose response.

Distinct characteristics of specific RTK-MAPK signaling systems
We showed that different RTKs and their cognate GFs produce
distinct population distributions of single-cell ERK states. Our results

extend the notion that at least some of this specificity is encoded in
the MAPK network. We demonstrated that the EGF, NGF, and FGF2
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signaling pathways can sense almost four orders of magnitude of GF
concentrations and translate them into robust signaling states that
are biologically relevant for fate decisions.

The EGF/NGF systems interpret graded inputs into a variety of
signaling states, thanks to the modulation of negative/positive feed-
backs by their respective RTKs (Ryu et al, 2015). At all concentra-
tions (0.25-250 ng/ml), sustained EGF induces switch-like, adaptive
responses with a robust high-amplitude initial peak that narrows as
the GF dosage increases (Fig 1D-G). Hence, gradual EGF increase
leads to a stronger negative feedback and thus faster robust adapta-
tion, which can protect the RTK signaling against stochastic effects
due to heterogeneous expression of signaling components
(Birtwistle & Kolch, 2011). Low EGF input produces slow adaptive,
almost sustained, ERK activity (Figs 1D-G and EV1) sufficient to dif-
ferentiate a portion of cell population (Fig 5A and B). High EGF
levels lead to low differentiation due to fast adaptation of ERK activ-
ity. Thus, an EGF dose response can already produce sufficiently
distinct signaling states to induce different fates. In marked contrast,
low sustained NGF input induces only low-amplitude responses, but
at high NGF input, the responses become sustained and saturate
above 2.5 ng/ml NGF (Fig 1D). Pulsed stimulation indicates a mix
of adaptive/sustained ERK activity responses (Figs 2B and EV3B),
with the population distribution of the latter increasing at high NGF
input. This again documents our previous finding of RTK-modulated
positive feedback: Increased NGF input leads to stronger positive
feedback, consequently increasing the fraction of cells with
sustained ERK activation (Ferrell & Machleder, 1998). However,
saturation of ERK activity limits the gradual increase of the portion
of cells with sustained signaling (Fig 1D-G). The NGF-TrkA-MAPK
network varies the distribution of adaptive and sustained responses,
and thus can shift the population distribution of proliferation/dif-
ferentiation fates in response to increasing input, as previously
proposed (Chen et al, 2012).

In contrast to the EGF/NGF systems, the FGF2-FGFR-MAPK
network interprets the input concentration using a system that
comprises competing receptor complexes in the extracellular space
and a simple intracellular network with a negative feedback. The
robustness emerging from this negative feedback might allow
FGF2 to reliably integrate a large range of FGF2 concentrations
into the gradually changing mix of transient/sustained ERK states.
The function of this network might be to enable reliable signal
transmission of fate decisions during developmental FGF
morphogen gradient interpretation (e.g., FGF2 input might gradu-
ally vary the relative abundance of transient/sustained ERK states,
evoking different fates along a morphogen gradient; Ornitz & Itoh,
2015).
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Reprogramming fate decisions by dynamic GF application

Our data clearly paint a picture in which the different RTK/MAPK
networks decode the binding of their cognate GF by inducing
specific population distributions of distinct single-cell ERK states.
Understanding how this emerges from network structures
provides the attractive possibility to evoke synthetic ERK signal-
ing states of desired duration by simple dynamic GF application.
Previously, we had shown that multiple EGF pulses, when deliv-
ered at a specific frequency, can induce a synthetic sustained
ERK signal that leads to a differentiation fate (Ryu et al, 2015).
For FGF2, the application of a high dose of sustained versus
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Reagents and Tools table

Reagent/resource Reference or source

Yannick Blum et al

pulsed FGF2 leads to clear transient versus sustained ERK states
(Figs 1D and 2C), which further correlate with absence/presence
of differentiation respectively (Fig SB and D). These results
further support the notion that the time ERK remains ON is
important for actuation of the differentiation fate (Murphy et al,
2002; Gillies et al, 2017). However, application of low concentra-
tions of sustained FGF2, while evoking sustained ERK activity
(Fig 1D), does not lead to differentiation. This strongly suggests
that additional signaling pathways such as the PI3K/AKT pathway
are also important for regulation of fate decision (Kim et al,
2004; Chen et al, 2012), and might require a higher threshold GF
concentration.

