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Abstract

Background: Multimorbidity, the co-occurrence of two or more diseases in one patient, is a frequent phenomenon.
Understanding how different diseases condition each other over the lifetime of a patient could significantly contribute
to personalised prevention efforts. However, most of our current knowledge on the long-term development of the
health of patients (their disease trajectories) is either confined to narrow time spans or specific (sets of) diseases. Here,
we aim to identify decisive events that potentially determine the future disease progression of patients.

Methods: Health states of patients are described by algorithmically identified multimorbidity patterns (groups of
included or excluded diseases) in a population-wide analysis of 9,000,000 patient histories of hospital diagnoses
observed over 17 years. Over time, patients might acquire new diagnoses that change their health state; they describe
a disease trajectory. We measure the age- and sex-specific risks for patients that they will acquire certain sets of
diseases in the future depending on their current health state.

Results: In the present analysis, the population is described by a set of 132 different multimorbidity patterns. For
elderly patients, we find 3 groups of multimorbidity patterns associated with low (yearly in-hospital mortality of
0.2–0.3%), medium (0.3–1%) and high in-hospital mortality (2–11%). We identify combinations of diseases that
significantly increase the risk to reach the high-mortality health states in later life. For instance, in men (women) aged
50–59 diagnosed with diabetes and hypertension, the risk for moving into the high-mortality region within 1 year is
increased by the factor of 1.96 ± 0.11 (2.60 ± 0.18) compared with all patients of the same age and sex,
respectively, and by the factor of 2.09 ± 0.12 (3.04 ± 0.18) if additionally diagnosed with metabolic disorders.

Conclusions: Our approach can be used both to forecast future disease burdens, as well as to identify the critical
events in the careers of patients which strongly determine their disease progression, therefore constituting targets for
efficient prevention measures. We show that the risk for cardiovascular diseases increases significantly more in
females than in males when diagnosed with diabetes, hypertension and metabolic disorders.
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Background
Noncommunicable (or chronic) diseases (NCDs) such
as dorsalgia, hypertension, respiratory diseases or dia-
betes affect a large fraction of the world’s population and
decrease the quality of life of people burdened by them
[1]. For example, in 2004, almost 50% of the population
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of the USA was suffering from at least one chronic con-
dition [2], and in 2014, approximately 25% of the adults
had been diagnosed with more than one NCD [3], with
both numbers strongly increasing with age. Besides having
a negative impact on people’s well-being, NCDs also pose
a substantial burden on the healthcare systems of coun-
tries [4, 5]. Apart from combatting common risk factors
such as unhealthy lifestyle and diet, which many NCDs
are attributed to [6], early detection and management play
a key role in decreasing the burden of chronic diseases
[7]. Personalised (or stratified) medicine promises tomake
care more efficient by tailoring treatments individually
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to patients while taking their individual risk profile for
potential future diseases into account [8]. A necessary pre-
condition to enter into this new era of medicine is a deep-
ened understanding of how the long-term developments
of multiple diseases condition each other.
The field of networkmedicine holds as central tenet that

diseases cannot be studied independently from each other
but arise from complex interactions between molecular
units in the human body in terms of discretised struc-
tures such as protein–protein, metabolic, regulatory and
RNA networks [9]. For example, the fact that many dis-
eases tend to be comorbid, i.e. that they tend to co-occur
in patients, can be understood based on the disease-
causing genes or pathways shared by the comorbid dis-
eases [10–12]. However, not all diseases linked by shared
genes exhibit significant comorbidities, as different muta-
tions of the same gene can have different consequences.
Conversely, not all comorbidities can be explained from
molecular data. One reason is that comorbidities can also
be the result of the exposure to the same environmental
risk factors, for example, due to a particular lifestyle [13].
In addition, present data on molecular interactions is far
from being complete [14].
To obtain a more empirically based understanding

of disease comorbidity, observational healthcare data
regarding hospital admissions, pharmaceutical prescrip-
tions and doctor visits has been leveraged for the purpose
of disease prediction [15, 16]. Using so-called phenotypic
comorbidity networks [17–20]—networks where nodes
represent diseases and two nodes are linked if the two
corresponding diseases are comorbid—it was shown that
diseases which are comorbid to many other diseases have
a higher mortality and that patients tend to develop dis-
eases in close network proximity to the ones they already
have. The latter fact opens up the possibility to predict
future diseases of patients based on their medical history.
This has been accomplished with approaches that include
collaborative filtering [21, 22], frequent itemsets [23, 24],
learning of transition probabilities between states repre-
sented by binary vectors [25, 26], deep learning [27, 28]
and point processes [29].
Next to predicting future disease, longitudinal data

on hospital admissions allows the identification of pre-
viously unknown patterns in the temporal sequence of
diseases (disease trajectories) patients are diagnosed with.
By analysing the temporal order of diagnosis pairs co-
occuring in a significant number of patients with a par-
ticular directionality in time, it was possible to identify
such trajectories with a length of up to four diseases [30].
Alternative methodological approaches to identify typical
disease trajectories include dynamic time warping [31],
a method originally developed for speech recognition, or
the detection of putative causal relations between pairs
of diseases using information-theoretic approaches [32].

Recently, non-negative matrix factorisation was used to
extract multimorbidity patterns out of a large data set of
electronic health records, and these were then used to
describe long-term disease trajectories of patients [33].
The major challenge all these works are confronted with
is the high number of different diagnosis codes, leading to
a combinatorial explosion of the number of possible dis-
ease combinations, many of which occur only in a single
patient.
Here, we present an alternative approach to characterise

the population of an entire country in terms of its long-
term disease trajectories. An illustration of our work flow
is shown in Fig. 1. Based on a longitudinal data set cov-
ering all intramural stays in Austria from 1997 to 2014,
see the “Methods” section, we extract the cohort of all
patients who have not been assigned a diagnosis with

Fig. 1Workflow of the research presented in this article. Rounded
boxes represent the input or results, and rectangles represent the
steps of the analysis
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ICD-10 code fromA00–N99 between 1997 and 2002. This
ensures that all patients have the same initial health state
(absence of diagnoses over 6 years). We then represent
the health state of each patient at the end of each year
from 2003 to 2014 by a binary vector, a list of zeros and
ones that encode which diseases a patient has (or has
not) been diagnosed so far. The set of all health states
(disease vectors) is then partitioned into a set of multi-
morbidity patterns, called clusters, by using a hierarchical
clustering algorithm called DIVCLUS-T [34]. Each clus-
ter is defined by a set of diseases which each patient in
that cluster has been diagnosed with (inclusion criteria)
and a set of diseases each patient in that cluster has not
been diagnosed with (exclusion criteria). As time pro-
ceeds, patients acquire new diseases and consequently
can change the cluster they belong to, with probabilities
depending on their age and sex. The sequence of clus-
ters a patient belongs to throughout the years describes
his or her disease trajectory. We construct a multiplex
network where nodes represent clusters and layers corre-
spond to different patient sex and age groups. Directed
links in the different layers are weighted according to the
rate at which patients of the corresponding sex and age
group change between the clusters corresponding to the
connected nodes.
Our approach provides a statistical model for the dis-

ease progression of patients which takes into account their
sex, age and entire observed history of hospital diagnoses.
In particular, it can be used to explore differences between
men and women in the risk for developing certain sets
of diseases given the same set of pre-existing conditions.
We characterise the different clusters in terms of their age
and sex composition, as well as the in-hospital mortal-
ity of patients assigned to them. Elderly patients are often
found in one of three network regions with different in-
hospital mortalities. We find two regions with low and
medium mortality, where patients have been diagnosed
with eye diseases and arthropathies, respectively. How-
ever, most patients are found in a set of strongly connected
clusters in the network characterised by hypertension
(ICD-10 I10–I15), heart diseases (I20–I52) and high in-
hospital mortality. We identify clusters which are visited
by many patients prior to entering into this high-mortality
cardiovascular disease region. We see them as targets for
aggressive risk management in order to prevent or delay
the onset of cardiovascular disease. The fact that the high-
risk clusters are characterised by known risk factors for
cardiovascular disease like obesity, metabolic disorders
and diabetes, and the fact that their effect is found to be
stronger in women compared withmen, serves as a valida-
tion of our approach. Beyond these more or less obvious
results, our approach identifies dozens of other transitions
with significant risk differences between men and women
(disregarding sex-specific diseases).

Methods
Data
We analyse a data set provided by the Austrian Federal
Ministry for Health, covering all approx. 45,000,000 hos-
pital stays of about 9,000,000 individuals in Austria during
the 17 years from 1997 to 2014. Here, the term hospital
also includes facilities of long-term care such as reha-
bilitation centres or psychiatric hospitals [35]. For each
hospital stay, the data includes the sex (male/female) and
age group (5-year interval) of the patient, the main and
side diagnoses associated with the stay in the form of
level-3 ICD-10 codes [36] and the admission and release
date and the release type (e.g. normal release, transfer or
death); 54% of all death cases in Austria between 1997
and 2014 are recorded in the data set, i.e. happened dur-
ing a stationary hospital stay. Depending on the year, the
maximum number of diagnoses assigned during 1 hospi-
tal stay fluctuates between 30 and 40, the mean number
of diagnoses assigned during 1 stay fluctuates between 2.6
and 2.7, and the median number is always 3. We restrict
our analysis to 1074 codes from A00 to N99, grouped into
131 blocks as defined by the WHO, see Additional file 1:
Table S1. Our study population consists of the number of
individuals M = 5, 112, 811 patients not assigned a diag-
nosis from the range A00 to N99 during a hospital stay in
Austria in the period from 1997 to 2002 inclusively. Note,
however, that all patients appearing in the data set were
assigned at least 1 diagnosis code between A00 and Z99
between 1997 and 2014.