Identifier or catalog number

Experimental models

PC12 EKAR Ryu et al (2015)

PC12 NS1 Tobias Meyer

Antibodies

Anti-Tubulin DM1A Sigma T9026
Alexa 488 anti-mouse Molecular Probes by Life Technologies A11029
Chemicals, enzymes, and other reagents

hEGF Sigma E9644
NGF-beta human Sigma N1408
hBFGF Sigma F0291
Dextran Alexa 546 Thermo Fisher Scientific D22911
NaClO; Sigma 403016
DAPI Sigma D9542

Software (include version where applicable)

CellProfiler http://cellprofiler.org V 2.2.1-newest
R https://www.rstudio.com/products/rstudio/download/ 1.1.453-newest
NIS-Elements AR NIKON 46

Matlab www.mathworks.com/ 2017b

Other

AnaTag Hilyte Fluor 647 Microscale AnaSpec AS-72050

Protein Labeling Kit

Methods and Protocols

Cell culture

PC-12 cells stably expressing the EKAR2G1 construct, described
earlier in Ryu et al (2015), and PC-12 Neuroscreen-1 (NS-1, gift from
Tobias Meyer) were cultured using low-glucose DMEM (Sigma)
supplemented with 10% horse serum (HS; Sigma), 5% fetal bovine
serum (FBS; Sigma), and 1% penicillin/streptomycin. Cells were
cultured on plastic tissue culture dishes (TPP) coated with 50 pg/ml
collagen from bovine skin (Sigma). Cells were passaged at 70% con-
fluence by detaching cells using a cell scraper (Fisher).
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Microfluidic device fabrication and preparation

Microfluidic device preparation was performed as described previ-
ously (Ryu et al, 2015). In short, polydimethylsiloxane (PDMS) poly-
mer (Dow Corning) was mixed with the catalyzer in 10:1 ratio in a
plastic beaker. A first layer of 4-5 g was poured on the master and
then degassed in a desiccator before solidifying at 80°C for 1 h.
Eight-well reservoir strips (Evergreen) were divided in 2 and then
glued on the first layer using PDMS and solidifying at 80°C for
30 min. Finally, the second layer of 15-20 g of PDMS is used to fina-
lize the device. The PDMS replica was cut and punched at the appro-
priate inlets and outlets. Plasma treatment was used to bond the
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PDMS replica to the 50 x 70 mm coverslip (Matsunami, Japan) to
allow proper sealing that resists the high-pressure applied during
the experiments. To enhance the bonding strength, the device was
heated for 15 min in an 80°C dry oven. After bonding, the device
was immediately filled by adding 200 ul of 50 pg/ml collagen solu-
tion in PBS to each outlet reservoir and put at 37°C. To increase
coating efficiency in the device, 10 ul of the collagen solution was
aspirated 3x from the cell seeding port after 1 h each before seeding
cells.

PC12/EKAR2G cell suspensions were prepared at a concentration
of 10° cells/ml. 50 ul of this cell suspension was added in the outlet
and aspirated with a pipette from the cell reservoir inlet port. After a
10’ incubation, residual cells in the outlet were removed by aspira-
tion, and 250 ul of DMEM supplemented with 10% HS, 5% FBS,
and 1% penicillin/streptomycin was added to the outlet reservoir.
The inlet reservoirs were filled with 150 pl of starving medium
(pure low-glucose DMEM). Prior to experiments, outlet reservoirs
were emptied and inlet reservoir was filled with 200 ul of fresh
starving medium (inlet 1) and starving medium with appropriate
GF/NaClO; concentration and added dextran Alexa 546 (4 nM final
concentration) (inlet 2).