Clustering
The (observed) health state of a patient at a given point
in time consists of the set of all diseases they have been
diagnosed with until that point. We measure the health
state of each patient at the end of each year in the
observation period 2003–2014. Using a divisive cluster-
ing algorithm called DIVCLUS-T [34], we partition the set
of all observed health states into K = 132 clusters, see
Additional file 1: Section S1. The obtained clusters repre-
sent typical multimorbidity patterns which can be used to
describe the health states of patients on a coarse-grained
level. Each cluster is characterised by a set of diseases each
patient in that cluster has been diagnosed with (inclusion
criteria) and a set of diseases each patient in that cluster
has not been diagnosed with (exclusion criteria). We char-
acterise the clusters according to the sex distribution and
mean age, as well as (in-hospital) mortality, defined as the
percentage of patients in that cluster who die in-hospital
per year.

Analysis of cluster transitions
The disease trajectory of a patient can now be represented
by a temporal sequence of multimorbidity patterns which
describe the health state of this patient at different points
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in time. We use the terms health state and disease history
interchangeably. If their health state is assigned to cluster
j in a given year, and to cluster k in the next year, then we
say that the patient has stepped from cluster j to cluster k.
By construction, for each pair of clusters, there is at least
one disease which is an inclusion criterion in one and an
exclusion criterion in the other cluster. As we represent
the health states of patients by all diseases which they have
been diagnosed with so far, a patient cannot step from a
cluster in which a certain disease is an inclusion criterion
to one where this disease is an exclusion criterion. There-
fore, steps between two clusters are only possible in one
direction.
The cohort is stratified by sex and 10-year age groups.

For a given sex g and age group a, we measure the prob-
ability that a patient is found in cluster j, given that he or
she was in cluster k 1 year earlier: the cluster transition
rate qg,a,k,j.
From all patients in a given set of clusters, we define

progredient patients as those that are found outside of
this set of clusters after 3 years. Differences in comorbidi-
ties between progredient and non-progredient patients
are evaluated by means of Fisher’s exact test; for multiple
testing, we adjust using the Bonferroni correction.
The cluster transition rates specify a probabilistic

model for the disease progression of patients, see
Additional file 1: Section S4. The model can be repre-
sented by a multilayer network, a set of nodes with mul-
tiple directed links between them. In the network, nodes
correspond to the disease clusters (health states) and links
between clusters to the transition rates. Each age and sex
group specifies one network layer with link weights given
by the rates qg,a,k,j.

Results
Disease clusters
Inclusion and exclusion criteria of all 132 obtained clus-
ters are listed in Additional file 1: Tables S2–S132. There
and in the main text, the symbols ✗ and ✓ next to a
diagnosis block indicate that this block is an exclusion
and an inclusion criterion, respectively, for that cluster.
Initially, all patients are free of any (known) prior diag-
noses, and their trajectories start in cluster 0 (the “healthy
cluster”), where all diagnoses are exclusion criteria. In
Additional file 1: Figure S3, we show the cluster sizes,
meaning the total number of health states (disease vec-
tors), assigned to each cluster, colour-coded according to
the sex distribution within the clusters. There are sev-
eral clusters only containing patients of 1 sex; this is
explained by sex-specific inclusion criteria such as dis-
eases of male genital organs (N40–N51). Other clusters
with strong sex imbalance include cluster 70, where 82% of
the patients aremale. For this cluster, the inclusion criteria
are mental and behavioural disorders due to psychoactive

substance use (F10–F19) and diseases of the liver
(K70–K77).
Clusters differ strongly in their age composition. For

most clusters, the age distribution is centred around ages
60–80, see Additional file 1: Figure S1. In Fig. 2, we com-
pare the mean age with the mortality across clusters.
Mortality tends to increase with mean age; however, the
mortalities in 2 clusters with the same average age can
differ by more than a factor of 100. With 11%, cluster
131 has the highest mortality. This cluster has no exclu-
sion criteria and includes hypertensive diseases (I10–I15);
heart diseases (I30–I52); diseases of the arteries, arterioles
and capillaries (I70–I79); and a diagnosis of renal failure
(N17–N19). Moreover, 67% of the health states assigned
to that cluster include metabolic disorders (E70–E90), and
49% include diabetes mellitus (E10–E14). The age profile
of cluster 131 is shown in Fig. 3; women in that cluster
tend to be older than men.
Most clusters associated with high mortality have

hypertensive diseases (I10–I15) and heart diseases (I30–
I52) as inclusion criteria. Clusters 9, 47 and 48, which
also show high mortality, contain patients who have
received diagnoses of heart diseases, but none of hyper-
tension. Other clusters with high mortality are cluster 11,
including cerebrovascular diseases (I60–I69) but exclud-
ing hypertension, and clusters 55, 56, 74 and 109, which
include malignant neoplasms (C00–C97). Although we
cannot rule out the possibility that some patients in cluster
11 were not diagnosed with hypertension despite suffering
from it, we note that this cluster has a significantly differ-
ent age profile than cluster 107, where both cerebrovas-
cular diseases (I60–I69) and hypertension (I10–I15) are
inclusion criteria. More precisely, 18% of the patients in
cluster 11 are aged less than 40, compared to only 2%
in cluster 107. Moreover, 17% of the patients in cluster

Fig. 2 Scatter plot of mortality versus mean age in the different
clusters with colours indicating the sex distribution in the
corresponding cluster
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Fig. 3 Age distributions of males and females in all clusters and in the
low-, medium- and high-mortality regions (below), and in the
high-risk clusters 112 (diabetes and hypertension) and 120 (diabetes,
hypertension and metabolic disorders) and the high-mortality sink
state, cluster 131 (hypertension, heart diseases, diseases of the
arteries, arterioles and capillaries and renal failure) (above)

11 have been diagnosed with subarachnoid haemorrhage
(I80), compared to 7% in cluster 107.

Disease trajectories
Wedefine the reduced disease trajectory of a patient as the
disease trajectory with all repetitions removed; the length
of a reduced trajectory is the number of different health
states it contains. For example, if patient i has the disease
trajectory (0, 1, 1, 1, 5, 5, 3), then the reduced disease tra-
jectory is (0, 1, 5, 3), which has length 4. Additional file 1:
Figure S7 shows the distribution of the average length
of the reduced disease trajectory of patients during the
observation period. Almost 25% of the patients stay in
cluster 0 during the entire time span (they only received
codes from the ICD chapter O–Z); 2% visit 4 or more
clusters. Figure 4 shows how the length of the reduced
disease trajectory of patients varies with age. Adolescent
patients visit the least number of clusters, and patients

Fig. 4 Average number of clusters visited by patients during the
observation period depending on their age at the beginning of the
observation period

around the age of 70 visit the highest number of clus-
ters. Two reasons might contribute to this decline. First,
mortality strongly increases after the age of 80, meaning
that these elderly patients have less time to collect high
numbers of hospital visits. Second, there might be selec-
tion bias at work. Patients of our cohort were not assigned
hospital diagnoses from A00 to N99 during 1997–2003.
Elderly patients fulfilling these criteria are, therefore, less
likely to suffer from chronic diseases, leading to less hospi-
tal visits. The most frequent reduced trajectory of length
3 is (0, 85, 89) and is followed by 5983 individuals. Patients
with this reduced trajectory first acquire a diagnosis of
arthropathies (M00–M25) and subsequently 1 of soft tis-
sue disorders (M60–M79), see Fig. 5.
We now describe the results for typical disease tra-

jectories involving diagnoses of cerebrovascular diseases,
malignant neoplasms and mood disorders.

Cerebrovascular diseases (I60–I69)
In total, 199,681 patients (3.9%) were diagnosed with cere-
brovascular diseases. The distribution of the length of
their reduced trajectories is shifted towards higher values
compared to the total cohort, with more than 50% of the
patients following reduced trajectories of length greater
than 2, see Additional file 1: Figure S7. The most frequent
reduced trajectory of length 3, followed by 1447 patients,
is (0, 114, 123), meaning that patients from the “healthy
cluster” 0 (all diseases are exclusion criteria) move to clus-
ter 114 with hypertensive diseases (I10–I15) and heart
diseases (I30–I52) to cluster 123 where cerebrovascular
diseases (I60–I69) changed from an exclusion (cluster
114) to an inclusion criterion (cluster 123).