Live cell imaging

All FRET ratio-imaging experiments were performed on an epifluores-
cence Eclipse Ti inverted fluorescence microscope (Nikon) with a
PlanApo air 20x (NA 0.75) objective controlled by NIS-Elements
(Nikon). Laser-based autofocus was used throughout the experi-
ments. Image acquisition was performed with an Andor Zyla 4.2 Plus
camera at a 16-bit depth. Donor, FRET, and red channel images (to
visualize an Alexa 546-dextran that indicates GF exposure) were
acquired sequentially using filter wheels. The following excitation,
dichroic mirrors, and emission filters (Chroma) were used: donor
channel: 430/24x, Q465LP, 480/40 m; FRET channel: 430/24x,
Q465LP, 535/30 m; and red channel: ET550/15, 89,000 bs, 605/50 m
(for dextran imaging). Standard exposure settings were used through-
out the experiments. 440-nm (donor and FRET channel excitation)
and 565-nm (red dextran) LED lamps were used as light sources
(Lumencor Spectra X light engine), with 3% (440 nm) and 5%
(565 nm) of lamp power. Acquisition times were 30 ms for donor
channel and 30 ms for FRET at binning 2 x 2 and 100 ms 8 x 8
binning for the red channel. Cells were imaged in DMEM with
1,000 mg/ml glucose, and penicillin/streptomycin, at 37°C. The
microfluidic device was mounted on the microscope stage and was
connected by the tubing to a CellASIC ONIX (Merck Millipore) pump.

NS-1 differentiation experiments

A total of 8,000 cells per well (96-well plates; BD Biosciences) were
seeded in starving medium consisting of low-glucose DMEM supple-
mented with 0.2% HS and 1% penicillin/streptomycin. Cells were
starved for 24 h before adding 200 pl of the appropriate GF. For 10-
min and 3-min experiments, wells were carefully washed once with
200 pl starving medium to dilute residual GF. After 2 days, cells
were fixed using 4% PFA at 37°C for 10 min and subsequently
washed twice with PBS. Cells were permeabilized in 0.1% Triton X-
100 in PBS for 10’ and blocked in PBS with 1% BSA and 22 mg/ml
glycine for 30’. Cells were then incubated with an anti-alpha-tubulin
(Sigma T9026, 1:1,000) antibody at 4°C overnight, washed 3x for
10’ with PBS, and incubated with an Alexa 546 anti-mouse
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secondary antibody (1:1,000) for 3 h. Samples were washed with
PBS with DAPI (1:1,000) for 5 and then washed 2x 10’ with PBS
before imaging.

Image analysis

For the segmentation, tracking, and ratio calculation in time-lapse
experiments, we used CellProfiler. First, FRET and donor channels
were corrected for uneven illumination using the Correctlllumina-
tionCalculate and CorrectllluminationApply modules using the Back-
ground setting. Cells were then segmented using the
IdentifyPrimaryObjects module. As there is no nuclear marker for
segmentation, we excluded clumps of cells using stringent size
exclusion in this module. We tracked objects using the TrackObjects
module and calculated the ratio image using the ImageMath where
the FRET image is divided by the Donor image. Using
MeasureObjectIntensity, the mean intensity of the newly created
ratio image was measured for every tracked object as well as the
mean intensity of labeled FGF HiLyte 647 for experiment using it. In
addition, total image intensity of the red dextran Alexa 546 channel
was measured to follow GF exposure. Measurements were exported
as csv files and quantified with R scripts.

We used a different CellProfiler pipeline to analyze differentia-
tion experiments. First, DAPI channel was segmented using
IdentifyPrimaryObjects to detect nuclei. Using the Iden-
tifySecondaryObjects module, cells including their neurites were
segmented using the nuclei objects as a seed and the tubulin stain
as the image. These objects were then skeletonized using the Expan-
dOrShrinkObjects module. To obtain the soma, a series of morpho-
logical operations were applied (4x erode, followed by 4x dilation)
to the tubulin images using the “Morph” module; then, the resulting
images were segmented again using IdentifySecondaryObjects. Total
neurite length per cells was then measured using MeasureNeurons
module, and data were exported to csv files.

Quantification and statistical analysis

Clustering

We used R software to analyze and cluster time series. The ampli-
tude of each trajectory was first normalized to its own mean before
GF stimulation, i.e., t € [0,40] for Figs 1C and D, 2A-C, 3A,C,E, and
4A and B, or t € [36,40] for Figs 1E and 3B,D,F.

For clustering of sustained and single-pulse GF stimulations, we
used dynamic time warping from dtw R package. The subsequent
hierarchical clustering was performed using standard R functions
dist and hclust.

PC analysis

We use standard R function prcomp for principal component analy-
sis (PCA). For the decomposition, we use pooled data for all GFs
(EGF, NGF, and FGF2) and their concentrations (0.25-250 ng/ml)
from Fig 1E (main text). After the decomposition, we add negative
control dataset (no GF) by rotating it to the new PC basis.