Malignant neoplasms (C00–C97)
A total of 312,787 patients (6.1%) received diagnoses of
malignant neoplasms. More than 50% of them only visit
2 different clusters, and 44% (69,552) of those patients
have the reduced trajectory (0, 55), i.e. from the healthy

Fig. 5 The reduced trajectory (0, 85, 89), which is the most frequent
reduced trajectory of length 3 and followed by 5983 patients of the
cohort. The numbers underneath the arrows give the total number of
patients who step from cluster 0 to cluster 85 and from cluster 0 to
cluster 85 to cluster 89, respectively
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cluster to a cluster where cancer (C00–C97) is the only
inclusion criterion. The most frequent reduced trajectory
of length 3, followed by 3093 cancer patients, is (0, 55, 109)
where patients acquire hypertensive diseases (I10–I15)
after cancer.

Mood (affective) disorders (F30–F39)
A total of 210,589 patients (4.1%) of the study cohort are
diagnosed with mood or affective disorders during the
observation period. Among them, 9.5% end their trajec-
tory in cluster 71 where, additional to mood disorders,
they are diagnosed with mental and behavioural disor-
ders due to psychoactive substance use (F10–F19). The
most common reduced trajectory of length 3 in this sub-
cohort, followed by 1936 patients, is (0, 64, 71). These
patients first acquire a diagnosis from the block F10–F19
and subsequently 1 from F30–F39.
Disease cluster multiplex network
Figure 6 shows a visualisation of the obtained multilayer
network of patient health states. Nodes correspond to

clusters, and their size is the number of observations in
that cluster; the node colour corresponds to annual clus-
ter mortality on a scale from 0% (white) to 6% and above
(red). For this picture, all network layers have been col-
lapsed into one by omitting stratification according to
sex and age. Thickness of the links is therefore propor-
tional to the rate at which patients change between the
clusters they connect, irrespective of sex and age. To
increase clarity, we only show the links which correspond
to the transition rates of more than 0.5% and which are
traversed by a sufficiently high number of patients to
make the calculated rates robust against statistical fluc-
tuations, see Additional file 1: Section S3 for our notion
of robustness. The network layout has been chosen such
that the average age of patients in the clusters increases
from left to right. Clusters are labelled such that the
direction of the links always goes from the cluster of
lower to the one with higher label which typically means
younger to older age, or from left to right. Self-loops are
omitted.

Fig. 6 Visualisation of the multilayer network. Nodes represent clusters, and directed edges between the nodes are weighted according to the rate
at which patients move between them. The direction of the edges is always from the node with lower to the one with higher label; in most cases,
this is from left to right. The edges are coloured depending on the average age of the transitioning patients: light (dark) green edges indicate their
low (high) average age. Node size is proportional to the size of the corresponding cluster. The node colour indicates the cluster mortality, with white
standing for low and red standing for high mortality. For clarity, in the visualisation, we removed cluster 0 (the “healthy cluster”) which is connected
to all other nodes. The layout has been generated by a force-directed algorithm after which nodes have been displaced from left to right by a
distance proportional to the average age associated with its links, i.e. patient age tends to increase from left to right. To improve readability, we only
display a filtered version of the network with the links representing statistically robust transition rates greater than 0.5%. Nodes which are isolated
under this threshold have been aligned in the upper left corner. For elderly patients, we observe network regions of low, medium and high
mortality. Patients access the high-mortality regions via the high-risk clusters 112 and 120 (blue circles)
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There exist several subsets of clusters which are highly
interconnected, meaning that patients move frequently
between them, see Additional file 1: Figure S2. Clusters
102–131 share hypertensive diseases (I10–I15) as a com-
mon inclusion criterion, and most patients assigned to
them are aged older than 60 years, see Additional file 1:
Figure S1. Clusters 114, 121–125 and 127–131 addition-
ally include heart diseases (I30–I52) and are characterised
by high mortality (2–11%). Together with clusters 9, 11,
47, 48 and 107, which also have high patient mortal-
ity attributable to cardiovascular diseases, we therefore
refer to these clusters as the high-cardiovascular mortal-
ity region of the multilayer network, highlighted orange
in Fig. 6. In particular, cluster 131, which has the high-
est mortality of all clusters, is part of the (cardiovascu-
lar) high-mortality region. This cluster has no outgoing
links in the cluster multilayer network and therefore can
be regarded as a sink state of our model, meaning that
patients entering this cluster do not leave it any more.
Note that the fact that such a sink state exists is a conse-
quence of our choice of clustering algorithm and the rep-
resentation of patients by their disease histories. Another
densely connected block consists of clusters 86–91 and is
characterised by diagnoses of arthropathies (M00–M25).
With the exception of clusters 85 and 89, they all have an
average age greater than 55 years and mortalities of 0.3–
1%.We refer to this block as the medium-mortality region
for the elderly, highlighted pink in Fig. 6. Clusters 44, 45
and 103 share disorders of lens (H25–H28) as a common
inclusion criterion. Patients included in them have mean
age greater than 70 years and mortalities of 0.2–0.3%. We
call these clusters the low-mortality region for the elderly,
highlighted blue in Fig. 6. Age profiles of the 3 discussed
regions are shown in Fig. 3, and in Fig. 7, we show the
prevalences of the 30 most frequent diagnosis blocks in
them.

High cardiovascular risk clusters
We identify those clusters via which most patients enter
the high-cardiovascular mortality region. To this end,
we rank all other clusters according to the number of
patients entering the high-mortality region via them.Most
patients step into the high-mortality region directly from
the “healthy” cluster 0, meaning that (during the obser-
vation period) they did not receive hospital diagnoses
before, see Additional file 1: Figure S4. The four other
clusters ranked highest are clusters 102, 112, 118 and 120.
Apart from cluster 118, which has ischaemic heart dis-
eases (I20–I25) as an inclusion criterion, these clusters
do not include cardiovascular diseases and are charac-
terised by patient mortalities of less than 1.5%. As inclu-
sion criteria, they have combinations of diabetes mellitus
(E10–E14), metabolic disorders (E70–E90) and hyperten-
sive diseases (I10–I15). The rates at which patients step

into the high-mortality region from clusters 112 to 120 are
significantly increased compared with all other patients of
the same age and sex. Moreover, we find this increase to
be stronger in females than in males. The risk of stepping
into the high-mortality region within 1 year from cluster
112 (diabetes and hypertension) is increased by a factor of
1.96 ± 0.11 (2.60 ± 0.18), 1.57 ± 0.06 (1.71 ± 0.10)
and 1.38 ± 0.05 (1.49 ± 0.05) for men (women)
aged 50–59, 60–69 and 70–79, respectively, compared to
all patients of the same sex and age group. For cluster
120 (diabetes, metabolic disorders and hypertension), the
corresponding values are 2.09 ± 0.12 (3.04 ± 0.18),
1.58 ± 0.08 (2.17 ± 0.10) and 1.47 ± 0.07 (1.59 ± 0.07).
Here, the numbers to the right of the symbol “±” quan-
tify the extent of the 95% confidence interval, see Addi-
tional file 1: Section S3. Among the progredient male
patients aged 50–59 in the high-risk clusters, 16± 4% have
been diagnosed with chronic obstructive pulmonary dis-
ease (J44), compared with 8.3 ± 0.6% of those who remain
stable in the high-risk clusters without proceeding into the
high-mortality region. Of the progredient female patients
aged 60–69, 23 ± 3% have received a diagnosis of obe-
sity (E66) compared with 14.3 ± 0.8% of the stable ones.
For men of the same age group, the corresponding num-
bers are 11 ± 2% and 10.1 ± 0.8%, respectively. Note that
although the increase in cardiovascular risk for patients
in the high-risk clusters is stronger in females than in
males, the absolute risk of cardiovascular disease is still
higher for males. For additional details, we refer to Addi-
tional file 1: Tables S133–S134. Due to their low mortality
and lack of cardiovascular diseases as inclusion criteria
but strong links into the high-mortality region, we inter-
pret clusters 112 (diabetes and hypertensive diseases) and
120 (diabetes, metabolic disorders and hypertensive dis-
eases) as high-risk (cardiovascular) clusters, circled blue
in Fig. 6. Their age profiles are shown in Fig. 3.

Discussion
We presented a novel method to describe disease trajecto-
ries as observed over 17 years from a population-wide data
set on hospital diagnoses. The method is based on classi-
fying observed medical histories of patients using a small
number of multimorbidity patterns (clusters) extracted
from the data by means of a hierarchical clustering algo-
rithm. Analysing the transition rates between the clusters,
we create a sex- and age-stratified model of disease trajec-
tories.
As expected, many of the clusters are specific to cer-

tain age groups; however, clusters populated by patients
of similar age can differ significantly. Particularly, we
show that elderly patients can be found in regions of low,
medium and high mortality. The high-mortality region is
characterised by the co-occurrence of multiple chronic
conditions ranging from hypertension, obesity, diabetes,
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Fig. 7 Comparison of the prevalences of the 30 most frequent diseases in the high-, medium- and low-mortality regions for the elderly