Population distance

With this novel approach, we set out to quantify the separation
between two populations of single-cell time series as shown in
Figure S2B. The two populations may correspond to single-cell
dynamic ERK responses to two treatments with different GFs or dif-
ferent GF concentrations.
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In the first step, at every measured time point we calculate
distance between two distributions of a measured quantity (middle
panel of Appendix Fig S2B). We use Jeffries—-Matusita distance (dju),
which, for two normalized histograms p and g, with Z;p; = 1, reads:

n

APt =" (VP — V@) s € [0,2]

i=1

where n is the number of histogram bins. The J-M distance is
bound and equals 0 for two identical distributions, and 2 for two
entirely disjointed distributions regardless of how far apart they
are. As a result, djy overemphasizes small and suppresses high
separability values.

In the second step, we calculate the fraction of area under the
dypy curve over time, relative to maximum AUC of dyy. Therefore,
the population distance between two sets of single-cell time series, a
and b, reads:

N M
ot _ 2021 %ab), oot [0,1]
ab J2Ndt ' Yab ’
where N is the number of time points, dt is time interval of data,
and index k indicates a time point at which dyy is calculated.

Mechanistic modeling

Appendix Table S1 shows all modeled species, their notation used for
the equation, and the initial values. The initial values for the FGF2
receptor, the negative feedback species, and HSPG are inferred from
the data and are modeled through the indicated parameters. The other
initial values were taken from http://bionumbers.hms.harvard.edu.

The model equations for the basic model are shown in
Appendix Table S2. The phosphorylation events are modeled with
the Michaelis-Menten kinetics. The negative feedback is modeled
through the modeling species NFB and its “active” version NFB*,
which affects the phosphorylation rate of RAF in a Hill-type manner,
with Hill coefficient h,p. The receptor models are shown in
Appendix Table S3. Since the activation happens through direct
binding of FGF2 to HSPG and then to FGFR, these reactions have
linear propensities. Even though the activation of FGFR requires
dimerization (and possibly multimerization), we modeled it linearly
to avoid making the model unnecessarily complicated.

The regulation of the negative feedback is model dependent
(equations in Appendix Table S4). For the incoherent feed-forward
models (C1, C2, C3), it is only regulated by the membrane species
HFR and FGFR*; for the negative feedback models (B1, B2, B3), it is
only regulated through ERK*; and for the models (D1, D2, D3), it is
regulated through both the receptor species HFRand FGFR*as well as
ERK*. Since the NFB does not correspond directly to any biological
species, we modeled its activation as Hill dynamics with inferred
Hill coefficients fyrand Ry

Model files are deposited in https://github.com/Mijan/LFNS_
MSB/tree/MSB_version/FGF2_models.

Parameter estimation

All parameters are listed in Appendix Table S5. For the parameter
estimation, we used a custom implementation of a NS method based
on Skilling (2006). Our custom implementation of NS can be
obtained from the GitHub repository (https://github.com/Mijan/
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LFNS_MSB). This repository also contains all model files, as well as
the results from all of our inference runs. Given the experimental
data, NS approximates the posterior (being the Bayesian evidence
and being the likelihood) by drawing samples of parameter vectors
from the prior, along with weights that are used to recover the
posterior distribution and the Bayesian evidence. NS explores areas
of the prior constrained to higher regions of likelihood correspond-
ing to an increasing sequence of thresholds. For a thorough discus-
sion on the NS approach, see, for instance, Skilling (2006). For
termination criteria, we follow Skilling (2006) and ran the NS algo-
rithm until the final prior volume multiplied by the highest likeli-
hood in that volume is smaller than 0.001 times the current
evidence estimate and the difference between the highest log-likeli-
hood and the lowest log-likelihood in the current “live” set is < 2.
The NS algorithm was run in parallel on 48 cores, and the sampling
from the constrained prior in each iteration was by performing
density estimation on the current “live” points and using rejection
sampling to sample from the prior on the support of the constrained
prior. The priors for all parameters were chosen to be log-uniform.

Data availability

CellProfiler 2.2.1 pipelines to process time-lapse movies and snap-
shots from differentiation experiments are provided as Code EVI.
Source code for the inference algorithm, all model files (in human-
readable.txt format), and all results of the inference runs (all param-
eter posteriors as well as all intermediate algorithm results) are
available at https://github.com/Mijan/LFNS_MSB.

Expanded View for this article is available online.
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