metabolic disorders, cardiovascular diseases and coronary
heart diseases. This contrasts to the low-mortality region,
where prevalences of these diseases are drastically lower
and patients typically only suffer from diseases of the
eye. Although morbidity and mortality attributable to car-
diovascular diseases decreased in the last decade (with
greater improvement in men), they remain the predomi-
nant causes of mortality in both sexes. On the other hand,
NCDs like obesity, metabolic disorders, diabetes and renal
diseases increased in men and women, partly due to pop-
ulation ageing. Clusters 129–131, which have the highest
mortality, also include renal failure (N17–N19), and about
50% of the patients contained in them also have been
diagnosed with diabetes mellitus (E10–E14). The comor-
bid prevalence of diabetes and renal disease and failure
markedly increases cardiovascular morbidity and mortal-
ity. Patients with renal diseases hardly achieve the tar-
gets for blood pressure and glycemic control. However,
the use of new classes of antidiabetic drugs may change
the paradigm of unescapable cardiorenal risk in the
future [37].
We identified two high-risk clusters via which many

patients enter the high-cardiovascular mortality region.
These clusters are characterised by a high prevalence of
diseases like metabolic disorders, obesity, diabetes and
hypertension, but low prevalence of cardiovascular dis-
eases and low in-hospital mortality. Patients whose dis-
ease state is assigned to one of these clusters have a signif-
icantly increased risk of stepping into the high-mortality
region within 1 year when compared to patients of the

same age and sex but without recorded preconditions.
This is in line with the findings that patients with dis-
eases subsumed under the term “metabolic syndrome”
have an almost threefold increased mortality because of
cardiovascular or coronary heart disease in an 11.4-year
follow-up [38]. Unfortunately, the diseases which char-
acterise the high-risk clusters are often undetected and
only diagnosed because of acute complications caused
by the underlying disorders. For example, in Denmark,
35% of the patients with newly diagnosed diabetes fea-
tured diabetic complications around diagnosis [39]. As
patients usually suffer from diabetes for many years before
the diagnosis, screening and prevention programmes are
necessary at least for subjects at high risk. It is highly rec-
ommended that patients with the clinical features hyper-
tension, vascular diseases, dyslipidemia, prediabetes or
abdominal obesity should as early as possible and all
(other) subjects older than 45 years undergo diabetes
screening at regular intervals [40]. Such procedure could
help to identify more patients at risk earlier and to imple-
ment secondary prevention of long-term complications
and assure guideline-based therapy.
In male patients aged 50–59 within the high-risk clus-

ters, chronic obstructive pulmonary disease (COPD) sig-
nificantly increases the risk of progressing into the high-
cardiovascular mortality region compared to controls
without COPD. The frequent comorbidity of COPD and
cardiovascular diseases—especially in those aged under
65 years—has already been discussed in the literature.
Besides smoking, also physical inactivity, air pollution and
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low maximally attained lung volume are thought to be
shared risk factors. Yet, cardiovascular disease remains
underrecognised and undertreated in patients with COPD
[41]. Targeted screening for cardiovascular disease in
patients with COPD, especially those mid-to-late middle-
aged, has therefore been advocated for [41].
Women aged 60–69 in the high-risk clusters who

proceeded into the high-cardiovascular mortality region
within a 3-year follow-up have obtained diagnoses of obe-
sity (E66) significantly more often than those who did not
proceed. For men of the same age group in the high-risk
clusters, we find the risk-increasing effect of obesity to
be insignificant. Diabetic women who are overweight or
obese have a significantly higher cardiovascular risk than
their normal weight counterparts [42, 43]. When com-
pared to females, increased risk for diabetic complications
occurred at higher BMI levels in males [43].
Importantly, we find the relative risk of cardiovascular

disease for patients associated with one of the high-risk
clusters compared to healthy controls to be significantly
larger in females than in males. Both diabetes and renal
failure appear to attenuate the generally positive effect of
female sex on life expectancy: these disorders seem to
increase the risk in women to a greater extent, thereby
equalising mortality risks [44–46]. This may be ascribed
to sex-dimorphic changes in the risk factor burden and
environmental factors. Recent studies showed that NCDs
like obesity or diabetes are heterogenous entities with dif-
ferent outcomes among groups of patients and that sex
and age can modify the risks. In case of obesity, the fat
distribution pattern and central obesity-linked inflamma-
tion play a greater role than BMI class itself for car-
diometabolic risk [47]. In regard to diabetes, even among
the predominant class of type 2 diabetes, several specific
diabetes subtypes with different outcome prediction are
described and validated in European populations [48, 49].
Although our data set cannot distinguish subgroups based
on genetics, biomarkers or clinical characteristics other
than hospital diagnosis, we may provide additional evi-
dence of the importance of personalised care to modify
future risks. Among patients with type 2 diabetes, which
comprises more than 90% of all diabetes cases, women
with type 2 diabetes were shown to be more likely obese,
hypertensive and have hypercholesterolaemia but were
less likely to be prescribed lipid-lowering medication and
antihypertensive drugs, especially if they had cardiovas-
cular disease in comparison with men [50]. Moreover, it
was shown that admissions for acute myocardial infarc-
tions steadily increased in the last two decades espe-
cially in younger patients whose history of diabetes and
hypertension increased in parallel [51]. The proportion
attributable to younger women was particularly high who
also had lower probability of receiving guideline-directed
therapy.

The fact that we identify known risk factors for car-
diovascular disease and confirm previously reported gen-
der differences in the strength of their effect serves as
a validation of our method. In Additional file 1: Tables
S136–S137, we report further transitions between clus-
ters which show a significant gender bias and may yield
hypotheses for detailed follow-up analyses. For example,
we note that men aged 20–30 with a history of drug abuse
(F10–F19) have a higher risk of subsequently being diag-
nosed with depression when compared with women of
the same age group. Male depression often remains undi-
agnosed because men are less likely to seek help [52]
and tend to underreport symptoms of depression [53].
Furthermore, diagnostic criteria appear to better reflect
symptoms of depressed women than their male counter-
parts who tend to display “atypical” symptoms such as
alcohol and drug abuse as well as poor impulse control
and risk taking [54]. Interestingly, this gender difference
is reversed in the age group of 40–50-year-old patients,
where the risk is higher for women. This may indicate that
women at perimenopausal age are more vulnerable to the
use of psychotropic drugs due to biological (endocrine)
and psychosocial factors.
Our work is constrained by limitations in data avail-

ability, in particular, the lack of information on outpatient
contacts, doctor visits, prescribed medications or death
cases outside of hospitals. Moreover, the fact that the data
was originally recorded for billing purposes means that
diagnoses which did not lead to financial reimbursement
were often not reported. Some diseases might therefore
be strongly underrepresented in the data, in particu-
lar, lifestyle-related diagnoses like overweight or nicotine
addiction. It is also important to bear in mind that the
binary vectors characterising the state of patients at a
given point in time encode their complete observed his-
tory of in-hospital diagnoses. This is due to the fact that
the data quality does not allow to reliably infer which dis-
eases a patient has been cured of.While formany diseases,
the assumption that the patient’s health is still affected
by them if they have been diagnosed with them in the
past is well justified, other past diagnoses might be irrele-
vant. However, in the data-driven approach pursued here,
we did not want to include any a priori knowledge about
the acuteness of different conditions. Instead, we expect
acute diseases which are independent of the other con-
ditions and the further disease trajectories of patients to
not influence the transition probabilities between clusters.
Another limitation is that despite our choice of cohort,
consisting of all patients who have not been assigned diag-
noses with ICD-10 codes A00–N99 from 1997 to 2002,
the assumption that all patients are free of any relevant
preconditions will be wrong in some cases.
On a methodological level, the model might produce

disease trajectories starting in cluster A, with disease d
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as an inclusion criterion, stepping to cluster B, where d is
neither an exclusion nor an inclusion criterion, and from
there to cluster C, where d is now an exclusion criterion,
leading to a contradiction to the fact that the patient has
previously visited cluster A and must therefore have been
diagnosed with disease d.
We made the implicit assumption that the probability

distribution of a patient’s health state in the next year does
only depend on their sex, age and current health state; the
pathway via which the patient has reached their current
health state, as well as the time the patient has already
spent in this health state is assumed to be irrelevant. The
validity of this assumption remains to be seen.
To assess the quality of the trajectory model, we com-

pared the performance of ourmodel in terms of long-term
predictions with two different benchmark models that
assign patients to clusters based on single diseases (either
the most recent or the least frequent one), see Addi-
tional file 1: Sections S4–S5. These models perform either
comparable or only slightly worse than the DIVCLUS-
T approach in terms of cluster inertia, which can be
understood from the fact that they nevertheless capture
disease–disease correlations (note that for a given clus-
ter, the cluster-specific frequencies of other diseases are
the marginal frequencies of the diseases computed over
all patients fulfilling the criteria for that cluster). How-
ever, if we take the longitudinal component of the data
into account and compare the statistics of simulated and
real disease trajectories, we find that our approach clearly
outperforms the benchmark models. This indicates that
the issue of logically impossible trajectories does not sub-
stantially impact our results. Moreover, our results show
that our multilayer network approach based on typical
multimorbidity patterns provides a more adequate frame-
work to capture the path-dependent nature of long-term
disease trajectories compared to the single-disease bench-
mark models. It will be of interest to extend the current
framework with additional clinical variables or to focus
on more specific subsets of patients for a more precise
identification of high-risk clusters for specific diseases.
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